(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-26
(45)【発行日】2024-12-04
(54)【発明の名称】画像処理装置、画像形成システム、画像処理方法及びプログラム
(51)【国際特許分類】
H04N 1/60 20060101AFI20241127BHJP
G03G 15/01 20060101ALI20241127BHJP
G03G 15/00 20060101ALI20241127BHJP
B41J 2/52 20060101ALI20241127BHJP
G06T 1/00 20060101ALI20241127BHJP
【FI】
H04N1/60
G03G15/01 111
G03G15/00 303
B41J2/52
G06T1/00 510
(21)【出願番号】P 2021027744
(22)【出願日】2021-02-24
【審査請求日】2024-02-13
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】武末 直也
【審査官】鈴木 明
(56)【参考文献】
【文献】特開2012-155309(JP,A)
【文献】特開2005-262887(JP,A)
【文献】特開2004-064542(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 1/60
G03G 15/01
G03G 15/00
B41J 2/52
G06T 1/00
(57)【特許請求の範囲】
【請求項1】
第1色と第2色を含む画像で前記第1色と前記第2色が混合された領域の混合反射と、第1色の複数の第1分光反射と、前記複数の第1分光反射にそれぞれ関連付けられた複数の第1網点と、第2色の複数の第2分光反射と、前記複数の第2分光反射にそれぞれ関連付けられた複数の第2網点を取得する取得手段と、
前記複数の第1分光反射が前記複数の第2分光反射よりも低い第1波長領域と、前記複数の第1分光反射が前記複数の第2分光反射よりも高い第2波長領域を判定する判定手段と、
前記複数の第1分光反射のうち、前記第1波長領域における前記混合反射の一致度に応じて1つ選択された第1分光反射に関連付けられた第1網点を推定し、前記混合反射を前記選択された第1分光反射で除することにより第3分光反射を求め、前記複数の第2分光反射のうち、前記第2波長領域における前記第3分光反射の一致度に応じて1つ選択された第2分光反射に関連付けられた第2網点を推定する推定手段と、
予め設定された前記第1網点と前記第2網点の目標から、前記推定手段によって推定された前記第1網点と前記第2網点までのそれぞれの差分に基づいて、前記第1色と前記第2色の前記第1網点と前記第2網点をそれぞれ補正する補正手段を備える、
ことを特徴とする、画像処理装置。
【請求項2】
前記判定手段は、前記複数の第1分光反射と前記複数の第2分光反射の差分が閾値を超えるか否かに基づいて、前記第1波長領域と前記第2波長領域を判定する、
ことを特徴とする、請求項1に記載の画像処理装置。
【請求項3】
前記判定手段が、前記複数の第1分光反射と前記複数の第2分光反射の差分が閾値を超えないと判定する場合、前記第1波長領域の前記複数の第2分光反射を排除し、かつ、前記第2波長領域の前記複数の第1分光反射を排除する変換マトリクスにより、前記第1波長領域の一部の前記複数の第1分光反射を複数の第1仮想分光反射に変換することと、前記第2波長領域の一部の前記複数の第2分光反射を複数の第2仮想分光反射に変換することと、前記第1波長領域の一部と前記第2波長領域の一部の前記混合反射を第1混合仮想反射と第2混合仮想反射にそれぞれ変換することを含む変換手段を備え、
前記推定手段は、前記複数の第1仮想分光反射のうち、前記第1波長領域における前記第1混合仮想反射の一致度に応じて1つ選択された第1仮想分光反射に関連付けられた第1網点を推定し、前記複数の第2仮想分光反射のうち、前記第2波長領域における前記第2混合仮想反射の一致度に応じて1つ選択された第2仮想分光反射に関連付けられた第2網点を推定する、
ことを特徴とする、請求項2に記載の画像処理装置。
【請求項4】
前記変換手段は、前記混合反射と、前記複数の第1分光反射と、前記複数の第2分光反射を、混合分光濃度と、複数の第1分光濃度と、複数の第2分光濃度にそれぞれ変換することと、
前記混合分光濃度と、前記複数の第1分光濃度と、前記複数の第2分光濃度を、混合仮想濃度と、複数の第1仮想分光濃度と、複数の第2仮想分光濃度にそれぞれ変換することを含む
ことを特徴とする、請求項3に記載の画像処理装置。
【請求項5】
各波長領域に対する前記第1色の前記複数の第1分光反射と前記第2色の前記複数の第2分光反射の感度を閾値に基づいてそれぞれ判定した感度分布を記憶した記憶手段と、
前記感度分布で前記各波長領域に対する前記感度の判定結果に基づいて、前記第1色と前記第2色の推定順序と、前記第1色を推定するための前記第1波長領域と前記第2色を推定するための前記第2波長領域を含む推定波長を設定する設定手段を備える、
ことを特徴とする、請求項1から4のいずれか1項に記載の画像処理装置。
【請求項6】
前記記憶手段は、第1色の複数の第1分光反射と、前記複数の第1分光反射にそれぞれ関連付けられた複数の第1網点と、第2色の複数の第2分光反射と、前記複数の第2分光反射にそれぞれ関連付けられた複数の第2網点を記憶する、
ことを特徴とする、請求項5に記載の画像処理装置。
【請求項7】
前記取得手段は、事前に前記複数の第1分光反射と、前記複数の第2分光反射と、前記複数の第1網点と前記複数の第2網点にそれぞれ関連付けられたRGB値を取得し、
前記変換手段は、前記複数の第1網点と前記複数の第2網点にそれぞれ関連付けられたRGB値から、前記複数の第1分光反射と前記複数の第2分光反射にそれぞれ変換する変換マトリクスを有し、
前記補正手段は、前記取得手段によって取得された前記RGB値と前記変換マトリクスに基づいて、前記複数の第1分光反射と前記複数の第2分光反射を補正する、
ことを特徴とする、請求項3又は4に記載の画像処理装置。
【請求項8】
前記第1色と前記第2色のいずれかを有するヘッドモジュール、前記ヘッドモジュールに含まれるチップモジュール及び前記チップモジュールに含まれるノズルを含む画像形成手段を備え、
前記補正手段は、前記画像形成手段の前記第1網点と前記第2網点をそれぞれ補正する、
ことを特徴とする、請求項1から7のいずれか1項に記載の画像処理装置。
【請求項9】
撮像装置と
複数の請求項1から8のいずれか1項に記載の画像処理装置を備える、
ことを特徴とする、画像形成システム。
【請求項10】
第1色と第2色を含む画像で前記第1色と前記第2色が混合された領域の混合反射と、第1色の複数の第1分光反射と、前記複数の第1分光反射にそれぞれ関連付けられた複数の第1網点と、第2色の複数の第2分光反射と、前記複数の第2分光反射にそれぞれ関連付けられた複数の第2網点を取得する取得工程と、
前記複数の第1分光反射が前記複数の第2分光反射よりも低い第1波長領域と、前記複数の第1分光反射が前記複数の第2分光反射よりも高い第2波長領域を判定する判定工程と、
前記複数の第1分光反射のうち、前記第1波長領域における前記混合反射の一致度に応じて1つ選択された第1分光反射に関連付けられた第1網点を推定し、前記混合反射を前記選択された第1分光反射で除することにより第3分光反射を求め、前記複数の第2分光反射のうち、前記第2波長領域における前記第3分光反射の一致度に応じて1つ選択された第2分光反射に関連付けられた第2網点を推定する推定工程と、
予め設定された前記第1網点と前記第2網点の目標から、前記推定工程によって推定された前記第1網点と前記第2網点までのそれぞれの差分に基づいて、前記第1色と前記第2色の前記第1網点と前記第2網点をそれぞれ補正する補正工程を備える、
ことを特徴とする、画像処理方法。
【請求項11】
コンピュータを、請求項1から8のいずれか1項に記載の画像処理装置の各手段として機能させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理装置、画像形成システム、画像処理方法及びプログラムに関する。
【背景技術】
【0002】
紙面上に任意の画像を形成するための画像形成装置として、複数のノズルからインクを吐出することで画像を形成するインクジェット方式のプリンタが広く使用されている。あるいは、レーザ感光体と帯電トナーを用いて画像を形成する電子写真方式を採用したプリンタも同じく広く使用されている。また、電子写真方式のプリンタでは、画像形成装置内のトナー残量や周囲の温度及び湿度などの環境によって、形成画像の色味が変化することが知られている。一方、インクジェット方式のプリンタでは、ノズル周辺へのインク付着やインク吐出を制御するピエゾ素子及びヒータのエージング、温度及び湿度などの周辺環境等の要因により色味が変化することが知られている。プリンタ周辺環境等の要因による色味の変化の問題に対し、例えば一定間隔で画像の色味の安定化処理を実行することで、色味の変化を抑制する技術がある。
【0003】
安定化処理は、各色のトナー又はインク等の記録材の特性を測定するために専用チャートを出力する必要がある。しかしながら、専用チャートの出力は、ユーザが画像を出力するために用意した記録材、用紙及び時間を消費するため、それは不要なコスト増加をもたらしている。専用チャートの出力に係るコスト増加を抑えるために、ユーザが専用チャートの出力間隔を広げることがあるが、これはプリンタの記録材の特性を十分に測定できない結果を招き、色安定化の精度を低下させる可能性がある。これらの背景を考慮して、特許文献1は、印刷したユーザ画像の測色結果に基づいて、色味の安定化処理をすることで、不要なコスト増加を回避しつつ、色味の安定化精度を維持する技術を開示している。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、画像の色安定化処理において、多次色画像の測色結果から各色の記録量を推定し、各色の作像条件を変更するため、色安定化の処理に時間がかかっている。その結果、インクジェット方式のプリンタでは、印字スピードを減速させるか又は画像の色の補正間隔を広げなければならないという課題があった。
【0006】
本発明は、複数の色を含む画像で各色の記録量を推定するための推定時間を短縮し、色安定化処理の精度を向上させることを目的とする。
【課題を解決するための手段】
【0007】
本発明の目的を達成するために、本発明の一実施形態に係る画像処理装置は、以下の構成を備える。すなわち、第1色と第2色を含む画像で前記第1色と前記第2色が混合された領域の混合反射と、第1色の複数の第1分光反射と、前記複数の第1分光反射にそれぞれ関連付けられた複数の第1網点と、第2色の複数の第2分光反射と、前記複数の第2分光反射にそれぞれ関連付けられた複数の第2網点を取得する取得手段と、前記複数の第1分光反射が前記複数の第2分光反射よりも低い第1波長領域と、前記複数の第1分光反射が前記複数の第2分光反射よりも高い第2波長領域を判定する判定手段と、前記複数の第1分光反射のうち、前記第1波長領域における前記混合反射の一致度に応じて1つ選択された第1分光反射に関連付けられた第1網点を推定し、前記混合反射を前記選択された第1分光反射で除することにより第3分光反射を求め、前記複数の第2分光反射のうち、前記第2波長領域における前記第3分光反射の一致度に応じて1つ選択された第2分光反射に関連付けられた第2網点を推定する推定手段と、予め設定された前記第1網点と前記第2網点の目標から、前記推定手段によって推定された前記第1網点と前記第2網点までのそれぞれの差分に基づいて、前記第1色と前記第2色の前記第1網点と前記第2網点をそれぞれ補正する補正手段を備える、ことを特徴とする。
【発明の効果】
【0008】
本発明によれば、複数の色で構成された画像で、各色の記録量を推定するための推定時間を短縮し、色安定化処理の精度を向上させることができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の実施形態に係る画像形成システムの構成図。
【
図2】本発明の実施形態に係る画像形成部及び画像取得部の模式図。
【
図3】本発明の実施形態に係る1次色の推定処理を説明する図。
【
図4】本発明の実施形態に係る画像処理部の機能ブロック図。
【
図5】本発明の実施形態に係る補正テーブルの一例を示す図。
【
図6】本発明の実施形態に係る補正テーブルの作成処理を説明する図。
【
図7】第1実施形態の事前設定処理のフローチャート。
【
図8】第1実施形態の特性取得チャートの一例を示す図。
【
図9】第1実施形態の1次色の分光反射率分類テーブルの一例を示す図。
【
図10】第1実施形態のヘッドモジュールの分光反射率特性を示す図。
【
図11】第1実施形態のユーザによる画像印刷処理を示すフローチャート。
【
図12】第1実施形態の1次色推定処理を示すフローチャート。
【
図13】第1実施形態の補正テーブルの修正処理を示すフローチャート。
【
図14】第1実施形態の分光反射率分類テーブルの一例を示す図。
【
図15】第2実施形態の1次色の推定処理を説明する図。
【
図16】第2実施形態の画像処理部の機能ブロック図。
【
図17】第2実施形態及び第3実施形態の事前設定処理のフローチャート。
【
図18】第2実施形態の1次色の仮想分光濃度の一例を示す図。
【
図19】第2実施形態の色信号値と分光濃度の関係の一例を示す図。
【
図20】第2実施形態の画像印刷処理を示すフローチャート。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
【0011】
(第1実施形態)
以下では、本実施形態に係る画像形成システム10について説明する。
【0012】
図1は、本実施形態の画像形成システム10の構成の一例を示す図である。本実施形態における画像形成システムは、CPU100、RAM101、ROM102、操作部103、表示部104、記憶部105、画像処理部106、画像形成部107、画像取得部108、I/F部109、バス110を含むように構成される。
【0013】
CPU100は、中央処理演算装置を示すプロセッサであり、後述するRAM及びROMに格納されたコンピュータプログラムを実行して、画像形成システム10全体の動作を制御する。なお、CPU100が画像形成システム10全体を制御する場合を一例として説明しているが、複数のハードウェア(不図示)が、処理を分担することにより画像形成システム10全体を制御してもよい。RAM101は、作業用のメインメモリであり、記憶部105から読み込んだコンピュータプログラム及びデータ、I/F部109を介して外部から受信したデータを一時的に記憶する記憶領域を有する。また、RAM101は、CPU100が各種の処理を実行する際に使用する記憶領域及び画像処理部106が画像処理を実行する際に使用する記憶領域として使用される。ROM102は、読み出し可能メモリのことであり、画像形成システム10における各部の設定パラメータ及びブートプログラム等を記憶する記憶領域を有する。
【0014】
操作部103は、キーボード及びマウス等の入力装置であり、ユーザによる操作又は指示を受け付ける。これにより、ユーザは、各種の指示をCPU100に与えることができる。表示部104は、CRTディスプレイ及びLCD(液晶)ディスプレイ等の表示装置であり、CPU100による処理結果を画像及び文字等で表示することができる。なお、表示部104がタッチ操作可能なタッチパネルを備える場合、表示部104が操作部103の一部として機能してもよい。記憶部105は、例えばHDD(ハードディスクドライブ)のような大容量情報記憶装置である。記憶部105は、OS(オペレーティングシステム)、CPU100に各種処理を実行させるためのコンピュータプログラム及びデータ等を保存する。また、記憶部105は、画像形成システム10の各部の処理によって生成される一時的なデータ(例えば、入力又は出力される画像データ及び画像処理部106で使用される変換マトリクス等)を保持している。記憶部105に記憶されたコンピュータプログラム及びデータは、CPU100による制御に従って適宜読み取られ、RAM101に記憶される。
【0015】
画像処理部106は、コンピュータプログラムを実行可能なプロセッサ及び専用の画像処理回路である。画像処理部106は、印刷対象として入力された画像データを後述の画像形成部107で出力可能な画像データに変換するための各種画像処理を実行する。また、画像処理部106は、ユーザにより印刷された画像の読み取り結果に基づく色安定化処理を実行することができる。なお、本実施形態では、画像処理部106として専用のプロセッサを用意するのではなく、CPU100が、画像処理部106の代替として、各種画像処理を行ってもよい。画像形成部107は、記録ヘッドが有する記録材を記録媒体上に吐出することにより、画像を形成する機能を有する。画像形成部107は、画像処理部106又はRAM101及び外部記録装置(不図示)を介して、受信した画像データに基づいて、記録媒体上に記録材を吐出することで画像を形成する。記録媒体は、例えば、普通紙、コート紙及び光沢紙である。記録材は、例えば、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)を含む顔料インク又は染料インクである。画像形成部107の詳細は後述する。
【0016】
画像取得部108は、画像形成部107によって記録媒体上に形成された記録画像を撮像するためのイメージセンサ(例えば、ラインセンサ又はエリアセンサ)を含む。なお、本実施形態においてイメージセンサは、記録媒体上に形成された画像からの反射光に基づいて、各波長における反射率を取得可能な分光センサである。分光反射率とは、各波長に対する反射率の分布のことをいう。なお、分光濃度は、分光反射率の逆数の常用対数で変換することにより得られる。また、イメージセンサは、記録媒体上に形成された画像からの反射光から色の3原色であるR(赤色)、G(緑色)、B(青色)の信号情報を検出するRGBセンサである。
【0017】
I/F部109は、画像形成システム10と外部機器(不図示)を接続するためのインタフェースとして機能する。また、I/F部109は、赤外線通信や無線LAN(ローカルエリアネットワーク)等を介して、他の通信装置(不図示)とデータのやりとりを行うためのインタフェース及びインターネットに接続するためのインタフェースとしても機能する。バス110は、画像形成システム10における各部の間でデータをやり取りするためのデータ伝送路である。画像形成システム10内の各部は、全てバス110に接続されており、例えば、CPU100は、バス110を介してROM102とデータの授受を行うことができる。
【0018】
図2は、本実施形態に係る画像形成部107を模式的に示す図である。なお、本実施形態の画像形成部107は、記録材(例えば、インク)をノズルから記録媒体上に吐出することにより画像を形成するインクジェット方式のプリンタである。
図2(a)に示すように、画像形成部107は、プリンタの構造材であるフレーム(不図示)上に記録ヘッド201、記録ヘッド202、記録ヘッド203及び記録ヘッド204を備える。記録ヘッド201から記録ヘッド204は、ブラック(K)、シアン(C)、マゼンタ(M)及びイエロー(Y)のインクをそれぞれ有する。
図2(a)で例えば、記録ヘッド201は、ブラック(K)のインクを有し、記録ヘッド202は、シアン(C)のインクを有する。また、記録ヘッド203は、マゼンタ(M)を有し、記録ヘッド204は、イエロー(Y)を有する。
【0019】
記録ヘッド201から記録ヘッド204は、インクを吐出するための複数のノズルを記録用紙206の幅に対応した範囲に所定方向に沿って配列した、例えばフルラインタイプの記録ヘッドである。フルラインタイプの記録ヘッドは、記録用紙206と同等の長さの記録ヘッドであるため、記録用紙206の広い面積を一度に印刷でき、印刷の高速化を可能とする。なお、画像形成部107は、フルラインタイプの記録ヘッドに限定されることはなく、例えば記録ヘッドを記録用紙206の紙搬送方向207と90°直交する方向に往復しながら走査することで記録材を記録する、シリアルタイプであってよい。あるいは、画像形成部107は、レーザ感光体と帯電トナーを用いて画像を形成する電子写真方式、固形インクを熱によって気化させ、印刷用紙に転写する熱転写方式などであってもよい。
【0020】
また、
図2(b)に示すように、記録ヘッド201から記録ヘッド204は、複数のヘッドモジュールを組み合わせることで構成される。例えば、記録ヘッド201は、ヘッドモジュール201a、ヘッドモジュール201b及びヘッドモジュール201cを含む。ヘッドモジュール201aからヘッドモジュール201cは、紙搬送方向207に対して、隣同士のヘッドモジュールが前後に互い違いに配置された、例えば千鳥配列となっている。さらに、
図2(c)に示すように、例えばヘッドモジュール201aは、チップモジュール201a-1、チップモジュール201a-2、チップモジュール201a-3、チップモジュール201a-4及びチップモジュール201a-5を含む。なお、チップモジュール201a-1からチップモジュール201a-5は、ヘッドモジュール201aの基盤に対してそれぞれ独立して接続される。ヘッドモジュール201a以外のヘッドモジュールについては、ヘッドモジュール201aと同様の構成を含むため、説明を省略する。
【0021】
図2(d)は、上記チップモジュールのいずれかをインク吐出側から見た場合の図であり、チップモジュールが複数のノズルを備えることを示す。複数のノズルは、円で示される部分である。
図2(d)に示す例では、チップモジュールは16個のノズルを備える。なお、それぞれのインク色のノズル列のノズル配置の解像度は、例えば1200dpiである。記録媒体としての記録用紙206は、搬送ローラ205(及び他の不図示のローラ)がモータ(不図示)の駆動力によって回転することにより、紙搬送方向207の方向に搬送される。次に、記録用紙206が搬送される間に、記録ヘッド201から記録ヘッド204がそれぞれ有する複数のノズルは、記録データに応じた各インク色のインクを適量で吐出する。これにより、各記録ヘッドのノズル列に対応した1ラスタ(例えば、画像の最小単位である1画素が横1列に並んだもの)分の画像が、順次形成される。搬送される記録用紙206に対して、各記録ヘッドがインク吐出を繰り返すことにより、例えば1ページ分の画像を記録することができる。
【0022】
また、
図2(a)が示すように、画像取得部108は、記録ヘッド201から記録ヘッド204よりも紙搬送方向207に対して下流に設置された記録用紙206の全面をカバーするラインセンサである。ラインセンサとは、1列分の1次元の画像を連続的に取得し、2次元の画像を取得することが可能な撮像センサである。画像取得部108は、記録ヘッド201から記録ヘッド204により画像形成された後に搬送される記録用紙206の分光反射率の情報を順次取得する。また、画像取得部108は、取得した分光反射率の情報を2次元の分光画像データとして記憶部105に記憶する。なお、本実施形態の画像取得部108による波長λ方向の分解能は、10nmである。また、画像取得部108は、
図2(a)が示すようなラインセンサに限定されることはない。画像取得部108は、例えば、記録用紙206の紙搬送方向207に90°直交する方向に往復移動するキャリッジを備えていてもよい。画像取得部108は、キャリッジにより記録用紙206よりも小さい幅で任意の画像領域の分光反射率の情報を取得する構成であってもよい。
【0023】
以下、本実施形態における画像の色安定化処理について説明する。画像形成部107の各記録ヘッドは、例えばノズル周辺のインク付着、インク吐出を制御するピエゾ素子及びヒータのエージング、温度及び湿度等の周辺環境による影響を受ける。そのため、画像形成部107が、同一の画像を形成する場合であっても、記録用紙206上に形成される画像の濃度が、各印刷で変化することが知られている。このような画像の濃度変化は、例えば、記録用紙206上の濃度ムラ及び色転びとして視認される。濃度ムラ及び色転びは、画像の品質を損なう原因となるため、画像の品質を維持するために、それらをできるだけ抑制する必要がある。
図2(a)に示すように、本実施形態における画像形成システム10は、記録ヘッド201から記録ヘッド204によって形成された画像を、画像取得部108(例えば、ラインセンサ)により読み取ることができる。すなわち、本実施形態は、画像取得部108により取得した2次元画像データにより画像の濃度変化を推定し、画像の色安定化処理を行うことで濃度変化を抑制できる。画像の色安定化処理で専用チャートの使用は、記録用紙206、記録材(インク)及び時間等のコストを余計に消費するため、ユーザにより印刷された画像から濃度変化を推定してよい。
【0024】
なお、
図2の本実施形態における画像形成システム10は、CMYKインクの4色の記録材を任意に混合して、記録媒体に記録することで、任意の画像を形成する。そのため、経時変化による色の濃度変化は、各CMYKインクの色について独立して生じる。したがって、各インク色に対応する入力画像に、各インク色に対応する独立なガンマ補正処理を行うことで、色の濃度変化を効果的に低減することができる。ガンマ補正処理とは、画像を扱う周辺機器(例えば、ディスプレイ及びプリンタ)において、各色データの入力信号と実際に出力される画像の信号を相対的に調整する処理のことをいう。しかしながら、ユーザにより印刷された任意の画像は、必ずしも各インク色のみを含む領域を有するとは限らない。そのような場合、各インク色の濃度変化は、複数のインク色が混在する多次色領域に含まれる各インク色の濃度変化に基づいて、推定する必要がある。なお、各インク色の濃度変化は、記録材を保持するヘッドモジュール又はチップモジュール単位で変化する場合が多い。さらに、同一ヘッドモジュールにおけるノズルであっても、各ノズルのインク色の濃度変化量は、異なる場合がある。そのため、ヘッドモジュール又はノズルのいずれかの単位で各インク色の補正をする場合は、補正する単位ごとの各インク色の濃度変化を推定し、補正する単位に対してガンマ補正処理を行う必要がある。本実施形態は、ヘッドモジュール、チップモジュール、ノズルのいずれかの補正単位でガンマ補正することができる。
【0025】
例えば、
図2(a)で4個の記録ヘッドに独立してガンマ補正する場合、CMYK色の濃度変化を推定するために、4回の推定処理が必要である。
図2(b)で、4個の記録ヘッドがそれぞれ有する3個のヘッドモジュールに独立してガンマ補正する場合、各インク色の濃度変化を推定するために、4個の記録ヘッドと3個のヘッドモジュールの個数を乗じて得られる12回の推定処理が必要である。
図2(c)で、上記で算出した12個のヘッドモジュールがそれぞれ有する5個のチップモジュールに独立してガンマ補正する場合を説明する。12個のヘッドモジュールと5個のチップモジュールの個数を乗じて得られる60回の推定処理が必要である。
図2(d)で、上記で算出した60個のチップモジュールがそれぞれ有する16個のノズルに独立してガンマ補正する場合を説明する。60個のチップモジュールと16個のチップモジュールの個数を乗じて得られる960回の推定処理が必要である。
【0026】
このように、ガンマ補正の補正単位を細分化すればするほど、各インク色の濃度変化を推定する推定処理の回数が増加する。記録材による記録媒体への印刷速度を維持しつつ、細分化した補正単位でガンマ補正するためには、各インク色の濃度変化の推定処理を効率よく行う必要がある。そこで、本実施形態は、各インク色の波長領域における分光反射率の分布の差異により、各インク色の濃度変化を推定するための各インク色の推定順序及びそれに対応する推定波長を決定する。これにより、本実施形態は、各インク色の濃度を推定するための高速な推定処理を実現する。以下、
図3で本実施形態における各インク色の濃度変化を推定するための推定処理の概要を説明する。なお、本実施形態において、Kインクを含む多次色領域で推定処理は、行わないものとする。
【0027】
図3(a)は、本実施形態の一例として、記録ヘッド202によって吐出されるCインクの分光反射率ρc(kc,λ)を示す。同図の縦軸は、紙白で正規化した反射率、横軸は波長(nm)を示す。分光反射率は、反射した光束の分光密度と、入射した放射の分光密度の比であり、波長の関数で表される。ここで、λは波長(nm)、kcはCインクの網点率(%)である。波長λは、人間の目で知覚可能である可視光域の波長380nmから730nmまでを示す。また、網点率とは、ノズルの解像度として、例えば1200dpiの画像の各格子において、インクドットが吐出された割合を示す。例えば、Cインクの網点率kc=100(%)は、全ての格子点にCインクが吐出された状態であり、一方kc=0(%)は、Cインクが全ての格子点に吐出されていない白地状態を示す。
【0028】
図3(a)中の曲線301は、網点率100%でCインクを吐出した場合の分光反射率ρc(100,λ)を示す曲線である。なお、本実施形態において、紙の分光反射率で正規化した反射率を、各インクの分光反射率として用いる。次に、曲線302、曲線303及び曲線304はそれぞれ、ρc(50,λ)、ρc(25,λ)及びρc(0,λ)に対応する。なお、紙の分光反射率で正規化しているため、分光反射率ρc(0,λ)は全波長域において反射率1.0である。
図3(b)は、本実施形態の一例として、記録ヘッド203によって吐出されるMインクの分光反射率ρm(km,λ)を示す。
図3(b)の曲線305、曲線306、曲線307及び曲線308は、網点率100%、50%、25%及び0%でそれぞれMインクを吐出した場合の分光反射率ρm(km,λ)を示す。
図3(c)の曲線309、曲線310、曲線311及び曲線312は、網点率100%、50%、25%及び0%でそれぞれYインクを吐出した場合の分光反射率ρy(ky,λ)を示す。
【0029】
図3(d)は、本実施形態の一例として、Cインク、Mインク及びYインクが混合された領域の混合分光反射率ρx(kx,λ)を示す。
図3(d)の曲線313、曲線314及び曲線315は、CMYインクの混合分光反射率と、MYインクの混合分光反射率と、Yインクの混合分光反射率にそれぞれ対応する。次に、CMYインクが混合された混合領域の分光反射率から、CMYインクの各分光反射率を推定する方法を説明する。具体的には、以下の数1を満たすCインクの網点率kc(%)、Mインクの網点率km(%)及びYインクの網点率ky(%)に基づいて、各インクの各分光反射率を推定する。なお、数1のρx(λ)は、推定に用いるCインク、Mインク及びYインクの混合領域の分光反射率である。また、
図3(a)から
図3(c)に示すCMYインクの各分光反射率ρc(kc,λ)、ρm(km,λ)、ρy(ky,λ)は、CMYインクの各網点率を推定する前に、事前に取得済みである。
【0030】
(数1)
ρx(λ)=ρc(kc,λ)×ρm(km,λ)×ρy(ky,λ)
【0031】
例えば、CMYインクの混合領域の混合分光反射率ρx(λ)が、
図3(d)の曲線313に示すように取得されたとする。このとき、
図3(a)から
図3(c)に示すCMYインクの各分光反射率に注目すると、630nm以上の波長域でMインク及びYインクの反射率は、約1.0を示す。630nm以上の波長域でMインク及びYインクは、光を全て反射する(感度がない)が、Cインクのみが光を吸収(感度がある)する。各インク色の分光反射率特性の差異を考慮して、例えば、数1の波長λ=650とし、Mインク及びYインクの反射率ρm及びρyをそれぞれ1.0とすれば、以下に示す数2が得られる。次に、数2に基づいて、Cインクの網点率kcを推定する。ここで、分光反射率ρc(kc,650)と網点率kcは、
図3(a)に示すように、網点率kcが増加すると反射率ρcが減少する単調減少な関係である。この関係に基づいて、数1を満たすCインクの網点率kcを容易に、かつ、高速に算出することができる。
【0032】
(数2)
ρx(650)=ρc(kc,650)
【0033】
次に、推定されたCインクの網点率kcに基づいて、Mインクの網点率kmを推定する。例えば、数2によりCインクの網点率がkc=90%と推定されたとする。このとき、混合分光反射率ρx(λ)からCインクの網点率kcで除した混合分光反射率ρx´(λ)は、以下の数3として得られる。
図3(d)の曲線314は、数3に基づいて得られた混合分光反射率ρx´(λ)を示す曲線である。混合分光反射率ρx´(λ)は第3分光反射ともいう。
【0034】
(数3)
ρx´(λ)=ρx(λ)/ρc(90,λ)
【0035】
図3(b)及び
図3(c)に示すM及びYインクの分光反射率特性に注目すると、550nm付近の波長域でYインクの反射率は、約1.0を示すが、Mインクは反射率ρyが1.0よりも小さいことを示す。つまり、550nm付近の波長域でYインクは、光を全て反射する(感度がない)が、Mインクは光を吸収(感度がある)している。MインクとYインクの分光反射率特性の差異に基づいて、例えば、数3の波長λ=550とし、Yインクの反射率ρyを1.0とすれば、以下の数4が得られる。数4に基づいて、Mインクの網点率kmを推定する。ここで、Mインクの分光反射率ρm(km,550)と網点率kmは、
図3(b)に示すように、網点率kmが増加すると反射率ρmが減少する単調減少な関係である。この関係に基づいて、数1を満たすMインクの網点率kmを一意に算出することができる。
【0036】
(数4)
ρx´(550)=ρm(km,550)
【0037】
次に、分光反射率ρx´(λ)を推定されたMインクの網点率kmで除した分光反射率ρx´´(λ)は、以下の数5として得られる。
図3(d)の曲線315は、数5に基づいて得られた分光反射率ρx´´(λ)を示す。
【0038】
(数5)
ρx´´(λ)=ρx´(λ)/ρm(km,λ)
【0039】
このとき、分光反射率ρx´´(λ)は、CMYインクの混合領域からCインク及びMインクの網点率kc及び網点率kmの影響が排除されているので、以下の数6で表される。例えば、数6で波長λ=450nmに基づいて、Yインクの網点率kyを推定する。ここで、Yインクの分光反射率ρy(ky,450)と網点率kyは、
図3(c)に示すように、Yインクの網点率kyが増加すると反射率ρmが減少する単調減少な関係である。この関係に基づいて、数1を満たすYインクの網点率kyを一意に算出することができる。
【0040】
(数6)
ρx´´(λ)=ρy(ky,λ)
【0041】
上記の通り、CMYインクの波長域に対する分光反射率特性の差異により、CMYインクの反射率が算出可能な推定順序と波長を選択することができる。これにより、数1を満たすCMYインクのそれぞれの反射率ρc、反射率ρm、反射率ρyに関連付けられた網点率kc、網点率km、網点率kyを容易に高速で推定することができる。上記の推定処理は、例えばヘッドモジュール毎に行うことで、各ヘッドモジュールに対応する各インク色の反射率を得ることができる。さらに、得られた各反射率に基づき、ヘッドモジュール及び波長のいずれかを基準として、ヘッドモジュール間で反射率が略一致するようにガンマ補正テーブルを作成することが可能である。また、ガンマ補正テーブルの作成時に、上記の単調減少な関係を用いることで、基準モジュールのインクが有する反射率と略一致するための補正値を容易に得ることができる。上記で得られたガンマ補正値を入力画像に適用することにより、経時変化による色の濃度変化を抑制することができる。
【0042】
図4は、本実施形態に係る画像処理部106の機能を説明する図である。色の安定化処理を実行する画像処理部106の機能構成について、
図4を参照しつつ説明する。画像処理部106は、色変換処理部401、補正処理部402、HT処理部403、推定パラメータ設定部404、1次色推定処理部405を含む。画像処理部106はまた、補正テーブル作成部406、補正テーブル407、目標設定部408、目標特性409を含む。さらに、推定パラメータ設定部404は、インク特性取得部4041、処理順設定部4042、波長選択部4043を含むように構成される。また、1次色推定処理部405は、1次色推定部4051、インク特性4052、処理順4053、選択波長4054を含むように構成される。
【0043】
色変換処理部401は、記憶部105からの入力画像データを、プリンタの色再現域に対応した画像データに変換する。入力する画像データは、例えば、モニタの表現色であるsRGB等の色空間座標中の色座標(R,G,B)を示すデータである。sRGBとは、国際標準化団体のIEC(国際電気標準会議)が制定した標準規格のことをいう。色変換処理部401は、画像形成部107で使用する複数のインク色に対応した色信号に変換する処理を行う。例えば、画像形成部107が、ブラック(K)、シアン(C)、マゼンタ(M)及びイエロー(Y)のインクを使用する場合、RGB信号の画像データは、K、C、M、Yの各8ビットの色信号を含む画像データに変換される。画像データの変換は、例えば、マトリクス演算処理及び3次元LUT(ルックアップテーブル)を使用した処理等の公知の手法で行われてよい。なお、入力画像データは、RGBを示すデータに限らず、CMYKインクの各色を直接示すデータであってもよい。ただし、各インク総量の制限及びカラーマネジメントのために、色変換処理部401は、CYMKをC´M´Y´K´に変換する4次元LUTを使用した処理をしてもよい。補正処理部402は、画像データの経時変化に応じて、画像の色を安定化するための補正処理をする。より具体的には、補正処理部402は、モジュール毎又はノズル毎に算出した各インク色の補正テーブル407を使用することにより、CMYKの各画像データに対してガンマ補正することができる。
【0044】
図5は、本実施形態における補正テーブル407の一例を示す図である。補正テーブル407は、0から255までの入力色信号に対応するヘッドモジュール201aからヘッドモジュール204cのそれぞれの補正後の色信号値を格納している。なお、記録ヘッド201は、ヘッドモジュール201a、ヘッドモジュール201b及び201cを有し、記録ヘッド202は、ヘッドモジュール202a、202b及び202cを有している。記録ヘッド203は、ヘッドモジュール203a、ヘッドモジュール203b及びヘッドモジュール203cを有し、記録ヘッド204は、ヘッドモジュール204a、ヘッドモジュール204b及びヘッドモジュール204cを有している。
図5で例えば、記録ヘッド201がKインクを有し、かつ、Kの入力色信号値が32である場合、補正処理部402は入力色信号値を32から28へ変更する。本実施形態は、CMYKインクの色信号の変換に関して、CMYKインクの吐出に対応する各ヘッドモジュールの補正テーブルに対応する色信号値で、各インク色の補正処理をすることができる。
【0045】
なお、色の補正処理をヘッドモジュール単位ではなく、チップモジュール単位又はノズル単位で行う場合、補正テーブル407は、チップモジュール数又はノズル数に等しい色信号値の情報を備える。なお、
図5に示す補正テーブル(LUTともいう)上に存在しない入力色信号値は、LUTに格納されているそれの近傍の入力色信号値で補間処理することにより算出されてもよい。また、補完処理を使用することなく、全色の入力色信号値に対応する変換後の入力色信号値をLUTに格納しておいてもよい。あるいは、入力色信号の補正処理は、補正テーブル407による変換だけに限定されず、例えば、関数変換及びマトリスク変換によって補正処理されてもよい。
【0046】
図4に戻って、HT処理部403は、色の補正処理後の色信号画像データに対して、画像形成部107が表現可能な階調数へ変換するHT処理を行い、ハーフトーン画像データを生成する。具体的には、HT処理部403は、1画素当たり8ビットの画像データを、画素毎に0か1のいずれかの値を有する1ビット2値のハーフトーン画像データに変換する。HT処理は、例えば、公知の方法である誤差拡散処理及びディザ処理等で処理されてよい。推定パラメータ設定部404は、画像取得部108より、各画素位置(x,y)に対応する分光反射率ρx(x,y,λ)を取得し、各インク色の分光反射率ρc(kc,λ)、ρm(km,λ)及びρy(ky,λ)を算出する。さらに、画像取得部108は、算出した各インクの分光反射率に基づき、各インク色の網点率を算出するために、各インク色の推定順序及び各インク色を推定するための推定波長を決定する。推定パラメータ設定部404による処理の詳細は、後述する。
【0047】
1次色推定処理部405は、画像取得部108より、各画素位置(x,y)に対応する分光反射率ρx(x,y,λ)を取得し、各画素位置における各インクの反射率ρc、ρm及びρyを推定する。1次色推定処理部405が実行する推定処理の詳細は、後述する。補正テーブル作成部406は、1次色推定部により推定された各画素位置(x,y)における各インクの反射率と補正後の色信号値に基づいて、補正テーブル407を作成する。補正テーブル作成処理の詳細は、後述する。
【0048】
本実施形態の画像形成システム10は、ユーザによる画像印刷の前に、各種設定を行う。具体的には、1次色推定処理部405が、推定処理で必要とするパラメータ、補正テーブル作成時の各インク色の目標特性の設定及び補正テーブル407の作成を行う。
図7は、本実施形態における事前設定のフローを示す。以下、
図7を参照しつつ、事前設定フローの各ステップについて説明する。まず、S701で画像処理部106は、設定パラメータを算出するための特性取得チャート800の出力及び読取を行う。具体的には、画像処理部106は、
図8に示す特性取得チャート800にHT処理を行い、画像形成部107が記録媒体上に画像として形成する。さらに、画像取得部108が、形成した画像を読み取り、各画素位置(x,y)に対応する分光反射率ρx(x,y,λ)を取得する。
図8に示す特性取得チャート800は、2次元紙面上にブロック801、ブロック802、ブロック803及びブロック804を含むように構成される。記録ヘッド201から記録ヘッド204のそれぞれが、ブロック801からブロック804のそれぞれを紙面上に形成する。ブロック801は、パターン805からパターン810を含むように構成される。ブロック802からブロック804は、ブロック801と同様の構成を含み、パターン805からパターン810をそれぞれ有する。
【0049】
例えば、ブロック801は、Kインクが充填された記録ヘッド201のみが紙面にKインクを吐出することにより、形成される。ブロック802は、Cインクが充填された記録ヘッド202のみが紙面にCインクを吐出することにより、形成される。ブロック803は、Mインクが充填された記録ヘッド203のみが紙面にMインクを吐出することにより、形成される。ブロック804は、Yインクが充填された記録ヘッド204のみが紙面にYインクを吐出することにより、形成される。ちなみに、
図8で複数の縦の点線が帯状に表示されたパターン805及びパターン810は、不吐ノズル検出パターンを示す。不吐ノズルとは、記録ヘッドを長時間放置等することにより、記録ヘッドが備えるノズルがインクの目詰まりを起こして、インクが不吐出となった状態のノズルのことをいう。本実施形態では、記録ヘッドが備えるノズル毎のインク吐出の有無を判別するライン状のパターンを使用する。また、パターン806からパターン809は、それぞれ異なるKインクの色信号値で紙面上にKインクが記録された均一なパターンである。色信号値は、例えば、網点率0%、25%、50%及び100%にそれぞれ対応する値0、64、128及び255である。例えば、パターン806が、色信号値0で記録され、パターン807が、色信号値64で記録されている。また、パターン808が、色信号値128で記録され、パターン809が、色信号値255で記録されている。
【0050】
図7に戻って、S702でインク特性取得部4041は、形成画像の分光反射率ρx(x,y,λ)から、パターン806からパターン809のいずれかに対応する画像領域を抜き出し、紙搬送方向207に平均して1次元化する。なお、各画像領域の抜き出しは、画素位置(x,y)に基づいて行う。あるいは、
図8のパターン805及びパターン810に示す不吐検出パターンで同一ノズルにより出力したラインパターンのx位置に基づき、画像領域を抜き出すことも可能である。あるいは、本実施形態は、画像領域の抜き出しを容易にするためのマーカーを紙面に埋め込んでおいてもよい。得られた1次元画像データは、ヘッドモジュール毎に対応する画像領域で平均化される。これにより、
図3の曲線301から曲線312にそれぞれ示す各インクの分光反射率特性ρc(kc,λ)、ρm(km,λ)、ρy(ky,λ)及びρk(kk,λ)が、ヘッドモジュール毎に得られる。
【0051】
得られた各インク色の分光反射率は、インク特性4052として1次色推定処理部405内に格納され、後述する1次色推定処理に使用される。なお、特性取得チャート800の出力時に不吐ノズルが発生した場合、各インクの分光反射率特性に白抜けによる誤差が含まれる可能性がある。白抜けによる誤差を含む分光反射率に基づいて、形成画像の1次色を推定し、色の補正処理をすることにより、例えば濃度むら及び色転びを生じさせる。そこで、各インク色の分光反射率特性の取得の前に、不吐ノズル検出用のパターン805及び810に基づく不吐検出処理を実行する。具体的には、スキャン画像中の不吐ノズル検出用のパターン805及びパターン810に対応する画像領域の分光反射率を参照し、反射率が閾値以上である位置に対応するノズルは、不吐ノズルであるとすればよい。不吐ノズルが検出された場合、不吐ノズルに対応する画像領域の分光反射率を削除後、上記画像領域周辺の分光反射率で補間処理することで誤差を排除した分光反射率を得ればよい。あるいは、不吐ノズルに対して付着したインクの吸引及びインクのふき取り等の回復動作をした後、特性取得チャート800を再出力してもよい。これにより、本実施形態は、不吐ノズルの影響による不正確な分光反射率の取得を防止することができる。
【0052】
次に、S703で処理順設定部4042は、1次色推定処理部が分光反射率を推定する順序を決定する。具体的には、各インクの分光反射率を一定の波長域の範囲で区分する場合、処理順設定部4042は、区分した波長域で各インクの反射率が、反射率約1.0よりも小さい波長域が多いインクに対する、処理順位を高くする。つまり、各インクの反射率が、反射率約1.0よりも小さい波長域があれば、各インクはその波長域で感度があると判定される。
図9は、CMYインクの各波長域に対する反射率の感度分布を示す図である。
図9を参照しつつ、CMYインクの推定処理順の決定について、具体的に説明する。
図9は、
図3(a)から
図3(c)にそれぞれ示すCMYインクの分光反射率に基づき、各波長域における各インクの反射率の感度を3段階(〇、△、×)で分類した情報を示す。各波長域の単位はnmである。
【0053】
図9は、波長域内の平均反射率が0.9以上であるならば〇、平均反射率が0.8以上であるならば△、平均反射率が0.8未満であるならば×として分類している。ここで、感度がある波長域を多く有するインク(すなわち、×の数が多い)が、優先的に処理されるように、各インクの推定処理の順番が決定される。
図9に示す例では、Cインクの×は5個であり、Mインクの×は4個であり、Yインクの×は2個であるから、推定処理は、C、M、Yの順番である。なお、推定処理の順序を判定する指標である×の数が同じであるインクが複数である場合、複数のインクの中で△の数が最も多いインクを優先的に処理する順番に設定すればよい。感度分布の判定結果に基づいて得られた各色の推定順序は、1次色推定処理部405内に処理順4053として格納され、後述する1次色推定処理にて使用される。
【0054】
図7に戻って、事前設定のフローの説明をする。S704で波長選択部4043は、1次色推定処理で各インクの反射率を推定するための推定波長を決定する。このとき、波長の決定は、上記で決定した各インク色の推定処理順によって決定される。具体的には、
図9に示す分類に基づき、対象インクよりも処理順の遅い全てのインクの波長域に〇があり、かつ、対象インクよりも処理順の早い全てのインクで選択されていない波長域がある場合、最も反射率の低い波長が選択されるとよい。例えば、
図3(a)及び
図9により、Cインクに対する波長を決定する場合、Mインク及びYインクがいずれも〇である波長域は、630-680nmと680-730nmである。この範囲で最もCインクの反射率の低い波長が、選択されるとよい。つまり、波長λ=700nmが、Cインクに対する波長として選択され得る。
【0055】
次に、Mインクに対する推定波長の選択について説明する。
図9でYインクが〇を有する波長域は、530-580nm、580-630nm、630-680nm、680-730nmである。ここで、Mインクに対する波長は、Cインクで選択された波長を含む波長域である680-730nmを除外した、530-680nmの範囲で最も反射率の低い波長から選択すればよい。これにより、Mインクに対する波長は、例えば、λ=560nmが選択される。最後に、Yインクに対する波長を決定する。すなわち、Cインク及びMインクで選択された波長をそれぞれ含む680-730nm及び530-580nmを除外した、最も反射率の低い波長が選択されればよい。よって、Yインクの波長は、例えば450nmが選択される。得られた各インクに対する波長は、1次色推定処理部405内に選択波長4054として格納され、後述する1次色推定処理で使用される。
【0056】
図7に戻って、S705で目標設定部408は、上記のインク特性、処理順、選択波長に基づいて、各インクの目標特性409を決定する。例えば、各インク色の色信号値と反射率が線形になるように目標となるインク特性を定めればよい。あるいは、ヘッドモジュール又はノズルのいずれかを基準として、ヘッドモジュール又はノズルのインク特性を目標特性としてもよい。
【0057】
図10は、ヘッドモジュールが有するインクの反射率を示す図である。以下の説明では、ヘッドモジュール単位で色の補正処理を行う場合、ヘッドモジュール201a、201b及び201cのインク特性に基づいて、Cインクの目標特性を決定する一例を説明する。
図10(a)の曲線1001aから曲線1001cは、各ヘッドモジュール201aからヘッドモジュール201cにそれぞれ対応する反射率ρを示す。
図10(a)の縦軸は反射率、横軸は色信号値をそれぞれ示す。波長選択部4043は、例えば、Cインクに対する波長λcが700nmであることを決定する場合、反射率ρは、各色信号値における網点率kcと分光反射率ρc(kc,700)に対し、公知の補間法を用いることで算出できる。
【0058】
このとき、色信号値と反射率が線形になるCインクの目標特性を定めるために、最大の色信号255に対する反射率が最も大きいヘッドモジュールの反射率ρ_minを取得する。
図10に示す例で、色信号255における曲線1001aの反射率をρ_minとする(点1002で図示)。色信号値0における反射率1.0と最大の色信号255における反射率ρ_minの2点を結ぶことで得られる直線1003(一点鎖線で図示)を、目標特性409とすればよい。あるいは、
図2(b)に示すヘッドモジュールの構成で、複数のヘッドモジュールのうち、最も中央に位置するヘッドモジュール201bに対応する曲線1001bを目標特性409としてもよい。あるいは、全ヘッドモジュール又は一部のヘッドモジュールの平均反射率を目標特性としてもよい。
【0059】
例えば、曲線1001aから曲線1001cをそれぞれ各色の色信号値で平均して得られる不図示の曲線を目標特性409としてもよい。また、反射率特性ではなく、別の値に基づいて目標特性409を定めてもよい。例えば、CIELab空間上での記録媒体色(紙白)からの距離Dと色信号値が線形になるように目標特性409を定めることもできる。CIELab空間は、CIE(国際照明委員会)が定めた均等色空間の一つであり、三次元直交座標を用いる色空間のことをいう。なお、紙白からの距離Dは、以下の数7により算出できる。数7は、Lab空間座標上の2色の明度差と2つの色度差を表している。なお、数7で、Lw、La、Lbはそれぞれ記録媒体色のLab値(色彩値)である。L及びLwは色の明度を表し、a及びawは緑から赤までの色の彩度を表し、b及びbwは青から黄までの色の彩度を表す。
【0060】
【0061】
具体的には、
図10(b)中の直線1004(一点鎖線で図示)に示すように、原点を通り、かつ、最大の色信号255において最大距離D_Maxとなるように目標特性409を定めることができる。なお、最大距離D_maxは、反射率ρ_minにより算出される距離Dとする。このとき、入力色信号値In_xに対する反射率ρ_xを算出するために、
図10(b)に示すように入力色信号値In_xに対する紙白からの距離D_xを求める。さらに、
図10(c)に示すように、得られた距離D_xに対応する反射率ρ_xを、距離Dと反射率ρを対応付ける曲線1005により得ることができる。なお、曲線1005は、Cインクの分光反射率ρc(kc,λ)からCIELabの数7に従って算出したLab値と各色信号値における網点率に対し、公知の補間法を用いることで算出できる。このようにして得られた入力色信号値In_xに対する反射率ρ_xの曲線(不図示)を目標特性409とすることで、紙白からの距離Dと色信号値とが線形になるように、インクの目標特性409を定めることができる。
【0062】
図7に戻って、S706で補正テーブル作成部406は、インク特性4052、選択波長4054及び目標特性409に基づいて、補正テーブル407を作成する。補正テーブル407の作成処理について、
図6を参照しつつ説明する。
図6の曲線601は、色の補正処理をするヘッドモジュール又は記録ヘッドのいずれかのインク特性を示す曲線である。また、鎖線602は、色の補正処理の目標となる目標特性409である。まず、入力色信号値Inに対応する目標反射率ρ_tを鎖線602により算出する。次に、曲線601上で目標反射率ρ_tに対応する色信号値を補正値outとして取得する。補正テーブル作成部406は、上記で得られた補正値outと入力色信号値Inを対応付けて記憶部105に格納することで、補正テーブル407を作成することができる。なお、補正テーブル作成部406は、入力色信号値Inの0から255の全ての値に対する補正値outを算出した補正テーブル407を、補正対象ノズルのテーブルとして保持してよい。あるいは、補正テーブル作成部406は、
図5に示す所定の入力色信号として、例えば、0、16、32、・・・、240、255に対応する補正値outのみを算出した補正テーブル407を作成してもよい。
【0063】
なお、
図6は、ヘッドモジュール又は記録ヘッドのいずれか1つのインク特性を示しているが、ヘッドモジュール又はノズルの数に等しい数のインク特性の曲線が得られる。それら全てのインク特性に対して、補正テーブル407の作成処理を繰り返すことにより、各ヘッドモジュール又は各ノズルに対応する補正値outを算出できる。また、ユーザによる画像の印刷前に、予め
図8に示す特性取得チャート800により算出された各色の入力色信号値Inと補正値outを関連付けた補正テーブル407を作成しておく。これにより、本実施形態は、後述するユーザの読取り画像に対する補正時に、局所的最適解に陥る可能性を低減できる。本実施形態はまた、画像の印刷開始直後に色の補正が大幅に行われることと、印刷するたびに意図しない色濃度になることを抑制できる。
【0064】
以下、ユーザが印刷する画像の印刷フローについて、
図11を参照しながら説明する。まず、S1101でユーザは、操作部103で操作を入力することにより、印刷ジョブを画像形成システム10に実行させる。ユーザは、具体的には、記憶部105に格納された入力画像ファイル名とその出力枚数Nを指定する。S1102で、画像形成部107は、画像の出力(印刷)を行い、画像取得部108は、印刷された画像の読み取りを行う。具体的には、画像処理部106は、ユーザが指定したファイル名に基づいて、予め記憶部105に記憶された画像を取得する。画像処理部106が取得した画像は、色変換処理部401に送信され、色変換処理される。色変換処理の後、色変換された画像は、補正処理部402を経由してHT処理部403へ送信される。補正処理部402は、ヘッドモジュール毎又はノズル毎に異なる補正テーブル407で、画像の濃度ムラを抑制するために各インク色の階調変換を行う。HT処理部403は、色の階調変換後の色信号画像データに対して、画像形成部107が表現可能な階調数へ変換し、ハーフトーン画像データを生成する。画像形成部107は、ハーフトーン処理後の画像データを紙面上に形成する。画像形成部107により形成された画像は、形成画像400という。画像取得部108は、形成画像400を読み取ることにより、分光反射率ρx(x,y,λ)を取得する。
【0065】
なお、画像処理部106は、画像取得部108により取得される形成画像400の解像度と入力画像の解像度が異なる場合、双方の解像度を一致させるために、取得した形成画像400の解像度を解像度変換してもよい。解像度変換は、例えば、ニアレストネイバー法、バイニリア補間、バイキュービック補間等により行われてよい。また、画像処理部106は、例えば、画像を形成する際に用紙が斜行している場合及び分光センサの収差等が大きい場合、取得した形成画像400に対して幾何補正を行ってよい。幾何補正は、例えば、アフィン変換及び射影変換等により行われてよい。画像処理部106が、取得した形成画像400に対して解像度変換及び幾何補正を行う場合、画像処理部106に予め解像度変換処理部(不図示)及び幾何補正処理部(不図示)を備えていてもよい。あるいは、画像取得部108が、ラスタ画像取得時に所定のライン数単位で画像の解像度変換及び幾何補正を行うことにより、分光反射率ρxを算出してもよい。このとき、取得した形成画像400の解像度変換及び幾何補正を容易にするようなマーカーは、事前に特性取得チャート800に含まれていてよい。
【0066】
S1103で1次色推定部4051は、各画素位置の分光反射率ρx(x,y,λ)により各インクの反射率を推定する。S1104で補正テーブル作成部406は、補正処理後の各インクの入力色信号値及び1次色推定部4051により推定された各インクの反射率に基づき、補正テーブル407を修正する。補正テーブル407の補正処理の詳細は、後述する。次に、S1105でCPU100は、ユーザが画像形成システム10に入力したジョブの出力を全て終えたか否かを判断する。全てのジョブが完了した場合、CPU100は、ユーザによる画像の印刷処理を終了する(S1105でYes)。一方で、ジョブが完了していない場合、処理はS1102へ戻り、印刷を続行する(S1105でNo)。
【0067】
S1103における1次色推定処理について、
図12を参照しながら具体的に説明する。S1201で1次色推定部4051は、画像の画素位置(xi,yi)を決定する。1次色推定部4051は、例えば、座標xi=0及び座標yi=0である位置における分光反射率ρx(xi,yi,λ)を取得する。ちなみに、分光反射率ρxは、全てのインクが混合された画像領域の反射率を表す。次に、S1202で1次色推定部4051は、処理順4053を参照して、画素位置(xi,yi)におけるインクの推定色を選択する。例えば、1次色推定部4051は、処理順4053に保存されたインクの推定色の順序がC、M、Yの順序である場合、Cを推定色として選択する。S1203で1次色推定部4051は、推定色(例えば、Cインク)に対応する波長を選択波長4054より取得する。1次色推定部4051は、例えば、推定色がCであれば、Cに対応する波長λ=700nmを取得する。S1204で1次色推定部4051は、取得した推定色とそれに対応する波長に基づいて、推定色の反射率を推定する。つまり、1次色推定部4051は、分光反射率ρx(xi、yi、700)を画素位置(xi、yi)におけるCインクの反射率として推定することができる。
【0068】
S1205で1次色推定部4051は、処理順4053で定められた全てのインク色の反射率の推定処理が完了したか否かを判定する。推定処理が完了していない場合、処理はS1206へ進む(S1205でNo)。一方、推定処理が全て完了している場合、処理はS1207へと進む(S1205でYes)。S1206で1次色推定部4051は、S1204で推定されたCインクの影響(例えば、分光反射率)を分光反射率ρx(xi,yi,λ)から除外する。具体的には、1次色推定部4051は、インク特性4052を参照することにより推定色のインク特性を取得する。インク特性は、例えば分光反射率ρc(kc,λ)を取得する。さらに、1次色推定部4051は、ρx(xi、yi、700)=ρc(kc,700)となるCインクの網点率kcを算出する。1次色推定部4051は、Cインクの分光反射率の影響を排除することにより、新たな分光反射率ρx´=ρx(xi、yi、λ)/ρc(kc,λ)を得る。以降の処理では、新たに得られた分光反射率ρx´が推定処理に使用され、処理はS1202へ戻る。次に、S1202で1次色推定部4051は、Mインクを選択し、処理はS1203へ進む。
【0069】
S1207で1次色推定部4051は、全画像位置(xi,yi)における選択された各インク色の反射率を推定したか否かを判定する。反射率の推定が完了した場合、処理は終了する(S1207でYes)。反射率の推定が完了していない場合、処理はS1201に戻り、1次色推定部4051は反射率の推定が未処理である新たな画素位置(xi,yi)を選択する。なお、本実施形態は、画素位置を処理単位として、画像全面の1次色の反射率推定をしているが、各インク色の補正単位(例えば、ヘッドモジュール及びノズル)に対応する代表的な画素位置のみで推定処理してもよい。あるいは、2画素以上を含む画素ブロック単位で平均処理したブロック単位で各インク色の反射率推定が行われてもよい。
【0070】
S1104における補正テーブル407の修正処理について、
図13を参照しながら具体的に説明する。
図13(a)は、S1103で推定された各画素位置(x,y)における反射率と補正処理部402により得られる色信号の補正値outとの関係をプロットした図である。なお、
図13(a)の横軸は、CMYインクのいずれかの色信号値であり、縦軸は推定された各インクの反射率ρc、ρm及びρyのいずれかである。
図13(a)中の曲線1301は、分光反射率と色信号値の関係をプロットした各点に基づいて算出した、ヘッドモジュール又はノズルのインク特性を示す曲線である。
【0071】
曲線1301は、例えば、最小二乗法により得られる多項式関数で各点を補間することにより得られる。あるいは、
図13(b)に示すように所定の間隔で色信号値を区切った区間内の色信号値の各点を平均して得られる反射率とそれに対応する色信号値の代表値に対して、補間演算してもよい。
図13(c)の曲線1302は、
図13(b)の各点を補間演算することにより得た連続値を近似した曲線である。なお、連続値の補間は、例えば、区分線形補間及びスプライン曲線等が使用されてよい。全てのヘッドモジュール又はノズルのインク特性の取得後、S706及び
図6における補正テーブル作成処理と同様に、補正テーブル407を作成する。本実施形態は、新たに得られた補正テーブルを修正後の補正テーブル407とすることができる。
【0072】
なお、特性取得チャート800は、
図8に示すチャートに限定されず、例えば、均一パターンとして、色信号の値域(0から255)を均等に区切った値(0、32、64・・・・、224、255)に対応する9つの均一パターンを備えていてもよい。また、不吐ノズル検出のためのパターンは、
図8に示すパターン805及びパターン810に示すラインチャートに限定されず、公知の不吐ノズル検出パターンであってもよい。あるいは、不吐ノズルの検出は、各色の階調パターンのスキャンによる色信号の平均値と画素位置で測定された色信号値との差分が閾値を超える場合を、不吐ノズルの検出基準としてもよい。あるいは、各色の階調パターンを目視で確認することにより不吐ノズルを検出してもよい。
【0073】
図8に示す例では、単一の記録媒体上に記録ヘッド201から記録ヘッド204にそれぞれ対応する各インク色のパターンを形成しているが、記録ヘッド毎に異なる記録媒体上に記録する構成であってもよい。すなわち、ブロック801からブロック804を1枚の記録用紙に記録するのではなく、各ブロックをそれぞれ異なる記録用紙に記録してもよい。なお、同一の記録用紙に各インク色のパターンを形成する方法の利点は、記録用紙のロット及び搬送ローラ205による紙の搬送ずれによる誤差を少なくすることができる。そのため、できるだけ同一の記録用紙上に各インク色の全パターンを記録するとよい。
【0074】
本実施形態では、インク特性、インク色の推定処理順、推定波長、インク色の目標特性及びインク色の補正テーブルを特性取得チャート800に基づいて取得しているが、取得項目に応じて異なる特性取得チャート800を用いてもよい。例えば、インク特性の取得と補正テーブル作成は、特性取得チャート800でインクに係る均一な色パターンの数が異なるものであってもよい。あるいは、特性取得チャート800は、同一記録ヘッドのヘッドモジュール間で重複部分の影響を排除するため、単一のヘッドモジュールだけで形成されてもよい。あるいは、ヘッドモジュール間の境界を設けない特性取得チャート800であってもよい。
【0075】
なお、本実施形態は、画像取得部108によって取得される形成画像400の分光反射率ρx(x,y,λ)に対して、xとyの2次元平面におけるフィルタ処理を実行してもよい。本実施形態は、例えばノズル単位で各インク色を補正する場合、人間の視覚特性を表す視覚伝達関数(VTF)に相当するフィルタ処理を形成画像400に行うと、ユーザが視認しやすい周波数帯のスジムラを優先して補正することができる。また、本実施形態は、各インク色の各波長域における分光反射率特性の差異に基づいて、推定パラメータ設定部404に複数の処理順4053及び選択波長4054を設けてよい。本実施形態は、各インク色を推定するための複数の推定処理順とそれに対応する推定波長の事前の準備により、例えば、KインクとCインクの両方の反射率が約1.0とならない場合でも推定処理を継続することができる。本実施形態によれば、各インク間で波長域の分光反射率特性に差異がない場合であっても、各インク色の反射率を精度よく算出できる。
【0076】
図14は、例えばS702で取得したCMYK色のインク特性を示す。
図14の縦軸は各インク色であるCMYKを示し、横軸は波長域の区間を示し、波長域の単位はnmである。
図14で、〇は波長域でインクの反射率に感度があることを示し、×は波長域でインクの反射率に感度がないことを示す。例えば、Cインクの430-480nmの波長域は〇であるので、Cインクの反射率はその波長域で感度を有することを示す。一方、Cインクの380-430nmの波長域は×であるので、その波長域でCインクの反射率に感度がないことを示す。
図14で1次色推定部4051は、各インクの各波長域における反射率の感度の分類に基づいて、以下の3つの処理順で各インクの反射率を推定することができる。例えば、第1の処理順は、Kインク(波長500nmに対応)、Yインク(波長450nmに対応)、Cインク(波長700nmに対応)の順番である。第2の処理順は、Kインク(波長700nm)、Mインク(波長550nmに対応)、Yインク(波長400nmに対応)の順番である。第3の処理順は、Cインク(波長700nmに対応)、Mインク(波長550nm)、Yインク(波長400nmに対応)の順番である。なお、上記の各インクとセットで記載される波長は、各インクを一意に推定するための推定波長を示す。1次色推定部4051は、形成画像400に含まれる混合色とそれに含まれる各インクの反射率に応じて、各インク色の推定処理順とそれに対応する推定波長を変更することができる。これにより、本実施形態によれば、多くのインク色の組み合わせに対する反射率を推定できる。
【0077】
各インクの反射率の推定は、各インク色の推定処理順を決定した後に、各インク色を特定するための推定波長を選択した。しかし、各インク色の推定処理とそれに対応する推定波長の選択は、同時に決定されてもよい。例えば、各インクの推定処理順とそれに対応する推定波長の全組み合わせは、最終的に選択するインク以外の各インクの推定波長における各反射率の積に基づいて決定されてよい。各インクの推定波長における各反射率の積が最も大きい波長とそれに対応する各色の推定処理順の組み合わせが、採用されるとよい。このように、各インクの推定処理順とそれに対応する推定波長を同時に求めると、各インクの反射率の決定に時間を要するが、より精度の高い各インクの反射率を算出できる。なお、目標設定部408と目標特性409は、インク特性の目標設定において所定のノズル及びモジュール単体又はノズル及びヘッドモジュールの平均値を基準とする場合、必須の構成ではない。例えば、S1103で補正テーブル作成部406によって算出される
図13(a)の曲線1301に示すような各モジュールの反射率が、目標特性として設定されてもよい。なお、本実施形態は、インク特性を評価する指標として分光反射率を使用しているが、例えば、分光濃度を使用してもよい。
【0078】
以上説明したように、第1実施形態によれば、複数の第1分光反射が複数の第2分光反射よりも低い第1波長領域と、複数の第1分光反射が複数の第2分光反射よりも高い第2波長領域を判定することができる。第1実施形態によれば、複数の第1分光反射のうち、第1波長領域における混合反射の一致度に応じて1つ選択された第1分光反射に関連付けられた第1網点を推定することができる。第1実施形態によれば、混合反射を選択された第1分光反射で除することにより第3分光反射を求めることができる。第1実施形態によれば、複数の第2分光反射のうち、第2波長領域における第3分光反射の一致度に応じて1つ選択された第2分光反射に関連付けられた第2網点を推定することができる。これにより、複数の色を含む画像で各色の記録量を推定するための推定時間を短縮し、色安定化処理の精度を向上させることができる。
【0079】
(第2実施形態)
以下、第2実施形態では第1実施形態との差分について説明する。第1実施形態では、各インクで波長域毎に異なる分光反射率特性の差異に基づいて、各インクを排他的に算出できる推定順序及びそれに対応する推定波長を予め定めた。これにより、第1の実施形態は、複数のインク色が混合された混合領域における各インクの反射率を従来よりも高速に算出することができる。しかしながら、混合領域に含まれる各インクの分光反射率を一意に決定できる波長域が存在しないインク同士が組み合わせて用いられる場合がある。例えば、2つのインク色で一方のインク色が感度を有する波長域で他方のインク色が若干感度を有する場合(反射率が1.0でない)である。この場合、他方のインク色の分光反射率の影響を排除することができないので、一方のインク色の分光反射率を一意に決定することができない。
【0080】
図15は、本実施形態における1次色を推定する処理を説明する図である。
図15(a)は、Cインクの波長に対する分光反射率を示す。
図15(b)は、Mインクの波長に対する分光反射率を示す。
図15(e)は、混合インクの波長に対する分光反射率を示す。上記の説明に戻って、
図15(a)と
図15(b)にそれぞれ示すCインク及びMインクの分光反射率は、双方のインクの分光反射率が約1.0である波長域を有していない。また、CインクとMインクの反射率をそれぞれ推定するために、CインクとMインクのいずれかの波長域の分光反射率を1.0と近似することにより、各インクの反射率を推定する方法がある。しかし、この方法による各インクの反射率の推定は、近似による誤差を含むため、余計に濃度ムラを生じさせる場合がある。
【0081】
一方で、反射率の近似を使用せずに各インクの反射率を推定しようとすると、各インクの分光反射率を考慮して同時に推定する必要があり、計算に時間を要してしまう。そこで、本実施形態は、既に取得している各インクの分光反射率を所定の波長域でのみ反射率を示す仮想的なインク(又は仮想インク)に変換する。仮想インクの詳細は、後述する。
図15(c)は、仮想Cインクの波長に対する分光反射率を示す。
図15(d)は、仮想Mインクの波長に対する分光反射率を示す。
図15(f)は、仮想混合インクの波長に対する分光反射率を示す。
図15(c)で仮想Cインクは、例えば600nm以上の所定の波長域でのみ感度を有する(反射率が約1.0になる)ことを示す。同様に、
図15(d)で仮想インクMは、仮想Cインクとは異なる500-600nmの波長域でのみ感度(反射率が約1.0になる)を有する。仮想混合インク、仮想Cインク及び仮想Mインクの取得方法について、以下で説明する。
【0082】
まず、Cインクの分光反射率を仮想Cインクの分光反射率に変換し、Mインクの分光反射率を仮想Mインクの分光反射率に同時に変換するマトリクスを算出する。本実施形態は、得られた変換マトリクスを使用することにより混合領域の各インクの反射率を高速に算出する。
図15(e)例えば、CインクとMインクを含む混合領域の分光反射率を示す。ここで、混合領域の分光反射率を上記の変換マトリクスで変換することで、
図15(f)に示す分光反射率が得られる。
図15(f)は、仮想Cインクと仮想Mインクの分光反射率がそれぞれ混合された混合仮想分光反射率を示す。そのため、
図15(d)と
図15(d)で、例えば、波長550nm及び650nmにおける反射率に注目する。第1実施形態と同様に、仮想Cインクと仮想Mインクの反射率は、C又はMインクの網点率が増加するとC又はMインクの反射率が減少する単調減少な関係により一意に算出することができる。
【0083】
混合領域における各インクの網点率は、得られた仮想Cインクと仮想Mインクに基づいて、高速で補正され得る。なお、以下の説明では、分光反射率ではなく、分光濃度に基づいて補正する例を説明する。分光濃度は、分光反射率よりも各インクの網点率に対して、線形性が高いため、後述するマトリクスの算出において誤差を少なくすることができる。
【0084】
図16は、第2実施形態における画像処理部106の機能ブロックを示す。以下、仮想インクを用いて推定処理を実行する画像処理部106の機能構成について、
図16を参照しながら説明する。なお、第1実施形態と同様の構成については同じ符号を付し、説明を省略する。
図16で画像処理部106は、色変換処理部401、補正処理部402、HT処理部403、推定パラメータ設定部404を含む。画像処理部106はまた、1次色推定処理部405、補正テーブル作成部406、補正テーブル407、目標設定部408、目標特性409を含む。さらに、推定パラメータ設定部404は、色変換行列算出部4044、1次色特性算出部4045、1次色特性4046を含むように構成される。また、1次色推定処理部405は、1次色推定部4051、色排他処理部4055、色変換行列4056を含むように構成される。
【0085】
本実施形態における画像形成システム10は、ユーザによる画像の印刷前に、各種設定を行う。各種設定は、具体的には1次色推定処理部405における推定処理に必要なパラメータ設定、補正テーブル作成における目標特性の設定及び補正テーブルの作成を含む。
図17は、本実施形態における事前設定のフローを示す。以下、
図17を参照しながら事前設定フローの各ステップについて説明する。まず、S1701で画像処理部106は、設定パラメータを算出するために、特性取得チャート800の出力及び出力結果の読取りを行う。本実施形態は、第1実施形態と同様に特性取得チャート800を用いることができる。次に、S1702で色変換行列算出部4044は、各インク色の分光濃度を仮想分光濃度に変換するための色変換行列4056を算出する。例えば、色変換行列4056は、以下の数8において誤差が最小となる変換マトリクスXとして算出され得る。
【0086】
【0087】
ここで、数8の右辺におけるd(x,λ)は、インクxの波長λ(nm)における分光濃度である。分光濃度は、最大の色信号255に対する分光反射率ρ(x,λ)をd=log10(1/ρ)で変換することによって算出される。なお、インクxは、本実施形態の一例として、CMYKインクのいずれかであってよい。波長λの範囲は、可視光域である例えば、波長380から730nmを含み、波長λは10nm毎で表示される。
【0088】
図18は、各仮想インクの波長に対する分光濃度を示す。
図18は、例えば、濃度1801が仮想Cインクの分光濃度d(vc,λ)であれば、λ=630から680nmに対応する波長帯のみが1.0を示し、その他の波長域で分光濃度が0であることを示す。
図18で濃度1802が仮想Mインクの分光濃度として設定されてよく、濃度1803が仮想Yインクの分光濃度として設定されてよく、濃度1804は仮想Kインクの分光濃度として設定されてもよい。数8の説明に戻って、左辺のd(vx,λ)は、各インクの仮想分光濃度であり、例えば、濃度1801から濃度1804に示すような分光濃度である。
【0089】
上記で得られた変換マトリクスXは、色変換行列4056として1次色推定処理部405内に格納され、後述する1次色推定処理で使用される。
図17のフローの説明に戻って、S1703で1次色特性算出部4045は、各CMYKインクに対応する仮想CMYKインクに換算した場合の分光濃度を取得する。
図19は、色信号値に対する分光濃度の特性を示す図である。具体的には、
図19の曲線1901に示すような各インクの色信号値とそのインクに対応する仮想インク濃度dとの関係を取得する。1次色特性算出部4045は、例えば、Cインクの色信号値に対する、仮想Cインクの630から680nmにおける仮想Cインク濃度d_cを算出する。
【0090】
1次色特性算出部4045は、曲線1901を得るために、
図8のパターン806からパターン809の均一パッチに基づいて得られるCインクの分光反射率ρ(kc,λ)の対数変換を行う。これにより、1次色特性算出部4045は、Cインクの網点率kcに対する分光濃度d(c,λ)を得ることができる。さらに、1次色特性算出部4045は、分光濃度d(c,λ)を変換マトリクスXで変換し、Cインクの網点率kcに対する仮想Cインクの分光濃度d(vc,λ)を得ることができる。その後、1次色特性算出部4045は、得られた分光濃度d(vc、λ)を感度のある波長域(630から680nm)で平均化することにより、仮想Cインク濃度d_cを得る。なお、波長域(630から680nm)は、
図18に示す最大の色信号255に対応する仮想Cインクの分光濃度である1.0が得られる波長域を用いる。得られた仮想Cインク濃度d_cとその濃度を算出するために使用した色信号値のプロットを公知の補間方法で補間することにより、
図19に示す色信号値と分光濃度との対応を示す曲線1901が得られる。
【0091】
図17に戻って、S1704で目標設定部408は、1次色特性4046に基づいて、目標特性409を決定する。目標設定部408は例えば、
図19の直線1902に示すように、色信号値と分光濃度を線形補間により目標特性を定めることができる。あるいは、目標設定部408はモジュール又はノズルのいずれかの目標特性を基準とし、基準としたモジュール又はノズルの1次色特性4046を目標特性としてもよい。S1705で補正テーブル作成部406は、1次色特性4057及び目標特性409に基づいて、補正テーブル407を作成する。補正テーブル作成部406は、
図19の目標特性を示す直線1902上の入力色信号値Inに対応する目標濃度d_tを算出する。補正テーブル作成部406は、1次色特性を示す曲線1901上の目標濃度d_tに対応する色信号値outを補正値として取得する。これにより、補正テーブル作成部406は、取得した補正値outと入力色信号値Inを対応付けた情報を記憶部105に格納することで、補正テーブル407を作成することができる。
【0092】
ユーザによる画像の印刷フローは、
図11に示すフローに従う。
図20は、本実施形態の画像印刷処理を示すフローである。以下、
図11のS1103における1次色推定について、
図20を参照しながら具体的に説明する。まず、S2001で、色排他処理部4055は、1次色を推定するための画素位置(xi,yi)を決定する。色排他処理部4055は、例えばxi=0、yi=0である画素位置の混合分光反射率ρx(xi,yi,λ)を取得する。次に、S2002で1次色推定部4051は、混合分光反射率ρx(xi,yi,λ)に対して対数変換を行うことで混合分光濃度d(λ)を算出する。さらに、1次色推定部4051は、色変換行列4056を参照し、混合分光濃度d(λ)を変換マトリクスXで変換することにより、混合仮想分光濃度d´(λ)を取得する。混合仮想分光濃度d´(λ)は、混合仮想濃度ともいう。
【0093】
S2003で、1次色推定部4051は変換した混合仮想分光濃度d´(λ)に基づいて、各仮想インク濃度を算出する。1次色推定部4051は、630から680nmの波長域における分光濃度d´(λ)の平均値を仮想Cインク濃度とすることができる。また、1次色推定部4051は、530から580nmにおける波長域の分光濃度d´(λ)の平均値を仮想Mインクの濃度として推定できる。1次色推定部4051は、430から480nmにおける波長域の分光濃度d´(λ)の平均値を仮想Yインクの濃度として推定できる。1次色推定部4051は、380から430nmの波長域の分光濃度d´(λ)の平均値を仮想Kインクの濃度として推定できる。S1207で1次色推定部4051は、全画素位置(xi,yi)の仮想インク濃度を推定したか否かを判定する。全ての仮想インク濃度を推定した場合、1次色推定処理を終了する(S2004でYes)。全ての仮想インク濃度を推定していない場合、処理はS1201に戻り、色排他処理部4055は、未処理の画素位置のいずれかを新たな画素位置として選択する(S2004でNo)。
【0094】
以下、S1104における補正テーブル407の更新要領について説明する。本実施形態は、S2003で推定された各画素位置(x,y)における各仮想インク濃度と補正処理部402から得られる補正処理対象となった色信号値に基づいて補正テーブル407を算出する。
図19(b)は、補正対象のヘッドモジュール又はノズルの色信号値に対する仮想インク濃度をプロットした図である。なお、同図の横軸は色信号値CMYKのいずれかであり、縦軸は色信号値に対応する推定された仮想インク濃度vc、vm、vy、vkのいずれかである。
図19(b)の曲線1903は、色信号値に対応する仮想インク濃度をプロットした各点に基づいて算出した、ヘッドモジュール又はノズルのインク特性を示す曲線である。
【0095】
曲線1901は、例えば、最小二乗法により得られる多項式関数で各点を補間することにより得られる。あるいは、所定の間隔で色信号値を区切った区間内の色信号値の各点を平均して得られる分光濃度とそれに対応する色信号値の代表値に対して、補間演算してもよい。各区間の代表値に対して補間演算をおこなうことで連続値を得てもよい。各分光濃度の取得後、S1705及び
図19(a)に示す処理と同様に、全てのヘッドモジュール又はノズルについて補正テーブル407を作成する。本実施形態は、新たに得られた補正テーブルを修正後の補正テーブル407とすることができる。
【0096】
上記の通り、分光濃度d´(λ)は、分光反射率ρx(xi,yi,λ)から得られる混合分光濃度d(λ)を変換マトリクスで変換することにより得られる。
図19に示す各ヘッドモジュール又は各ノズルのインク特性を算出する際に、例えば、Cインクの分光濃度を算出するために、波長630から680nmにおける混合分光濃度d(λ)の平均値が使用される。このとき、変換マトリクスにより分光濃度d´(λ)を算出するのではなく、各インク特性の算出に使用する仮想インク濃度へ直接変換する変換マトリクスを使用してもよい。その場合、S1702において色変換行列算出部4044は、以下の数9を満たす変換マトリクスXを算出すればよい。このとき、数9の左辺のVc、Vm、Vy、Vkは、インク特性を算出するための仮想インク濃度である。あるいは、仮想インク濃度を算出するために、以下の数10を使用してもよい。
【0097】
【0098】
【0099】
数10は、第1実施形態と同様にKインクが混合されていない混合領域における仮想インク濃度を算出するために、使用することができる。あるいは、各インク色の組合せにより生成される混合色の数と種類に基づいて、仮想インク濃度Vc、Vm、Vyの少なくとも1つを算出し、算出した仮想インク濃度によりKインクを算出してもよい。また、数8、数9、数10の右辺は、各インク色の分光濃度d(λ)が1次の項のみを含むが、各式における左辺と右辺の間の誤差が大きい場合、右辺の分光濃度d(λ)に2次の項及び3次の項をさらに設けてもよい。例えば、数10の右辺に2次の項を追加した以下の数11を使用して、左辺と右辺の間の誤差を最小とする変換マトリクスXが使用されてもよい。
【0100】
【0101】
本実施形態は、
図19に示す色信号値に対応する分光濃度d(λ)をインク特性として使用しているが、分光濃度の代替として
図10に示す反射率、紙白からの距離D、光学濃度等の指標を使用してもよい。このとき、インク特性は、仮想インク濃度を媒介変数として、予め仮想インク濃度と反射率、距離D、光学濃度のいずれかとの関係を定めたLUT又は関数を用いて算出される。なお、仮想インクは、常に各インクの厚さ又は量と光学濃度が比例するLambert則によるものであってよい。このように、仮想インクを定めて、それを媒介変数として用いる場合であっても、インク特性をより高速に算出できる。ところで、S1703及びS2003において、実インクと仮想インクを1対1で関連付けているが、1つの仮想インク濃度を複数の実インク濃度に関連付けてもよい。例えば、1画素単位当たりの仮想Cインク濃度を実インクCMY濃度のそれぞれに変換する換算テーブルを予め保持する。換算テーブルによって変換した各インクの濃度をインク特性としてもよい。
【0102】
具体的には、仮想Cインク濃度0.1と、これに対応する換算量として例えば、Cインクの網点率10%とMインクの網点率8%を関連付けた換算テーブルが、記憶部105に格納されている。このとき、S2003で算出された仮想Cインク濃度が0.3である場合、仮想Cインクの濃度比(算出値0.3/基準値0.1)と換算量(仮想Cインク濃度0.1に対して網点率10%)に基づいて、Cインクの網点率30%が得られる。仮想Cインク濃度が0.3である場合、上記と同様の算出方法により、Mインクの網点率24%が得られる。仮想Cインク濃度によるCインクの網点率の算出を説明したが、さらに仮想Mインク濃度に基づいて算出されたCインクの網点率が5%、仮想Kインク濃度に基づいて算出されたCインクの網点率が6%で得られたとする。このとき、Cインクの網点率の合計は、30%と5%と6%を全て加えた41%として得られる。このようにして得られる各インクの網点率の総和をインク特性として使用してもよい。
【0103】
以上説明したように、第2実施形態によれば、第1波長領域の複数の第2分光反射を排除し、かつ、第2波長領域の複数の第1分光反射を排除する変換マトリクスを得ることができる。第2実施形態によれば、第1波長領域の一部の複数の第1分光反射を複数の第1仮想分光反射に変換することができる。第2実施形態によれば、第2波長領域の一部の複数の第2分光反射を複数の第2仮想分光反射に変換することができる。第2実施形態によれば、第1波長領域の一部と第2波長領域の一部の混合反射を第1混合仮想反射と第2混合仮想反射にそれぞれ変換することができる。これにより、複数の色を含む画像で各色の記録量を推定するための推定時間を短縮し、色安定化処理の精度を向上させることができる。
【0104】
(第3実施形態)
第1実施形態及び第2実施形態は、画像取得部108により、形成画像400ごとの分光反射率が取得可能である。しかしながら、分光センサは、一般的な例えばRGBセンサと比べて、画像データを取得するために長時間を必要とする。これにより、混合領域から各インク特性(例えば、網点率)を算出する時間よりも、分光反射率を取得するための時間が長いため、分光センサによる画像データ取得時間が、色の補正間隔を設定する際の制約となっていた。また、コスト面の制約により分光センサによる画像データの取得範囲が、紙面幅全体ではなく、紙面の一部領域のみになる場合がある。そこで、本実施形態は、分光センサと紙面幅全体をカバーするRGBセンサを含む画像取得部108を使用する実施例について説明する。以下、第3実施形態は、第1実施形態と第2実施形態と異なる差分について説明する。
【0105】
本実施形態は、ユーザによる画像の印刷前に、RGBセンサが画像から読み取った出力値(RGB値)と分光センサが取得する各波長における分光反射率を対応付けるマトリクスを生成する。本実施形態は、読み取った画像のRGB値とマトリクスに基づいて補正テーブル407を補正する。事前設定は
図17に示すフローに基づいて行われてよい。以下、
図17に示すフローを参照しながら、事前設定について説明する。まず、S1701で画像処理部106は、特性取得チャート800の出力及びそれの読取りを行う。このとき、本実施形態は、RGBセンサ及び分光センサにより特性取得チャート800を読み取ることと、各インクの分光反射率ρと各RGB値をそれぞれ取得することを含む。次に、S1702において、色変換行列算出部4044は、RGB値を各インクの分光反射率特性に変換するための色変換行列4056を算出する。
【0106】
具体的には、各インクの分光反射率特性で波長域毎に異なる反射率の差異に基づいて、各インク色の推定処理順と各インクを推定するための推定波長を決定する。これらは、
図7のS702からS704に従って決定される。さらに、各インク色の推定処理順と各インクの推定波長を使用して得られた各インクの分光反射率に基づいて、Cインクの反射率ρ_c(kc)、Mインクの反射率ρ_m(km)、Yインクの反射率ρ_y(km)を算出する。マトリクスYは、以下の数12で左辺の反射特性ρ_x(kx)と右辺のRGB値の間の誤差が最小となるように算出される。
【0107】
【0108】
なお、数12の右辺のR(kc)は、Cインクの網点率kcに対するRGBセンサのRセンサによる出力値である。なお、本実施形態は、RGB値に1次元LUTによる変換及び対数変換を行うことにより得られるR´G´B´を変換する変換マトリクスが得られてもよい。また、本実施形態は、上記の数12の代わりに、以下の数13を構成するマトリクスYを使用してもよい。
【0109】
【0110】
なお、数12と数13の左辺は、推定された各インクの分光反射特性ではなく、それを対数変換して得られる分光濃度特性であってもよい。次に、S1703で1次色特性算出部4045は、上記のマトリクスYを使用することにより、各インクの色信号値に対するインク色推定で使用した波長における各インクの反射率(ρ_c、ρ_m、ρ_y)を1次色特性4046として得る。1次色特性算出部4045は、各ヘッドモジュール又は各ノズルの1次色特性4046をそれぞれ算出する。さらに、S1704で目標設定部408は、1次色特性4046に基づいて、各インクの目標特性409を決定する。S1705で補正テーブル作成部406は、1次色特性4057と目標特性409に基づいて、補正テーブル407を作成する。
【0111】
ユーザによる画像の印刷フローは、
図11に示すフローにより行われてよい。ただし、本実施形態は、各インクの分光反射率ρx(xi,yi,λ)ではなく、画像の画素位置(xi、yi)に対応するRGB値を取得する。ここで、取得したRGB値に上記マトリクスYを適用することにより、画素位置(xi、yi)に対応する各インク色の推定で使用した波長における各インクの反射率(ρ_c、ρ_m、ρ_y)を算出する。その後、補正テーブル作成部406は、S1104の工程と同様に補正テーブル407を作成して、これを記憶部105に保存する
【0112】
本実施形態は、各インク色推定時に使用した波長における各インクの反射率とそれに対応するRGB値を関連付けるマトリクスYを算出した。なお、本実施形態は、以下の数14でRGB値と仮想インク濃度を関連付けるマトリクスZを使用してもよい。
【0113】
【0114】
なお、目標設定部408は、各インク色に対する補正単位であるヘッドモジュール及びノズルに共通の目標特性409を設定する。また、S706における事前設定時の補正とS1705におけるユーザによる画像印刷時の補正は、共通の目標特性409によって行われる。しかし、ヘッドモジュール毎及びノズル毎に異なる目標特性409が、設定されてもよい。あるいは、事前設定時とユーザによる画像印刷時で異なる目標特性409を設定してもよい。例えば、S1705でユーザによる画像印刷時の補正は、各印刷画像のうち最初の画像の読み取り結果により得られる各ヘッドモジュールのインク特性に基づいて、行われてよい。以降に印刷される画像は、上記のインク特性を目標特性として、補正されてよい。また、補正処理部402は、入力された画像データに含まれる各インク色CMYKの網点率を補正する。なお、HT処理部403による各画像データの閾値マトリクスに基づいて行う階調変換の補正処理は、補正処理部402が実施する補正処理と同様の効果を得ることができる。
【0115】
以上説明したように、第3実施形態によれば、事前に複数の第1分光反射と、複数の第2分光反射と、複数の第1網点と複数の第2網点にそれぞれ関連付けられたRGB値を取得することができる。第3実施形態によれば、複数の第1網点と複数の第2網点にそれぞれ関連付けられたRGB値から、複数の第1分光反射と複数の第2分光反射にそれぞれ変換する変換マトリクスを有することができる。第3実施形態によれば、取得されたRGB値と変換マトリクスに基づいて、複数の第1分光反射と複数の第2分光反射を補正することができる。これにより、複数の色を含む画像で各色の記録量を推定するための推定時間を短縮し、色安定化処理の精度を向上させることができる。
【0116】
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
【0117】
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
【符号の説明】
【0118】
10:画像形成システム、100:CPU、101:RAM、102:ROM、103:操作部、104:表示部、105:記憶部