(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-26
(45)【発行日】2024-12-04
(54)【発明の名称】回転電機
(51)【国際特許分類】
H02K 1/2706 20220101AFI20241127BHJP
H02K 1/06 20060101ALI20241127BHJP
H02K 3/04 20060101ALI20241127BHJP
H02K 21/14 20060101ALI20241127BHJP
【FI】
H02K1/2706
H02K1/06 Z
H02K3/04 E
H02K21/14 Z
(21)【出願番号】P 2018215097
(22)【出願日】2018-11-15
【審査請求日】2021-08-30
【審判番号】
【審判請求日】2023-05-22
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】100121821
【氏名又は名称】山田 強
(74)【代理人】
【識別番号】100139480
【氏名又は名称】日野 京子
(74)【代理人】
【識別番号】100125575
【氏名又は名称】松田 洋
(74)【代理人】
【識別番号】100175134
【氏名又は名称】北 裕介
(74)【代理人】
【識別番号】100207859
【氏名又は名称】塩谷 尚人
(72)【発明者】
【氏名】高橋 裕樹
【合議体】
【審判長】恩田 春香
【審判官】松永 稔
【審判官】棚田 一也
(56)【参考文献】
【文献】特開2015-89149(JP,A)
【文献】特開2004-15906(JP,A)
【文献】特開2002-153095(JP,A)
【文献】特表2012-503972(JP,A)
【文献】特開2008-160973(JP,A)
【文献】特開2002-134314(JP,A)
【文献】特開2001-218404(JP,A)
【文献】特開2000-228835(JP,A)
【文献】特開2000-245084(JP,A)
【文献】特開2012-29354(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K3/04, H02K21/14, H02K1/06, H02K1/27
(57)【特許請求の範囲】
【請求項1】
周方向に極性が交互となる複数の磁極を有する磁石部(1000,1100)を有してなる界磁子(40)と、多相の電機子巻線(51)を有してなる電機子(50)と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機(10)において、
前記磁石部は、
周方向に並べて配置された複数の磁石(1001,1101,3001)と、
前記磁石を収容して保持する磁石収容孔(2001,2101)を有し、かつ、磁性体である保持部材(2000,2100)と、を備え、
前記磁石は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されており、かつ、d軸及びq軸のうち少なくともいずれか一方で分けられており、
前記磁石収容孔は、径方向における前記磁石の断面形状に沿って形成されており、
前記磁石及び前記磁石収容孔において、径方向において反電機子側となる反電機子側周面(1002)から前記電機子までの寸法は、周方向中央部に比較して周方向端部の方が短く、
前記磁石は、q軸上における中心点を中心とする円弧状の配向円弧に沿って配向された磁化容易軸に沿って円弧状の磁石磁路が形成されており、
前記磁石は、周方向に隣り合うd軸の間においてq軸を中心とする対称形状とされている回転電機。
【請求項2】
周方向に極性が交互となる複数の磁極を有する磁石部(1000,1100)を有してなる界磁子(40)と、多相の電機子巻線(51)を有してなる電機子(50)と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機(10)において、
前記磁石部は、
周方向に並べて配置された複数の磁石(1001,1101,3001)と、
前記磁石を収容して保持する磁石収容孔(2001,2101)を有し、かつ、磁性体である保持部材(2000,2100)と、を備え、
前記磁石は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されており、かつ、d軸及びq軸のうち少なくともいずれか一方で分けられており、
前記磁石収容孔は、径方向における前記磁石の断面形状に沿って形成されており、
前記磁石及び前記磁石収容孔において、径方向において反電機子側となる反電機子側周面(1002)から前記電機子までの寸法は、周方向中央部に比較して周方向端部の方が短く、
前記磁石は、周方向に隣り合うq軸とd軸の間において形成されており、
前記磁石及び前記磁石収容孔では、径方向において、前記反電機子側である反電機子側周面から前記電機子までの寸法は、周方向中央部に比較してq軸側の端部の方が短くなるように設けられている回転電機。
【請求項3】
前記磁石及び前記磁石収容孔の反電機子側に設けられた角は、全て鈍角により構成されている請求項
1に記載の回転電機。
【請求項4】
前記磁石に設けられた角は、丸みを帯びている請求項1~3のうちいずれか1項に記載の回転電機。
【請求項5】
前記磁石及び前記磁石収容孔において、前記反電機子側周面の周方向端部には、径方向において前記電機子側に傾斜する傾斜面(1002b,2005,1102b,2105)が設けられている請求項1~4のうちいずれか1項に記載の回転電機。
【請求項6】
前記磁石及び前記磁石収容孔において、前記反電機子側周面は、曲面により構成されている請求項1~4のうちいずれか1項に記載の回転電機。
【請求項7】
前記保持部材は、筒状に形成されており、径方向において前記保持部材の反電機子側周面から前記磁石収容孔の反電機子側周面までの厚さ寸法のうち最小寸法は、前記磁石の径方向における厚さ寸法のうち最大寸法の半分以上である請求項1~6のうちいずれか1項に記載の回転電機。
【請求項8】
前記保持部材は、複数の前記磁石収容孔が周方向に並べて配置されており、
周方向に隣接する前記磁石収容孔の間に設けられた側壁部の周方向における幅寸法のうち最小寸法は、前記磁石の周方向における幅寸法のうち最大寸法の半分未満である請求項1~7のうちいずれか1項に記載の回転電機。
【請求項9】
前記保持部材は、筒状に形成されているとともに、複数の前記磁石収容孔が周方向に並べて配置されており、
径方向において前記保持部材の反電機子側周面から前記磁石収容孔の反電機子側周面までの厚さ寸法(L20a)及び径方向において前記保持部材の電機子側周面から前記磁石収容孔の電機子側周面までの厚さ寸法(L20b)のうち最小となる寸法は、前記磁石の径方向における厚さ寸法のうち最大の寸法(L10a)の半分未満であり、
周方向に隣接する前記磁石収容孔の間に設けられた側壁部の周方向における幅寸法のうち最小となる寸法(W20)は、前記磁石の周方向における幅寸法のうち最大となる寸法(W10)の半分未満である請求項1~
8のうちいずれか1項に記載の回転電機。
【請求項10】
前記磁石は、固有保磁力が400[kA/m]以上であり、かつ、残留磁束密度が1.0[T]以上である請求項1~
9のうちいずれか1項に記載の回転電機。
【請求項11】
前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部(81,82)を有し、
前記電機子において、
周方向における前記各導線部の間に導線間部材(57,142,143)を設け、かつその導線間部材として、1磁極における前記導線間部材の周方向の幅寸法をWt、前記導線間部材の飽和磁束密度をBs、1磁極における前記磁石部の周方向の幅寸法をWm、前記磁石部の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料、若しくは非磁性材料を用いる構成か、
又は周方向における前記各導線部の間に導線間部材を設けていない構成となっている請求項1~
10のうちいずれか1項に記載の回転電機。
【請求項12】
前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部(81,82)を有し、
前記導線部は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さい請求項1~
11のうちいずれか1項に記載の回転電機。
【請求項13】
前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部(81,82)を有し、
前記導線部を構成する各導線は、複数の素線(86)が束ねられているとともに、束ねられた素線間の抵抗値が前記素線そのものの抵抗値よりも大きい素線集合体となっている請求項1~
12のうちいずれか1項に記載の回転電機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機に関するものである。
【背景技術】
【0002】
従来、例えば回転電機の回転子として、電磁鋼板を積層させてなる回転子コアに磁石収容孔を形成し、その磁石収容孔に磁石を挿入したIPM(Interior Permanent Magnet)型の回転子が普及してきている。例えば特許文献1には、磁石収容孔の形状を工夫し、回転子から固定子へ向かう磁束とは反対方向の磁界を抑え、固定子と鎖交する磁束を増やす技術が開示されている。このような回転電機では、永久磁石や、回転子、固定子等の形状を最適化する設計がなされており、回転電機の能力向上と、永久磁石の反磁界への耐力向上との両立が図られている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、ロータコアにおいて、磁石保持孔の周りに隙間(フラックスバリア)が設けられている。これにより、磁石の磁束密度が低下することとなる。また、隙間を設けることにより、磁石を保持しにくくなり、また、ロータコアの強度が低下することも考えられる。
【0005】
本発明は、上記事情に鑑みてなされたものであり、その主たる目的は、磁束低下を抑制しつつ、好適に磁石の固定を行うことができる回転電機を提供することにある。
【課題を解決するための手段】
【0006】
課題を解決するための第1の手段は、周方向に極性が交互となる複数の磁極を有する磁石部を有してなる界磁子と、多相の電機子巻線を有してなる電機子と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機において、前記磁石部は、周方向に並べて配置された複数の磁石と、前記磁石を収容して保持する磁石収容孔を有し、かつ、磁性体である保持部材と、を備え、前記磁石収容孔は、径方向における前記磁石の断面形状に沿って形成されており、前記磁石及び前記磁石収容孔において、径方向において反電機子側となる反電機子側周面から前記電機子までの寸法は、周方向中央部に比較して周方向端部の方が短いことである。
【0007】
反電機子側周面から電機子までの寸法は、周方向中央部に比較して周方向端部の方が短くなっており、磁石収容孔は、磁石の断面形状に沿って形成されている。その結果、磁石収容孔よりも径方向外側に位置する保持部材の外壁部の厚さ寸法は、周方向中央部に比較して周方向端部の方が厚くなり、強度が向上する。これにより、磁石収容孔に収容される磁石を周方向において保持部材と係合させ、まわり止めを確実に行うことができる。また、磁石収容孔は、磁石の断面形状に沿って形成されているため、隙間を少なくして、磁束密度の低下を抑制できる。
【0008】
第2の手段は、第1の手段において、前記磁石及び前記磁石収容孔の反電機子側に設けられた角は、全て鈍角により構成されている。
【0009】
切削加工された矩形状の磁石の角には、バリ等が生じている場合がある。このような場合、磁石収容孔に磁石を隙間なく(つまり、なるべくエアギャップを小さくして)収容しようとすると、接触により破損する虞がある。そこで、磁石収容孔に矩形状の磁石を収容する場合、磁石収容孔には、磁石の角を避けるように隙間を設けることが一般的である。
【0010】
しかしながら、上記のように磁石の角を避けるように隙間を設けると、磁束密度が低下する虞がある。特に、磁石の角は、減磁しやすい部分であるため、磁石の角を避けるように隙間を設ける場合、磁束密度が低下する可能性が高くなる。
【0011】
そこで、磁石及び磁石収容孔の反電機子側に設けられた角を、全て鈍角により構成した。これにより、バリの発生を抑制することができる。したがって、磁石の形状に沿って磁石収容孔を設けることができ、隙間を抑制し、磁束密度の低下を抑制することができる。
【0012】
なお、粉末冶金法など、粉体を金型に入れて成形し、焼結することにより磁石を製造する場合、角部分を鋭角にする場合に比較して鈍角にする方が製造しやすい。このため、角を全て鈍角にすることにより、磁石製造を容易にすることができる。
【0013】
第3の手段は、第1又は2の手段において、前記磁石に設けられた角は、丸みを帯びている。
【0014】
バリを確実になくすことができる。これにより、磁石収容孔に磁石を収容する際に、保持部材とバリとが接触することを確実に防止できる。なお、粉末冶金法など、粉体を金型に入れて成形し、焼結することにより磁石を製造する場合、必然的に、全ての角が丸みを帯びることとなる。このため、角に丸みを帯びさせることにより、磁石製造を容易にすることができる。
【0015】
第4の手段は、第1~3のうちいずれかの手段において、前記磁石及び前記磁石収容孔において、前記反電機子側周面の周方向端部には、径方向において前記電機子側に傾斜する傾斜面が設けられている。
【0016】
周方向において、傾斜面同士が面接触して係合することとなるため、まわり止めを好適に行うことができる。また、反電機子側周面の周方向端部に、径方向において電機子側に傾斜する傾斜面を設けることにより、角が鋭角である場合に比較して、磁石の周方向端部においてバリの発生を抑制できる。このため、磁石収容孔と磁石との間における隙間を小さくすることができ、磁束密度の低下を抑制することができる。
【0017】
第5の手段は、第1~3のうちいずれかの手段において、前記磁石及び前記磁石収容孔において、前記反電機子側周面は、曲面により構成されている。
【0018】
曲面にすることにより、バリの発生を抑制できる。このため、磁石収容孔と磁石との間における隙間を抑制し、磁束密度の低下を抑制することができる。
【0019】
第6の手段は、第1~5のうちいずれかの手段において、前記保持部材は、筒状に形成されており、径方向において前記保持部材の反電機子側周面から前記磁石収容孔の反電機子側周面までの厚さ寸法のうち最小寸法は、前記磁石の径方向における厚さ寸法のうち最大寸法の半分以上である。
【0020】
これにより、保持部材において、磁石よりも反電機子側の部分からの磁束漏れを抑制することができる。
【0021】
第7の手段は、第1~6のうちいずれかの手段において、前記保持部材は、複数の前記磁石収容孔が周方向に並べて配置されており、周方向に隣接する前記磁石収容孔の間に設けられた側壁部の周方向における幅寸法のうち最小寸法は、前記磁石の周方向における幅寸法のうち最大寸法の半分未満である。
【0022】
これにより、側壁部において磁気飽和させやすくすることにより、フラックスバリアを設けなくても、側壁部を通過して磁石の電機子側周面と反電機子側周面との間で磁束線が短絡する自己減磁を抑制することができる。
【0023】
第8の手段は、第1~5のうちいずれかの手段において、前記磁石は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている。
【0024】
これにより、フラックスバリアを設けなくても、保持部材において、磁石よりも反電機子側の部分で磁気飽和が生じることを抑制し、保持部材の反電機子側周面からの磁束漏れを抑制することができる。また、磁石部の表面磁束密度分布を正弦波形状に近づけて、トルクリプルや渦電流損を抑制し、d軸における磁束密度を向上させることができる。
【0025】
第9の手段は、第8の手段において、前記磁石は、周方向に隣り合うq軸の間においてd軸を中心とする対称形状とされている。
【0026】
上記磁石を採用した場合、q軸において、磁石磁路が保持部材により途切れることとなる。しかしながら、磁石収容孔を磁石の形状に沿って設けているため、隙間が少なく、磁束密度の低下を抑制することが出できる。このため、径方向に沿って磁石磁路を設ける場合に比較して、磁石磁路を長くして、磁束密度を向上させることができる。また、磁石量を減らすことができる。
【0027】
第10の手段は、第8の手段において、前記磁石は、q軸上における中心点を中心とする円弧状の配向円弧に沿って配向された磁化容易軸に沿って円弧状の磁石磁路が形成されており、前記磁石は、周方向に隣り合うd軸の間においてq軸を中心とする対称形状とされている。
【0028】
このため、磁石磁路を長くして、磁束密度を向上させることができる。また、周方向端部、つまりq軸側において、反電機子側の部分は、減磁しやすい部分となる。このため、周方向中央部に比較して周方向端部の方を短くなるように、q軸側において反電機子側の部分を削除することにより、磁束密度が低下することを抑制しつつ、磁石量を減らすことができる。
【0029】
第11の手段は、第8の手段において、前記磁石は、周方向に隣り合うq軸とd軸の間において形成されており、前記磁石及び前記磁石収容孔では、径方向において、前記反電機子側である反電機子側周面から前記電機子までの寸法は、周方向中央部に比較してq軸側の端部の方が短くなるように設けられている。
【0030】
このため、磁石磁路を長くして、磁束密度を向上させることができる。また、周方向端部、つまりq軸側において、反電機子側の部分は、減磁しやすい部分となる。このため、周方向中央部に比較して周方向端部の方を短くなるように、q軸側において反電機子側の部分を削除することにより、磁束密度が低下することを抑制しつつ、磁石量を減らすことができる。
【0031】
第12の手段は、第8~11のうちいずれかの手段において、前記保持部材は、筒状に形成されているとともに、複数の前記磁石収容孔が周方向に並べて配置されており、径方向において前記保持部材の反電機子側周面から前記磁石収容孔の反電機子側周面までの厚さ寸法及び径方向において前記保持部材の電機子側周面から前記磁石収容孔の電機子側周面までの厚さ寸法のうち最小となる寸法は、前記磁石の径方向における厚さ寸法のうち最大の寸法の半分未満であり、周方向に隣接する前記磁石収容孔の間に設けられた側壁部の周方向における幅寸法のうち最小となる寸法は、前記磁石の周方向における幅寸法のうち最大となる寸法の半分未満である。
【0032】
磁石を、d軸の側において、q軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向すると、磁石の周方向における一端から出力された磁束線が、保持部材のうち磁石よりも径方向外側に位置する外壁部又は径方向内側に位置する内壁部を通過して、他端に到達して短絡する場合がある。つまり、電機子巻線に鎖交せずに自己減磁する場合がある。そこで、径方向における保持部材の反電機子側周面から磁石収容孔の反電機子側周面までの厚さ寸法及び径方向における保持部材の電機子側周面から磁石収容孔の電機子側周面までの厚さ寸法のうち最小となる寸法が、磁石の径方向における厚さ寸法のうち最大の寸法の半分未満となるようにした。これにより、外壁部又は内壁部が磁気飽和しやすくなる。
【0033】
また、磁石の電機子側周面から出力された磁束線が、側壁部を通過して、反電機子側周面に到達して短絡する場合(自己減磁する場合)がある。そこで、周方向に隣接する磁石収容孔の間に設けられた側壁部の周方向における幅寸法のうち最小となる寸法を、磁石の周方向における幅寸法のうち最大となる寸法の半分未満とした。これにより、側壁部が磁気飽和しやすくなる。
【0034】
以上により、フラックスバリアなどを設けなくても、磁気飽和させることにより自己減磁することを抑制することができ、d軸における磁束密度の低下を抑制することができる。また、隙間を設けず、かつ、上記のように外壁部、内壁部、及び側壁部を薄くするため、保持部材を小型化することが可能となる。
【0035】
第13の手段は、第1~12のうちいずれかの手段において、前記磁石は、固有保磁力が400[kA/m]以上であり、かつ、残留磁束密度が1.0[T]以上である。
【0036】
これにより、トルクを向上させることができる。また、このような磁石を用いることにより、保持部材を磁気飽和させやすくなり、自己減磁を抑制できる。
【0037】
第14の手段は、第1~13のうちいずれかの手段において、前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部を有し、前記電機子において、周方向における前記各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における前記導線間部材の周方向の幅寸法をWt、前記導線間部材の飽和磁束密度をBs、1磁極における前記磁石部の周方向の幅寸法をWm、前記磁石部の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料、若しくは非磁性材料を用いる構成か、又は周方向における前記各導線部の間に導線間部材を設けていない構成となっている。
【0038】
これにより、磁気飽和に起因するトルク制限を解消することができる。
【0039】
第15の手段は、第1~14のうちいずれかの手段において、前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部を有し、前記導線部は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さい。
【0040】
トルクを向上させつつ、導線部における渦電流損を抑制できる。
【0041】
第16の手段は、第1~15のうちいずれかの手段において、前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部を有し、前記導線部を構成する各導線は、複数の素線が束ねられているとともに、束ねられた素線間の抵抗値が前記素線そのものの抵抗値よりも大きい素線集合体となっている。
【0042】
導線部における渦電流損を抑制できる。
【図面の簡単な説明】
【0043】
【
図7】固定子巻線のアンペアターンとトルク密度との関係を示すトルク線図。
【
図16】n層目とn+1層目の各導線を示す側面図。
【
図17】実施形態の磁石について電気角と磁束密度との関係を示す図。
【
図18】比較例の磁石について電気角と磁束密度との関係を示す図。
【
図20】制御装置による電流フィードバック制御処理を示す機能ブロック図。
【
図21】制御装置によるトルクフィードバック制御処理を示す機能ブロック図。
【
図22】第2実施形態における回転子及び固定子の横断面図。
【
図24】磁石ユニットにおける磁束の流れを具体的に示す図。
【
図30】変形例7における回転子及び固定子の横断面図。
【
図31】変形例8において操作信号生成部の処理の一部を示す機能ブロック図。
【
図32】キャリア周波数変更処理の手順を示すフローチャート。
【
図33】変形例9において導線群を構成する各導線の接続形態を示す図。
【
図34】変形例9において4対の導線が積層配置されている構成を示す図。
【
図35】変形例10においてインナロータ型の回転子及び固定子の横断面図。
【
図38】インナロータ型の回転電機の概略構成を示す縦断面図。
【
図39】変形例11においてインナロータ構造の回転電機の構成を示す図。
【
図40】変形例11においてインナロータ構造の回転電機の構成を示す図。
【
図41】変形例12において回転電機子形の回転電機の構成を示す図。
【
図42】変形例14における導線の構成を示す断面図。
【
図43】リラクタンストルク、磁石トルク及びDMの関係を示す図。
【
図45】インホイールモータ構造の車輪及びその周辺構造を示す斜視図。
【
図48】回転電機を回転軸の突出側から見た側面図。
【
図54】固定子巻線を平面状に展開して示す正面図。
【
図58】インバータハウジングでの各電気モジュールの配置の状態を示す図。
【
図60】スイッチモジュールの冷却構造例を示す図。
【
図61】スイッチモジュールの冷却構造例を示す図。
【
図62】スイッチモジュールの冷却構造例を示す図。
【
図63】スイッチモジュールの冷却構造例を示す図。
【
図64】スイッチモジュールの冷却構造例を示す図。
【
図65】冷却水通路に対する各電気モジュールの配列順序を示す図。
【
図69】各電気モジュールとバスバーモジュールとの電気的な接続状態を示す図。
【
図70】各電気モジュールとバスバーモジュールとの電気的な接続状態を示す図。
【
図71】各電気モジュールとバスバーモジュールとの電気的な接続状態を示す図。
【
図72】インホイールモータにおける変形例1を説明するための構成図。
【
図73】インホイールモータにおける変形例2を説明するための構成図。
【
図74】インホイールモータにおける変形例3を説明するための構成図。
【
図75】インホイールモータにおける変形例4を説明するための構成図。
【
図76】変形例15における回転子及び固定子の横断面図。
【
図81】変形例16における回転子及び固定子の横断面図。
【
図82】変形例17における回転子及び固定子の横断面図。
【発明を実施するための形態】
【0044】
図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/又は関連付けられる部分については、他の実施形態の説明を参照することができる。
【0045】
本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
【0046】
(第1実施形態)
本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を
図1乃至
図5に示す。
図1は、回転電機10の縦断面斜視図であり、
図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、
図3は、回転軸11に直交する方向での回転電機10の横断面図(
図2のIII-III線断面図)であり、
図4は、
図3の一部を拡大して示す断面図であり、
図5は、回転電機10の分解図である。なお、
図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
【0047】
回転電機10は、大別して、軸受ユニット20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60とを備えている。これら各部材は、いずれも回転軸11と共に同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。本実施形態の回転電機10は、「界磁子」としての回転子40と、「電機子」としての固定子50とを有する構成となっており、回転界磁形の回転電機として具体化されるものとなっている。
【0048】
軸受ユニット20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23とを有している。軸受21,22は、例えばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。軸受21,22により、回転軸11を回転可能に支持する一組の軸受が構成されている。
【0049】
各軸受21,22では、不図示のリテーナにより玉27が保持され、その状態で各玉同士のピッチが保たれている。軸受21,22は、リテーナの軸方向上下部に封止部材を有し、その内部に非導電性グリース(例えば非導電性のウレア系グリース)が充填されている。また、内輪26の位置がスペーサにより機械的に保持され、内側から上下方向に凸となる定圧予圧が施されている。
【0050】
ハウジング30は、円筒状をなす周壁31を有する。周壁31は、その軸方向に対向する第1端と第2端を有する。周壁31は、第1端に端面32と有するとともに、第2端に開口33を有する。開口33は、第2端の全体において開放されている。端面32には、その中央に円形の孔34が形成されており、その孔34に挿通させた状態で、ネジやリベット等の固定具により軸受ユニット20が固定されている。また、ハウジング30内、すなわち周壁31及び端面32により区画された内部スペースには、中空円筒状の回転子40と中空円筒状の固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面32の側で回転軸11に片持ち支持されている。
【0051】
回転子40は、中空筒状に形成された磁石ホルダ41と、その磁石ホルダ41の径方向内側に設けられた環状の磁石ユニット42とを有している。磁石ホルダ41は、略カップ状をなし、磁石保持部材としての機能を有する。磁石ホルダ41は、円筒状をなす円筒部43と、同じく円筒状をなしかつ円筒部43よりも小径の固定部(attachment)44と、それら円筒部43及び固定部44を繋ぐ部位となる中間部45とを有している。円筒部43の内周面に磁石ユニット42が取り付けられている。
【0052】
なお、磁石ホルダ41は、機械強度が充分な冷間圧延鋼板(SPCC)や、鍛造用鋼、炭素繊維強化プラスチック(CFRP)等により構成されている。
【0053】
固定部44の貫通孔44aには回転軸11が挿通される。貫通孔44a内に配置された回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して磁石ホルダ41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合やキー結合、溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。
【0054】
また、固定部44の径方向外側には、軸受ユニット20の軸受21,22が組み付けられている。上述のとおり軸受ユニット20はハウジング30の端面32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。
【0055】
回転子40には、その軸方向に対向する二つの端部の一方にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受ユニット20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、磁石ホルダ41の、その軸方向に対向する二つの端部の一方において、その軸方向に離間する二つの軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。
【0056】
また、軸受ユニット20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違しており、例えば回転子40の中心寄りの軸受22の方が、その逆側の軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受ユニット20に作用しても、その振れや振動の影響が良好に吸収される。具体的には、回転子40の中心寄り(図の下側)の軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。前記予圧は、定位置予圧、又は定圧予圧のいずれであっても良い。定位置予圧の場合、軸受21と軸受22の外輪25はいずれも保持部材23に対して、圧入、又は接着等の方法を用いて接合されている。また、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。ここで軸受21の外輪25を軸受21の内輪26に対して軸方向に異なる位置に配置する事で予圧を発生させることができる。軸受22の外輪25を軸受22の内輪26に対して軸方向に異なる位置に配置する事でも予圧を発生させることができる。
【0057】
また定圧予圧を採用する場合には、軸方向において、軸受22と軸受21に挟まれた領域から軸受22の外輪25に向けて予圧が発生する様に予圧用バネ、例えばウェーブワッシャ24等を軸受22と軸受21に挟まれた同領域に配置する。この場合も、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。軸受21、又は軸受22の外輪25は、保持部材23に対して所定のクリアランスを介して配置される。このような構成とすることで、軸受22の外輪25には軸受21から離れる方向に予圧用バネのバネ力が作用する。そして、この力が回転軸11を伝わることで、軸受21の内輪26を軸受22の方向に押し付ける力が作用する。これにより、軸受21,22ともに、外輪25と内輪26の軸方向の位置がずれ、前述した定位置予圧と同様に2つのベアリングに予圧を掛けることができる。
【0058】
なお、定圧予圧を発生させる際には、必ずしも
図2に示す様に軸受22の外輪25にバネ力を印加する必要は無い。例えば、軸受21の外輪25にバネ力を印加しても良い。また軸受21,22のいずれかの内輪26を回転軸11に対して所定のクリアランスを介して配置し、軸受21,22の外輪25を保持部材23に対して圧入、又は接着等の方法を用いて接合することで、2つのベアリングに予圧を掛けても良い。
【0059】
更には、軸受21の内輪26が軸受22に対して離れるように力を作用させる場合には、軸受22の内輪26も軸受21に対して離れるように力を作用させる方が良い。逆に、軸受21の内輪26が軸受22に対して近づくように力を作用させる場合には、軸受22の内輪26も軸受21に対して近づくように力を作用させる方が良い。
【0060】
なお、本回転電機10を車両動力源等の目的で車両に適用する場合には、予圧を発生させる機構に対して予圧の発生方向の成分を持つ振動が加わる可能性や、予圧を印加する対象物に掛る重力の方向が変動してしまう可能性がある。その為、本回転電機10を車両に適用する場合には、定位置予圧を採用することが望ましい。
【0061】
また、中間部45は、環状の内側肩部49aと環状の外側肩部49bを有する。外側肩部49bは、中間部45の径方向において内側肩部49aの外側に位置している。内側肩部49aと外側肩部49bは、中間部45の軸方向において互いに離間している。これにより、中間部45の径方向において、円筒部43と固定部44とは部分的に重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、円筒部43が突出するものとなっている。本構成では、中間部45が段差無しで平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。
【0062】
上述した中間部45の構成によれば、回転子40には、径方向において固定部44を囲みかつ中間部45の内寄りとなる位置に、軸受ユニット20の一部を収容する軸受収容凹部46が環状に形成されるとともに、径方向において軸受収容凹部46を囲みかつ中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受ユニット20の一部と、固定子巻線51のコイルエンド54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。
【0063】
中間部45は、回転軸11側から径方向外側に張り出すように設けられている。そして、その中間部45に、軸方向に延び、固定子50の固定子巻線51のコイルエンド54に対する接触を回避する接触回避部が設けられている。中間部45が張出部に相当する。
【0064】
コイルエンド54は、径方向の内側又は外側に曲げられることで、そのコイルエンド54の軸方向寸法を小さくすることができ、固定子50の軸長を短縮することが可能である。コイルエンド54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド54が径方向内側に曲げられるとよい。コイルエンド54の反対側のコイルエンドの曲げ方向は任意でよいが、空間的に余裕のある外側に曲げた形状が製造上好ましい。
【0065】
また、磁石部としての磁石ユニット42は、円筒部43の径方向内側において、周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット42は、周方向に複数の磁極を有する。ただし、磁石ユニット42の詳細については後述する。
【0066】
固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状(環状)に巻回形成された固定子巻線51と、その径方向内側に配置されたベース部材としての固定子コア52とを有しており、固定子巻線51が、所定のエアギャップを挟んで円環状の磁石ユニット42に対向するように配置されている。固定子巻線51は複数の相巻線よりなる。それら各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相の巻線を2つ用いることで、固定子巻線51が6相の相巻線として構成されている。
【0067】
固定子コア52は、軟磁性材である電磁鋼板が積層された積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。電磁鋼板は、例えば鉄に数%程度(例えば3%)の珪素を添加した珪素鋼板である。固定子巻線51が電機子巻線に相当し、固定子コア52が電機子コアに相当する。
【0068】
固定子巻線51は、径方向において固定子コア52に重複する部分であり、かつ固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド54,55とを有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石ユニット42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド54,55のうち軸受ユニット20の側(図の上側)となるコイルエンド54が、回転子40の磁石ホルダ41により形成されたコイル収容凹部47に収容されている。ただし、固定子50の詳細については後述する。
【0069】
インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、そのユニットベース61に組み付けられる複数の電気コンポーネント62とを有している。ユニットベース61は、例えば炭素繊維強化プラスチック(CFRP)により構成されている。ユニットベース61は、ハウジング30の開口33の縁に対して固定されるエンドプレート63と、そのエンドプレート63に一体に設けられ、軸方向に延びるケーシング64とを有している。エンドプレート63は、その中心部に円形の開口65を有しており、開口65の周縁部から起立するようにしてケーシング64が形成されている。
【0070】
ケーシング64の外周面には固定子50が組み付けられている。つまり、ケーシング64の外径寸法は、固定子コア52の内径寸法と同じか、又は固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。
【0071】
なお、固定子コア52は、ユニットベース61に対して接着、焼きばめ、圧入等により組み付けられているとよい。これにより、ユニットベース61側に対する固定子コア52の周方向又は軸方向の位置ずれが抑制される。
【0072】
また、ケーシング64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を具備する構成となっている。
【0073】
なお、ユニットベース61が、固定子50の径方向内側に設けられ、固定子50を保持する固定子ホルダ(電機子ホルダ)に相当する。ハウジング30及びユニットベース61により、回転電機10のモータハウジングが構成されている。このモータハウジングでは、回転子40を挟んで軸方向の一方側においてハウジング30に対して保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61が互いに結合されている。例えば電気自動車である電動車両等においては、その車両等の側にモータハウジングが取り付けられることで、回転電機10が車両等に装着される。
【0074】
ここで、上記
図1~
図5に加え、インバータユニット60の分解図である
図6を用いて、インバータユニット60の構成をさらに説明する。
【0075】
ユニットベース61において、ケーシング64は、筒状部71と、その軸方向において対向する両端の一方(軸受ユニット20側の端部)に設けられた端面72とを有している。筒状部71の軸方向両端部のうち端面72の反対側は、エンドプレート63の開口65を通じて全面的に開放されている。端面72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。孔73には、回転軸11の外周面との間の空隙を封鎖するシール材171が設けられている。シール材171は、例えば樹脂材料よりなる摺動シールであるとよい。
【0076】
ケーシング64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっており、筒状部71を挟んで径方向内外に、回転子40及び固定子50と電気コンポーネント62とが並ぶようにそれぞれ配置されている。
【0077】
また、電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転に伴い固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。なお、電気コンポーネント62は、力行機能と発電機能とのうちいずれか一方のみを有するものであってもよい。発電機能は、例えば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。
【0078】
電気コンポーネント62の具体的な構成として、
図4に示すように、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、そのコンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚のフィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。
【0079】
なお、コンデンサ68aの製造過程においては、例えば、複数のフィルムが積層されてなる所定幅の長尺フィルムを用い、フィルム幅方向を台形高さ方向とし、かつ台形の上底と下底とが交互になるように長尺フィルムが等脚台形状に切断されることにより、コンデンサ素子が作られる。そして、そのコンデンサ素子に電極等を取り付けることでコンデンサ68aが作製される。
【0080】
半導体モジュール66は、例えばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられていることから、計12個の半導体モジュール66を環状に並べて形成された半導体モジュール群66Aが電気コンポーネント62に設けられている。
【0081】
半導体モジュール66は、ケーシング64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール群66Aの外周面は筒状部71の内周面に当接し、半導体モジュール群66Aの内周面はコンデンサモジュール68の外周面に当接している。この場合、半導体モジュール66で生じた熱は、ケーシング64を介してエンドプレート63に伝わり、エンドプレート63から放出される。
【0082】
半導体モジュール群66Aは、外周面側、すなわち径方向において半導体モジュール66と筒状部71との間にスペーサ69を有しているとよい。この場合、コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、半導体モジュール群66Aの径方向外側において円環状に連なるように一体に設けられていてもよい。スペーサ69は、良熱伝導体であり、例えばアルミニウム等の金属、又は放熱ゲルシート等であるとよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。
【0083】
また、本実施形態では、ケーシング64の筒状部71に、冷却水を流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング64は水冷機構を備えている。
図3や
図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。
【0084】
筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されていることから、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から電気コンポーネント62の熱(例えば半導体モジュール66の熱)が伝わることになる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。
【0085】
更に、固定子巻線51への通電を行うことで回転電機を動作させるインバータ回路の一部、又は全部を構成する半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されている。望ましくは、1つの半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。更に、望ましくは、全ての半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。
【0086】
また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれた領域内に配置されている。望ましくは、全ての半導体モジュール66の全体がヨーク141に囲まれた領域内に配置されている。
【0087】
また、電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76とを備えている。この場合、コンデンサモジュール68は、その軸方向に対向した二つの端面、すなわち第1端面と第2端面を有している。コンデンサモジュール68の軸受ユニット20に近い第1端面は、ケーシング64の端面72に対向しており、絶縁シート75を挟んだ状態で端面72に重ね合わされている。また、コンデンサモジュール68の開口65に近い第2端面には、配線モジュール76が組み付けられている。
【0088】
配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、そのバスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる接続ピン66aを有しており、その接続ピン66aが、本体部76aの径方向外側においてバスバー76bに接続されている。また、バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、その先端部にて配線部材79に接続されるようになっている(
図2参照)。
【0089】
上記のとおりコンデンサモジュール68の軸方向に対向する第1端面に絶縁シート75が設けられ、かつコンデンサモジュール68の第2端面に配線モジュール76が設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の第1端面および第2端面から端面72及び筒状部71に至る経路が形成される。すなわち、第1端面から端面72への経路と、第2端面から筒状部71へ至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。
【0090】
また、コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を介在させて回転軸11が配置されることから、コンデンサモジュール68の熱はその中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。
【0091】
配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリントサーキットボード(PCB)を有しており、そのボード上には各種ICや、マイコン等からなる制御部に相当する制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。
【0092】
なお、配線モジュール76は、軸方向に互いに対向する、すなわち、その厚み方向において互いに対向する第1面と第2面を有する。第1面は、コンデンサモジュール68に面する。配線モジュール76は、その第2面に、制御基板67を設けている。制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。例えば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。
【0093】
上述のとおり、ケーシング64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40及び固定子50が層状に設けられている構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされるようになっている。すなわち、インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。
【0094】
更に、半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置することで、半導体モジュール66と固定子巻線51とが固定子コア52を介さずに配置されている構成に比べて、半導体モジュール66から磁束が発生したとしても、固定子巻線51に影響を与えにくい。また、固定子巻線51から磁束が発生したとしても、半導体モジュール66に影響を与えにくい。なお、半導体モジュール66の全体が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されると更に効果的である。また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれている場合、固定子巻線51や磁石ユニット42からの発熱が半導体モジュール66に届きにくいという効果を得ることができる。
【0095】
筒状部71においてエンドプレート63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79(
図2参照)を挿通させる貫通孔78が形成されている。
図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、例えばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に貫通孔78が設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。
【0096】
上述のとおりハウジング30内には、
図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとした場合に、回転子40の回転中心からd×0.705の距離よりも径方向外側に回転子40と固定子50とが配置されている。この場合、回転子40及び固定子50のうち径方向内側の固定子50の内周面(すなわち固定子コア52の内周面)から径方向内側となる領域を第1領域X1、径方向において固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、径方向において回転子40の磁石ユニット42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。
【0097】
なお、回転子40及び固定子50を磁気回路コンポーネントアッセンブリとすると、ハウジング30内において、その磁気回路コンポーネントアッセンブリの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントアッセンブリの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。
【0098】
次いで、回転子40及び固定子50の構成をより詳しく説明する。
【0099】
一般に、回転電機における固定子の構成として、積層鋼板よりなりかつ円環状をなす固定子コアに周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨークから所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、例えば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。
【0100】
ただし、上述した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。
【0101】
また、一般的に、回転電機におけるIPM(Interior Permanent Magnet)ロータの構成として、永久磁石がd-q座標系におけるd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、d軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に励磁磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。
【0102】
図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。
図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がA1で制限されることになる。
【0103】
そこで本実施形態では、磁気飽和に起因する制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPM(Surface Permanent Magnet)ロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(
図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石ユニット42において磁石磁路を長くして磁力を高めた極異方構造を採用している。
【0104】
また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の固定子50における径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上述の磁力を高めた極異方構造によって、磁石ユニット42に対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1~第3の各構成によれば、
図7に実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。
【0105】
さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石ユニットを採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損(渦電流による銅損:eddy current loss)もまた更に抑制することができるのである。
【0106】
以下、正弦波整合率について説明する。正弦波整合率は、磁石の表面を磁束プローブでなぞる等して計測した表面磁束密度分布の実測波形と周期及びピーク値が同じ正弦波との比較から求める事ができる。そして、回転電機の基本波である1次波形の振幅が、実測波形の振幅、即ち基本波に他の高調波成分を加えた振幅に対して、占める割合が正弦波整合率に相当する。正弦波整合率が高くなると、表面磁束密度分布の波形が正弦波形状に近づいていく。そして、正弦波整合率を向上させた磁石を備えた回転電機に対して、インバータから1次の正弦波の電流を供給すると、磁石の表面磁束密度分布の波形が正弦波形状に近い事と相まって、大きなトルクを発生させることができる。なお、表面磁束密度分布は実測以外の方法、例えばマクスウェルの方程式を用いた電磁界解析によって推定しても良い。
【0107】
また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて束ねた素線導体構造としている。これによれば、素線が並列結線されているため、大電流が流せるとともに、扁平導線構造で固定子50の周方向に広がった導線で発生する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線を撚り合わせた構成にすることで、導体からの起磁力に対しては、電流通電方向に対して右ネジの法則で発生する磁束に対する渦電流を相殺することができる。
【0108】
このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。
【0109】
以下に、上述した固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石ユニット42の極異方構造について個別に説明を加える。ここではまずは、固定子50におけるスロットレス構造と固定子巻線51の扁平導線構造とを説明する。
図8は、回転子40及び固定子50の横断面図であり、
図9は、
図8に示す回転子40及び固定子50の一部を拡大して示す図である。
図10は、
図11のX‐X線に沿った固定子50の横断面を示す断面図であり、
図11は、固定子50の縦断面を示す断面図である。また、
図12は、固定子巻線51の斜視図である。なお、
図8及び
図9には、磁石ユニット42における磁石の磁化方向を矢印にて示している。
【0110】
図8乃至
図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、回転子40側となる径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52において、回転子40側の外周面が導線設置部(導体エリア)となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に所定間隔で複数の導線群81が配置されている。固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各2つの導線群81の間には軟磁性材からなるティース(つまり、鉄心)が設けられていない構成(つまり、スロットレス構造)となっている。本実施形態において、それら各導線群81の間隙56には、封止部材57の樹脂材料が入り込む構造となっている。つまり、固定子50において、周方向における各導線群81の間に設けられる導線間部材が、非磁性材料である封止部材57として構成されている。封止部材57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。言い換えれば、各導線群81は、後述するように二つの導線(conductor)82からなり、固定子50の周方向に隣り合う各二つの導線群81の間は、非磁性材のみが占有している。この非磁性材とは、封止部材57以外に空気などの非磁性気体や非磁性液体などをも含む。なお、以下において、封止部材57は導線間部材(conductor-to- conductor member)ともいう。
【0111】
なお、周方向に並ぶ各導線群81の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線群81の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。
【0112】
図10に示すように、固定子巻線(すなわち電機子巻線)51は、所定の厚みT2(以下、第1寸法とも言う)と幅W2(以下、第2寸法とも言う)を有するように形成されている。厚みT2は、固定子巻線51の径方向において互いに対向する外側面と内側面との間の最短距離である。幅W2は、固定子巻線51の多相(実施例では3相:U相、V相及びW相の3相あるいはX相、Y相及びZ相の3相)の一つとして機能する固定子巻線51の一部分の固定子巻線51の周方向の長さである。具体的には、
図10において、周方向に隣り合う2つの導線群81が3相の内の一つである例えばU相として機能する場合、周方向において当該2つの導線群81の端から端までの幅W2である。そして、厚みT2は幅W2より小さくなっている。
【0113】
なお、厚みT2は、幅W2内に存在する2つの導線群81の合計幅寸法より小さいことが好ましい。また、仮に固定子巻線51(より詳しくは導線82)の断面形状が真円形状や楕円形状、又は多角形形状である場合、固定子50の径方向に沿った導線82の断面のうち、その断面において固定子50の径方向の最大の長さをW12、同断面のうち固定子50の周方向の最大の長さをW11としても良い。
【0114】
図10及び
図11に示すように、固定子巻線51は、封止材(モールド材)としての合成樹脂材からなる封止部材57により封止されている。つまり、固定子巻線51は、固定子コア52と共にモールド材によりモールドされている。なお樹脂は、非磁性体、又は非磁性体の均等物としてBs=0と看做すことができる。
【0115】
図10の横断面で見れば、封止部材57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部材57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部材57が絶縁部材として機能する。封止部材57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。
【0116】
また、
図11の縦断面で見れば、封止部材57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の軸方向に対向する端面の少なくとも一部を含む範囲で封止部材57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。
【0117】
封止部材57が固定子コア52の端面を含む範囲で設けられた構成では、封止部材57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部材57を用いて、各鋼板の積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成であってもよい。
【0118】
回転電機10が車両動力源として使用される場合には、封止部材57が、高耐熱のフッ素樹脂や、エポキシ樹脂、PPS樹脂、PEEK樹脂、LCP樹脂、シリコン樹脂、PAI樹脂、PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂やフェノール樹脂、FRP樹脂も候補となる。回転電機の周囲温度が100℃未満と見做せる分野においては、この限りではない。
【0119】
回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限されるが、固定子コアがティースを有していない場合には、固定子での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。
【0120】
本実施形態では、固定子50においてティースを無くした構造(スロットレス構造)を用いたことにより、固定子50のインダクタンスが低減される。具体的には、複数のティースにより仕切られた各スロットに導線が収容される一般的な回転電機の固定子ではインダクタンスが例えば1mH前後であるのに対し、本実施形態の固定子50ではインダクタンスが5~60μH程度に低減される。本実施形態では、アウタロータ構造の回転電機10としつつも、固定子50のインダクタンス低減により機械的時定数Tmを下げることが可能となっている。つまり、高トルク化を図りつつ、機械的時定数Tmの低減が可能となっている。なお、イナーシャをJ、インダクタンスをL、トルク定数をKt、逆起電力定数をKeとすると、機械的時定数Tmは、次式により算出される。
Tm=(J×L)/(Kt×Ke)
この場合、インダクタンスLの低減により機械的時定数Tmが低減されることが確認できる。
【0121】
固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が固定子コア52の径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、かつそれらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈に依る効果が得られる。なお、以下において、導線群81のそれぞれ、および導線82のそれぞれを、伝導部材(conductive member)とも言う。
【0122】
スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における固定子巻線51が占める導体領域を、固定子巻線51が存在しない導体非占有領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/導体非占有領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が導体非占有領域と同等又は導体領域が導体非占有領域よりも大きくなるようにして、各導線群81が設けられている。ここで、
図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。
【0123】
固定子巻線51における導線群81の構成として、その導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。すなわち、導線群81が径方向に2層の導線82よりなり、かつ1磁極内に1相につき周方向に2つの導線群81が設けられる構成では、各導線82の径方向の厚さ寸法をTc、各導線82の周方向の幅寸法をWcとした場合に、「Tc×2<Wc×2」となるように構成されている。なお、他の構成として、導線群81が2層の導線82よりなり、かつ1磁極内に1相につき周方向に1つの導線群81が設けられる構成では、「Tc×2<Wc」の関係となるように構成されるとよい。要するに、固定子巻線51において周方向に所定間隔で配置される導線部(導線群81)は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。
【0124】
言い換えると、1本1本の各導線82は、径方向の厚さ寸法Tcが周方向の幅寸法Wcよりも小さいとよい。またさらに、径方向に2層の導線82よりなる導線群81の径方向の厚さ寸法(2Tc)、すなわち導線群81の径方向の厚さ寸法(2Tc)が周方向の幅寸法Wcよりも小さいとよい。
【0125】
回転電機10のトルクは、導線群81の固定子コア52の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石ユニット42から固定子コア52までの距離(つまり鉄の無い部分の距離)を小さくして磁気抵抗を下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。
【0126】
また、導線群81の厚さを薄くしたことにより、導線群81から磁束が漏れても固定子コア52に回収されやすくなり、磁束がトルク向上のために有効に利用されずに外部に漏れることを抑制することができる。つまり、磁束漏れにより磁力が低下することを抑制でき、永久磁石による固定子コア52の鎖交磁束を大きくして、トルクを増強することができる。
【0127】
導線82(conductor)は、導体(conductor body)82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。この絶縁被膜82bは、後述する素線86が自己融着被覆線であるならその被膜、又は、素線86の被膜とは別に重ねられた絶縁部材で構成されている。なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、例えば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。
【0128】
本実施形態では、導体82aが複数の素線(wire)86の集合体として構成されている。具体的には、
図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。また、
図14に示すように、素線86は、細い繊維状の導電材87を束ねた複合体として構成されている。例えば、素線86はCNT(カーボンナノチューブ)繊維の複合体であり、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。なお、素線86の表面は、エナメルなどの高分子絶縁層で覆われている。また、素線86の表面は、ポリイミドの被膜やアミドイミドの被膜からなる、いわゆるエナメル被膜で覆われていることが好ましい。
【0129】
導線82は、固定子巻線51においてn相の巻線を構成する。そして導線82(すなわち、導体82a)の各々の素線86は、互いに接触状態で隣接している。導線82は、巻線導体が、複数の素線86が撚られて形成される部位を、相内の1か所以上に持つとともに、撚られた素線86間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。言い換えると、隣接する各2つの素線86はその隣接する方向において第1電気抵抗率を有し、素線86の各々はその長さ方向において第2電気抵抗率を有する場合、第1電気抵抗率は第2電気抵抗率より大きい値になっている。なお、導線82が複数の素線86により形成されるとともに、第1電気抵抗率が極めて高い絶縁部材により複数の素線86を覆う素線集合体となっていても良い。また、導線82の導体82aは、撚り合わされた複数の素線86により構成されている。
【0130】
上記の導体82aでは、複数の素線86が撚り合わされて構成されているため、各素線86での渦電流の発生が抑えられ、導体82aにおける渦電流の低減を図ることができる。また、各素線86が捻られていることで、1本の素線86において磁界の印加方向が互いに逆になる部位が生じて逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。
【0131】
なお、ここでいう素線86同士の絶縁方法は、前述の高分子絶縁膜に限定されず、接触抵抗を利用し撚られた素線86間で電流を流れにくくする方法であってもよい。すなわち撚られた素線86間の抵抗値が、素線86そのものの抵抗値よりも大きい関係になっていれば、抵抗値の差に起因して発生する電位差により、上記効果を得ることができる。たとえば、素線86を作成する製造設備と、回転電機10の固定子50(電機子)を作成する製造設備とを別の非連続の設備として用いることで、移動時間や作業間隔などから素線86が酸化し、接触抵抗を増やすことができ、好適である。
【0132】
上述のとおり導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、例えば融着層と絶縁層とを備えた自己融着被覆線で被覆された複数の素線86を撚った状態で集合させ、その融着層同士を融着させることで形状を維持している。なお、融着層を備えない素線や自己融着被覆線の素線を撚った状態で合成樹脂等により所望の形状に固めて成形してもよい。導線82における絶縁被膜82bの厚さを例えば80μm~100μmとし、一般に使用される導線の被膜厚さ(5~40μm)よりも厚肉とした場合、導線82と固定子コア52との間に絶縁紙等を介在させることをしなくても、これら両者の間の絶縁性が確保することができる。
【0133】
また、絶縁被膜82bは、素線86の絶縁層よりも高い絶縁性能を有し、相間を絶縁することができるように構成されていることが望ましい。例えば、素線86の高分子絶縁層の厚さを例えば5μm程度にした場合、導線82の絶縁被膜82bの厚さを80μm~100μm程度にして、相間の絶縁を好適に実施できるようにすることが望ましい。
【0134】
また、導線82は、複数の素線86が撚られることなく束ねられている構成であってもよい。つまり、導線82は、その全長において複数の素線86が撚られている構成、全長のうち一部で複数の素線86が撚られている構成、全長において複数の素線86が撚られることなく束ねられている構成のいずれかであればよい。まとめると、導線部を構成する各導線82は、複数の素線86が束ねられているとともに、束ねられた素線間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。
【0135】
各導線82は、固定子巻線51の周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。
図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によりコイルエンド54,55が形成されている。各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石ユニット42に対して径方向に対向する位置に配置されており、磁石ユニット42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。なお、直線部83が「磁石対向部」に相当する。
【0136】
本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石ユニット42の1極対に対応する間隔で周方向に直線部83が配置され、コイルエンド54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド54と他方のコイルエンド55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。
【0137】
より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。この場合、固定子巻線51の相数をS(実施例の場合は6)、導線82の一相あたりの数をmとすれば、極対ごとに2×S×m=2Sm個の導線82が形成されることになる。本実施形態では、相数Sが6、数mが4であり、8極対(16極)の回転電機であることから、6×4×8=192の導線82が固定子コア52の周方向に配置されている。
【0138】
図12に示す固定子巻線51では、コイルサイド部53において、径方向に隣接する2層で直線部83が重ねて配置されるとともに、コイルエンド54,55において、径方向に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、固定子巻線51の端部を除き、ターン部84の向きが互いに逆となっている。
【0139】
ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向に隣接する複数層(例えば2層)に重ねて設ける構成としている。
図15(a)、
図15(b)は、n層目における各導線82の形態を示す図であり、
図15(a)には、固定子巻線51の側方から見た導線82の形状を示し、
図15(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、
図15(a)、
図15(b)では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。
【0140】
各導線82_A~82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A~82_Cでは、いずれも回転子40の軸心を中心とする同一の円上において、固定子巻線51の周方向に隣接して並ぶ7個の直線部83の両端の二つが一つのターン部84により互いに接続されている。例えば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A~82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A~82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。
【0141】
具体的には、各導線82_A~82_Cのターン部84は、同一の円(第1の円)上で周方向に延びる部分である1つの傾斜部84aと、傾斜部84aからその同一の円よりも径方向内側(
図15(b)において上側)にシフトし、別の円(第2の円)に達する頂部84b、第2の円上で周方向に延びる傾斜部84c及び第1の円から第2の円に戻る戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。
【0142】
つまり、各導線82_A~82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置(
図15(a)では紙面前後方向の位置、
図15(b)では上下方向の位置)が互いに相違するものとなっている。例えば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(例えば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(例えば径方向外側)に曲がることで、終点位置であるn層のD7位置に達する構成となっている。
【0143】
上記構成によれば、導線82_A~82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A~82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A~82_Cが互いに干渉することなく周方向に配置できるようになっている。
【0144】
ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83同士よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。
【0145】
例えば
図15(a)、
図15(b)のD7~D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、
図16に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲率半径を相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲率半径R1を、径方向外側(n+1層目)の導線82の曲率半径R2よりも小さくする。
【0146】
また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。
【0147】
上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。
【0148】
次に、回転子40における磁石ユニット42の構造について説明する。本実施形態では、磁石ユニット42が永久磁石からなり、残留磁束密度Br=1.0[T]、固有保磁力Hcj=400[kA/m]以上のものを想定している。要は、本実施形態で用いる永久磁石は、粒状の磁性材料を焼結して成型固化した焼結磁石であり、J-H曲線上の固有保磁力Hcjは400[kA/m]以上であり、かつ残留磁束密度Brは1.0[T]以上である。5000~10000[AT]が相間励磁により掛かる場合、1極対、すなわちN極とS極の磁気的長さ、言い換えれば、N極とS極間の磁束が流れる経路のうち、磁石内を通る長さが25[mm]の永久磁石を使えば、Hcj=10000[A]となり、減磁をしないことが伺える。
【0149】
また換言すれば、磁石ユニット42は、飽和磁束密度Jsが1.2[T]以上で、かつ結晶粒径が10[μm]以下であり、配向率をαとした場合にJs×αが1.0[T]以上であるものとなっている。
【0150】
以下に磁石ユニット42について補足する。磁石ユニット42(磁石)は、2.15[T]≧Js≧1.2[T]であることが特徴である。言い換えれば、磁石ユニット42に用いられる磁石として、NdFe11TiN、Nd2Fe14B、Sm2Fe17N3、L10型結晶を有するFeNi磁石などが挙げられる。なお、通例サマコバと言われるSmCo5や、FePt、Dy2Fe14B、CoPtなどの構成は使うことができない。注意としては、同型の化合物、例えばDy2Fe14BとNd2Fe14Bのように、一般的に、重希土類であるディスプロシウムを利用して、ネオジウムの高いJs特性を少しだけ失いながらも、Dyの持つ高い保磁力を持たせた磁石でも2.15[T]≧Js≧1.2[T]を満たす場合があり、この場合も採用可能である。このような場合は、例えば([Nd1-xDyx]2Fe14B)と呼ぶこととする。更に、異なる組成の2種類以上の磁石、例えば、FeNiプラスSm2Fe17N3というように2種類以上の材料からなる磁石でも、達成が可能であるし、例えば、Js=1.6[T]と、Jsに余裕のあるNd2Fe14Bの磁石に、Js<1[T]の、例えばDy2Fe14Bを少量混ぜ、保磁力を増加させた混合磁石などでも達成が可能である。
【0151】
また、人間の活動範囲外の温度、例えば砂漠の温度を超える60℃以上で動作されるような回転電機、例えば、夏においておけば車中温度が80℃近くなる車両用モータ用途などにおいては、特に温度依存係数の小さい、FeNi、Sm2Fe17N3の成分を含むことが望ましい。これは、人間の活動範囲内である北欧の-40℃近い温度状態から、先述の砂漠温度を超える60℃以上、又はコイルエナメル被膜の耐熱温度180~240℃程度までのモータ動作において温度依存係数によって大きくモータ特性を異ならせるため、同一のモータドライバでの最適制御などが困難となるためである。前記L10型結晶を有するFeNi、又はSm2Fe17N3などを用いれば、Nd2Fe14Bと比べ、半分以下の温度依存係数を所持しているその特性から、モータドライバの負担を好適に減らすことができる。
【0152】
加えて、磁石ユニット42は、前記磁石配合を用いて、配向以前の微粉体状態の粒子径の大きさが10μm以下、単磁区粒子径以上としていることを特徴としている。磁石では、粉体の粒子を数百nmオーダまで微細化することにより保磁力が大きくなるため、近年では、できるだけ微細化された粉体が使用されている。ただし、細かくしすぎると、酸化などにより磁石のBH積が落ちてしまうため、単磁区粒子径以上が好ましい。単磁区粒子径までの粒子径であれば、微細化により保磁力が上昇することが知られている。なお、ここで述べてきた粒子径の大きさは、磁石の製造工程でいうところの配向工程の際の微粉体状態の粒子径の大きさである。
【0153】
更に、磁石ユニット42の第1磁石91と第2磁石92の各々は、磁性粉末を高温で焼き固めた、いわゆる焼結により形成された焼結磁石である。この焼結は、磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91および第2磁石92の結晶粒径が10μm以下であり、配向率をαとした場合、Js×αが1.0T(テスラ)以上の条件を満足するよう行われる。また、第1磁石91と第2磁石92の各々は、以下の条件を満足するように焼結されている。そして、その製造過程において配向工程にて配向が行われることにより、等方性磁石の着磁工程による磁力方向の定義とは異なり、配向率(orientation ratio)を持つ。本実施形態の磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91と第2磁石92の配向率αが、Jr≧Js×α≧1.0[T]となるように高い配向率を設定されている。なお、ここで言う配向率αとは、第1磁石91又は第2磁石92の各々において、例えば、磁化容易軸が6つあり、そのうちの5つが同じ方向である方向A10を向き、残りの一つが方向A10に対して90度傾いた方向B10を向いている場合、α=5/6であり、残りの一つが方向A10に対して45度傾いた方向B10を向いている場合には、残りの一つの方向A10を向く成分はcos45°=0.707であるため、α=(5+0.707)/6となる。本実施例では焼結により第1磁石91と第2磁石92を形成しているが、上記条件が満足されれば、第1磁石91と第2磁石92は他の方法により成形してもよい。例えば、MQ3磁石などを形成する方法を採用することができる。
【0154】
本実施形態においては、配向により磁化容易軸をコントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願発明者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。
【0155】
なお、磁化容易軸は、磁石において磁化されやすい結晶方位のことをいう。磁石における磁化容易軸の向きとは、磁化容易軸の方向が揃っている程度を示す配向率が50%以上となる方向、又は、その磁石の配向の平均となる方向である。
【0156】
図8及び
図9に示すように、磁石ユニット42は、円環状をなしており、磁石ホルダ41の内側(詳しくは円筒部43の径方向内側)に設けられている。磁石ユニット42は、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は周方向に交互に配置されている。第1磁石91は、固定子巻線51に近い部分においてN極を形成する磁石であり、第2磁石92は、固定子巻線51に近い部分においてS極を形成する磁石である。第1磁石91及び第2磁石92は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
【0157】
各磁石91,92では、
図9に示すように、公知のd-q座標系において磁極中心であるd軸(direct-axis)とN極とS極の磁極境界である(言い換えれば、磁束密度が0テスラである)q軸(quadrature-axis)との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が円環状の磁石ユニット42の径方向とされ、q軸側では円環状の磁石ユニット42の磁化方向が周方向とされている。以下、更に詳細に説明する。磁石91,92のそれぞれは、
図9に示すように、第1部分250と、磁石ユニット42の周方向において第1部分250の両側に位置する二つの第2部分260とを有する。言い換えれば、第1部分250は、第2部分260よりd軸に近く、第2部分260は、第1部分250よりq軸に近い。そして、第1部分250の磁化容易軸300の方向は、第2部分260の磁化容易軸310の方向よりもd軸に対してより平行となるように磁石ユニット42が構成されている。言い換えれば、第1部分250の磁化容易軸300がd軸となす角度θ11が、第2部分260の磁化容易軸310がq軸となす角度θ12よりも小さくなるように磁石ユニット42が構成されている。
【0158】
より詳細には、角度θ11は、d軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、d軸と磁化容易軸300とがなす角度である。角度θ12は、q軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、q軸と磁化容易軸310とがなす角度である。なお角度θ11及び角度θ12共に、本実施形態では90°以下である。ここでいう、磁化容易軸300,310のそれぞれは、以下の定義による。磁石91,92のそれぞれの部分において、一つの磁化容易軸が方向A11を向き、もう一つの磁化容易軸が方向B11を向いているとした場合、方向A11と方向B11の成す角度θのコサインの絶対値(|cosθ|)を磁化容易軸300或いは磁化容易軸310とする。
【0159】
すなわち、各磁石91,92のそれぞれは、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じて円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。
【0160】
また、磁石91,92では、各磁石91,92の周面のうち固定子50側(
図9の下側)となる固定子側外面と、周方向においてq軸側の端面とが、磁束の流入流出面である磁束作用面となっており、それらの磁束作用面(固定子側外面及びq軸側の端面)を繋ぐように磁石磁路が形成されている。
【0161】
磁石ユニット42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、
図17に示すように、磁束密度分布が正弦波に近いものとなる。その結果、
図18に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極の中心側に磁束を集中させることができ、回転電機10のトルクを高めることができる。また、本実施形態の磁石ユニット42では、従来のハルバッハ配列の磁石と比べても、磁束密度分布の差異があることが確認できる。なお、
図17及び
図18において、横軸は電気角を示し、縦軸は磁束密度を示す。また、
図17及び
図18において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。
【0162】
つまり、上記構成の各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現することができる。
【0163】
磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列のような磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。
【0164】
図18に示すラジアル異方性磁石では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。また、固定子巻線51側での磁束変化も急峻となる。これに対し、本実施形態では、磁束密度分布が正弦波に近い磁束波形となる。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。
【0165】
磁石ユニット42では、各磁石91,92のd軸付近(すなわち磁極中心)において、固定子50側の磁束作用面280に直交する向きで磁束が生じ、その磁束は、固定子50側の磁束作用面280から離れるほど、d軸から離れるような円弧状をなす。また、磁束作用面に直交する磁束であるほど、強い磁束となる。この点において、本実施形態の回転電機10では、上述のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石ユニット42の磁束作用面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。
【0166】
また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁束作用面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。
【0167】
以下に、回転電機10の製造方法として、
図5に示す軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60についての組み付け手順について説明する。なお、インバータユニット60は、
図6に示すようにユニットベース61と電気コンポーネント62とを有しており、それらユニットベース61及び電気コンポーネント62の組み付け工程を含む各作業工程を説明する。以下の説明では、固定子50及びインバータユニット60よりなる組立品を第1ユニット、軸受ユニット20、ハウジング30及び回転子40よりなる組立品を第2ユニットとしている。
【0168】
本製造工程は、
・ユニットベース61の径方向内側に電気コンポーネント62を装着する第1工程と、
・固定子50の径方向内側にユニットベース61を装着して第1ユニットを製作する第2工程と、
・ハウジング30に組み付けられた軸受ユニット20に、回転子40の固定部44を挿入して第2ユニットを製作する第3工程と、
・第2ユニットの径方向内側に第1ユニットを装着する第4工程と、
・ハウジング30とユニットベース61とを締結固定する第5工程と、
を有している。これら各工程の実施順序は、第1工程→第2工程→第3工程→第4工程→第5工程である。
【0169】
上記の製造方法によれば、軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60を複数の組立品(サブアセンブリ)として組み立てた後に、それら組立品同士を組み付けるようにしたため、ハンドリングのし易さやユニット毎の検査完結などを実現でき、合理的な組み立てラインの構築が可能となる。したがって、多品種生産にも容易に対応が可能となる。
【0170】
第1工程では、ユニットベース61の径方向内側及び電気コンポーネント62の径方向外部の少なくともいずれかに、熱伝導が良好な良熱伝導体を塗布や接着等により付着させておき、その状態で、ユニットベース61に対して電気コンポーネント62を装着するとよい。これにより、半導体モジュール66の発熱をユニットベース61に対して効果的に伝達させることが可能となる。
【0171】
第3工程では、ハウジング30と回転子40との同軸を維持しながら、回転子40の挿入作業を実施するとよい。具体的には、例えばハウジング30の内周面を基準として回転子40の外周面(磁石ホルダ41の外周面)又は回転子40の内周面(磁石ユニット42の内周面)の位置を定める治具を用い、その治具に沿ってハウジング30及び回転子40のいずれかをスライドさせながら、ハウジング30と回転子40との組み付けを実施する。これにより、軸受ユニット20に偏荷重を掛けることなく重量部品を組み付けることが可能となり、軸受ユニット20の信頼性が向上する。
【0172】
第4工程では、第1ユニットと第2ユニットとの同軸を維持しながら、それら両ユニットの組み付けを実施するとよい。具体的には、例えば回転子40の固定部44の内周面を基準としてユニットベース61の内周面の位置を定める治具を用い、その治具に沿って第1ユニット及び第2ユニットのいずれかをスライドさせながら、これら各ユニットの組み付けを実施する。これにより、回転子40と固定子50との極少隙間間での互いの干渉を防止しながら組み付けることが可能となるため、固定子巻線51へのダメージや永久磁石の欠け等、組み付け起因の不良品の撲滅が可能となる。
【0173】
上記各工程の順序を、第2工程→第3工程→第4工程→第5工程→第1工程とすることも可能である。この場合、デリケートな電気コンポーネント62を最後に組み付けることになり、組み付け工程内での電気コンポーネント62へのストレスを最小限にとどめることができる。
【0174】
次に、回転電機10を制御する制御システムの構成について説明する。
図19は、回転電機10の制御システムの電気回路図であり、
図20は、制御装置110による制御処理を示す機能ブロック図である。
【0175】
図19では、固定子巻線51として2組の3相巻線51a,51bが示されており、3相巻線51aはU相巻線、V相巻線及びW相巻線よりなり、3相巻線51bはX相巻線、Y相巻線及びZ相巻線よりなる。3相巻線51a,51bごとに、電力変換器に相当する第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。
【0176】
各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、例えば複数の単電池が直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、
図1等に示す半導体モジュール66に相当し、コンデンサ104が、
図1等に示すコンデンサモジュール68に相当する。
【0177】
制御装置110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。制御装置110が、
図6に示す制御装置77に相当する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子40の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、例えば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。
【0178】
第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。
【0179】
第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。
【0180】
図20には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。
【0181】
図20において、電流指令値設定部111は、トルク-dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。
【0182】
dq変換部112は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向(direction of an axis of a magnetic field,or field direction)をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
【0183】
d軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。
【0184】
3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111~115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。
【0185】
そして、操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
【0186】
また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
【0187】
d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
【0188】
ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
【0189】
続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。
【0190】
図21には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。なお、
図21において、
図20と同じ構成については、同じ符号を付して説明を省略する。ここではまず、U,V,W相側の制御処理について説明する。
【0191】
電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。
【0192】
トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。
【0193】
トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
【0194】
操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。
【0195】
ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
【0196】
また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。
【0197】
トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
【0198】
操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
【0199】
ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
【0200】
ところで、回転電機10においては、軸電流の発生に伴い軸受21,22の電食が生じることが懸念されている。例えば固定子巻線51の通電がスイッチングにより切り替えられる際に、スイッチングタイミングの微小なずれ(スイッチングの不均衡)により磁束の歪みが生じ、それに起因して、回転軸11を支持する軸受21,22において電食が生じることが懸念される。磁束の歪みは固定子50のインダクタンスに応じて生じ、その磁束の歪みにより生じる軸方向の起電圧によって、軸受21,22内での絶縁破壊が起こり電食が進行する。
【0201】
この点本実施形態では、電食対策として、以下に示す3つの対策を講じている。第1の電食対策は、固定子50のコアレス化に伴いインダクタンスを低減したこと、及び磁石ユニット42の磁石磁束をなだらかにしたことによる電食抑制対策である。第2の電食対策は、回転軸を軸受21,22による片持ち構造としたことによる電食抑制対策である。第3の電食対策は、円環状の固定子巻線51を固定子コア52と共にモールド材によりモールドしたことによる電食抑制対策である。以下には、これら各対策の詳細を個々に説明する。
【0202】
まず第1の電食対策では、固定子50において、周方向における各導線群81の間をティースレスとし、各導線群81の間に、ティース(鉄心)の代わりに非磁性材料よりなる封止部材57を設ける構成としている(
図10参照)。これにより、固定子50のインダクタンス低減が可能となっている。固定子50におけるインダクタンス低減を図ることで、仮に固定子巻線51の通電時にスイッチングタイミングのずれが生じても、そのスイッチングタイミングのずれに起因する磁束歪みの発生を抑制し、ひいては軸受21,22の電食抑制が可能になっている。なお、d軸のインダクタンスがq軸のインダクタンス以下になっているとよい。
【0203】
また、磁石91,92において、d軸側においてq軸側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた構成とした(
図9参照)。これにより、d軸での磁石磁束が強化され、各磁極においてq軸からd軸にかけての表面磁束変化(磁束の増減)がなだらかになる。そのため、スイッチング不均衡に起因する急激な電圧変化が抑制され、ひいては電食抑制に寄与できる構成となっている。
【0204】
第2の電食対策では、回転電機10において、各軸受21,22を、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置している(
図2参照)。これにより、複数の軸受が軸方向において回転子を挟んで両側にそれぞれ設けられる構成と比べて、電食の影響を軽減できる。つまり、回転子を複数の軸受により両持ち支持する構成では、高周波磁束の発生に伴い回転子、固定子及び各軸受(すなわち、回転子を挟んで軸方向両側の各軸受)を通る閉回路が形成され、軸電流により軸受の電食が懸念される。これに対し、回転子40を複数の軸受21,22により片持ち支持する構成では上記閉回路が形成されず、軸受の電食が抑制される。
【0205】
また、回転電機10は、軸受21,22の片側配置のための構成に絡み、以下の構成を有する。磁石ホルダ41において、回転子40の径方向に張り出す中間部45に、軸方向に延びて固定子50に対する接触を回避する接触回避部が設けられている(
図2参照)。この場合、磁石ホルダ41を経由して軸電流の閉回路が形成される場合にあっては、閉回路長を長くしてその回路抵抗を大きくすることが可能となる。これにより、軸受21,22の電食の抑制を図ることができる。
【0206】
回転子40を挟んで軸方向の一方側においてハウジング30に対して軸受ユニット20の保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61(固定子ホルダ)が互いに結合されている(
図2参照)。本構成によれば、回転軸11の軸方向においてその軸方向の片側に各軸受21,22を偏って配置する構成を好適に実現することができる。また本構成では、ユニットベース61がハウジング30を介して回転軸11に繋がる構成となるため、ユニットベース61を、回転軸11から電気的に離れた位置に配置することができる。なお、ユニットベース61とハウジング30との間に樹脂等の絶縁部材を介在させれば、ユニットベース61と回転軸11とが電気的に一層離れた構成となる。これにより、軸受21,22の電食を適正に抑制することができる。
【0207】
本実施形態の回転電機10では、各軸受21,22の片側配置等により、軸受21,22に作用する軸電圧が低減されている。また、回転子40と固定子50との間の電位差が低減されている。そのため、軸受21,22において導電性グリースを用いなくても、軸受21,22に作用する電位差の低減が可能になっている。導電性グリースは、一般的にカーボンなどの細かい粒子を含むため音鳴りが生じることが考えられる。この点、本実施形態では、軸受21,22において非導電性グリースを用いる構成としている。そのため、軸受21,22において音鳴りが生じる不都合を抑制できる。例えば電気自動車などの電動車両への適用時には回転電機10の音鳴り対策が必要になると考えられるが、その音鳴り対策を好適に実施することが可能となる。
【0208】
第3の電食対策では、固定子巻線51を固定子コア52と共にモールド材によりモールドすることで、固定子50での固定子巻線51の位置ずれを抑制する構成としている(
図11参照)。特に本実施形態の回転電機10では、固定子巻線51における周方向の各導線群81の間に導線間部材(ティース)を有していないため、固定子巻線51における位置ずれ生じる懸念が考えられるが、固定子巻線51を固定子コア52と共にモールドすることにより、固定子巻線51の導線位置にずれが抑制される。したがって、固定子巻線51の位置ずれによる磁束の歪みや、それに起因する軸受21,22の電食の発生を抑制することができる。
【0209】
なお、固定子コア52を固定するハウジング部材としてのユニットベース61を、炭素繊維強化プラスチック(CFRP)により構成したため、例えばアルミ等により構成する場合に比べて、ユニットベース61への放電が抑制され、ひいては好適な電食対策が可能となっている。
【0210】
その他、軸受21,22の電食対策として、外輪25及び内輪26の少なくともいずれかをセラミックス材により構成する、又は、外輪25の外側に絶縁スリーブを設ける等の構成を用いることも可能である。
【0211】
以下に、他の実施形態を第1実施形態との相違点を中心に説明する。
【0212】
(第2実施形態)
本実施形態では、回転子40における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。
【0213】
図22及び
図23に示すように、磁石ユニット42は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石ユニット42は、磁化方向(磁化ベクトルの向き)を径方向とする第1磁石131と、磁化方向(磁化ベクトルの向き)を周方向とする第2磁石132とを有しており、周方向に所定間隔で第1磁石131が配置されるとともに、周方向において隣り合う第1磁石131の間となる位置に第2磁石132が配置されている。第1磁石131及び第2磁石132は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
【0214】
第1磁石131は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石132は、各第1磁石131の隣において周方向に極性が交互となるように配置されている。これら各磁石131,132を囲うように設けられる円筒部43は、軟磁性材料よりなる軟磁性体コアであるとよく、バックコアとして機能する。なお、この第2実施形態の磁石ユニット42も、d-q座標系において、d軸やq軸に対する磁化容易軸の関係は上記第1実施形態と同じである。
【0215】
また、第1磁石131の径方向外側、すなわち磁石ホルダ41の円筒部43の側には、軟磁性材料よりなる磁性体133が配置されている。例えば磁性体133は、電磁鋼板や軟鉄、圧粉鉄心材料により構成されているとよい。この場合、磁性体133の周方向の長さは第1磁石131の周方向の長さ(特に第1磁石131の外周部の周方向の長さ)と同じである。また、第1磁石131と磁性体133とを一体化した状態でのその一体物の径方向の厚さは、第2磁石132の径方向の厚さと同じである。換言すれば、第1磁石131は第2磁石132よりも磁性体133の分だけ径方向の厚さが薄くなっている。各磁石131,132と磁性体133とは、例えば接着剤により相互に固着されている。磁石ユニット42において第1磁石131の径方向外側は、固定子50とは反対側であり、磁性体133は、径方向における第1磁石131の両側のうち、固定子50とは反対側(反固定子側)に設けられている。
【0216】
磁性体133の外周部には、径方向外側、すなわち磁石ホルダ41の円筒部43の側に突出する凸部としてのキー134が形成されている。また、円筒部43の内周面には、磁性体133のキー134を収容する凹部としてのキー溝135が形成されている。キー134の突出形状とキー溝135の溝形状とは同じであり、各磁性体133に形成されたキー134に対応して、キー134と同数のキー溝135が形成されている。キー134及びキー溝135の係合により、第1磁石131及び第2磁石132と磁石ホルダ41との周方向(回転方向)の位置ずれが抑制されている。なお、キー134及びキー溝135(凸部及び凹部)を、磁石ホルダ41の円筒部43及び磁性体133のいずれに設けるかは任意でよく、上記とは逆に、磁性体133の外周部にキー溝135を設けるとともに、磁石ホルダ41の円筒部43の内周部にキー134を設けることも可能である。
【0217】
ここで、磁石ユニット42では、第1磁石131と第2磁石132とを交互に配列することにより、第1磁石131での磁束密度を大きくすることが可能となっている。そのため、磁石ユニット42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。
【0218】
また、第1磁石131の径方向外側、すなわち反固定子側に磁性体133を配置したことにより、第1磁石131の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石131の減磁を抑制できる。これにより、結果的に磁石ユニット42の磁力を増加させることが可能となっている。本実施形態の磁石ユニット42は、言うなれば、第1磁石131において減磁が生じ易い部分を磁性体133に置き換えた構成となっている。
【0219】
図24(a)、
図24(b)は、磁石ユニット42における磁束の流れを具体的に示す図であり、
図24(a)は、磁石ユニット42において磁性体133を有していない従来構成を用いた場合を示し、
図24(b)は、磁石ユニット42において磁性体133を有している本実施形態の構成を用いた場合を示している。なお、
図24(a)、
図24(b)では、磁石ホルダ41の円筒部43及び磁石ユニット42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。
【0220】
図24(a)の構成では、第1磁石131の磁束作用面と第2磁石132の側面とが、それぞれ円筒部43の内周面に接触している。また、第2磁石132の磁束作用面が第1磁石131の側面に接触している。この場合、円筒部43には、第2磁石132の外側経路を通って第1磁石131との接触面に入る磁束F1と、円筒部43と略平行で、かつ第2磁石132の磁束F2を引きつける磁束との合成磁束が生じる。そのため、円筒部43において第1磁石131と第2磁石132との接触面付近において、部分的に磁気飽和が生じることが懸念される。
【0221】
これに対し、
図24(b)の構成では、第1磁石131の固定子50とは反対側において第1磁石131の磁束作用面と円筒部43の内周面との間に磁性体133が設けられているため、その磁性体133で磁束の通過が許容される。したがって、円筒部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。
【0222】
また、
図24(b)の構成では、
図24(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。
【0223】
また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電のスイッチングICを利用すると、より効果的にトルクを増強することができる。
【0224】
なお、固定子コア52が電磁鋼板により構成される場合において、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さの1/2、又は1/2よりも大きいとよい。例えば、固定子コア52の径方向厚さは、磁石ユニット42において磁極中心に設けられる第1磁石131の径方向厚さの1/2以上であるとよい。また、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さより小さいとよい。この場合、磁石磁束は約1[T]であり、固定子コア52の飽和磁束密度は2[T]であるため、固定子コア52の径方向厚さを、磁石ユニット42の径方向厚さの1/2以上にすることで、固定子コア52の内周側への磁束漏洩を防ぐことができる。
【0225】
ハルバッハ構造や極異方構造の磁石では、磁路が擬似円弧状になっているため、周方向の磁束を扱う磁石厚みに比例して、その磁束を上昇させることができる。こういった構成においては、固定子コア52に流れる磁束は、周方向の磁束を超えることはないと考えられる。すなわち、磁石の磁束1[T]に対して飽和磁束密度2[T]の鉄系金属を利用した場合、固定子コア52の厚みを磁石厚みの半分以上とすれば、磁気飽和せず好適に小型かつ軽量の回転電機を提供することができる。ここで、磁石磁束に対して固定子50からの反磁界が作用するため、磁石磁束は一般的に0.9[T]以下となる。そのため、固定子コアは磁石の半分の厚みを持てば、その透磁率を好適に高く保つことができる。
【0226】
以下に、上述した構成の一部を変更した変形例について説明する。
【0227】
(変形例1)
上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、
図25に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子40とは反対側(図の下側)に設けられた円環状のヨーク141と、そのヨーク141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を導線群81の位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「導線間部材」に相当する。
【0228】
突起部142は、ヨーク141からの径方向の厚さ寸法、言い換えれば、
図25に示すように、ヨーク141の径方向において、直線部83のヨーク141に隣接する内側面320から突起部142の頂点までの距離Wが、径方向内外の複数層の直線部83のうち、ヨーク141に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。言い換えれば、固定子巻線51(固定子コア52)の径方向における導線群81(伝導部材)の寸法(厚み)T1(導線82の厚みの2倍、言い換えれば、導線群81の固定子コア52に接する面320と、導線群81の回転子40に向いた面330との最短距離)の4分の3の範囲は非磁性部材(封止部材57)が占有していればよい。こうした突起部142の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部142がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部142は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。例えば、突起部142は、周方向において各導線群81の間の所定数ごとに等間隔で設けられているとよい。突起部142の形状は、矩形状、円弧状など任意の形状でよい。
【0229】
また、固定子コア52の外周面では、直線部83が一層で設けられていてもよい。したがって、広義には、突起部142におけるヨーク141からの径方向の厚さ寸法は、直線部83における径方向の厚さ寸法の1/2よりも小さいものであればよい。
【0230】
なお、回転軸11の軸心を中心とし、かつヨーク141に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部142は、その仮想円の範囲内においてヨーク141から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。
【0231】
上記構成によれば、突起部142は、径方向の厚さ寸法が制限されており、周方向に隣り合う直線部83の間においてティースとして機能するものでないため、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることができる。これにより、導体82aの断面積を大きくすることができ、固定子巻線51の通電に伴い生じる発熱を低減することができる。かかる構成では、ティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大に伴い発熱量が増えることに好適に対処することができる。また、固定子巻線51では、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができる。以上により、固定子50での放熱性能を適正化することが可能になっている。
【0232】
また、固定子コア52のヨーク141と、回転子40の磁石ユニット42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部142の径方向の厚さ寸法は、
図25のH1に縛られるものではない。具体的には、ヨーク141と磁石ユニット42とが2mm以上離れていれば、突起部142の径方向の厚さ寸法は、
図25のH1以上であってもよい。例えば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク141に隣接していない直線部83、すなわちヨーク141から数えて2層目の導線82の半分位置までの範囲で、突起部142が設けられていてもよい。この場合、突起部142の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前記効果を少なからず得ることはできる。
【0233】
また、固定子コア52は、
図26に示す構成であってもよい。なお、
図26では、封止部材57を省略しているが、封止部材57が設けられていてもよい。
図26では、便宜上、磁石ユニット42及び固定子コア52を直線状に展開して示している。
【0234】
図26の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、導線間部材としての突起部142を有している。固定子50は、固定子巻線51が通電されると、磁石ユニット42の磁極の一つ(N極、またはS極)とともに磁気的に機能し、固定子50の周方向に延びる一部分350を有する。この部分350の固定子50の周方向への長さをWnとすると、この長さ範囲Wnに存在する突起部142の合計の幅(すなわち、固定子50の周方向への合計の寸法)をWtとし、突起部142の飽和磁束密度をBs、磁石ユニット42の1極分の周方向の幅寸法をWm、磁石ユニット42の残留磁束密度をBrとする場合、突起部142は、
Wt×Bs≦Wm×Br …(1)
となる磁性材料により構成されている。
【0235】
なお、範囲Wnは、周方向に隣接する複数の導線群81であって、励磁時期が重複する複数の導線群81を含むように設定される。その際、範囲Wnを設定する際の基準(境界)として、導線群81の間隙56の中心を設定することが好ましい。例えば、
図26に例示する構成の場合、周方向においてN極の磁極中心からの距離が最も短いものから順番に、4番目までの導線群81が、当該複数の導線群81に相当する。そして、当該4つの導線群81を含むように範囲Wnが設定される。その際、範囲Wnの端(起点と終点)が間隙56の中心とされている。
【0236】
図26において、範囲Wnの両端には、それぞれ突起部142が半分ずつ含まれていることから、範囲Wnには、合計4つ分の突起部142が含まれている。したがって、突起部142の幅(すなわち、固定子50の周方向における突起部142の寸法、言い換えれば、隣接する導線群81の間隔)をAとすると、範囲Wnに含まれる突起部142の合計の幅は、Wt=1/2A+A+A+A+1/2A=4Aとなる。
【0237】
詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石ユニット42の1極に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「相数×Q」個となっている。ここでQとは、1相の導線82のうち固定子コア52と接する数である。なお、導線82が回転子40の径方向に積層された導線群81である場合には、1相の導線群81の内周側の導線82の数であるともいえる。この場合、固定子巻線51の3相巻線が各相所定順序で通電されると、1極内において2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の合計幅寸法Wtは、突起部142(つまり、間隙56)の周方向の幅寸法をAとすると、「励磁される相数×Q×A=2×2×A」となる。
【0238】
そして、こうして合計幅寸法Wtが規定された上で、固定子コア52において、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、合計幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。また、余裕を考えて、合計幅寸法Wtを、1磁極における突起部142の周方向の幅寸法としてもよい。具体的には、磁石ユニット42の1極に対する突起部142の数が「相数×Q」であることから、1磁極における突起部142の周方向の幅寸法(合計幅寸法Wt)を、「相数×Q×A=3×2×A=6A」としてもよい。
【0239】
なお、ここでいう分布巻とは、磁極の1極対周期(N極とS極)で、固定子巻線51の一極対があるものである。ここでいう固定子巻線51の一極対は、電流が互いに逆方向に流れ、ターン部84で電気的に接続された2つの直線部83とターン部84からなる。上記条件みたすものであれば、短節巻(Short Pitch Winding)であっても、全節巻(Full Pitch Winding)の分布巻の均等物とみなす。
【0240】
次に、集中巻の場合の例を示す。ここでいう集中巻とは、磁極の1極対の幅と、固定子巻線51の一極対の幅とが異なるものである。集中巻の一例としては、1つの磁極対に対して導線群81が3つ、2つの磁極対に対して導線群81が3つ、4つの磁極対に対して導線群81が9つ、5つの磁極対に対して導線群81が9つのような関係であるものが挙げられる。
【0241】
ここで、固定子巻線51を集中巻とする場合には、固定子巻線51の3相巻線が所定順序で通電されると、2相分の固定子巻線51が励磁される。その結果、2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、「A×2」となる。そして、こうして幅寸法Wtが規定された上で、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、上記で示した集中巻の場合は、同一相の導線群81に囲まれた領域において、固定子50の周方向にある突起部142の幅の総和をAとする。また、集中巻におけるWmは「磁石ユニット42のエアギャップに対向する面の全周」×「相数」÷「導線群81の分散数」に相当する。
【0242】
ちなみに、ネオジム磁石やサマリウムコバルト磁石、フェライト磁石といったBH積が20[MGOe(kJ/m^3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部142が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。
【0243】
また、後述するように導線82が外層被膜182を備える場合には、導線82同士の外層被膜182が接触するように、導線82を固定子コア52の周方向に配置しても良い。この場合は、Wtは、0又は接触する両導線82の外層被膜182の厚さ、と看做すことができる。
【0244】
図25や
図26の構成では、回転子40側の磁石磁束に対して不相応に小さい導線間部材(突起部142)を有する構成となっている。なお、回転子40は、インダクタンスが低くかつ平坦な表面磁石型ロータであり、磁気抵抗的に突極性を有していないものとなっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。
【0245】
(変形例2)
上記式(1)の関係を満たす導線間部材を用いる固定子50として、以下の構成を採用することも可能である。
図27では、固定子コア52の外周面側(図の上面側)に、導線間部材として歯状部143が設けられている。歯状部143は、ヨーク141から突出するようにして周方向に所定間隔で設けられており、径方向に導線群81と同じ厚み寸法を有している。歯状部143の側面は導線群81の各導線82に接している。ただし、歯状部143と各導線82との間に隙間があってもよい。
【0246】
歯状部143は、周方向における幅寸法に制限が付与されており、磁石量に対して不相応に細い極歯(ステータティース)を備えるものとなっている。かかる構成により、歯状部143は、1.8T以上で磁石磁束により確実に飽和し、パーミアンスの低下によりインダクタンスを下げることができる。
【0247】
ここで、磁石ユニット42において、固定子側における磁束作用面の1極あたりの表面積をSm、磁石ユニット42の残留磁束密度をBrとすると、磁石ユニット側の磁束は、例えば「Sm×Br」となる。また、各歯状部143における回転子側の表面積をSt、導線82の一相あたりの数をmとし、固定子巻線51の通電により1極内において2相分の歯状部143が励磁されるとすると、固定子側の磁束は、例えば「St×m×2×Bs」となる。この場合、
St×m×2×Bs<Sm×Br …(2)
の関係が成立するように歯状部143の寸法を制限することで、インダクタンスの低減が図られている。
【0248】
なお、磁石ユニット42と歯状部143とで軸方向の寸法が同一である場合、磁石ユニット42の1極分の周方向の幅寸法をWm、歯状部143の周方向の幅寸法をWstとすると、上記式(2)は、式(3)のように置き換えられる。
Wst×m×2×Bs<Wm×Br …(3)
より具体的には、例えばBs=2T、Br=1Tであり、m=2であると想定すると、上記式(3)は、「Wst<Wm/8」の関係となる。この場合、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/8よりも小さくすることで、インダクタンスの低減が図られている。なお、数mが1であれば、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/4よりも小さくするとよい。
【0249】
なお、上記式(3)において、「Wst×m×2」は、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される歯状部143の周方向の幅寸法に相当する。
【0250】
図27の構成では、上述した
図25,
図26の構成と同様に、回転子40側の磁石磁束に対して不相応に小さい導線間部材(歯状部143)を有する構成となっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。
【0251】
(変形例3)
上記実施形態では、固定子巻線51を覆う封止部材57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、
図28に示すように、封止部材57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部材57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部材57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。
【0252】
(変形例4)
図29に示すように、固定子50において、各導線群81が封止部材57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部材57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間に導線間部材が設けられず空隙となっている。要するに、周方向に並ぶ各導線群81の間に導線間部材が設けられていない構成となっている。なお、空気を非磁性体、又は非磁性体の均等物としてBs=0と看做し、この空隙に空気を配置しても良い。
【0253】
(変形例5)
固定子50おける導線間部材を非磁性材料により構成する場合に、その非磁性材料として、樹脂以外の材料を用いることも可能である。例えば、オーステナイト系のステンレス鋼であるSUS304を用いる等、金属系の非磁性材料を用いてもよい。
【0254】
(変形例6)
固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、
図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。
【0255】
(変形例7)
上記第1実施形態では、回転子40の磁石ユニット42として周方向に並べた複数の磁石91,92を用いる構成としたが、これを変更し、磁石ユニット42として円環状の永久磁石である環状磁石を用いる構成としてもよい。具体的には、
図30に示すように、磁石ホルダ41の円筒部43の径方向内側に、環状磁石95が固定されている。環状磁石95には、周方向に極性が交互となる複数の磁極が設けられており、d軸及びq軸のいずれにおいても一体的に磁石が形成されている。環状磁石95には、各磁極のd軸において配向の向きが径方向となり、各磁極間のq軸において配向の向きが周方向となるような円弧状の磁石磁路が形成されている。
【0256】
なお、環状磁石95では、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされていればよい。
【0257】
(変形例8)
本変形例では、制御装置110の制御手法の一部を変更している。本変形例では、主に、第1実施形態で説明した構成に対する相違部分について説明する。
【0258】
まず、
図31を用いて、
図20に示した操作信号生成部116,126及び
図21に示した操作信号生成部130a,130b内の処理について説明する。なお、各操作信号生成部116,126,130a,130bにおける処理は基本的には同様である。このため、以下では、操作信号生成部116の処理を例にして説明する。
【0259】
操作信号生成部116は、キャリア生成部116aと、U,V,W相比較器116bU,116bV,116bWとを備えている。本実施形態において、キャリア生成部116aは、キャリア信号SigCとして三角波信号を生成して出力する。
【0260】
U,V,W相比較器116bU,116bV,116bWには、キャリア生成部116aより生成されたキャリア信号SigCと、3相変換部115により算出されたU,V,W相指令電圧とが入力される。U,V,W相指令電圧は、例えば正弦波状の波形であり、電気角で位相が120°ずつずれている。
【0261】
U,V,W相比較器116bU,116bV,116bWは、U,V,W相指令電圧とキャリア信号SigCとの大小比較に基づくPWM(PWM:pulse width modulation)制御により、第1インバータ101におけるU,V,W相の上アーム及び下アームの各スイッチSp,Snの操作信号を生成する。具体的には、操作信号生成部116は、U,V,W相指令電圧を電源電圧で規格化した信号と、キャリア信号との大小比較に基づくPWM制御により、U,V,W相の各スイッチSp,Snの操作信号を生成する。ドライバ117は、操作信号生成部116により生成された操作信号に基づいて、第1インバータ101におけるU,V,W相の各スイッチSp,Snをオンオフさせる。
【0262】
制御装置110は、キャリア信号SigCのキャリア周波数fc、すなわち各スイッチSp,Snのスイッチング周波数を変更する処理を行う。キャリア周波数fcは、回転電機10の低トルク領域又は高回転領域において高く設定され、回転電機10の高トルク領域において低く設定される。この設定は、各相巻線に流れる電流の制御性の低下を抑制するためになされる。
【0263】
つまり、固定子50のコアレス化に伴い、固定子50におけるインダクタンスの低減を図ることができる。ここで、インダクタンスが低くなると、回転電機10の電気的時定数が小さくなる。その結果、各相巻線に流れる電流のリップルが増加して巻線に流れる電流の制御性が低下し、電流制御が発散する懸念がある。この制御性低下の影響は、巻線に流れる電流(例えば、電流の実効値)が高電流領域に含まれる場合よりも低電流領域に含まれる場合に顕著となり得る。この問題に対処すべく、本変形例において、制御装置110はキャリア周波数fcを変更する。
【0264】
図32を用いて、キャリア周波数fcを変更する処理について説明する。この処理は、操作信号生成部116の処理として、制御装置110により、例えば所定の制御周期で繰り返し実行される。
【0265】
ステップS10では、各相の巻線51aに流れる電流が低電流領域に含まれているか否かを判定する。この処理は、回転電機10の現在のトルクが低トルク領域であることを判定するための処理である。低電流領域に含まれているか否かの判定手法としては、例えば、以下の第1,第2の方法が挙げられる。
【0266】
<第1の方法>
dq変換部112により変換されたd軸電流とq軸電流とに基づいて、回転電機10のトルク推定値を算出する。そして、算出したトルク推定値がトルク閾値未満であると判定した場合、巻線51aに流れる電流が低電流領域に含まれていると判定し、トルク推定値がトルク閾値以上であると判定した場合、高電流領域に含まれていると判定する。ここで、トルク閾値は、例えば、回転電機10の起動トルク(拘束トルクともいう)の1/2に設定されていればよい。
【0267】
<第2の方法>
角度検出器により検出された回転子40の回転角度が速度閾値以上であると判定した場合、巻線51aに流れる電流が低電流領域に含まれている、すなわち高回転領域であると判定する。ここで、速度閾値は、例えば、回転電機10の最大トルクがトルク閾値となる場合の回転速度に設定されていればよい。
【0268】
ステップS10において否定判定した場合には、高電流領域であると判定し、ステップS11に進む。ステップS11では、キャリア周波数fcを第1周波数fLに設定する。
【0269】
ステップS10において肯定判定した場合には、ステップS12に進み、キャリア周波数fcを、第1周波数fLよりも高い第2周波数fHに設定する。
【0270】
以上説明した本変形例によれば、各相巻線に流れる電流が高電流領域に含まれる場合よりも低電流領域に含まれる場合においてキャリア周波数fcが高く設定される。このため、低電流領域において、スイッチSp,Snのスイッチング周波数を高くすることができ、電流リップルの増加を抑制することができる。これにより、電流制御性の低下を抑制することができる。
【0271】
一方、各相巻線に流れる電流が高電流領域に含まれる場合、低電流領域に含まれる場合よりもキャリア周波数fcが低く設定される。高電流領域においては、低電流領域よりも巻線に流れる電流の振幅が大きいため、インダクタンスが低くなったことに起因する電流リップルの増加が、電流制御性に及ぼす影響が小さい。このため、高電流領域においては、低電流領域よりもキャリア周波数fcを低く設定することができ、各インバータ101,102のスイッチング損失を低減することができる。
【0272】
本変形例においては、以下に示す形態の実施が可能である。
【0273】
・キャリア周波数fcが第1周波数fLに設定されている場合において、
図32のステップS10において肯定判定されたとき、キャリア周波数fcを、第1周波数fLから第2周波数fHに向かって徐変させてもよい。
【0274】
また、キャリア周波数fcが第2周波数fHに設定されている場合において、ステップS10において否定判定されたとき、キャリア周波数fcを、第2周波数fHから第1周波数fLに向かって徐変させてもよい。
【0275】
・PWM制御に代えて、空間ベクトル変調(SVM:space vector modulation)制御によりスイッチの操作信号が生成されてもよい。この場合であっても、上述したスイッチング周波数の変更を適用することができる。
【0276】
(変形例9)
上記各実施形態では、導線群81を構成する各相2対ずつの導線が、
図33(a)に示すように並列接続されていた。
図33(a)は、2対の導線である第1,第2導線88a,88bの電気的接続を示す図である。ここで、
図33(a)に示す構成に代えて、
図33(b)に示すように、第1,第2導線88a,88bが直列接続されていてもよい。
【0277】
また、3対以上の多層導線が径方向に積層配置されていてもよい。
図34に、4対の導線である第1~第4導線88a~88dが積層配置されている構成を示す。第1~第4導線88a~88dは、固定子コア52に近い方から、第1,第2,第3,第4導線88a,88b,88c,88dの順に径方向に並んで配置されている。
【0278】
ここで、
図33(c)に示すように、第3,第4導線88c,88dが並列接続されるとともに、この並列接続体の一端に第1導線88aが接続され、他端に第2導線88bが接続されていてもよい。並列接続にすると、その並列接続された導線の電流密度を低下させることができ、通電時の発熱を抑制できる。そのため、冷却水通路74が形成されたハウジング(ユニットベース61)に筒状の固定子巻線を組み付ける構成において、並列接続されていない第1,第2導線88a,88bがユニットベース61に当接する固定子コア52側に配置され、並列接続された第3,第4導線88c,88dが反固定子コア側に配置されている構成とする。これにより、多層導線構造における各導線88a~88dの冷却性能を均等化することができる。
【0279】
なお、第1~第4導線88a~88dからなる導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとされていればよい。
【0280】
(変形例10)
回転電機10をインナロータ構造(内転構造)としてもよい。この場合、例えばハウジング30内において、径方向外側に固定子50が設けられ、その径方向内側に回転子40が設けられるとよい。また、固定子50及び回転子40の軸方向両端のうちその一方の側又はその両方の側にインバータユニット60が設けられているとよい。
図35は、回転子40及び固定子50の横断面図であり、
図36は、
図35に示す回転子40及び固定子50の一部を拡大して示す図である。
【0281】
インナロータ構造を前提とする
図35及び
図36の構成は、アウタロータ構造を前提とする
図8及び
図9の構成に対して、回転子40及び固定子50が径方向内外で逆になっていることを除いて、同様の構成となっている。簡単に説明すると、固定子50は、扁平導線構造の固定子巻線51と、ティースを持たない固定子コア52とを有している。固定子巻線51は、固定子コア52の径方向内側に組み付けられている。固定子コア52は、アウタロータ構造の場合と同様に、以下のいずれかの構成を有する。
(A)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子50において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
【0282】
また、磁石ユニット42の各磁石91,92についても同様である。つまり、磁石ユニット42は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた磁石91,92を用いて構成されている。各磁石91,92における磁化方向等の詳細は既述のとおりである。磁石ユニット42において環状磁石95(
図30参照)を用いることも可能である。
【0283】
図37は、インナロータ型とした場合における回転電機10の縦断面図であり、これは既述の
図2に対応する図面である。
図2の構成との相違点を簡単に説明する。
図37において、ハウジング30の内側には、環状の固定子50が固定され、その固定子50の内側には、所定のエアギャップを挟んで回転子40が回転可能に設けられている。
図2と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されており、これにより、回転子40が片持ち支持されている。また、回転子40の磁石ホルダ41の内側に、インバータユニット60が設けられている。
【0284】
図38には、インナロータ構造の回転電機10として別の構成を示す。
図38において、ハウジング30には、軸受21,22により回転軸11が回転可能に支持されており、その回転軸11に対して回転子40が固定されている。
図2等に示す構成と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。回転子40は、磁石ホルダ41と磁石ユニット42とを有している。
【0285】
図38の回転電機10では、
図37の回転電機10との相違点として、回転子40の径方向内側にインバータユニット60が設けられていない構成となっている。磁石ホルダ41は、磁石ユニット42の径方向内側となる位置で回転軸11に連結されている。また、固定子50は、固定子巻線51と固定子コア52とを有しており、ハウジング30に対して取り付けられている。
【0286】
(変形例11)
インナロータ構造の回転電機として別の構成を以下に説明する。
図39は、回転電機200の分解斜視図であり、
図40は、回転電機200の側面断面図である。なおここでは、
図39及び
図40の状態を基準に上下方向を示すこととしている。
【0287】
図39及び
図40に示すように、回転電機200は、環状の固定子コア201及び多相の固定子巻線202を有する固定子203と、固定子コア201の内側に回転自在に配設される回転子204とを備えている。固定子203が電機子に相当し、回転子204が界磁子に相当する。固定子コア201は、多数の珪素鋼板が積層されて構成されており、その固定子コア201に対して固定子巻線202が取り付けられている。図示は省略するが、回転子204は、回転子コアと、磁石ユニットとして複数の永久磁石とを有している。回転子コアには、円周方向に等間隔で複数の磁石挿入孔が設けられている。磁石挿入孔のそれぞれには、隣接する磁極毎に交互に磁化方向が変わるように磁化された永久磁石が装着されている。なお、磁石ユニットの永久磁石は、
図23で説明したようなハルバッハ配列又はそれに類する構成を有するものであるとよい。又は、磁石ユニットの永久磁石は、
図9や
図30で説明したような磁極中心であるd軸と磁極境界であるq軸との間において配向方向(磁化方向)が円弧状に延びている極異方性の特性を備えるものであるとよい。
【0288】
ここで、固定子203は、以下のいずれかの構成であるとよい。
(A)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子203において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
【0289】
また、回転子204において、磁石ユニットは、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた複数の磁石を用いて構成されている。
【0290】
回転電機200の軸方向の一端側には、環状のインバータケース211が設けられている。インバータケース211は、ケース下面が固定子コア201の上面に接するように配置されている。インバータケース211内には、インバータ回路を構成する複数のパワーモジュール212と、半導体スイッチング素子のスイッチング動作により生じる電圧・電流の脈動(リップル)を抑制する平滑コンデンサ213と、制御部を有する制御基板214と、相電流を検出する電流センサ215と、回転子204の回転数センサであるレゾルバステータ216とが設けられている。パワーモジュール212は、半導体スイッチング素子であるIGBTやダイオードを有している。
【0291】
インバータケース211の周縁には、車両に搭載されるバッテリの直流回路と接続されるパワーコネクタ217と、回転電機200側と車両側制御装置との間で各種信号の受け渡しに用いられる信号コネクタ218とが設けられている。インバータケース211はトップカバー219で覆われている。車載バッテリからの直流電力は、パワーコネクタ217を介して入力され、パワーモジュール212のスイッチングにより交流に変換されて各相の固定子巻線202に送られる。
【0292】
固定子コア201の軸方向両側のうちインバータケース211の反対側には、回転子204の回転軸を回転可能に保持する軸受ユニット221と、その軸受ユニット221を収容する環状のリアケース222とが設けられている。軸受ユニット221は、例えば2つ一組の軸受を有しており、回転子204の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。ただし、軸受ユニット221における複数の軸受を固定子コア201の軸方向両側に分散させて設け、それら各軸受により回転軸を両持ち支持する構成であってもよい。リアケース222が車両のギアケースや変速機などの取付部にボルト締結して固定されることで、回転電機200が車両側に取り付けられるようになっている。
【0293】
インバータケース211内には、冷媒を流すための冷却流路211aが形成されている。冷却流路211aは、インバータケース211の下面から環状に凹設された空間を固定子コア201の上面で閉塞して形成されている。冷却流路211aは、固定子巻線202のコイルエンドを囲むように形成されている。冷却流路211a内には、パワーモジュール212のモジュールケース212aが挿入されている。リアケース222にも、固定子巻線202のコイルエンドを囲むように冷却流路222aが形成されている。冷却流路222aは、リアケース222の上面から環状に凹設された空間を固定子コア201の下面で閉塞して形成されている。
【0294】
(変形例12)
これまでは、回転界磁形の回転電機にて具体化した構成を説明したが、これを変更し、回転電機子形の回転電機にて具体化することも可能である。
図41に、回転電機子形の回転電機230の構成を示す。
【0295】
図41の回転電機230において、ハウジング231a,231bにはそれぞれ軸受232が固定され、その軸受232により回転軸233が回転自在に支持されている。軸受232は、例えば多孔質金属に油を含ませてなる含油軸受である。回転軸233には、電機子としての回転子234が固定されている。回転子234は、回転子コア235とその外周部に固定された多相の回転子巻線236とを有している。回転子234において、回転子コア235はスロットレス構造を有し、回転子巻線236は扁平導線構造を有している。つまり、回転子巻線236は、1相ごとの領域が径方向よりも周方向に長い扁平構造となっている。
【0296】
また、回転子234の径方向外側には、界磁子としての固定子237が設けられている。固定子237は、ハウジング231aに固定された固定子コア238と、その固定子コア238の内周側に固定された磁石ユニット239とを有している。磁石ユニット239は、周方向に極性が交互となる複数の磁極を含む構成となっており、既述した磁石ユニット42等と同様に、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。磁石ユニット239は、配向が行われた焼結ネオジム磁石を有しており、その固有保磁力は400[kA/m]以上、かつ残留磁束密度は1.0[T]以上となっている。
【0297】
本例の回転電機230は、2極3コイルのブラシ付コアレスモータであり、回転子巻線236は3つに分割され、磁石ユニット239は2極である。ブラシ付きモータの極数とコイル数は、2:3、4:10、4:21などその用途に応じて様々である。
【0298】
回転軸233にはコミュテータ241が固定されており、その径方向外側には複数のブラシ242が配置されている。コミュテータ241は、回転軸233に埋め込まれた導線243を介して回転子巻線236に電気接続されている。これらコミュテータ241、ブラシ242、導線243を通じて、回転子巻線236に対する直流電流の流入及び流出が行われる。コミュテータ241は、回転子巻線236の相数に応じて周方向に適宜分割されて構成されている。なお、ブラシ242は、そのまま電気配線を介して蓄電池などの直流電源に接続されていてもよいし、端子台などを介して直流電源に接続されていてもよい。
【0299】
回転軸233には、軸受232とコミュテータ241との間に、シール材としての樹脂ワッシャ244が設けられている。樹脂ワッシャ244により、含油軸受である軸受232からしみ出た油がコミュテータ241側に流れ出ることが抑制される。
【0300】
(変形例13)
回転電機10の固定子巻線51において、各導線82を、内外に複数の絶縁被膜を有する構成としてもよい。例えば、絶縁被膜付きの複数の導線(素線)を1本に束ね、それを外層被膜により覆って導線82を構成するとよい。この場合、素線の絶縁被膜が内側の絶縁被膜を構成し、外層被膜が外側の絶縁被膜を構成する。また特に、導線82における複数の絶縁被膜のうち外側の絶縁被膜の絶縁能力を、内側の絶縁被膜の絶縁能力よりも高めておくとよい。具体的には、外側の絶縁被膜の厚さを、内側の絶縁被膜の厚さよりも厚くする。例えば、外側の絶縁被膜の厚さを100μm、内側の絶縁被膜の厚さを40μmとする。又は、外側の絶縁被膜として、内側の絶縁被膜よりも誘電率の低い材料を用いるとよい。これらは少なくともいずれかが適用されればよい。なお、素線が、複数の導電材の集合体として構成されているとよい。
【0301】
上記のとおり導線82における最外層の絶縁を強くすることにより、高電圧の車両用システムに用いる場合に好適なものとなる。また、気圧の低い高地などでも、回転電機10の適正な駆動が可能となる。
【0302】
(変形例14)
内外に複数の絶縁被膜を有する導線82において、外側の絶縁被膜と内側の絶縁被膜とで、線膨張率(線膨張係数)及び接着強さの少なくともいずれかが異なる構成としてもよい。本変形例における導線82の構成を
図42に示す。
【0303】
図42において、導線82は、複数(図では4本)の素線181と、その複数の素線181を囲む例えば樹脂製の外層被膜182(外側絶縁被膜)と、外層被膜182内において各素線181の周りに充填された中間層183(中間絶縁被膜)とを有している。素線181は、銅材よりなる導電部181aと、絶縁材料よりなる導体被膜181b(内側絶縁被膜)とを有している。固定子巻線として見れば、外層被膜182により相間が絶縁される。なお、素線181が、複数の導電材の集合体として構成されているとよい。
【0304】
中間層183は、素線181の導体被膜181bよりも高い線膨張率を有し、かつ外層被膜182よりも低い線膨張率を有している。つまり、導線82では、外側ほど線膨張率が高くなっている。一般的に、外層被膜182では導体被膜181bよりも線膨張係数が高いが、それらの間にその中間の線膨張率を有する中間層183を設けることにより、その中間層183がクッション材として機能し、外層側及び内層側での同時割れを防ぐことができる。
【0305】
また、導線82では、素線181において導電部181aと導体被膜181bとが接着されるとともに、導体被膜181bと中間層183、中間層183と外層被膜182がそれぞれ接着されており、それら各接着部分では、導線82の外側ほど、接着強さが弱くなっている。つまり、導電部181a及び導体被膜181bの接着強さは、導体被膜181b及び中間層183の接着強さ、中間層183及び外層被膜182の接着強さよりも弱くなっている。また、導体被膜181b及び中間層183の接着強さと、中間層183及び外層被膜182の接着強さとを比較すると、後者の方(外側の方)が弱いか、又は同等であるとよい。なお、各被膜同士の接着強さの大きさは、例えば2層の被膜を引き剥がす際に要する引っ張り強さ等により把握可能である。上記のごとく導線82の接着強さが設定されていることで、発熱又は冷却による内外温度差が生じても、内層側及び外層側で共に割れが生じること(共割れ)を抑制することができる。
【0306】
ここで、回転電機の発熱、温度変化は、主に素線181の導電部181aから発熱される銅損と、鉄心内から発せられる鉄損として生じるが、それら2種類の損失は、導線82内の導電部181a、又は導線82の外部より伝わるものであり、中間層183に発熱源があるわけではない。この場合、中間層183が両方に対してクッションとなり得る接着力を持つことで、その同時割れを防ぐことができる。したがって、車両用途など、高耐圧又は温度変化の大きい分野での使用に際しても、好適なる使用が可能となる。
【0307】
以下に補足する。素線181は、例えばエナメル線であってもよく、かかる場合にはPA、PI、PAI等の樹脂被膜層(導体被膜181b)を有する。また、素線181より外側の外層被膜182は、同様のPA、PI、PAI等よりなり、かつ厚みが厚いものであることが望ましい。これにより、線膨張率差による被膜の破壊が抑えられる。なお、外層被膜182としては、PA、PI、PAI等の前記材料を厚くして対応するものとは別に、PPS、PEEK、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPといった、誘電率がPI、PAIよりも小さいものを使うことも回転機の導体密度を高めるためには望ましい。これらの樹脂であれば、導体被膜181b同等のPI,PAI被膜よりも薄いか、導体被膜181bと同等の厚みであっても、その絶縁能力を高くすることができ、これにより導電部の占有率を高めることが可能となる。一般的には、上記樹脂は、誘電率がエナメル線の絶縁被膜より良好な絶縁を有している。当然、成形状態や、混ぜ物によって、その誘電率を悪くする例も存在する。中でも、PPS、PEEKは、その線膨張係数がエナメル被膜より一般的には大きいが、他樹脂よりも小さいため、第2層の外層被膜として適するのである。
【0308】
また、素線181の外側における2種類の被膜(中間絶縁被膜、外側絶縁被膜)と素線181のエナメル被膜との接着強さは、素線181における銅線とエナメル被膜との間の接着強さよりも弱いことが望ましい。これにより、エナメル被膜と前記2種類の被膜とが一度に破壊される現象が抑制される。
【0309】
固定子に水冷構造、液冷構造、空冷構造が付加されている場合には、基本的に、外層被膜182から先に熱応力や衝撃応力が掛かると考えられる。しかし、素線181の絶縁層と、前記2種類の被膜とが違う樹脂の場合でも、その被膜を接着しない部位を設けることにより、前記熱応力や衝撃応力を低減することができる。すなわち、素線(エナメル線)と空隙を設け、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPを配置することで前記絶縁構造がなされる。この場合、エポキシなどからなる低誘電率で、かつ低線膨張係数からなる接着材を用いて、外層被膜と内層被膜とを接着することが望ましい。こうすることで、機械的強度だけでなく、導電部の振動による揺れなどによる摩擦による被膜破壊、または線膨張係数差による外層被膜の破壊を抑えることができる。
【0310】
上記構成の導線82に対しての、機械的強度、固定等を担う、一般的には固定子巻線周りの最終工程となる最外層固定としては、エポキシ、PPS、PEEK、LCPなどの成形性が良く、誘電率、線膨張係数といった性質がエナメル被膜と近い性質をもった樹脂が好ましい。
【0311】
一般的には、ウレタン、シリコンによる樹脂ポッティングが通例なされるが、前記樹脂においてはその線膨張係数がその他の樹脂と比べて倍近い差があり、樹脂をせん断し得る熱応力を発生する。そのため、厳しい絶縁規定が国際的に用いられる60V以上の用途には不適である。この点、エポキシ、PPS、PEEK、LCPなどにより射出成型等により容易に作られる最終絶縁工程によれば、上述の各要件を達成することが可能である。
【0312】
上記以外の変形例を以下に列記する。
【0313】
・磁石ユニット42のうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。具体的には、例えば、
図4に示す磁石ユニット42(具体的には、第1,第2磁石91,92)のうち径方向内側の面と、回転子40の軸心との径方向における距離DMが50mm以上とされていてもよい。
【0314】
スロットレス構造の回転電機としては、その出力が数十Wから数百W級の模型用などに使用される小規模なものが知られている。そして、一般的には10kWを超すような工業用の大型の回転電機でスロットレス構造が採用された事例を本願発明者は把握していない。その理由について本願発明者は検討した。
【0315】
近年主流の回転電機は、次の4種類に大別される。それら回転電機とは、ブラシ付きモータ、カゴ型誘導モータ、永久磁石式同期モータ及びリラクタンスモータである。
【0316】
ブラシ付きモータには、ブラシを介して励磁電流が供給される。このため、大型機のブラシ付きモータの場合、ブラシが大型化したり、メンテナンスが煩雑になったりしたりする。これにより、半導体技術の目覚ましい発達に伴い、誘導モータ等のブラシレスモータに置換されてきた経緯がある。一方、小型モータの世界では、低い慣性及び経済性の利点から、コアレスモータも多数世の中に供給されている。
【0317】
カゴ型誘導モータでは、1次側の固定子巻線で発生させる磁界を2次側の回転子の鉄心で受けてカゴ型導体に集中的に誘導電流を流して反作用磁界を形成することにより、トルクを発生させる原理である。このため、機器の小型高効率の観点からすれば、固定子側及び回転子側ともに鉄心をなくすことは必ずしも得策であるとは言えない。
【0318】
リラクタンスモータは、当に鉄心のリラクタンス変化を活用するモータであり、原理的に鉄心をなくすことは望ましくない。
【0319】
永久磁石式同期モータでは、近年IPM(つまり埋め込み磁石型回転子)が主流であり、特に大型機においては、特殊事情がない限りIPMである場合が多い。
【0320】
IPMは、磁石トルク及びリラクタンストルクを併せ持つ特性を有しており、インバータ制御により、それらトルクの割合が適時調整されながら運転される。このため、IPMは小型で制御性に優れるモータである。
【0321】
本願発明者の分析により、磁石トルク及びリラクタンストルクを発生する回転子表面のトルクを、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DM、すなわち、一般的なインナロータの固定子鉄心の半径を横軸にとって描くと
図43に示すものとなる。
【0322】
磁石トルクは、下式(eq1)に示すように、永久磁石の発生する磁界強度によりそのポテンシャルが決定されるのに対し、リラクタンストルクは、下式(eq2)に示すように、インダクタンス、特にq軸インダクタンスの大きさがそのポテンシャルを決定する。
【0323】
磁石トルク=k・Ψ・Iq ・・・・・・・(eq1)
リラクタンストルク=k・(Lq-Ld)・Iq・Id ・・・・・(eq2)
ここで、永久磁石の磁界強度と巻線のインダクタンスの大きさとをDMで比較してみた。永久磁石の発する磁界強度、すなわち磁束量Ψは、固定子と対向する面の永久磁石の総面積に比例する。円筒型の回転子であれば円筒の表面積になる。厳密には、N極とS極とが存在するので、円筒表面の半分の専有面積に比例する。円筒の表面積は、円筒の半径と、円筒長さとに比例する。つまり、円筒長さが一定であれば、円筒の半径に比例する。
【0324】
一方、巻線のインダクタンスLqは、鉄心形状に依存はするものの感度は低く、むしろ固定子巻線の巻数の2乗に比例するため、巻数の依存性が高い。なお、μを磁気回路の透磁率、Nを巻数、Sを磁気回路の断面積、δを磁気回路の有効長さとする場合、インダクタンスL=μ・N^2×S/δである。巻線の巻数は、巻線スペースの大きさに依存するため、円筒型モータであれば、固定子の巻線スペース、すなわちスロット面積に依存することになる。
図44に示すように、スロット面積は、スロットの形状が略四角形であるため、周方向の長さ寸法a及び径方向の長さ寸法bとの積a×bに比例する。
【0325】
スロットの周方向の長さ寸法は、円筒の直径が大きいほど大きくなるため、円筒の直径に比例する。スロットの径方向の長さ寸法は、当に円筒の直径に比例する。つまり、スロット面積は、円筒の直径の2乗に比例する。また、上式(eq2)からも分かる通り、リラクタンストルクは、固定子電流の2乗に比例するため、いかに大電流を流せるかで回転電機の性能が決まり、その性能は固定子のスロット面積に依存する。以上より、円筒の長さが一定なら、リラクタンストルクは円筒の直径の2乗に比例する。このことを踏まえ、磁石トルク及びリラクタンストルクとDMとの関係性をプロットした図が
図43である。
【0326】
図43に示すように、磁石トルクはDMに対して直線的に増加し、リラクタンストルクはDMに対して2次関数的に増加する。DMが比較的小さい場合は磁石トルクが支配的であり、固定子鉄心半径が大きくなるに連れてリラクタンストルクが支配的であることがわかる。本願発明者は、
図43における磁石トルク及びリラクタンストルクの交点が、所定の条件下において、おおよそ固定子鉄心半径=50mmの近傍であるとの結論に至った。つまり、固定子鉄心半径が50mmを十分に超えるような10kW級のモータでは、リラクタンストルクを活用することが現在の主流であるため鉄心を無くすことは困難であり、このことが大型機の分野においてスロットレス構造が採用されない理由の1つであると推定される。
【0327】
固定子に鉄心が使用される回転電機の場合、鉄心の磁気飽和が常に課題となる。特にラジアルギャップ型の回転電機では、回転軸の縦断面形状は1磁極当たり扇型となり、機器内周側程磁路幅が狭くなりスロットを形成するティース部分の内周側寸法が回転電機の性能限界を決める。いかに高性能な永久磁石を使おうとも、この部分で磁気飽和が発生すると、永久磁石の性能を十分にひきだすことができない。この部分で磁気飽和を発生させないためには、内周径を大きく設計することになり結果的に機器の大型化に至ってしまうのである。
【0328】
例えば、分布巻の回転電機では、3相巻線であれば、1磁極あたり3つ乃至6つのティースで分担して磁束を流すのだが、周方向前方のティースに磁束が集中しがちであるため、3つ乃至6つのティースに均等に磁束が流れるわけではない。この場合、一部(例えば1つ又は2つ)のティースに集中的に磁束が流れながら、回転子の回転に伴って磁気飽和するティースも周方向に移動してゆく。これがスロットリップルを生む要因にもなる。
【0329】
以上から、DMが50mm以上となるスロットレス構造の回転電機において、磁気飽和を解消するために、ティースを廃止したい。しかし、ティースが廃止されると、回転子及び固定子における磁気回路の磁気抵抗が増加し、回転電機のトルクが低下してしまう。磁気抵抗増加の理由としては、例えば、回転子と固定子との間のエアギャップが大きくなることがある。このため、上述したDMが50mm以上となるスロットレス構造の回転電機において、トルクを増強することについて改善の余地がある。したがって、上述したDMが50mm以上となるスロットレス構造の回転電機に、上述したトルクを増強できる構成を適用するメリットが大きい。
【0330】
なお、アウタロータ構造の回転電機に限らず、インナロータ構造の回転電機についても、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。
【0331】
・回転電機10の固定子巻線51において、導線82の直線部83を径方向に単層で設ける構成としてもよい。また、径方向内外に複数層で直線部83を配置する場合に、その層数は任意でよく、3層、4層、5層、6層等で設けてもよい。
【0332】
・例えば
図2の構成では、回転軸11を、軸方向で回転電機10の一端側及び他端側の両方に突出するように設けたが、これを変更し、一端側にのみ突出する構成としてもよい。この場合、回転軸11は、軸受ユニット20により片持ち支持される部分を端部とし、その軸方向外側に延びるように設けられるとよい。本構成では、インバータユニット60の内部に回転軸11が突出しない構成となるため、インバータユニット60の内部空間、詳しくは筒状部71の内部空間をより広く用いることができることとなる。
【0333】
・上記構成の回転電機10では、軸受21,22において非導電性グリースを用いる構成としたが、これを変更し、軸受21,22において導電性グリースを用いる構成としてもよい。例えば、金属粒子やカーボン粒子等が含まれた導電性グリースを用いる構成とする。
【0334】
・回転軸11を回転自在に支持する構成として、回転子40の軸方向一端側及び他端側の2カ所に軸受を設ける構成としてもよい。この場合、
図1の構成で言えば、インバータユニット60を挟んで一端側及び他端側の2カ所に軸受が設けられるとよい。
【0335】
・上記構成の回転電機10では、回転子40において磁石ホルダ41の中間部45が内側肩部49aと感情の外側肩部49bを有する構成としたが、これらの肩部49a,49bを無くし、平坦な面を有する構成としてもよい。
【0336】
・上記構成の回転電機10では、固定子巻線51の導線82において導体82aを複数の素線86の集合体として構成したが、これを変更し、導線82として断面矩形状の角形導線を用いる構成としてもよい。また、導線82として断面円形状又は断面楕円状の丸形導線を用いる構成としてもよい。
【0337】
・上記構成の回転電機10では、固定子50の径方向内側にインバータユニット60を設ける構成としたが、これに代えて、固定子50の径方向内側にインバータユニット60を設けない構成としてもよい。この場合、固定子50の径方向内側となる内部領域を空間としておくことが可能である。また、その内部領域に、インバータユニット60とは異なる部品を配することが可能である。
【0338】
・上記構成の回転電機10において、ハウジング30を具備しない構成としてもよい。この場合、例えばホイールや他の車両部品の一部において、回転子40、固定子50等が保持される構成であってもよい。
【0339】
(車両用インホイールモータとしての実施形態)
次に、回転電機を、車両の車輪に一体にインホイールモータとして設けた実施形態について説明する。
図45は、インホイールモータ構造の車輪400及びその周辺構造を示す斜視図であり、
図46は、車輪400及びその周辺構造の縦断面図であり、
図47は、車輪400の分解斜視図である。これら各図は、いずれも車輪400を車両内側から見た斜視図である。なお、車両においては、本実施形態のインホイールモータ構造を種々の形態で適用することが可能であり、例えば車両前後にそれぞれ2つの車輪を有する車両では、車両前側の2輪、車両後側の2輪、又は車両前後の4輪に本実施形態のインホイールモータ構造を適用することが可能である。ただし、車両前後の少なくとも一方が1輪である車両への適用も可能である。なお、インホイールモータは、車両用駆動ユニットとしての適用例である。
【0340】
図45~
図47に示すように、車輪400は、例えば周知の空気入りタイヤであるタイヤ401と、タイヤ401の内周側に固定されたホイール402と、ホイール402の内周側に固定された回転電機500とを備えている。回転電機500は、固定子(ステータ)を含む部分である固定部と、回転子(ロータ)を含む部分である回転部とを有し、固定部が車体側に固定されるとともに、回転部がホイール402に固定されており、回転部の回転によりタイヤ401及びホイール402が回転する。なお、回転電機500において固定部及び回転部を含む詳細な構成は後述する。
【0341】
また、車輪400には、周辺装置として、不図示の車体に対して車輪400を保持するサスペンション装置と、車輪400の向きを可変とするステアリング装置と、車輪400の制動を行うブレーキ装置とが取り付けられている。
【0342】
サスペンション装置は、独立懸架式サスペンションであり、例えばトレーリングアーム式、ストラット式、ウィッシュボーン式、マルチリンク式など任意の形式の適用が可能である。本実施形態では、サスペンション装置として、車体中央側に延びる向きでロアアーム411が設けられるとともに、上下方向に延びる向きでサスペンションアーム412及びスプリング413が設けられている。サスペンションアーム412は、例えばショックアブソーバとして構成されているとよい。ただしその詳細な図示は省略する。ロアアーム411及びサスペンションアーム412はそれぞれ、車体側に接続されるとともに、回転電機500の固定部に固定された円板状のベースプレート405に接続されている。
図46に示すように、回転電機500側(ベースプレート405側)には、ロアアーム411及びサスペンションアーム412が支持軸414,415により互いに同軸の状態で支持されている。
【0343】
また、ステアリング装置としては、例えばラック&ピニオン式構造、ボール&ナット式構造の適用や、油圧式パワーステアリングシステム、電動式パワーステアリングシステムの適用が可能である。本実施形態では、ステアリング装置として、ラック装置421とタイロッド422とが設けられており、ラック装置421がタイロッド422を介して回転電機500側のベースプレート405に接続されている。この場合、不図示のステアリングシャフトの回転に伴いラック装置421が作動すると、タイロッド422が車両左右方向に移動する。これにより、車輪400が、ロアアーム411及びサスペンションアーム412の支持軸414,415を中心として回転し、車輪方向が変更される。
【0344】
ブレーキ装置としては、ディスクブレーキやドラムブレーキの適用が好適である。本実施形態では、ブレーキ装置として、回転電機500の回転軸501に固定されたディスクロータ431と、回転電機500側のベースプレート405に固定されたブレーキキャリパ432とが設けられている。ブレーキキャリパ432ではブレーキパッドが油圧等により作動されるようになっており、ブレーキパッドがディスクロータ431に押し付けられることにより、摩擦による制動力を生じさせて車輪400の回転が停止される。
【0345】
また、車輪400には、回転電機500から延びる電気配線H1や冷却用配管H2を収容する収容ダクト440が取り付けられている。収容ダクト440は、回転電機500の固定部側の端部から回転電機500の端面に沿って延び、かつサスペンションアーム412を避けるように設けられ、その状態でサスペンションアーム412に固定されている。これにより、サスペンションアーム412における収容ダクト440の接続部位は、ベースプレート405との位置関係が固定されたものとなる。そのため、電気配線H1や冷却用配管H2において車両の振動などに起因して生じるストレスを抑制できるようになっている。なお、電気配線H1は、不図示の車載電源部や車載ECUに接続され、冷却用配管H2は、不図示のラジエータに接続される。
【0346】
次に、インホイールモータとして用いられる回転電機500の構成を詳細に説明する。本実施形態では、回転電機500をインホイールモータに適用した事例を示している。回転電機500は、従来技術のように減速機を擁した車両駆動ユニットのモータと比べて、優れた動作効率、出力を備える。すなわち、回転電機500を従来技術に比べて、コストダウンにより実用的な価格を実現できるような用途に採用すれば、車両駆動ユニット以外の用途のモータとしても使ってもよい。そのような場合であっても、インホイールモータに適用した場合と同様に、優れた性能を発揮する。なお、動作効率とは、車両の燃費を導出する走行モードでの試験時の際に使われる指標を指す。
【0347】
回転電機500の概要を
図48~
図51に示す。
図48は、回転電機500を回転軸501の突出側(車両内側)から見た側面図であり、
図49は、回転電機500の縦断面図(
図48の49-49線断面図)であり、
図50は、回転電機500の横断面図(
図49の50-50線断面図)であり、
図51は、回転電機500の構成要素を分解した分解断面図である。以下の記載では、回転軸501が、
図51においては車体の外側方向に延びる方向を軸方向とし、回転軸501から放射状に延びる方向を径方向とし、
図48においては回転軸501の中央、言い換えれば回転部分の回転中心、を通る断面49を作るために引いた中心線上の、回転部分の回転中心以外の任意の点より、円周状に延びる2つの方向をいずれも周方向としている。言い換えると、周方向は、断面49上の任意の点を起点とした時計回りの方向、又は反時計回りの方向のいずれの方向であってもよい。また、車両搭載状態からすれば、
図49において右側が車両外側であり、左側が車両内側である。言い換えると、同車両搭載状態からすれば、後述する回転子510は、回転子カバー670よりも車体の外側方向に配置される。
【0348】
本実施形態に係る回転電機500は、アウタロータ式の表面磁石型回転電機である。回転電機500は、大別して、回転子510と、固定子520と、インバータユニット530と、軸受560と、回転子カバー670とを備えている。これら各部材は、いずれも回転子510に一体に設けられた回転軸501に対して同軸に配置され、所定順序で軸方向に組み付けられることで回転電機500が構成されている。
【0349】
回転電機500において、回転子510及び固定子520はそれぞれ円筒状をなしており、エアギャップを挟んで互いに対向配置されている。回転子510が回転軸501と共に一体回転することにより、固定子520の径方向外側にて回転子510が回転する。回転子510が「界磁子」に相当し、固定子520が「電機子」に相当する。
【0350】
回転子510は、略円筒状の回転子キャリア511と、その回転子キャリア511に固定された環状の磁石ユニット512とを有している。回転子キャリア511に回転軸501が固定されている。
【0351】
回転子キャリア511は、円筒部513を有している。円筒部513の内周面には磁石ユニット512が固定されている。つまり、磁石ユニット512は、回転子キャリア511の円筒部513に径方向外側から包囲された状態で設けられている。また、円筒部513は、その軸方向に対向する第1端と第2端とを有している。第1端は、車体の外側の方向に位置し、第2端は、ベースプレート405が存在する方向に位置する。回転子キャリア511において、円筒部513の第1端には端板514が連続して設けられている。すなわち円筒部513と端板514とは一体の構造である。円筒部513の第2端は開放されている。回転子キャリア511は、例えば機械強度が充分な冷間圧延鋼板(SPCCやSPCCより板厚が厚いSPHC)、鍛造用鋼、炭素繊維強化プラスチック(CFRP)などにより形成されている。
【0352】
回転軸501の軸長は、回転子キャリア511の軸方向の寸法よりも長い。言い換えると、回転軸501は、回転子キャリア511の開放端側(車両内側方向)に突出しており、その突出側の端部に、上述のブレーキ装置等が取り付けられるようになっている。
【0353】
回転子キャリア511の端板514にはその中央部に貫通孔514aが形成されている。回転軸501は、端板514の貫通孔514aに挿通された状態で、回転子キャリア511に固定されている。回転軸501は、回転子キャリア511が固定される部分に、軸方向に交差(直交)する向きに延びるフランジ502を有しており、そのフランジと端板514の車両外側の面とが面接合されている状態で、回転子キャリア511に対して回転軸501が固定されている。なお、車輪400においては、回転軸501のフランジ502から車両外側方向に立設されたボルト等の締結具を用いてホイール402が固定されるようになっている。
【0354】
また、磁石ユニット512は、回転子510の周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット512は、周方向に複数の磁極を有する。永久磁石は、例えば接着により回転子キャリア511に固定されている。磁石ユニット512は、第1実施形態の
図8,
図9において磁石ユニット42として説明した構成を有しており、永久磁石として、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。
【0355】
磁石ユニット512は、
図9等の磁石ユニット42と同様に、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。
図8及び
図9で説明したように、各磁石91,92ではそれぞれ、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じた配向により円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。要するに、磁石ユニット512は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。
【0356】
各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現できるものとなっている。磁石ユニット512として、
図22及び
図23に示す磁石ユニット42の構成や、
図30に示す磁石ユニット42の構成を用いることも可能である。
【0357】
なお、磁石ユニット512は、回転子キャリア511の円筒部513の側、すなわち外周面側に、複数の電磁鋼板が軸方向に積層されて構成された回転子コア(バックヨーク)を有していてもよい。つまり、回転子キャリア511の円筒部513の径方向内側に回転子コアを設けるとともに、その回転子コアの径方向内側に永久磁石(磁石91,92)を設ける構成とすることも可能である。
【0358】
図47に示すように、回転子キャリア511の円筒部513には、周方向の所定間隔にて、軸方向に延びる向きで凹部513aが形成されている。この凹部513aは例えばプレス加工により形成されており、
図52に示すように、円筒部513の内周面側には、凹部513aの裏側となる位置に凸部513bが形成されている。一方、磁石ユニット512の外周面側には、円筒部513の凸部513bに合わせて凹部512aが形成されており、その凹部512a内に円筒部513の凸部513bが入り込むことで、磁石ユニット512の周方向の位置ずれが抑制されるようになっている。つまり、回転子キャリア511側の凸部513bは、磁石ユニット512の回り止め部として機能する。なお、凸部513bの形成方法は、プレス加工以外であってもよく任意である。
【0359】
図52には、磁石ユニット512における磁石磁路の方向が矢印により示されている。磁石磁路は、磁極境界であるq軸を跨ぐようにして円弧状に延び、かつ磁極中心であるd軸では、d軸に平行又は平行に近い向きとなっている。磁石ユニット512には、その内周面側に、q軸に相当する位置ごとに凹部512bが形成されている。この場合、磁石ユニット512では、固定子520に近い側(図の下側)と遠い側(図の上側)とで磁石磁路の長さが異なり、固定子520に近い側の方が磁石磁路長が短くなっており、その磁石磁路長が最短となる位置に凹部512bが形成されている。つまり、磁石ユニット512では磁石磁路長が短い場所において十分な磁石磁束を生じさせることが困難になることを考慮して、その磁石磁束の弱い場所で磁石を削除するようにしている。
【0360】
ここで、磁石の実効磁束密度Bdは、磁石内部を通る磁気回路の長さが長いほど高くなる。また、パーミアンス係数Pcと磁石の実効磁束密度Bdとは、そのうち一方が高くなると他方が高くなる関係にある。上記
図52の構成によれば、磁石の実効磁束密度Bdの高さの指標となるパーミアンス係数Pcの低下を抑制しつつ、磁石量の削減を図ることができる。なお、B-H座標において、磁石の形状に応じたパーミアンス直線と減磁曲線との交点が動作点であり、その動作点の磁束密度が磁石の実効磁束密度Bdである。本実施形態の回転電機500では、固定子520の鉄量を少なくした構成としており、かかる構成においてq軸を跨いだ磁気回路を設定する手法は極めて有効である。
【0361】
また、磁石ユニット512の凹部512bは、軸方向に延びる空気通路として用いることができる。そのため、空冷性能を高めることも可能となる。
【0362】
次に、固定子520の構成を説明する。固定子520は、固定子巻線521と固定子コア522とを有している。
図53は、固定子巻線521と固定子コア522とを分解して示す斜視図である。
【0363】
固定子巻線521は、略筒状(環状)に巻回形成された複数の相巻線よりなり、その固定子巻線521の径方向内側にベース部材としての固定子コア522が組み付けられている。本実施形態では、U相、V相及びW相の相巻線を用いることで、固定子巻線521が3相の相巻線として構成されている。各相巻線は、径方向に内外2層の導線523により構成されている。固定子520は、既述の固定子50と同様に、スロットレス構造と固定子巻線521の扁平導線構造とを有することを特徴としており、
図8~
図16に示された固定子50と同様又は類似の構成を有している。
【0364】
固定子コア522の構成について説明する。固定子コア522は、既述の固定子コア52と同様に、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、固定子コア522において回転子510側となる径方向外側に固定子巻線521が組み付けられている。固定子コア522の外周面は凹凸のない曲面状をなしており、固定子巻線521が組み付けられた状態では、固定子コア522の外周面に、固定子巻線521を構成する導線523が周方向に並べて配置されている。固定子コア522はバックコアとして機能する。
【0365】
固定子520は、以下の(A)~(C)のいずれかを用いたものであるとよい。
(A)固定子520において、周方向における各導線523の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニット512の周方向の幅寸法をWm、磁石ユニット512の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子520において、周方向における各導線523の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子520において、周方向における各導線523の間に導線間部材を設けていない構成となっている。
【0366】
こうした固定子520の構成によれば、固定子巻線としての各導線部の間に磁気経路を確立するためのティース(鉄心)が設けられる一般的なティース構造の回転電機に比べて、インダクタンスが低減される。具体的には、インダクタンスを1/10以下にすることが可能となっている。この場合、インダクタンスの低下に伴いインピーダンスが低下することから、回転電機500において入力電力に対する出力電力を大きくし、ひいてはトルク増加に貢献できるものとなっている。また、インピーダンス成分の電圧を利用してトルク出力を行う(言い換えればリラクタンストルクを利用する)埋込み磁石型回転子を用いた回転電機に比べて、大出力の回転電機を提供することが可能となっている。
【0367】
本実施形態では、固定子巻線521が、固定子コア522と共に樹脂等からなるモールド材(絶縁部材)により一体にモールドされており、周方向に並ぶ各導線523の間には、モールド材が介在する構成となっている。かかる構成からすると、本実施形態の固定子520は、上記(A)~(C)のうち(B)の構成に相当する。また、周方向に隣り合う各導線523は、周方向の端面同士が互いに当接するか、又は微小な間隔を隔てて近接配置されており、この構成から言えば上記(C)の構成であってもよい。なお、上記(A)の構成を採用する場合には、軸方向における導線523の向きに合わせて、すなわち例えばスキュー構造の固定子巻線521であればスキュー角度に合わせて、固定子コア522の外周面に突部が設けられているとよい。
【0368】
次に、固定子巻線521の構成を、
図54を用いて説明する。
図54は、固定子巻線521を平面状に展開して示す正面図であり、
図54(a)には径方向において外層に位置する各導線523を示し、
図54(b)には径方向において内層に位置する各導線523を示す。
【0369】
固定子巻線521は、分布巻きにより円環状に巻回形成されている。固定子巻線521では、径方向内外2層に導線材が巻回され、かつ内層側及び外層側の各導線523にて互いに異なる方向へのスキューが施されている(
図54(a)、
図54(b)参照)。各導線523は、それぞれ相互に絶縁されている。導線523は、複数の素線86の集合体として構成されているとよい(
図13参照)。また、同相でかつ通電方向を同じとする導線523が、周方向に例えば2本ずつ並べて設けられている。固定子巻線521では、径方向に2層かつ周方向に2本(すなわち計4本)の各導線523により同相の1つの導線部が構成され、その導線部が1磁極内で1つずつ設けられている。
【0370】
導線部では、その径方向の厚さ寸法を、1磁極内における1相分の周方向の幅寸法よりも小さいものとし、これにより固定子巻線521を扁平導線構造とすることが望ましい。具体的には,例えば、固定子巻線521において、径方向に2層かつ周方向に4本(すなわち計8本)の各導線523により同相の1つの導線部を構成するとよい。又は、
図50に示す固定子巻線521の導線断面において、周方向の幅寸法が径方向の厚さ寸法よりも大きくなっているとよい。固定子巻線521として、
図12に示す固定子巻線51を用いることも可能である。ただしこの場合には、回転子キャリア511内に固定子巻線のコイルエンドを収容するスペースを確保する必要がある。
【0371】
固定子巻線521では、固定子コア522に対して径方向内外に重なるコイルサイド525において所定角度で傾斜させて導線523が周方向に並べて配置されるとともに、固定子コア522よりも軸方向外側となる両側のコイルエンド526において軸方向内側への反転(折り返し)が行われて連続結線がなされている。
図54(a)には、コイルサイド525となる範囲とコイルエンド526となる範囲とがそれぞれ示されている。内層側の導線523と外層側の導線523とはコイルエンド526にて互いに接続されており、これにより、コイルエンド526で導線523が軸方向に反転される都度(折り返される都度)、導線523が内層側と外層側とで交互に切り替わるようになっている。要するに、固定子巻線521では、周方向に連続する各導線523において、電流の向きが反転するのに合わせて内外層の切り替えが行われる構成となっている。
【0372】
また、固定子巻線521では、軸方向の両端となる端部領域と、その端部領域に挟まれた中央領域とでスキュー角度が異なる2種類のスキューが施されている。すなわち、
図55に示すように、導線523において、中央領域のスキュー角度θs1と端部領域のスキュー角度θs2とが異なっており、スキュー角度θs1がスキュー角度θs2よりも小さくなる構成となっている。軸方向において、端部領域は、コイルサイド525を含む範囲で定められている。スキュー角度θs1,スキュー角度θs2は、軸方向に対して各導線523が傾斜している傾斜角度である。中央領域のスキュー角度θs1は、固定子巻線521の通電により生じる磁束の高調波成分を削減するのに適正な角度範囲で定められているとよい。
【0373】
固定子巻線521における各導線523のスキュー角度を中央領域と端部領域とで相違させ、中央領域のスキュー角度θs1を端部領域のスキュー角度θs2よりも小さくすることで、コイルエンド526の縮小を図りつつも、固定子巻線521の巻線係数を大きくすることができる。言い換えれば、所望の巻線係数を確保しつつも、コイルエンド526の長さ、すなわち固定子コア522から軸方向にはみ出た部分の導線長を短くすることができる。これにより、回転電機500の小型化を図りつつ、トルク向上を実現することができる。
【0374】
ここで、中央領域のスキュー角度θs1としての適正範囲を説明する。固定子巻線521において1磁極内に導線523がX本配置されている場合には、固定子巻線521の通電によりX次の高調波成分が生じることが考えられる。相数をS、対数をmとする場合、X=2×S×mである。本願発明者は、X次の高調波成分が、X-1次の高調波成分とX+1次の高調波成分との合成波を構成する成分であるため、X-1次の高調波成分又はX+1次の高調波成分の少なくともいずれかを低減することにより、X次の高調波成分を低減できることに着目した。この着目を踏まえ、本願発明者は、電気角で「360°/(X+1)~360°/(X-1)」の角度範囲内にスキュー角度θs1を設定することにより、X次の高調波成分を低減できることを見出した。
【0375】
例えばS=3、m=2である場合、X=12次の高調波成分を低減すべく、「360°/13~360°/11」の角度範囲内にスキュー角度θs1を設定する。つまり、スキュー角度θs1は、27.7°~32.7°の範囲内の角度で設定されるとよい。
【0376】
中央領域のスキュー角度θs1が上記のように設定されることにより、その中央領域において、NS交互の磁石磁束を積極的に鎖交させることができ、固定子巻線521の巻線係数を高くすることができる。
【0377】
端部領域のスキュー角度θs2は、上述した中央領域のスキュー角度θs1よりも大きい角度である。この場合、スキュー角度θs2の角度範囲は、「θs1<θs2<90°」である。
【0378】
また、固定子巻線521において、内層側の導線523と外層側の導線523とは、各導線523の端部どうしの溶接や接着により繋げられているか、又は折り曲げにより繋げられているとよい。固定子巻線521では、軸方向両側の各コイルエンド526のうち一方側(すなわち軸方向一端側)にて各相巻線の端部が電力変換器(インバータ)にバスバー等を介して電気的に接続される構成となっている。そのためここでは、バスバー接続側のコイルエンド526とその反対側のコイルエンド526とを区別しつつ、コイルエンド526において各導線同士が繋げられている構成を説明する。
【0379】
第1の構成としては、バスバー接続側のコイルエンド526において各導線523を溶接にて繋げるとともに、その反対側のコイルエンド526において各導線523を溶接以外の手段にて繋げる構成とする。溶接以外の手段とは、例えば導線材の折り曲げによる繋ぎが考えられる。バスバー接続側のコイルエンド526では、各相巻線の端部にバスバーが溶接にて接続されることが想定される。そのため、それと同じコイルエンド526において各導線523を溶接にて繋げる構成とすることで、各溶接部を一連の工程で行わせることができ、作業効率の向上を図ることができる。
【0380】
第2の構成としては、バスバー接続側のコイルエンド526において各導線523を溶接以外の手段にて繋げるとともに、その反対側のコイルエンド526において各導線523を溶接にて繋げる構成とする。この場合、仮にバスバー接続側のコイルエンド526において各導線523を溶接にて繋げる構成であると、その溶接部とバスバーとの接触を避けるべく、バスバーとコイルエンド526との間の離間距離を十分に取る必要が生じるが、本構成とすることで、バスバーとコイルエンド526との間の離間距離を小さくすることができる。これにより、軸方向における固定子巻線521の長さ又はバスバーに関する規制を緩めることができる。
【0381】
第3の構成としては、軸方向両側のコイルエンド526において各導線523を溶接にて繋げる構成とする。この場合、溶接前に用意する導線材はいずれも短い線長のものでよく、曲げ工程の削減による作業効率の向上を図ることができる。
【0382】
第4の構成としては、軸方向両側のコイルエンド526において各導線523を溶接以外の手段にて繋げる構成とする。この場合、固定子巻線521において溶接が行われる部位を極力減らすことができ、溶接工程での絶縁剥離が生じることの懸念を低減できる。
【0383】
また、円環状の固定子巻線521を製作する工程において、平面状に整列された帯状巻線を製作し、その後にその帯状巻線を環状に成形するとよい。この場合、平面状の帯状巻線となっている状態で、必要に応じてコイルエンド526での導線同士の溶接を行うとよい。平面状の帯状巻線を環状に成形する際には、固定子コア522と同径の円柱治具を用いてその円柱治具に巻き付けるようにして帯状巻線を環状に成形するとよい。又は、帯状巻線を固定子コア522に直接巻き付けるようにしてよい。
【0384】
なお、固定子巻線521の構成を以下のように変更することも可能である。
【0385】
例えば、
図54(a),(b)に示す固定子巻線521において、中央領域及び端部領域のスキュー角度を同一とする構成であってもよい。
【0386】
また、
図54(a),(b)に示す固定子巻線521において、周方向に隣り合う同相の導線523の端部同士を、軸方向に直交する向きに延びる渡り線部により接続する構成であってもよい。
【0387】
固定子巻線521の層数は、2×n層(nは自然数)であればよく、固定子巻線521を、2層以外に4層、6層等にすることも可能である。
【0388】
次に、電力変換ユニットであるインバータユニット530について説明する。ここでは、インバータユニット530の分解断面図である
図56及び
図57を併せ用いて、インバータユニット530の構成を説明する。なお、
図57では、
図56に示す各部材を2つのサブアセンブリとして示している。
【0389】
インバータユニット530は、インバータハウジング531と、そのインバータハウジング531に組み付けられる複数の電気モジュール532と、それら各電気モジュール532を電気的に接続するバスバーモジュール533とを有している。
【0390】
インバータハウジング531は、円筒状をなす外壁部材541と、外周径が外壁部材541よりも小径の円筒状をなし、外壁部材541の径方向内側に配置される内壁部材542と、内壁部材542の軸方向一端側に固定されるボス形成部材543とを有している。これら各部材541~543は、導電性材料により構成されているとよく、例えば炭素繊維強化プラスチック(CFRP)により構成されている。インバータハウジング531は、外壁部材541と内壁部材542とが径方向内外に重ねて組み合わされ、かつ内壁部材542の軸方向一端側にボス形成部材543が組み付けられることで構成されている。その組み付け状態が
図57に示す状態である。
【0391】
インバータハウジング531の外壁部材541の径方向外側には固定子コア522が固定される。これにより、固定子520とインバータユニット530とが一体化されるようになっている。
【0392】
図56に示すように、外壁部材541には、その内周面に複数の凹部541a,541b,541cが形成されるとともに、内壁部材542には、その外周面に複数の凹部542a,542b,542cが形成されている。そして、外壁部材541及び内壁部材542が互いに組み付けられることにより、これら両者の間には3つの中空部544a,544b,544cが形成されている(
図57参照)。このうち、中央の中空部544bは、冷媒としての冷却水を流通させる冷却水通路545として用いられる。また、中空部544b(冷却水通路545)を挟んで両側の中空部544a,544cにはシール材546が収容されている。このシール材546により、中空部544b(冷却水通路545)が密閉化されている。冷却水通路545については後で詳しく説明する。
【0393】
また、ボス形成部材543には、円板リング状の端板547と、その端板547からハウジング内部に向けて突出するボス部548とが設けられている。ボス部548は、中空筒状に設けられている。例えば
図51に示すように、ボス形成部材543は、軸方向における内壁部材542の第1端とそれに対向する回転軸501の突出側(すなわち車両内側)の第2端とのうち、第2端に固定されている。なお、
図45~
図47に示す車輪400においては、インバータハウジング531(より詳しくはボス形成部材543の端板547)にベースプレート405が固定されるようになっている。
【0394】
インバータハウジング531は、軸心を中心として径方向に二重の周壁を有する構成となっており、その二重の周壁のうち外側の周壁が外壁部材541及び内壁部材542により形成され、内側の周壁がボス部548により形成されている。なお、以下の説明では、外壁部材541及び内壁部材542により形成された外側の周壁を「外側周壁WA1」、ボス部548により形成された内側の周壁を「内側周壁WA」2とも言う。
【0395】
インバータハウジング531には、外側周壁WA1と内側周壁WA2との間に環状空間が形成されており、その環状空間内に、周方向に並べて複数の電気モジュール532が配置されている。電気モジュール532は、接着やビス締め等により内壁部材542の内周面に固定されている。本実施形態では、インバータハウジング531が「ハウジング部材」に相当し、電気モジュール532が「電気部品」に相当する。
【0396】
内側周壁WA2(ボス部548)の内側には軸受560が収容されており、その軸受560により回転軸501が回転自在に支持されている。軸受560は、車輪中心部において車輪400を回転可能に支えるハブベアリングである。軸受560は、回転子510や固定子520、インバータユニット530に対して軸方向に重複する位置に設けられている。本実施形態の回転電機500では、回転子510において配向に伴い磁石ユニット512の薄型化が可能であること、固定子520においてスロットレス構造や扁平導線構造が採用されていることにより、磁気回路部の径方向の厚み寸法を縮小して、磁気回路部よりも径方向内側の中空空間を拡張することが可能となっている。これにより、径方向に積層された状態での磁気回路部やインバータユニット530、軸受560の配置が可能となっている。ボス部548は、その内側に軸受560を保持する軸受保持部となっている。
【0397】
軸受560は、例えばラジアル玉軸受であり、筒状をなす内輪561と、その内輪561よりも大径の筒状をなし内輪561の径方向外側に配置された外輪562と、それら内輪561及び外輪562の間に配置された複数の玉563とを有している。軸受560は、外輪562がボス形成部材543に組み付けられることでインバータハウジング531に固定されるとともに、内輪561が回転軸501に固定されている。これら内輪561、外輪562及び玉563は、いずれも炭素鋼等の金属材料よりなる。
【0398】
また、軸受560の内輪561は、回転軸501を収容する筒部561aと、その筒部561aの軸方向一端部から、軸方向に交差(直交)する向きに延びるフランジ561bとを有している。フランジ561bは、回転子キャリア511の端板514に内側から当接する部位であり、回転軸501に軸受560が組み付けられた状態では、回転軸501のフランジ502と内輪561のフランジ561bとにより挟まれた状態で、回転子キャリア511が保持されるようになっている。この場合、回転軸501のフランジ502及び内輪561のフランジ561bは、軸方向に対する交差の角度が互いに同じであり(本実施形態ではいずれも直角であり)、これら各フランジ502,561bの間に挟まれた状態で、回転子キャリア511が保持されている。
【0399】
軸受560の内輪561により回転子キャリア511を内側から支える構成によれば、回転軸501に対する回転子キャリア511の角度を適正角度に保持でき、ひいては回転軸501に対する磁石ユニット512の平行度を良好に保つことができる。これにより、回転子キャリア511を径方向に拡張した構成にあっても、振動等に対する耐性を高めることができる。
【0400】
次に、インバータハウジング531内に収容される電気モジュール532について説明する。
【0401】
複数の電気モジュール532は、電力変換器を構成する半導体スイッチング素子や平滑用コンデンサといった電気部品を、複数に分割して個々にモジュール化したものであり、その電気モジュール532には、パワー素子である半導体スイッチング素子を有するスイッチモジュール532Aと、平滑用コンデンサを有するコンデンサモジュール532Bとが含まれている。
【0402】
図49及び
図50に示すように、内壁部材542の内周面には、電気モジュール532を取り付けるための平坦面を有する複数のスペーサ549が固定され、そのスペーサ549に電気モジュール532が取り付けられている。つまり、内壁部材542の内周面が曲面であるのに対し、電気モジュール532の取付面が平坦面であることから、スペーサ549により内壁部材542の内周面側に平坦面を形成し、その平坦面に電気モジュール532を固定する構成としている。
【0403】
なお、内壁部材542と電気モジュール532との間にスペーサ549を介在させる構成は必須ではなく、内壁部材542の内周面を平坦面にする、又は電気モジュール532の取付面を曲面することにより内壁部材542に対して電気モジュール532を直接取り付けることも可能である。また、内壁部材542の内周面に対して非接触の状態で、電気モジュール532をインバータハウジング531に固定することも可能である。例えば、ボス形成部材543の端板547に対して電気モジュール532を固定する。スイッチモジュール532Aを内壁部材542の内周面に接触状態で固定するとともに、コンデンサモジュール532Bを内壁部材542の内周面に非接触状態で固定することも可能である。
【0404】
なお、内壁部材542の内周面にスペーサ549が設けられる場合、外側周壁WA1及びスペーサ549が「筒状部」に相当する。また、スペーサ549が用いられない場合、外側周壁WA1が「筒状部」に相当する。
【0405】
上述したとおりインバータハウジング531の外側周壁WA1には、冷媒としての冷却水を流通させる冷却水通路545が形成されており、その冷却水通路545を流れる冷却水により各電気モジュール532が冷却されるようになっている。なお、冷媒として、冷却水に代えて冷却用オイルを用いることも可能である。冷却水通路545は、外側周壁WA1に沿って環状に設けられており、冷却水通路545内を流れる冷却水は、各電気モジュール532を経由しながら上流側から下流側に流通する。本実施形態では、冷却水通路545が、径方向内外に各電気モジュール532に重なり、かつこれら各電気モジュール532を囲むように環状に設けられている。
【0406】
内壁部材542には、冷却水通路545に冷却水を流入させる入口通路571と、冷却水通路545から冷却水を流出させる出口通路572とが設けられている。上述したように内壁部材542の内周面には複数の電気モジュール532が固定されており、かかる構成において、周方向に隣り合う電気モジュール間の間隔が1カ所だけ他よりも拡張され、その拡張された部分に、内壁部材542の一部が径方向内側に突出されて突出部573が形成されている。そして、その突出部573に、径方向に沿って横並びの状態で入口通路571及び出口通路572が設けられている。
【0407】
インバータハウジング531での各電気モジュール532の配置の状態を
図58に示す。なお、
図58は、
図50と同一の縦断面図である。
【0408】
図58に示すように、各電気モジュール532は、周方向における電気モジュール同士の間隔を、第1間隔INT1又は第2間隔INT2として周方向に並べて配置されている。第2間隔INT2は、第1間隔INT1よりも広い間隔である。各間隔INT1,INT2は、例えば周方向に隣り合う2つ電気モジュール532の中心位置同士の間の距離である。この場合、突出部573を挟まずに周方向に隣り合う電気モジュール同士の間隔は第1間隔INT1となり、突出部573を挟んで周方向に隣り合う電気モジュール同士の間隔は第2間隔INT2となっている。つまり、周方向に隣り合う電気モジュール同士の間隔が一部で拡げられており、その拡げられた間隔(第2間隔INT2)の例えば中央となる部分に突出部573が設けられている。
【0409】
各間隔INT1,INT2は、回転軸501を中心とする同一円上において、周方向に隣り合う2つ電気モジュール532の中心位置同士の間の円弧の距離であってもよい。又は、周方向における電気モジュール同士の間隔は、回転軸501を中心とする角度間隔θi1,θi2で定義されていてもよい(θi1<θi2)。
【0410】
なお、
図58に示す構成では、第1間隔INT1で並ぶ各電気モジュール532が周方向に互いに離間する状態(非接触の状態)で配置されているが、この構成に代えて、それら各電気モジュール532が周方向に互いに接触する状態で配置されていてもよい。
【0411】
図48に示すように、ボス形成部材543の端板547には、入口通路571及び出口通路572の通路端部が形成された水路ポート574が設けられている。入口通路571及び出口通路572には、冷却水を循環させる循環経路575が接続されるようになっている。循環経路575は冷却水配管よりなる。循環経路575にはポンプ576と放熱装置577とが設けられ、ポンプ576の駆動に伴い冷却水通路545と循環経路575とを通じて冷却水が循環する。ポンプ576は電動ポンプである。放熱装置577は、例えば冷却水の熱を大気放出するラジエータである。
【0412】
図50に示すように、外側周壁WA1の外側には固定子520が配置され、内側には電気モジュール532が配置されていることから、外側周壁WA1に対しては、その外側から固定子520の熱が伝わるとともに、内側から電気モジュール532の熱が伝わることになる。この場合、冷却水通路545を流れる冷却水により固定子520と電気モジュール532とを同時に冷やすことが可能となっており、回転電機500における発熱部品の熱を効率良く放出することができる。
【0413】
ここで、電力変換器の電気的構成を
図59を用いて説明する。
【0414】
図59に示すように、固定子巻線521はU相巻線、V相巻線及びW相巻線よりなり、その固定子巻線521にインバータ600が接続されている。インバータ600は、相数と同じ数の上下アームを有するフルブリッジ回路により構成されており、相ごとに上アームスイッチ601及び下アームスイッチ602からなる直列接続体が設けられている。これら各スイッチ601,602は駆動回路603によりそれぞれオンオフされ、そのオンオフにより各相の巻線が通電される。各スイッチ601,602は、例えばMOSFETやIGBT等の半導体スイッチング素子により構成されている。また、各相の上下アームには、スイッチ601,602の直列接続体に並列に、スイッチング時に要する電荷を各スイッチ601,602に供給する電荷供給用のコンデンサ604が接続されている。
【0415】
制御装置607は、CPUや各種メモリからなるマイコンを備えており、回転電機500における各種の検出情報や、力行駆動及び発電の要求に基づいて、各スイッチ601,602のオンオフにより通電制御を実施する。制御装置607は、例えば所定のスイッチング周波数(キャリア周波数)でのPWM制御や、矩形波制御により各スイッチ601,602のオンオフ制御を実施する。制御装置607は、回転電機500に内蔵された内蔵制御装置であってもよいし、回転電機500の外部に設けられた外部制御装置であってもよい。
【0416】
ちなみに、本実施形態の回転電機500では、固定子520のインダクタンス低減が図られていることから電気的時定数が小さくなっており、その電気的時定数が小さい状況下では、スイッチング周波数(キャリア周波数)を高くし、かつスイッチング速度を速くすることが望ましい。この点において、各相のスイッチ601,602の直列接続体に並列に電荷供給用のコンデンサ604が接続されていることで配線インダクタンスが低くなり、スイッチング速度を速くした構成であっても適正なサージ対策が可能となる。
【0417】
インバータ600の高電位側端子は直流電源605の正極端子に接続され、低電位側端子は直流電源605の負極端子(グランド)に接続されている。また、インバータ600の高電位側端子及び低電位側端子には、直流電源605に並列に平滑用のコンデンサ606が接続されている。
【0418】
スイッチモジュール532Aは、発熱部品として各スイッチ601,602(半導体スイッチング素子)や、駆動回路603(具体的には駆動回路603を構成する電気素子)、電荷供給用のコンデンサ604を有している。また、コンデンサモジュール532Bは、発熱部品として平滑用のコンデンサ606を有している。スイッチモジュール532Aの具体的な構成例を
図60に示す。
【0419】
図60に示すように、スイッチモジュール532Aは、収容ケースとしてのモジュールケース611を有するとともに、そのモジュールケース611内に収容された1相分のスイッチ601,602と、駆動回路603と、電荷供給用のコンデンサ604とを有している。なお、駆動回路603は、専用IC又は回路基板として構成されてスイッチモジュール532Aに設けられている。
【0420】
モジュールケース611は、例えば樹脂等の絶縁材料よりなり、その側面がインバータユニット530の内壁部材542の内周面に当接した状態で、外側周壁WA1に固定されている。モジュールケース611内には樹脂等のモールド材が充填されている。モジュールケース611内において、スイッチ601,602と駆動回路603、スイッチ601,602とコンデンサ604は、それぞれ配線612により電気的に接続されている。なお詳しくは、スイッチモジュール532Aは、スペーサ549を介して外側周壁WA1に取り付けられるが、スペーサ549の図示を省略している。
【0421】
スイッチモジュール532Aが外側周壁WA1に固定された状態では、スイッチモジュール532Aにおいて外側周壁WA1に近い側、すなわち冷却水通路545に近い側ほど冷却性が高いため、その冷却性に応じてスイッチ601,602、駆動回路603及びコンデンサ604の配列の順序が定められている。具体的には、発熱量を比べると、大きいものからスイッチ601,602、コンデンサ604、駆動回路603の順序となるため、その発熱量の大きさ順序に合わせて、外側周壁WA1に近い側からスイッチ601,602、コンデンサ604、駆動回路603の順序でこれらが配置されている。なお、スイッチモジュール532Aの接触面は、内壁部材542の内周面における接触可能面より小さいとよい。
【0422】
なお、コンデンサモジュール532Bについては詳細な図示を省略するが、コンデンサモジュール532Bでは、スイッチモジュール532Aと同じ形状及び大きさのモジュールケース内に、コンデンサ606が収容されて構成されている。コンデンサモジュール532Bは、スイッチモジュール532Aと同様に、モジュールケース611の側面がインバータハウジング531の内壁部材542の内周面に当接した状態で、外側周壁WA1に固定されている。
【0423】
スイッチモジュール532A及びコンデンサモジュール532Bは、インバータハウジング531の外側周壁WA1の径方向内側において必ずしも同心円上に並んでいなくてもよい。例えばスイッチモジュール532Aがコンデンサモジュール532Bよりも径方向内側に配置される構成、又はその逆となるように配置される構成であってもよい。
【0424】
回転電機500の駆動時には、スイッチモジュール532A及びコンデンサモジュール532Bと冷却水通路545との間で、外側周壁WA1の内壁部材542を介して熱交換が行われる。これにより、スイッチモジュール532A及びコンデンサモジュール532Bにおける冷却が行われる。
【0425】
各電気モジュール532は、その内部に冷却水を引き込み、モジュール内部にて冷却水による冷却を行わせる構成であってもよい。ここでは、スイッチモジュール532Aの水冷構造を、
図61(a),(b)を用いて説明する。
図61(a)は、外側周壁WA1を横切る方向で、スイッチモジュール532Aの断面構造を示す縦断面図であり、
図61(b)は、
図61(a)の61B-61B線断面図である。
【0426】
図61(a),(b)に示すように、スイッチモジュール532Aは、
図60と同様にモジュールケース611と、1相分のスイッチ601,602と、駆動回路603と、コンデンサ604とを有することに加え、一対の配管部621,622及び冷却器623からなる冷却装置を有している。冷却装置において、一対の配管部621,622は、外側周壁WA1の冷却水通路545から冷却器623へ冷却水を流入させる流入側の配管部621と、冷却器623から冷却水通路545へ冷却水を流出させる流出側の配管部622とからなる。冷却器623は、冷却対象物に応じて設けられ、冷却装置では1段又は複数段の冷却器623が用いられる。
図61(a),(b)の構成では、冷却水通路545から離れる方向、すなわちインバータユニット530の径方向に、互いに離間した状態で2段の冷却器623が設けられており、一対の配管部621,622を介してそれら各冷却器623に対して冷却水が供給される。冷却器623は、例えば内部が空洞になっている。ただし、冷却器623の内部にインナフィンが設けられていてもよい。
【0427】
2段の冷却器623を備える構成では、(1)1段目の冷却器623の外側周壁WA1側、(2)1段目及び2段目の冷却器623の間、(3)2段目の冷却器623の反外側周壁側が、それぞれ冷却対象の電気部品を配置する場所であり、これら各場所は、冷却性能の高いものから順から(2)、(1)、(3)となっている。つまり、2つの冷却器623に挟まれた場所が最も冷却性能が高く、いずれか1つの冷却器623に隣接する場所では、外側周壁WA1(冷却水通路545)に近い方が冷却性能が高くなっている。これを加味し、
図61(a),(b)に示す構成では、スイッチ601,602が、(2)1段目及び2段目の冷却器623の間に配置され、コンデンサ604が、(1)1段目の冷却器623の外側周壁WA1側に配置され、駆動回路603が、(3)2段目の冷却器623の反外側周壁側に配置されている。なお、図示しないが、駆動回路603とコンデンサ604とが逆の配置であってもよい。
【0428】
いずれの場合であってもモジュールケース611内において、スイッチ601,602と駆動回路603、スイッチ601,602とコンデンサ604は、それぞれ配線612により電気的に接続されている。また、スイッチ601,602が駆動回路603とコンデンサ604との間に位置するため、スイッチ601,602から駆動回路603に向かって延びる配線612と、スイッチ601,602からコンデンサ604に向かって延びる配線612は互いに逆方向に延びる関係である。
【0429】
図61(b)に示すように、一対の配管部621,622は、周方向、すなわち冷却水通路545の上流側及び下流側に並べて配置されており、上流側に位置する流入側の配管部621から冷却器623に冷却水が流入され、その後、下流側に位置する流出側の配管部622から冷却水が流出される。なお、冷却装置への冷却水の流入を促すべく、冷却水通路545には、周方向に見て、流入側の配管部621と流出側の配管部621との間となる位置に、冷却水の流れを規制する規制部624が設けられているとよい。規制部624は、冷却水通路545を遮断する遮断部、又は冷却水通路545の通路面積を小さくする絞り部であるとよい。
【0430】
図62には、スイッチモジュール532Aの別の冷却構造を示す。
図62(a)は、外側周壁WA1を横切る方向で、スイッチモジュール532Aの断面構造を示す縦断面図であり、
図62(b)は、
図62(a)の62B-62B線断面図である。
【0431】
図62(a),(b)の構成では、上述した
図61(a),(b)の構成との相違点として、冷却装置における一対の配管部621,622の配置が異なっており、一対の配管部621,622が軸方向に並べて配置されている。また、
図62(c)に示すように、冷却水通路545は、流入側の配管部621に連通される通路部分と、流出側の配管部622に連通される通路部分とが軸方向に分離して設けられ、それら各通路部分が各配管部621,622及び各冷却器623を通じて連通されている。
【0432】
その他に、スイッチモジュール532Aとして、次の構成を用いることも可能である。
【0433】
図63(a)に示す構成では、
図61(a)の構成と比べて、冷却器623が2段から1段に変更されている。この場合、モジュールケース611内において冷却性能の最も高い場所が
図61(a)とは異なっており、冷却器623の径方向両側(図の左右方向両側)のうち外側周壁WA1側の場所が最も冷却性能が高く、次いで、冷却器623の反外側周壁側の場所、冷却器623から離れた場所の順に冷却性能が低くなっている。これを加味し、
図63(a)に示す構成では、スイッチ601,602が、冷却器623の径方向両側(図の左右方向両側)のうち外側周壁WA1側の場所に配置され、コンデンサ604が、冷却器623の反外側周壁側の場所に配置され、駆動回路603が、冷却器623から離れた場所に配置されている。
【0434】
また、スイッチモジュール532Aにおいて、モジュールケース611内に1相分のスイッチ601,602と、駆動回路603と、コンデンサ604とを収容する構成を変更することも可能である。例えば、モジュールケース611内に1相分のスイッチ601,602と、駆動回路603及びコンデンサ604のいずれ一方とを収容する構成としてもよい。
【0435】
図63(b)では、モジュールケース611内に、一対の配管部621,622と2段の冷却器623とを設けるとともに、スイッチ601,602を、1段目及び2段目の冷却器623の間に配置し、コンデンサ604又は駆動回路603を、1段目の冷却器623の外側周壁WA1側に配置する構成としている。また、スイッチ601,602と駆動回路603とを一体化して半導体モジュールとし、その半導体モジュールとコンデンサ604とを、モジュールケース611内に収容する構成とすることも可能である。
【0436】
なお、
図63(b)では、スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に配置される冷却器623のうち少なくとも一方の冷却器623においてスイッチ601,602とは逆側にコンデンサが配置されているとよい。すなわち、1段目の冷却器623の外側周壁WA1側と、2段目の冷却器623の反周壁側とのうち一方にのみコンデンサ604を配置する構成、又は両方にコンデンサ604を配置する構成が可能である。
【0437】
本実施形態では、スイッチモジュール532Aとコンデンサモジュール532Bとのうちスイッチモジュール532Aのみについて、冷却水通路545からモジュール内部に冷却水を引き込む構成としている。ただし、その構成を変更し、両方のモジュール532A,532Bに、冷却水通路545から冷却水を引き込む構成としてもよい。
【0438】
また、各電気モジュール532の外面に冷却水を直接当てる状態にして、各電気モジュール532を冷却する構成とすることも可能である。例えば、
図64に示すように、外側周壁WA1に電気モジュール532を埋め込むことで、電気モジュール532の外面に冷却水を当てる構成とする。この場合、電気モジュール532の一部を冷却水通路545内に浸漬させる構成や、冷却水通路545を
図58等の構成よりも径方向に拡張して電気モジュール532の全てを冷却水通路545内に浸漬させる構成が考えられる。冷却水通路545内に電気モジュール532を浸漬させる場合、浸漬されるモジュールケース611(モジュールケース611の浸漬部分)にフィンを設けると、冷却性能を更に向上させることができる。
【0439】
また、電気モジュール532には、スイッチモジュール532Aとコンデンサモジュール532Bとが含まれ、それら両者を比べた場合に発熱量に差異がある。この点を考慮して、インバータハウジング531における各電気モジュール532の配置を工夫することも可能である。
【0440】
例えば、
図65に示すように、複数個のスイッチモジュール532Aを、分散させず周方向に並べ、かつ冷却水通路545の上流側、すなわち入口通路571に近い側に配置する。この場合、入口通路571から流入した冷却水は、先ずは3つのスイッチモジュール532Aの冷却に用いられ、その後に各コンデンサモジュール532Bの冷却に用いられる。なお、
図65では、先の
図62(a),(b)のように一対の配管部621,622が軸方向に並べて配置されているが、これに限らず、先の
図61(a),(b)のように一対の配管部621,622が周方向に並べて配置されていてもよい。
【0441】
次に、各電気モジュール532及びバスバーモジュール533における電気的な接続に関する構成を説明する。
図66は、
図49の66-66線断面図であり、
図67は、
図49の67-67線断面図である。
図68は、バスバーモジュール533を単体で示す斜視図である。ここではこれら各図を併せ用いて、各電気モジュール532及びバスバーモジュール533の電気接続に関する構成を説明する。
【0442】
図66に示すように、インバータハウジング531には、内壁部材542に設けられた突出部573(すなわち、冷却水通路545に通じる入口通路571及び出口通路572が設けられた突出部573)の周方向に隣となる位置に、3つのスイッチモジュール532Aが周方向に並べて配置されるとともに、さらにその隣に、6つのコンデンサモジュール532Bが周方向に並べて配置されている。その概要として、インバータハウジング531では、外側周壁WA1の内側が周方向に10個(すなわち、モジュール数+1)の領域に等分に分けられ、そのうち9つの領域にそれぞれ電気モジュール532が1つずつ配置されるとともに、残り1つの領域に突出部573が設けられている。3つのスイッチモジュール532Aは、U相用モジュール、V相用モジュール、W相用モジュールである。
【0443】
図66や前述の
図56、
図57等に示すように、各電気モジュール532(スイッチモジュール532A及びコンデンサモジュール532B)は、モジュールケース611から延びる複数のモジュール端子615を有している。モジュール端子615は、各電気モジュール532における電気的な入出力を行わせるモジュール入出力端子である。モジュール端子615は、軸方向に延びる向きで設けられており、より具体的には、モジュールケース611から回転子キャリア511の奥側(車両外側)に向けて延びるように設けられている(
図51参照)。
【0444】
各電気モジュール532のモジュール端子615は、それぞれバスバーモジュール533に接続されている。モジュール端子615の数は、スイッチモジュール532Aとコンデンサモジュール532Bとで異なっており、スイッチモジュール532Aには4つのモジュール端子615が設けられ、コンデンサモジュール532Bには2つのモジュール端子615が設けられている。
【0445】
また、
図68に示すように、バスバーモジュール533は、円環状をなす環状部631と、その環状部631から延び、電源装置やECU(電子制御装置)等の外部装置との接続を可能とする3本の外部接続端子632と、固定子巻線521における各相の巻線端部に接続される巻線接続端子633とを有している。バスバーモジュール533が「端子モジュール」に相当する。
【0446】
環状部631は、インバータハウジング531において外側周壁WA1の径方向内側であり、かつ各電気モジュール532の軸方向片側となる位置に配置されている。環状部631は、例えば樹脂等の絶縁部材により成形された円環状の本体部と、その内部に埋設された複数のバスバーとを有する。その複数のバスバーは、各電気モジュール532のモジュール端子615や、各外部接続端子632、固定子巻線521の各相巻線に接続されている。その詳細は後述する。
【0447】
外部接続端子632は、電源装置に接続される高電位側の電力端子632A及び低電位側の電力端子632Bと、外部ECUに接続される1本の信号端子632Cとからなる。これら各外部接続端子632(632A~632C)は、周方向に一列に並び、かつ環状部631の径方向内側において軸方向に延びるように設けられている。
図51に示すように、バスバーモジュール533が各電気モジュール532と共にインバータハウジング531に組み付けられた状態では、外部接続端子632の一端がボス形成部材543の端板547から突出するように構成されている。具体的には、
図56、
図57に示すように、ボス形成部材543の端板547には挿通孔547aが設けられており、その挿通孔547aに円筒状のグロメット635が取り付けられるとともに、グロメット635を挿通させた状態で外部接続端子632が設けられている。グロメット635は、密閉コネクタとしても機能する。
【0448】
巻線接続端子633は、固定子巻線521の各相の巻線端部に接続される端子であり、環状部631から径方向外側に延びるように設けられている。巻線接続端子633は、固定子巻線521におけるU相巻線の端部に接続される巻線接続端子633U、V相巻線の端部に接続される巻線接続端子633V、W相巻線の端部にそれぞれ接続に接続される巻線接続端子633Wを有する。これらの各巻線接続端子633、各相巻線に流れる電流(U相電流、V相電流、W相電流)を検出する電流センサ634が設けられているとよい(
図70参照)。
【0449】
なお、電流センサ634は、電気モジュール532の外部であって、各巻線接続端子633の周辺に配置されてもよいし、電気モジュール532の内部に配置されてもよい。
【0450】
ここで、各電気モジュール532とバスバーモジュール533との接続を、
図69及び
図70を用いてより具体的に説明する。
図69は、各電気モジュール532を平面状に展開して示すとともに、それら各電気モジュール532とバスバーモジュール533との電気的な接続状態を模式的に示す図である。
図70は、各電気モジュール532を円環状に配置した状態での各電気モジュール532とバスバーモジュール533との接続を模式的に示す図である。なお、
図69には、電力伝送用の経路を実線で示し、信号伝送系の経路を一点鎖線で示している。
図70には、電力伝送用の経路のみを示している。
【0451】
バスバーモジュール533は、電力伝送用のバスバーとして、第1バスバー641と第2バスバー642と第3バスバー643とを有している。このうち第1バスバー641が高電位側の電力端子632Aに接続され、第2バスバー642が低電位側の電力端子632Bに接続されている。また、3つの第3バスバー643が、U相の巻線接続端子633U、V相の巻線接続端子633V、W相の巻線接続端子633Wにそれぞれ接続されている。
【0452】
また、巻線接続端子633や第3バスバー643は、回転電機10の動作により発熱しやすい部位である。このため、巻線接続端子633と第3バスバー643との間に図示しない端子台を介在させるとともに、この端子台を、冷却水通路545を有するインバータハウジング531に当接させてもよい。又は、巻線接続端子633や第3バスバー643をクランク状に曲げることで、巻線接続端子633や第3バスバー643を冷却水通路545を有するインバータハウジング531に当接させてもよい。
【0453】
このような構成であれば、巻線接続端子633や第3バスバー643で発生した熱を冷却水通路545内の冷却水に放熱することができる。
【0454】
なお、
図70では、第1バスバー641及び第2バスバー642を、円環形状をなすバスバーとして示すが、これら各バスバー641,642は必ずしも円環形状で繋がっていなくてもよく、周方向の一部が途切れた略C字状をなしていてもよい。また、各巻線接続端子633U,633V,633Wは、各相に対応するスイッチモジュール532Aに個々に接続されればよいため、バスバーモジュール533を介することなく、直接的に各スイッチモジュール532A(実際にはモジュール端子615)に接続される構成であってもよい。
【0455】
一方、各スイッチモジュール532Aは、正極側端子、負極側端子、巻線用端子及び信号用端子からなる4つのモジュール端子615を有している。このうち正極側端子は第1バスバー641に接続され、負極側端子は第2バスバー642に接続され、巻線用端子は第3バスバー643に接続されている。
【0456】
また、バスバーモジュール533は、信号伝送系のバスバーとして第4バスバー644を有している。各スイッチモジュール532Aの信号用端子が第4バスバー644に接続されるとともに、その第4バスバー644が信号端子632Cに接続されている。
【0457】
本実施形態では、各スイッチモジュール532Aに対する制御信号を信号端子632Cを介して外部ECUから入力する構成としている。つまり、各スイッチモジュール532A内の各スイッチ601,602は、信号端子632Cを介して入力される制御信号によりオンオフする。そのため、各スイッチモジュール532Aが、途中で回転電機内蔵の制御装置を経由することなく信号端子632Cに対して接続される構成となっている。ただし、この構成を変更し、回転電機に制御装置を内蔵させ、その制御装置からの制御信号が各スイッチモジュール532Aに入力される構成とすることも可能である。かかる構成を
図71に示す。
【0458】
図71の構成では、制御装置652が実装された制御基板651を有し、その制御装置652が各スイッチモジュール532Aに接続されている。また、制御装置652には信号端子632Cが接続されている。この場合、制御装置652は、例えば上位制御装置である外部ECUから力行又は発電に関する指令信号を入力し、その指令信号に基づいて各スイッチモジュール532Aのスイッチ601,602を適宜オンオフさせる。
【0459】
インバータユニット530においては、バスバーモジュール533よりも車両外側(回転子キャリア511の奥側)に制御基板651が配置されるとよい。又は、各電気モジュール532とボス形成部材543の端板547との間に制御基板651が配置されるとよい。制御基板651は、各電気モジュール532に対して少なくとも一部が軸方向に重複するように配置されるとよい。
【0460】
また、各コンデンサモジュール532Bは、正極側端子及び負極側端子からなる2つのモジュール端子615を有しており、正極側端子は第1バスバー641に接続され、負極側端子は第2バスバー642に接続されている。
【0461】
図49及び
図50に示すように、インバータハウジング531内には、周方向に各電気モジュール532と並ぶ位置に、冷却水の入口通路571及び出口通路572を有する突出部573が設けられるとともに、その突出部573に対して径方向に隣り合うようにして外部接続端子632が設けられている。換言すれば、突出部573と外部接続端子632とが、周方向に同じ角度位置に設けられている。本実施形態では、突出部573の径方向内側の位置に外部接続端子632が設けられている。また、インバータハウジング531の車両内側から見れば、ボス形成部材543の端板547に、径方向に並べて水路ポート574と外部接続端子632とが設けられている(
図48参照)。
【0462】
この場合、複数の電気モジュール532と共に突出部573及び外部接続端子632を周方向に並べて配置したことにより、インバータユニット530としての小型化、ひいては回転電機500としての小型化が可能となっている。
【0463】
車輪400の構造を示す
図45及び
図47で見ると、水路ポート574に冷却用配管H2が接続されるとともに、外部接続端子632に電気配線H1が接続され、その状態で、電気配線H1及び冷却用配管H2が収容ダクト440に収容されている。
【0464】
なお、上記構成では、インバータハウジング531内において外部接続端子632の隣に、3つのスイッチモジュール532Aを周方向に並べて配置するととともに、さらにその隣に、6つのコンデンサモジュール532Bを周方向に並べて配置する構成としたが、これを変更してもよい。例えば、外部接続端子632から最も離れた位置、すなわち回転軸501を挟んで反対側となる位置に、3つのスイッチモジュール532Aを並べて配置する構成としてもよい。また、各スイッチモジュール532Aの両隣にコンデンサモジュール532Bが配置されるように、各スイッチモジュール532Aを分散配置することも可能である。
【0465】
外部接続端子632から最も離れた位置、すなわち回転軸501を挟んで反対側となる位置に各スイッチモジュール532Aを配置する構成とすれば、外部接続端子632と各スイッチモジュール532Aとの間における相互インダクタンスに起因する誤動作等を抑制できる。
【0466】
次に、回転角度センサとして設けられるレゾルバ660に関する構成を説明する。
【0467】
図49~
図51に示すように、インバータハウジング531には、回転電機500の電気角θを検出するレゾルバ660が設けられている。レゾルバ660は、電磁誘導式センサであり、回転軸501に固定されたレゾルバロータ661と、そのレゾルバロータ661の径方向外側に対向配置されたレゾルバステータ662とを備えている。レゾルバロータ661は、円板リング状をなしており、回転軸501を挿通させた状態で、回転軸501に同軸で設けられている。レゾルバステータ662は、円環状をなすステータコア663と、ステータコア663に形成された複数のティースに巻回されたステータコイル664とを備えている。ステータコイル664には、1相の励磁コイルと2相の出力コイルとが含まれている。
【0468】
ステータコイル664の励磁コイルは、正弦波状の励磁信号によって励磁され、励磁信号によって励磁コイルに生じた磁束は、一対の出力コイルを鎖交する。この際、励磁コイルと一対の出力コイルとの相対的な配置関係がレゾルバロータ661の回転角(すなわち回転軸501の回転角)に応じて周期的に変化するため、一対の出力コイルを鎖交する磁束数は周期的に変化する。本実施形態では、一対の出力コイルのそれぞれに生じる電圧の位相が互いにπ/2だけずれるように一対の出力コイルと励磁コイルとが配置されている。これにより、一対の出力コイルそれぞれの出力電圧は、励磁信号を変調波sinθ、cosθのそれぞれによって変調した被変調波となる。より具体的には、励磁信号を「sinΩt」とすると、被変調波はそれぞれ「sinθ×sinΩt」,「cosθ×sinΩt」となる。
【0469】
レゾルバ660はレゾルバデジタルコンバータを有している。レゾルバデジタルコンバータは、生成された被変調波及び励磁信号に基づく検波によって電気角θを算出する。例えばレゾルバ660は信号端子632Cに接続されており、レゾルバデジタルコンバータの算出結果は、信号端子632Cを介して外部装置に出力される。また、回転電機500に制御装置が内蔵されている場合には、その制御装置にレゾルバデジタルコンバータの算出結果が入力される。
【0470】
ここで、インバータハウジング531におけるレゾルバ660の組み付け構造について説明する。
【0471】
図49及び
図51に示すように、インバータハウジング531を構成するボス形成部材543のボス部548は中空筒状をなしており、そのボス部548の内周側には、軸方向に直交する向きに延びる突出部548aが形成されている。そして、この突出部548aに軸方向に当接した状態で、ネジ等によりレゾルバステータ662が固定されている。ボス部548内には、突出部548aを挟んで軸方向の一方側に軸受560が設けられるとともに、他方側にレゾルバ660が同軸で設けられている。
【0472】
また、ボス部548の中空部には、軸方向においてレゾルバ660の一方の側に突出部548aが設けられるとともに、他方の側に、レゾルバ660の収容空間を閉鎖する円板リング状のハウジングカバー666が取り付けられている。ハウジングカバー666は、炭素繊維強化プラスチック(CFRP)等の導電性材料により構成されている。ハウジングカバー666の中央部には、回転軸501を挿通させる孔666aが形成されている。孔666a内には、回転軸501の外周面との間の空隙を封鎖するシール材667が設けられている。シール材667により、レゾルバ収容空間が密閉されている。シール材667は、例えば樹脂材料よりなる摺動シールであるとよい。
【0473】
レゾルバ660が収容される空間は、ボス形成部材543において円環状をなすボス部548に囲まれ、かつ軸方向が軸受560とハウジングカバー666とにより挟まれた空間であり、レゾルバ660の周囲は導電材料により囲まれている。これにより、レゾルバ660に対する電磁ノイズの影響を抑制できるようになっている。
【0474】
また、上述したとおりインバータハウジング531は、二重となる外側周壁WA1と内側周壁WA2とを有しており(
図57参照)、その二重となる周壁の外側(外側周壁WA1の外側)には固定子520が配置され、二重の周壁の間(WA1,WA2の間)には電気モジュール532が配置され、二重の周壁の内側(内側周壁WA2の内側)にはレゾルバ660が配置されている。インバータハウジング531は導電性部材であるため、固定子520とレゾルバ660とは、導電性の隔壁(本実施形態では特に二重の導電性隔壁)を隔てて配置されるようになっており、固定子520側(磁気回路側)とレゾルバ660とについて相互の磁気干渉の発生を好適に抑制できるものとなっている。
【0475】
次に、回転子キャリア511の開放端部の側に設けられる回転子カバー670について説明する。
【0476】
図49及び
図51に示すように、回転子キャリア511は軸方向の一方側が開放されており、その開放端部に、略円板リング状の回転子カバー670が取り付けられている。回転子カバー670は、溶接や接着、ビス止め等の任意の接合手法により回転子キャリア511に対して固定されているとよい。回転子カバー670が、磁石ユニット512の軸方向への移動を抑制できるように回転子キャリア511の内周よりも小さめに寸法設定されている部位を持つとなおよい。回転子カバー670は、その外径寸法が、回転子キャリア511の外径寸法に一致し、内径寸法が、インバータハウジング531の外径寸法よりも僅かに大きい寸法となっている。なお、インバータハウジング531の外径寸法と固定子520の内径寸法とは同じである。
【0477】
上述したとおりインバータハウジング531の径方向外側には固定子520が固定されており、それら固定子520及びインバータハウジング531が互いに接合されている接合部分では、固定子520に対してインバータハウジング531が軸方向に突出している。そして、インバータハウジング531の突出部分を囲むように回転子カバー670が取り付けられている。この場合、回転子カバー670の内周側の端面とインバータハウジング531の外周面との間には、それらの間の隙間を封鎖するシール材671が設けられている。シール材671により、磁石ユニット512及び固定子520の収容空間が密閉されている。シール材671は、例えば樹脂材料よりなる摺動シールであるとよい。
【0478】
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
【0479】
回転電機500において、磁石ユニット512及び固定子巻線521よりなる磁気回路部の径方向内側に、インバータハウジング531の外側周壁WA1を配置し、その外側周壁WA1に冷却水通路545を形成した。また、外側周壁WA1の径方向内側に、その外側周壁WA1に沿って周方向に複数の電気モジュール532を配置する構成とした。これにより、回転電機500の径方向に積層されるようにして磁気回路部、冷却水通路545、電力変換器を配置でき、軸方向における寸法の縮小化を図りつつ、効率の良い部品配置が可能となる。また、電力変換器を構成する複数の電気モジュール532について効率良く冷却を行わせることができる。その結果、回転電機500において、高効率かつ小型化が実現可能となる。
【0480】
半導体スイッチング素子やコンデンサ等の発熱部品を有する電気モジュール532(スイッチモジュール532A、コンデンサモジュール532B)を、外側周壁WA1の内周面に接した状態で設ける構成とした。これにより、各電気モジュール532における熱が外側周壁WA1に伝達され、その外側周壁WA1での熱交換により電気モジュール532が好適に冷却される。
【0481】
スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に冷却器623をそれぞれ配置するとともに、スイッチ601,602の両側の冷却器623のうち少なくとも一方の冷却器においてスイッチ601,602とは逆側にコンデンサ604を配置する構成とした。これにより、スイッチ601,602に対する冷却性能を高めることができるとともに、コンデンサ604の冷却性能も高めることができる。
【0482】
スイッチモジュール532Aにおいて、スイッチ601,602を挟んで両側に冷却器623をそれぞれ配置するとともに、スイッチ601,602の両側の冷却器623のうち一方の冷却器においてスイッチ601,602とは逆側に駆動回路603を配置し、他方の冷却器623においてスイッチ601,602とは逆側にコンデンサ604を配置する構成とした。これにより、スイッチ601,602に対する冷却性能を高めることができるとともに、駆動回路603とコンデンサ604についても冷却性能も高めることができる。
【0483】
例えばスイッチモジュール532Aにおいて、冷却水通路545からモジュール内部に冷却水を流入させ、その冷却水により半導体スイッチング素子等を冷却する構成とした。この場合、スイッチモジュール532Aは、外側周壁WA1での冷却水による熱交換に加えて、モジュール内部での冷却水による熱交換により冷却される。これにより、スイッチモジュール532Aの冷却効果を高めることができる。
【0484】
冷却水通路545に対して外部の循環経路575から冷却水を流入させる冷却システムにおいて、スイッチモジュール532Aを冷却水通路545の入口通路571に近い上流側に配置するとともに、コンデンサモジュール532Bをスイッチモジュール532Aよりも下流側に配置する構成とした。この場合、冷却水通路545を流れる冷却水が上流側ほど低温であることを想定すれば、スイッチモジュール532Aを優先的に冷却する構成を実現することが可能になる。
【0485】
周方向に隣り合う電気モジュール同士の間隔を一部で拡げ、その拡げた間隔(第2間隔INT2)となる部分に、入口通路571及び出口通路572を有する突出部573を設ける構成とした。これにより、外側周壁WA1の径方向内側となる部分に、冷却水通路545の入口通路571及び出口通路572を好適に形成することができる。つまり、冷却性能を高めるには冷媒の流通量を確保する必要があり、そのためには入口通路571及び出口通路572の開口面積を大きくすることが考えられる。この点、上記のとおり電気モジュール同士の間隔を一部で拡げて突出部573を設けることにより、所望とする大きさの入口通路571及び出口通路572を好適に形成することができる。
【0486】
バスバーモジュール533の外部接続端子632を、外側周壁WA1の径方向内側において突出部573に径方向に並ぶ位置に配置するようにした。つまり、外部接続端子632を、周方向に隣り合う電気モジュール同士の間隔が拡げられた部分(第2間隔INT2に相当する部分)に突出部573と共に配置するようにした。これにより、各電気モジュール532との干渉を避けつつ、外部接続端子632を好適に配置することができる。
【0487】
アウタロータ式の回転電機500において、外側周壁WA1の径方向外側に固定子520を固定し、かつ径方向内側に複数の電気モジュール532を配置する構成とした。これにより、外側周壁WA1に対して、その径方向外側から固定子520の熱が伝わるとともに、径方向内側から電気モジュール532の熱が伝わることになる。この場合、固定子520と電気モジュール532とを,冷却水通路545を流れる冷却水により同時に冷やすことが可能となり、回転電機500における発熱部材の熱を効率良く放出することができる。
【0488】
外側周壁WA1を挟んで径方向内側の電気モジュール532と径方向外側の固定子巻線521とを、バスバーモジュール533の巻線接続端子633により電気的に接続する構成とした。またこの場合、巻線接続端子633を、冷却水通路545に対して軸方向に離れた位置に設ける構成とした。これにより、外側周壁WA1において環状に冷却水通路545が形成される構成、すなわち外側周壁WA1の内外が冷却水通路545により分断されている構成であっても、電気モジュール532と固定子巻線521とを好適に接続することができる。
【0489】
本実施形態の回転電機500では、固定子520において周方向に並ぶ各導線523の間のティース(鉄心)を小さくする又は無くすことで、それら各導線523の間で生じる磁気飽和に起因するトルク制限を抑制するとともに、導線523を扁平薄型にすることでトルク低下を抑制するものとしている。この場合、仮に回転電機500の外径寸法が同じであっても、固定子520の薄型化により磁気回路部の径方向内側の領域を拡張することが可能となり、その内側領域を用いて、冷却水通路545を有する外側周壁WA1や、外側周壁WA1の径方向内側に設けられた複数の電気モジュール532を好適に配置することができる。
【0490】
本実施形態の回転電機500では、磁石ユニット512において磁石磁束がd軸側に集まることでd軸での磁石磁束が強化され、それに伴うトルク増強が可能となっている。この場合、磁石ユニット512において径方向の厚さ寸法の縮小化(薄型化)が可能になることに伴い、磁気回路部の径方向内側の領域を拡張することが可能となり、その内側領域を用いて、冷却水通路545を有する外側周壁WA1や、外側周壁WA1の径方向内側に設けられた複数の電気モジュール532を好適に配置することができる。
【0491】
また、磁気回路部、外側周壁WA1、複数の電気モジュール532だけでなく、軸受560やレゾルバ660についても同様に、径方向に好適に配置することができる。
【0492】
回転電機500をインホイールモータとして用いた車輪400は、インバータハウジング531に固定されたベースプレート405と、サスペンション装置等の装着機構とを介して車体に装着される。ここで、回転電機500では小型化が実現されていることから、車体への組み付けを想定しても省スペース化が可能となる。そのため、車両においてバッテリ等の電源装置の設置領域を拡大したり、車室スペースを拡張したりする上で有利な構成を実現できる。
【0493】
以下に、インホイールモータに関する変形例を説明する。
【0494】
(インホイールモータにおける変形例1)
回転電機500では、インバータユニット530の外側周壁WA1の径方向内側に、電気モジュール532及びバスバーモジュール533が配置されるとともに、外側周壁WA1を隔てて径方向の内側及び外側に、電気モジュール532及びバスバーモジュール533と、固定子520とがそれぞれ配置されている。かかる構成において、電気モジュール532に対するバスバーモジュール533の位置は任意に設定可能である。また、外側周壁WA1を径方向に横切って固定子巻線521の各相巻線とバスバーモジュール533とを接続する場合において、その接続に用いられる巻線接続線(例えば巻線接続端子633)を案内する位置は任意に設定可能である。
【0495】
すなわち、電気モジュール532に対するバスバーモジュール533の位置としては、
(α1)バスバーモジュール533を、軸方向において電気モジュール532よりも車両外側、すなわち回転子キャリア511側の奥側とする構成と、
(α2)バスバーモジュール533を、軸方向において電気モジュール532よりも車両内側、すなわち回転子キャリア511側の手前側とする構成と、
が考えられる。
【0496】
また、巻線接続線を案内する位置としては、
(β1)巻線接続線を、軸方向において車両外側、すなわち回転子キャリア511側の奥側で案内する構成と、
(β2)巻線接続線を、軸方向において車両内側、すなわち回転子キャリア511側の手前側で案内する構成と、
が考えられる。
【0497】
以下には、電気モジュール532、バスバーモジュール533及び巻線接続線の配置に関する4つの構成例を、
図72(a)~(d)を用いて説明する。
図72(a)~(d)は、回転電機500の構成を簡略化して示す縦断面図であり、同図には、既に説明した構成に同じ符号が付されている。巻線接続線637は、固定子巻線521の各相巻線とバスバーモジュール533とを接続する電気配線であり、例えば既述の巻線接続端子633がこれに相当する。
【0498】
図72(a)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α1)を採用するとともに、巻線接続線637を案内する位置として上記(β1)を採用している。つまり、電気モジュール532及びバスバーモジュール533、固定子巻線521及びバスバーモジュール533がいずれも車両外側(回転子キャリア511の奥側)で接続される構成となっている。なおこれは、
図49に示す構成に相当する。
【0499】
本構成によれば、外側周壁WA1において、巻線接続線637との干渉を懸念することなく冷却水通路545を設けることができる。また、固定子巻線521とバスバーモジュール533とを接続する巻線接続線637を簡易に実現できる。
【0500】
図72(b)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α1)を採用するとともに、巻線接続線637を案内する位置として上記(β2)を採用している。つまり、電気モジュール532とバスバーモジュール533とが車両外側(回転子キャリア511の奥側)で接続されるとともに、固定子巻線521とバスバーモジュール533とが車両内側(回転子キャリア511の手前側)で接続される構成となっている。
【0501】
本構成によれば、外側周壁WA1において、巻線接続線637との干渉を懸念することなく冷却水通路545を設けることができる。
【0502】
図72(c)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α2)を採用するとともに、巻線接続線637を案内する位置として上記(β1)を採用している。つまり、電気モジュール532とバスバーモジュール533とが車両内側(回転子キャリア511の手前側)で接続されるとともに、固定子巻線521とバスバーモジュール533とが車両外側(回転子キャリア511の奥側)で接続される構成となっている。
【0503】
図72(d)の構成では、電気モジュール532に対するバスバーモジュール533の位置として上記(α2)を採用するとともに、巻線接続線637を案内する位置として上記(β2)を採用している。つまり、電気モジュール532及びバスバーモジュール533、固定子巻線521及びバスバーモジュール533がいずれも車両内側(回転子キャリア511の手前側)で接続される構成となっている。
【0504】
図72(c)、
図72(d)の構成によれば、バスバーモジュール533が車両内側(回転子キャリア511の手前側)に配置されることで、仮にファンモータなどの電気部品を追加しようとする場合に、その配線が容易となることが考えられる。また、軸受よりも車両内側に配置されるレゾルバ660に対してバスバーモジュール533を近づけることが可能になり、レゾルバ660に対する配線が容易になることも考えられる。
【0505】
(インホイールモータにおける変形例2)
以下に、レゾルバロータ661の取付構造の変形例を説明する。すなわち、回転軸501、回転子キャリア511及び軸受560の内輪561は一体的に回転する回転体であり、その回転体に対するレゾルバロータ661の取付構造の変形例について以下に説明する。
【0506】
図73(a)~(c)は、上記回転体に対するレゾルバロータ661の取付構造例を示す構成図である。いずれの構成においても、レゾルバ660は、回転子キャリア511及びインバータハウジング531等により囲まれ、外部からの被水や被泥等から防護された密閉空間に設けられている。
図73(a)~(c)のうち
図73(a)では、軸受560を、
図49と同じ構成としている。また、
図73(b)、
図73(c)では、軸受560を、
図49とは異なる構成とし、かつ回転子キャリア511の端板514から離れた位置に配置している。これら各図には、レゾルバロータ661の取付場所としてそれぞれ2カ所を例示している。なお、レゾルバステータ662については図示されていないが、例えばボス形成部材543のボス部548をレゾルバロータ661の外周側又はその付近まで延ばし、そのボス部548にレゾルバステータ662が固定されていればよい。
【0507】
図73(a)の構成では、軸受560の内輪561にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、内輪561のフランジ561bの軸方向端面に設けられているか、又は内輪561の筒部561aの軸方向端面に設けられている。
【0508】
図73(b)の構成では、回転子キャリア511にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、回転子キャリア511において端板514の内面に設けられている。又は、回転子キャリア511が、端板514の内周縁部から回転軸501に沿って延びる筒部515を有する構成において、レゾルバロータ661が、回転子キャリア511の筒部515の外周面に設けられている。後者の場合、レゾルバロータ661は、回転子キャリア511の端板514と軸受560との間に配置されている。
【0509】
図73(c)の構成では、回転軸501にレゾルバロータ661が取り付けられている。具体的には、レゾルバロータ661が、回転軸501において回転子キャリア511の端板514と軸受560との間に設けられているか、又は回転軸501において軸受560を挟んで回転子キャリア511の反対側に配置されている。
【0510】
(インホイールモータにおける変形例3)
以下に、インバータハウジング531及び回転子カバー670の変形例を
図74を用いて説明する。
図74(a)、
図74(b)は、回転電機500の構成を簡略化して示す縦断面図であり、同図には、既に説明した構成に同じ符号が付されている。なお、
図74(a)に示す構成は、実質的に
図49等で説明した構成に相当し、
図74(b)に示す構成は、
図74(a)の構成の一部を変更した構成に相当する。
【0511】
図74(a)に示す構成では、回転子キャリア511の開放端部に固定された回転子カバー670が、インバータハウジング531の外側周壁WA1を囲むように設けられている。つまり、回転子カバー670の内径側の端面が外側周壁WA1の外周面に対向しており、それら両者の間にシール材671が設けられている。また、インバータハウジング531のボス部548の中空部にはハウジングカバー666が取り付けられ、そのハウジングカバー666と回転軸501との間にシール材667が設けられている。バスバーモジュール533を構成する外部接続端子632は、インバータハウジング531を貫通して車両内側(図の下側)に延びている。
【0512】
また、インバータハウジング531には、冷却水通路545に連通する入口通路571及び出口通路572が形成されるとともに、それら入口通路571及び出口通路572の通路端部を含む水路ポート574が形成されている。
【0513】
これに対して、
図74(b)に示す構成では、インバータハウジング531(詳しくはボス形成部材543)に、回転軸501の突出側(車両内側)に延びる環状の凸部681が形成されており、回転子カバー670が、インバータハウジング531の凸部681を囲むように設けられている。つまり、回転子カバー670の内径側の端面が凸部681の外周面に対向しており、それら両者の間にシール材671が設けられている。また、バスバーモジュール533を構成する外部接続端子632は、インバータハウジング531のボス部548を貫通してボス部548の中空領域に延びるとともに、ハウジングカバー666を貫通して車両内側(図の下側)に延びている。
【0514】
また、インバータハウジング531には、冷却水通路545に連通する入口通路571及び出口通路572が形成されており、それら入口通路571及び出口通路572は、ボス部548の中空領域に延び、かつ中継配管682を介してハウジングカバー666よりも車両内側(図の下側)に延びている。本構成では、ハウジングカバー666から車両内側に延びる配管部分が水路ポート574となっている。
【0515】
図74(a)、
図74(b)の各構成によれば、回転子キャリア511及び回転子カバー670の内部空間の密閉性を保持しつつ、これら回転子キャリア511及び回転子カバー670をインバータハウジング531に対して好適に回転させることができる。
【0516】
また特に、
図74(b)の構成によれば、
図74(a)の構成に比べて、回転子カバー670の内径が小さくなっている。そのため、電気モジュール532よりも車両内側となる位置に、インバータハウジング531と回転子カバー670とが軸方向に二重に設けられるようになり、電気モジュール532にて懸念される電磁ノイズによる不都合を抑制することができる。また、回転子カバー670の内径を小さくすることによりシール材671の摺動径が小さくなり、回転摺動部分における機械的ロスを抑制することができる。
【0517】
(インホイールモータにおける変形例4)
以下に、固定子巻線521の変形例を説明する。
図75に、固定子巻線521に関する変形例を示す。
【0518】
図75に示すように、固定子巻線521は、横断面が矩形状をなす導線材を用い、その導線材の長辺が周方向に延びる向きにして波巻により巻回されている。この場合、固定子巻線521においてコイルサイドとなる各相の導線523は、相ごとに所定ピッチ間隔で配置されるとともに、コイルエンドで互いに接続されている。コイルサイドにおいて周方向に隣り合う各導線523は、周方向の端面同士が互いに当接するか、又は微小な間隔を隔てて近接配置されている。
【0519】
また、固定子巻線521では、コイルエンドにおいて相ごとに導線材が径方向に折り曲げられている。より詳しくは、固定子巻線521(導線材)は、軸方向において相ごとに異なる位置にて径方向内側に折り曲げられており、これにより、U相、V相及びW相の各相巻線における互いの干渉が回避されている。図示の構成では、各相巻線で導線材の厚み分だけ異ならせて、相ごとに導線材が径方向内側に直角に折り曲げられている。周方向に並ぶ各導線523において軸方向の両端間の長さ寸法は各導線523で同じであるとよい。
【0520】
なお、固定子巻線521に固定子コア522を組み付けて固定子520を製作する際には、固定子巻線521において円環状の一部を非接続として切り離しておき(すなわち、固定子巻線521を略C字状にしておき)、固定子巻線521の内周側に固定子コア522を組み付けた後に、切り離し部分を互いに接続させて固定子巻線521を円環状にするとよい。
【0521】
上記以外に、固定子コア522を周方向にて複数(例えば3つ以上)に分割しておき、円環状に形成された固定子巻線521の内周側に、複数に分割されたコア片を組み付けるようにすることも可能である。
【0522】
(他の変形例)
・例えば
図50に示すように、回転電機500では、冷却水通路545の入口通路571と出口通路572とが一カ所にまとめて設けられているが、この構成を変更し、入口通路571と出口通路572とが周方向に異なる位置にそれぞれ設けられていてもよい。例えば、入口通路571と出口通路572とを周方向に180度異なる位置に設ける構成や、入口通路571及び出口通路572の少なくともいずれかを複数設ける構成であってもよい。
【0523】
・上記実施形態の車輪400では、回転電機500の軸方向の片側に回転軸501を突出させる構成としたが、これを変更し、軸方向の両方に回転軸501を突出させる構成としてもよい。これにより、例えば車両前後の少なくとも一方が1輪となる車両において好適な構成を実現できる。
【0524】
・車輪400に用いられる回転電機500として、インナロータ式の回転電機を用いることも可能である。
【0525】
(変形例15)
上記実施形態又は変形例ではSPM型の回転子を採用したが、次に説明するようなIPM型の回転子を採用してもよい。以下、
図76~
図80に基づいて詳しく説明する。
【0526】
図76~
図79に示すように、円筒部43の内周面に固定される磁石ユニット1000は、周方向に並べて配置されている複数の磁石1001と、各磁石1001を保持する保持部材としてのロータコア2000と、を有する。
【0527】
図76、
図77に示すように、各磁石1001は、横断面形状が、回転中心(回転軸11)を中心とした略円弧状に形成されている。つまり、各磁石1001は、径方向内側(固定子側)に、円弧状の固定子側周面1003(電機子側周面)を有し、径方向外側(円筒部側)に、略円弧状の反固定子側周面1002(反電機子側周面)を有する。また、各磁石1001は、周方向の両端部に、径方向に沿った平面である端面1004を有する。各端面1004は、それぞれ固定子側周面1003の周方向における端部と、反固定子側周面1002の周方向における端部を繋ぐように設けられている。各磁石1001は、軸方向において所定の高さ寸法を有するように設けられている。
【0528】
図78に示すように、これらの磁石1001は、それぞれ、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている。
図78において矢印で磁石磁路を示す。なお、磁石ユニット1000は、周方向において隣り合うd軸の極性を異ならせるように、周方向において隣り合う磁石1001の磁化方向(着磁方向)を反対(逆)にしている。つまり、磁束が集中し、極性がN極となるd軸と、磁束が拡散し、極性がS極となるd軸とが周方向に交互となるように、磁石1001の着磁方向を異ならせている。
【0529】
磁石磁路についてより詳しく説明する。各磁石1001には、q軸上に設定される中心点を中心として、円弧状の磁石磁路が複数形成されている。この磁石磁路は、中心点を中心とし、かつd軸と、磁石1001の固定子側周面1003との第1交点P1を通過する配向円弧OA上の磁路を含む。なお、配向円弧OAは、配向円弧上の第1交点P1における接線が、d軸に対して平行に近づくように設定されることが望ましい。
【0530】
したがって、各磁石1001は、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされているといえる。
【0531】
磁石1001は、q軸を中心として対称に設けられているとともに、周方向に隣接するd軸の間に亘って設けられている。すなわち、周方向において隣り合うd軸間に亘って、磁石1001が周方向に沿って円弧状に設けられている。そして、配向円弧OAは、周方向に隣り合うd軸の間に亘って設けられており、磁石1001は、少なくとも配向円弧OAの全域に亘って磁路が形成されるように、周方向に隣り合うd軸の間において設けられている。
【0532】
したがって、磁石1001の磁石磁路のうち、配向円弧OAに沿った磁石磁路が最長となっており、配向円弧OAから離れるほど、磁石磁路が短くなりやすくなっている。例えば、磁石1001の磁石磁路のうち、q軸寄りの部分では、反固定子側よりも固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。また、例えば、磁石1001の磁石磁路のうち、d軸寄りの部分では、固定子側よりも反固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。なお、磁石磁路(つまり、配向円弧OA)の形状は、真円の一部である円弧状であっても、楕円の一部である円弧状であってもよい。また、円弧の中心は、q軸上としたが、q軸上でなくてもよい。
【0533】
以上のように磁石磁路が形成されているため、各磁石1001は、周方向において一方の端部においてN極、他方の端部においてS極を有することとなる。つまり、各磁石1001は、それぞれ1極対を有するように円弧状の磁石磁路が形成されている。
【0534】
また、磁石1001の端面1004は、d軸に沿うように設けられている。つまり、各磁石1001は、d軸を境にして分けられていることとなる。また、各磁石1001は、周方向において隣り合う端部同士が同極性を有するように配置されている。そして、磁石ユニット1000では、このようにそれぞれ磁石磁路が形成された円弧状の磁石1001を周方向に並べて配置されている。
【0535】
次に、ロータコア2000について説明する。ロータコア2000は、軟磁性材である電磁鋼板が積層された積層鋼板により構成されており、軸方向に沿って円筒形状に形成されている。ロータコア2000には、周方向において一定間隔で、磁石1001をそれぞれ収容し、保持する磁石収容孔2001を有している。磁石収容孔2001の形状は、磁石1001の径方向における断面形状に応じて形成されている。すなわち、磁石収容孔2001の形状は、磁石1001の断面形状に相似しており、かつ、磁石1001の断面形状よりもわずかに大きく形成されている。また、磁石収容孔2001は、軸方向に沿ってロータコア2000を貫通するように設けられている。
【0536】
ロータコア2000についてより詳しく説明する。ロータコア2000は、回転軸11を中心とする円筒形状に形成されている外壁部2002と、回転軸11を中心とする円筒形状に形成されている内壁部2003と、を備える。外壁部2002は、径方向において内壁部2003の外側に配置されている。そして、外壁部2002の内径は、内壁部2003の外径よりも大きく形成されている。そして、外壁部2002(の内周面)と、内壁部2003(の外周面)との径方向における間隔は、磁石1001の径方向の厚さ寸法とほぼ同じとなっている。また、
図79に示すように、内壁部2003の径方向における厚さ寸法「L20b」は、外壁部2002の径方向における厚さ寸法「L20a」に比較して、短く(薄く)形成されている。
【0537】
また、ロータコア2000には、外壁部2002と内壁部2003との間を繋ぐように、径方向に沿って側壁部2004が設けられている。側壁部2004は、周方向において一定間隔で設けられている。具体的には、周方向において隣り合う側壁部2004の間隔が、磁石1001の周方向における幅寸法と同じになるように設けられている。また、側壁部2004は、軸方向において、ロータコア2000の全域に亘って設けられている。
【0538】
したがって、外壁部2002と、内壁部2003と、側壁部2004とにより囲まれた空間が、前述した磁石収容孔2001に相当する。この磁石収容孔2001に磁石1001が収容される。そして、各磁石1001は、接着剤や樹脂などを介してロータコア2000に固定される。
【0539】
ところで、従来におけるIPM型の回転子では、
図80に示すように、断面形状が矩形状の磁石1999をロータコア1998の磁石収容孔1997に収容することが一般的であった。矩形状の磁石1999は、一般的には大きな磁石を切削加工することにより製造されていた。このため、磁石1999の直角となる角部には、大きなバリが発生する可能性が高かった。そして、磁石1999の磁石収容孔1997に収容する際、このようなバリがロータコア1998に接触すると、磁石1999又はロータコア1998のいずれか(又は両方)が破損する虞があった。したがって、
図80に示すように、磁石収容孔1997の角部分には、磁石1999の角部を避けるように、大きな隙間(クリアランス)を設けることが一般的であった。
【0540】
しかしながら、ロータコア1998に比較して空気の透磁率は低いため、このような隙間を設ける場合、磁石1999の角部から出力される磁束密度が低下するといった問題があった。また、隙間を設けることにより、ロータコア1998の強度が低下する虞があるため、ロータコア1998が大型化するという問題がった。そこで、この変形例では、磁石の製造を容易にしつつ、磁束密度の低下を抑制するために、磁石ユニット1000を以下のように構成している。
【0541】
図77,
図79に示すように、各磁石1001では、固定子側周面1003から反固定子側周面1002までの径方向における厚さ寸法が、q軸側に比較してd軸側の方が短くなるように磁石1001が設けられている。つまり、各磁石1001では、固定子側周面1003から反固定子側周面1002までの径方向における厚さ寸法が、周方向中央部側に比較して、周方向端部側の方が短くなるように設けられている。
【0542】
より詳しく説明すると、各磁石1001の反固定子側周面1002は、ロータコア2000の外壁部2002の内周面に沿った円弧状の曲面部分1002aと、径方向に対して所定の角度(例えば、45度の角度)となる平面部分1002bと、を有している。
【0543】
この平面部分1002bは、周方向において、磁石1001のd軸側、すなわち、周方向両端部側に設けられている。そして、平面部分1002bは、径方向に対して直交する曲面部分1002aに比較して、径方向に対して平行に近くなるように設けられている。また、この平面部分1003bは、径方向内側(固定子側)に傾くように設けられている。つまり、円弧状の磁石1001の反固定子側の角をあたかも削るように、径方向に対して斜面となる平面部分1002bが設けられている。
【0544】
そして、各磁石1001において、周方向両端部の径方向の厚さ寸法は、端部に近づくほど短く(薄く)なっている。したがって、平面部分1003bは、周方向に対して固定子側に傾く傾斜面であるともいえる。これにより、磁石1001において、反固定子側の部分における角は、全て鈍角となる。
【0545】
そして、配向円弧OA上の磁石磁路が維持され、配向円弧OAを避けるように(交わらないように)、平面部分1002bが設けられている。すなわち、この変形例において、反固定子側周面1002は、配向円弧OAよりも径方向外側に配置されており、配向円弧OAに沿うように設けられている。なお、周方向に対して傾斜するのであれば、平面部分1002bを変更して、曲面にしてもよい。例えば、配向円弧OAに沿った曲面にしてもよい。
【0546】
以上により、各磁石1001では、固定子側周面1003から反固定子側周面1002の曲面部分1002aまでの径方向における厚さ寸法「L10a」は、固定子側周面1003から反固定子側周面1002の平面部分1002bまでの径方向における厚さ寸法「L10b」に比較して長くなっている。また、固定子側周面1003から平面部分1002bまでの径方向における厚さ寸法「L10b」は、周方向端部(q軸側)に近づくほど、短くなっている。
【0547】
そして、固定子50の外径(つまり、固定子巻線51の外径)は、ほぼ一定である。このため、磁石1001に上記平面部分1002bが設けられることにより、径方向において、固定子50から反固定子側周面1002までの寸法は、q軸側(周方向中央部側)に比較してd軸側(周方向端部側)の方が短くなるともいえる。つまり、固定子50から曲面部分1002aまでの径方向における厚さ寸法「L11a」に比較して、固定子50から平面部分1002bまでの径方向における厚さ寸法「L11b」は、短くなっている。また、固定子50から平面部分1002bまでの径方向における厚さ寸法「L11b」は、周方向端部側(d軸側)に近づくほど、短くなっていく。
【0548】
そして、
図78で示したように、磁石1001の磁石磁路のうち、d軸寄りの部分では、固定子側よりも反固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。より詳しくは、配向円弧OAよりも反固定子側の部分における磁石磁路は、配向円弧OAよりも短くなっており、また、d軸における磁束密度向上にあまり寄与しない。そして、磁石磁路が短い場合、外部磁界(例えば、固定子巻線51からの磁界)の影響等により、減磁しやすい部分といえる。このため、磁石1001のd軸寄りの部分のうち、反固定子側の部分を削除するように平面部分1002bを形成しても、d軸における磁束密度には、ほとんど影響が生じない(磁束密度が低下しない)。
【0549】
そして、ロータコア2000の磁石収容孔2001は、磁石1001の形状に応じて形成されている。すなわち、側壁部2004は、内壁部2003から径方向においてほぼ中間となる位置に至るまで、周方向の幅寸法が一定となるように形成されている。そして、側壁部2004は、径方向において中間となる位置から外壁部2002に至るまで、周方向の幅寸法が徐々に大きくなるように形成されている。これにより、側壁部2004は、磁石1001の平面部分1002bに沿った傾斜面2005を有することとなる。すなわち、この傾斜面2005は、径方向に対して所定の角度(例えば、45度)傾斜するように形成されている。
【0550】
以上により、ロータコア2000の磁石収容孔2001は、磁石1001の形状に応じて形成されているため、磁石1001とロータコア2000との間における隙間が少なくなるようになっている。
【0551】
ところで、各磁石1001は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている。また、各磁石1001には、
図78に示すようにq軸上に設定される中心点を中心として円弧状となる磁石磁路が複数形成されている。
【0552】
このため、磁石1001では、径方向に沿ってほぼ直線状に磁石磁路が形成されている磁石に比較して、反固定子側周面1002から磁束が漏れにくい。したがって、外壁部2002がバックヨークとして機能する必要性が少なくなり、外壁部2002の径方向における厚さ寸法を薄くすることができる。
【0553】
その一方で、上記のように磁石磁路が形成されることにより、磁束密度の周方向成分が多くなり、磁束線が周方向に向かいやすくなっている。しかも、この変形例では、磁石1001は、磁性体であるロータコア2000により囲まれている。このため、周方向において磁石1001の一端から出力された磁束線が、外壁部2002又は内壁部2003を通過して磁石1001の他端へと向かい、短絡する可能性がある。つまり、自己減磁する可能性がある。
【0554】
そこで、磁石1001の残留磁束密度Brを「B10」、ロータコア2000の飽和磁束密度Bsを「B20」、磁石1001の径方向における厚さ寸法を「L10」、内壁部2003又は外壁部2002の径方向における厚さ寸法を「L20」、とした場合に、B10×L10>B20×L20の関係を満たすように、磁石1001及びロータコア2000を設けた。
【0555】
上記式において、磁石1001の径方向における厚さ寸法「L10」は、磁石1001の径方向における厚さ寸法のうち最大寸法であり、この変形例では、周方向中央部側(q軸側)の厚さ寸法「L10a」である。一方、内壁部2003又は外壁部2002の径方向における厚さ寸法「L20」は、内壁部2003の径方向における厚さ寸法及び外壁部2002の径方向における厚さ寸法のうち最小寸法である。この変形例では、内壁部2003の厚さ寸法であって、かつ、周方向中央部側(q軸側)の厚さ寸法「L20b」が、最小であり、厚さ寸法「L20」に相当する。
【0556】
つまり、磁石1001の残留磁束密度Brが大きければ大きいほど、また、磁石1001の径方向における厚さ寸法が厚ければ厚いほど、磁束密度の周方向成分が大きくなりやすくなると考えられる。つまり、外壁部2002又は内壁部2003が磁気飽和しやすくなると考えられる。また、ロータコア2000の飽和磁束密度Bsが小さいほど、また、内壁部2003又は外壁部2002の径方向における厚さ寸法が薄いほど、磁気飽和しやすくなると考えられる。そこで、B10×L10>B20×L20の関係を満たすように、磁石1001及びロータコア2000を設けて、磁気飽和しやすくなるようにし、自己減磁を抑制するようにした。
【0557】
この変形例15では、磁石1001の残留磁束密度Brは、およそ1.0[T]であり、ロータコア2000の飽和磁束密度Bsは、およそ2.0[T]である。このため、内壁部2003の径方向における厚さ寸法「L20b」を、磁石1001の径方向における厚さ寸法「L10」の半分未満としている。これにより、内壁部2003において磁気飽和させやすくして、自己減磁を抑制している。また、内壁部2003が薄くなるため、磁石ユニット1000を小型化することができる。
【0558】
同様に、外壁部2002の径方向における厚さ寸法「L20a」を、磁石1001の径方向における厚さ寸法「L10」の半分未満としている。これにより、外壁部2002において磁気飽和させやすくして、自己減磁を抑制している。また、外壁部2002が薄くなるため、磁石ユニット1000を小型化することができる。
【0559】
なお、前述した理由により、内壁部2003及び外壁部2002は、磁束密度の観点から見た場合、薄い方が好ましい。しかしながら、磁石1001を保持する役割も有するため、内壁部2003及び外壁部2002の径方向における厚さ寸法は、磁石1001を好適に保持できる程度の強度を有するように、設計されている。
【0560】
また、この変形例では、内壁部2003又は外壁部2002の径方向における厚さ寸法「L20」を、内壁部2003の径方向における厚さ寸法及び外壁部2002の径方向における厚さ寸法のうち最小寸法としたが、内壁部2003の径方向における厚さ寸法及び外壁部2002の径方向における厚さ寸法の合計寸法のうち最小寸法としてもよい。これにより、より磁気飽和しやすくなる。
【0561】
そして、上記のように磁石磁路が形成されることにより、径方向において磁石1001の固定子側周面1003(又は反固定子側周面1002)から出力された磁束線が、側壁部2004に沿って移動し、反固定子側周面1002(又は固定子側周面1003)へと向かい、短絡する可能性がある。つまり、自己減磁する可能性がある。
【0562】
そこで、磁石1001の残留磁束密度Brを「B10」、ロータコア2000の飽和磁束密度Bsを「B20」、磁石1001の周方向における幅寸法を「W10」、側壁部2004の周方向における幅寸法を「W20」、とした場合に、B10×W10>B20×W20の関係を満たすように、磁石1001及びロータコア2000を設けた。
【0563】
上記式において、磁石1001の周方向における幅寸法「W10」は、磁石1001の周方向における幅寸法のうち最大寸法であり、この変形例では、径方向中間における幅寸法である。一方、側壁部2004の周方向における幅寸法「W20」は、側壁部2004の周方向における幅寸法のうち最小寸法である。この変形例では、傾斜面2005が形成されている位置よりも、径方向内側における幅寸法である。
【0564】
つまり、磁石1001の残留磁束密度Brが大きければ大きいほど、また、磁石1001の周方向における幅寸法が厚ければ厚いほど、径方向の磁束密度が大きくなると考えられる。つまり、側壁部2004が磁気飽和しやすくなると考えられる。また、ロータコア2000の飽和磁束密度Bsが小さいほど、また、側壁部2004の周方向における幅寸法が薄いほど、磁気飽和しやすくなると考えられる。そこで、B10×W10>B20×W20の関係を満たすようにして、磁石1001及び側壁部2004を設けて、磁気飽和しやすくなるようにした。
【0565】
したがって、この変形例では、側壁部2004の周方向における幅寸法「W20」を、磁石1001の周方向における幅寸法「W10」の半分未満としている。これにより、側壁部2004を磁気飽和させやすくして、自己減磁を抑制している。また、側壁部2004が薄くなり、磁石ユニット1000を小型化することができる。
【0566】
なお、前述した理由により、側壁部2004は、磁束密度の観点から見た場合、薄い方が好ましい。しかしながら、磁石1001を保持する役割も有するため、側壁部2004の周方向における幅寸法は、磁石1001を好適に保持できる程度の強度を有するように、設計されている。
【0567】
ここで、磁石1001の製造方法の概略について説明する。各磁石1001は、焼結法(粉末冶金法)により製造される焼結磁石である。すなわち、生成したネオジム、ホウ素、鉄などの原料を溶解し、合金化する(第1工程)。次に、第1工程で得られた合金を粒子状に粉砕する(第2工程)。そして、金型の中に第2工程で得られた粉体を入れて、磁界中で加圧成形する(第3工程)。加圧成形された後、成形物は、焼結され(第4工程)、焼結終了後、熱処理される(第5工程)。熱処理においては何回か加熱冷却が行われる。そして、研削などの機械加工や表面加工が行われた後(第6工程)、着磁されることにより(第7工程)、各磁石1001が完成する。なお、この変形例では、ニアネットシェイプ加工がなされている。
【0568】
この変形例によれば、以下の優れた効果を有する。
【0569】
磁石1001の反固定子側周面1002から固定子50までの寸法は、周方向中央部に比較して周方向端部の方が短く形成されている。そして、磁石1001の形状に応じて磁石収容孔2001が形成されている。このため、外壁部2002の径方向の厚さ寸法は、磁石1001の周方向中央部に比較して周方向端部の方が厚く形成されることとなる。すなわち、側壁部2004の周方向の幅が、径方向外側に行くほど長くなる(厚くなる)。これにより、側壁部2004の強度を向上させるとともに、周方向において、磁石1001の平面部分1002bと、側壁部2004の傾斜面2005とを係合させ、各磁石1001のまわり止めを確実に行うことができる。また、磁石収容孔2001は、径方向における磁石の断面形状に沿って形成されているため、隙間を少なくすることができ、磁束密度の低下を抑制できる。
【0570】
磁石1001(及び磁石収容孔2001)の反固定子側に設けられた角を、全て鈍角により構成した。なお、反固定子側に設けられた角とは、反固定子側周面1002の側に設けられた角(平面部分1002bと曲面部分1002aとがなす角)、及び反固定子側周面1002と端面1004がなす角のことをいう。これにより、角を鋭角に設ける場合に比較して、バリの発生を抑制することができる。したがって、磁石1001の形状に沿って磁石収容孔2001を設けることができ、隙間を抑制し、磁束密度の低下を抑制することができる。なお、粉末冶金法など、粉体を金型に入れて成形し、焼結することにより磁石1001を製造する場合、角部分を鋭角にする場合に比較して鈍角にする方が製造しやすい。このため、角を全て鈍角にすることにより、磁石製造を容易にすることができる。
【0571】
また、磁石1001に設けられた角は、丸みを帯びている。これにより、バリを確実になくすことができる。したがって、磁石1001の形状に合わせて形成された磁石収容孔2001に磁石1001を収容する際に、ロータコア2000とバリとが接触することを確実に防止できる。なお、粉末冶金法など、粉体を金型に入れて成形し、焼結することにより磁石1001を製造する場合、必然的に、全ての角が丸みを帯びることとなる。このため、角に丸みを帯びさせることにより、磁石製造を容易にすることができる。
【0572】
磁石1001において、反固定子側周面1002の周方向端部には、径方向において固定子側に傾斜する傾斜面としての平面部分1002bが設けられている。そして、磁石収容孔2001には、磁石1001の平面部分1002bの形状に応じて、傾斜面2005を設けた。これにより、周方向において、磁石1001の平面部分1002bと、側壁部2004の傾斜面2005とが面接触して係合することとなるため、まわり止めを好適に行うことができる。また、反固定子側周面1002の周方向端部に、径方向において電機固定子側に傾斜する平面部分1002bを設けることにより、磁石1001の周方向端部において、バリの発生を抑制できる。このため、磁石収容孔2001と磁石1001との間における隙間を小さくすることができ、磁束密度の低下を抑制することができる。
【0573】
磁石1001は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている。これにより、ロータコア2000において、フラックスバリア等を設けなくても、磁石1001よりも反固定子側の部分(外壁部2002)からの磁束漏れを抑制することができる。また、外壁部2002の径方向の厚さ寸法を短くすることができる。また、磁石ユニット1000の表面磁束密度分布を正弦波形状に近づけて、トルクリプルや渦電流損を抑制し、d軸における磁束密度を向上させることができる。
【0574】
また、磁石1001は、q軸上における中心点を中心とする円弧状の配向円弧に沿って配向された磁化容易軸に沿って円弧状の磁石磁路が形成されているとともに、周方向に隣り合うd軸の間においてq軸を中心とする対称形状とされている。このため、磁石磁路を長くして、磁束密度を向上させることができる。また、周方向端部(d軸側)において、反固定子側の部分は、減磁しやすい部分となる。このため、周方向中央部側(q軸側)に比較して周方向端部側(d軸側)の方を短くなるように、d軸側において反固定子側の部分を削除するように平面部分1002bを設けた。また、平面部分1002bを、配向円弧OAを避けるように磁石磁路に沿って設けた。これにより、d軸における磁束密度が低下することを抑制しつつ、磁石量を減らすことができる。
【0575】
上記のように磁石磁路が形成されることにより、周方向において磁石1001の一端から出力された磁束線が、外壁部2002又は内壁部2003を通過して磁石1001の他端へと向かい、短絡する可能性(自己減磁する可能性)がある。
【0576】
そこで、B10×L10>B20×L20の関係を満たすように、磁石1001及びロータコア2000を設けた。なお、磁石1001の残留磁束密度Brを「B10」、ロータコア2000の飽和磁束密度Bsを「B20」としている。また、「L10」を、磁石1001の径方向における厚さ寸法のうち最大寸法(この変形例では、「L10a」)としている。また、「L20」を、内壁部2003の径方向における厚さ寸法及び外壁部2002の径方向における厚さ寸法のうち最小寸法(この変形例では、「L20b」)としている。なお、鉄の飽和磁束密度Bsは、鋼板メーカーのカタログに取っている飽和磁束密度や、飽和磁化欄の数値であり、磁性体の透磁率が空気と同等となる磁束密度を指す。回転電機においては、B50やB25、すなわち、磁界5000[A/m]をかけた際の磁束密度や、磁界2500[A/m]をかけた際の磁束密度で評価されることが多く、その値で考えてもよい。
【0577】
具体的には、径方向においてロータコア2000の反固定子側周面から磁石収容孔2001の反固定子側周面までの厚さ寸法及び径方向においてロータコア2000の固定子側周面から磁石収容孔2001の固定子側周面までの厚さ寸法のうち最小となる寸法が、磁石1001の径方向における厚さ寸法のうち最大の寸法の半分未満となるようにした。
【0578】
すなわち、この変形例では、内壁部2003の径方向における厚さ寸法「L20b」を、磁石1001の周方向中央部における厚さ寸法「L10a」の半分未満となるようにした。これにより、内壁部2003において磁気飽和させやすくなる。このため、フラックスバリア等を設けなくても、自己減磁を抑制することができる。また、内壁部2003が薄くなるため、磁石ユニット1000を小型化することができる。
【0579】
また、上記のように磁石磁路が形成されることにより、径方向において磁石1001の固定子側周面1003(又は反固定子側周面1002)から出力された磁束線が、側壁部2004に沿って移動し、反固定子側周面1002(又は固定子側周面1003)へと向かい、短絡する可能性がある。
【0580】
そこで、B10×W10>B20×W20の関係を満たすように、磁石1001及びロータコア2000を設けた。なお、「W10」は、磁石1001の周方向における幅寸法のうち最大寸法である。また、「W20」は、側壁部2004の周方向における幅寸法のうち最小寸法である。
【0581】
具体的には、周方向に隣接する磁石収容孔2001の間に設けられた側壁部2004の周方向における幅寸法のうち最小となる寸法が、磁石1001の周方向における幅寸法のうち最大となる寸法の半分未満になるようにした。つまり、側壁部2004の周方向における幅寸法「W20」を、磁石1001の周方向における幅寸法「W10」の半分未満にした。これにより、側壁部2004を磁気飽和させやすくなる。このため、フラックスバリア等を設けなくても、自己減磁を抑制することができる。また、側壁部2004が薄くなり、磁石ユニット1000を小型化することができる。
【0582】
(変形例16)
上記変形例15における磁石1001を、以下に説明する磁石3001に変更してもよい。
図81に示すように、円筒部43の内周面に固定される磁石ユニット1000は、周方向に並べて配置されている複数の磁石3001と、各磁石1001を保持する保持部材としてのロータコア2000と、を有する。なお、
図81に示すように、各磁石3001の形状は、磁石1001の形状とほぼ同じであるため、同じ符号を付して、詳細な説明を省略する。
【0583】
図81に示すように、これらの磁石3001は、それぞれ、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている。
図81において矢印で磁石磁路を示す。なお、磁石ユニット1000は、周方向において隣り合うd軸の極性を異ならせるように、周方向において隣り合う磁石3001の磁化方向(着磁方向)を反対(逆)にしている。つまり、磁束が集中し、極性がN極となるd軸と、磁束が拡散し、極性がS極となるd軸とが周方向に交互となるように、磁石3001の着磁方向を異ならせている。
【0584】
磁石磁路についてより詳しく説明する。各磁石3001には、q軸上に設定される中心点を中心として、円弧状の磁石磁路が複数形成されている。
【0585】
したがって、各磁石3001は、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされているといえる。
【0586】
磁石3001は、d軸を中心として対称に設けられているとともに、周方向に隣接するq軸の間に亘って設けられている。すなわち、磁石3001は、周方向中央部(d軸)において、磁石磁路が径方向に対して平行に近くなるように設けられている。なお、磁石3001には、磁石磁路が集中する磁石3001aと、周方向中央部(d軸)から磁石磁路が拡散する磁石3001bが存在する。なお、各磁石3001は、周方向端部側(q軸側)において、磁石磁路が周方向に対して平行に近くなるようになっている。
【0587】
また、磁石3001の端面1004は、q軸に沿うように設けられている。つまり、各磁石3001は、q軸を境にして分けられていることとなる。このため、磁石磁路は、q軸において分断されることとなる。しかしながら、各磁石3001の間には、磁性体である側壁部2004が配置されており、かつ、隙間が少なくなるように磁石収容孔2001が設けられている。また、q軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなっているため、各磁石3001の周方向端部から出力される磁束密度の周方向成分が大きくなりやすい。このため、磁石3001の磁石磁路は、q軸上に配置された側壁部2004を介して繋がりやすくなる。その結果、d軸における磁束密度を向上させることができ、また、表面磁束密度分布を正弦波状に近づけることができる。
【0588】
以上により、磁石3001において、径方向の厚さ寸法は、d軸側(周方向中央部側)に比較して、q軸側(周方向端部側)の方が短くなるように構成されている。また、磁石3001において、径方向の厚さ寸法は、q軸側(周方向端部側)に近づくほど短くなるように構成されている。また、固定子50から反固定子側周面1002までの径方向の厚さ寸法は、d軸側(周方向中央部側)に比較して、q軸側(周方向端部側)の方が短くなるように構成されている。また、固定子50から反固定子側周面1002までの径方向の厚さ寸法は、q軸側(周方向端部側)に近づくほど短くなるように構成されている。
【0589】
(変形例17)
上記変形例15における磁石ユニット1000を、以下に説明する磁石ユニット1100に変更してもよい。
図82に示すように、円筒部43の内周面に固定される磁石ユニット1100は、周方向に並べて配置されている複数の磁石1101と、各磁石1101を保持する保持部材としてのロータコア2100と、を有する。
【0590】
図82に示すように、各磁石1101は、q軸と当該q軸に対して周方向に隣り合うd軸の間に設けられている。つまり、各磁石1101は、d軸及びq軸を境にして分けられていることとなる。
【0591】
そして、各磁石1101は、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされている。
【0592】
この変形例では、各磁石1101には、q軸上に設定される中心点を中心として、円弧状の磁石磁路が複数形成されている。したがって、磁石1101の磁石磁路のうち、q軸寄りの部分では、反固定子側よりも固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。また、例えば、磁石1101の磁石磁路のうち、d軸寄りの部分では、固定子側よりも反固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。
【0593】
各磁石1101では、固定子50から反固定子側周面1102までの寸法が、q軸側に比較して、d軸側の方が短くなるように形成されている。すなわち、各磁石1101の反固定子側周面1102は、ロータコア2100の外壁部2002の内周面に沿った円弧状の曲面部分1102aと、径方向に対して所定の角度(例えば、45度の角度)となる平面部分1102bと、を有している。この平面部分1102bは、周方向において、磁石1101のd軸側(周方向における一方の端部側)に設けられている。つまり、反固定子側において、円弧状の磁石1101のd軸側の角をあたかも削るように、径方向に対して固定子側に傾く斜面となる平面部分1102bが設けられている。
【0594】
前述したように、磁石1101の磁石磁路のうち、d軸寄りの部分では、固定子側よりも反固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。このため、磁石1101のd軸寄りの部分のうち、反固定子側の部分を削除するように平面部分1102bを形成しても、d軸における磁束密度には、ほとんど影響が生じない(磁束密度が低下しない)。したがって、d軸における磁束密度の低下を抑制しつつ、磁石量を減らすことができる。
【0595】
一方、各磁石1101では、固定子50から固定子側周面1103までの寸法が、d軸側に比較して、q軸側の方が長くなるように形成されている。すなわち、各磁石1101の固定子側周面1103は、ロータコア2100の内壁部2003の外周面に沿った円弧状の曲面部分1103aと、径方向に対して所定の角度(例えば、45度の角度)となる平面部分1103bと、を有している。この平面部分1103bは、周方向において、磁石1101のq軸側(周方向における他方の端部側)に設けられている。つまり、固定子側において、円弧状の磁石1101のq軸側の角をあたかも削るように、径方向に対して反固定子側に傾く斜面となる平面部分1103bが設けられている。
【0596】
前述したように、磁石1101の磁石磁路のうち、q軸寄りの部分では、反固定子側よりも固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。このため、磁石1101のd軸寄りの部分のうち、反固定子側の部分を削除するように平面部分1103bを形成しても、d軸における磁束密度には、ほとんど影響が生じない(磁束密度が低下しない)。したがって、d軸における磁束密度の低下を抑制しつつ、磁石量を減らすことができる。
【0597】
そして、ロータコア2100の磁石収容孔2101は、この磁石1101の形状に応じて形成されている。つまり、磁石収容孔2101は、d軸とq軸の間において設けられている。したがって、この変形例における側壁部2104は、d軸及びq軸に沿って設けられている。
【0598】
そして、側壁部2104のうち、d軸に沿って設けられた側壁部2104aは、内壁部2003から径方向においてほぼ中間となる位置に至るまで、周方向の幅寸法が一定となるように形成されている。そして、側壁部2104aは、径方向においてほぼ中間となる位置から外壁部2002に至るまで、周方向の幅寸法が徐々に大きくなるように形成されている。これにより、側壁部2104aは、磁石1101の平面部分1102bに沿った傾斜面2105aを有することとなる。すなわち、この傾斜面2105aは、径方向に対して所定の角度(例えば、45度)傾斜するように形成されている。
【0599】
また、側壁部2104のうち、q軸に沿って設けられた側壁部2104bは、外壁部2002から径方向においてほぼ中間となる位置に至るまで、周方向の幅寸法が一定となるように形成されている。そして、側壁部2104bは、径方向においてほぼ中間となる位置から内壁部2003に至るまで、周方向の幅寸法が徐々に大きくなるように形成されている。これにより、側壁部2104bは、磁石1101の平面部分1103bに沿った傾斜面2105bを有することとなる。すなわち、この傾斜面2105bは、径方向に対して所定の角度(例えば、45度)傾斜するように形成されている。
【0600】
以上により、ロータコア2100の磁石収容孔2101は、磁石1101の形状に応じて形成されているため、磁石1101とロータコア2100との間における隙間が少なくなるようになっている。
【0601】
上述したように、q軸において、磁石1101は分けられており、磁石磁路が分断されている。しかしながら、q軸に沿って、磁性体である側壁部2104bが設けられており、かつ、磁石収容孔2101は、隙間が少なくなるように、磁石1101の形状に沿って設けられている。また、q軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなっているため、各磁石1101の周方向端部から出力される磁束密度の周方向成分が大きくなりやすい。このため、磁石1101の磁石磁路は、q軸上に配置された側壁部2104bを介して繋がりやすくなる。その結果、d軸における磁束密度を向上させることができ、また、表面磁束密度分布を正弦波状に近づけることができる。
【0602】
(変形例15~17の別例)
上記変形例15~17における磁石ユニット1000を、以下に説明するように変更してもよい。
【0603】
・上記変形例15~17において、磁石1001,1101(及び磁石収容孔2001,2101)において、反固定子側周面1002,1102を、曲面により構成してもよい。同様に、固定子側周面1003,1102や端面1004,1104を、曲面により構成してもよい。磁石の周面を曲面にすることにより、バリの発生を抑制できる。このため、磁石収容孔2001,2101と磁石1001,1101との間における隙間を抑制し、磁束密度の低下を抑制することができる。
【0604】
・上記変形例15~17において、径方向に沿って磁石磁路を形成してもよい。この場合、径方向においてロータコア2000の反電機子側周面から磁石収容孔2001の反電機子側周面までの厚さ寸法(すなわち、外壁部2002の厚さ寸法)のうち最小寸法は、磁石1001の径方向における厚さ寸法のうち最大寸法の半分以上とすることが望ましい。これにより、ロータコア2000において、磁石1001よりも反固定子側の部分から磁束漏れを抑制することができる。
【0605】
また、この場合において、側壁部2004の周方向における幅寸法のうち最小寸法を、磁石1001の周方向における幅寸法のうち最大寸法の半分未満とすることが望ましい。これにより、フラックスバリア等の隙間を設けなくても、側壁部2004において磁気飽和させやすくして、側壁部2004を通過して磁石1001の固定子側周面1003と反固定子側周面1002との間で磁束線が短絡する自己減磁を抑制することができる。
【0606】
・上記変形例15~17では、アウタロータ型の回転子を採用したが、インナロータ型の回転子を採用してもよい。
【0607】
この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
【符号の説明】
【0608】
40…回転子(界磁子)、50…固定子(電機子)、51…固定子巻線(電機子巻線)、1001,1101,3001…磁石、2000,2100…ロータコア(保持ユニット)、2001,2101…磁石収容孔。