IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社マキタの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-26
(45)【発行日】2024-12-04
(54)【発明の名称】運搬車
(51)【国際特許分類】
   H02P 29/68 20160101AFI20241127BHJP
   B60L 15/20 20060101ALI20241127BHJP
   B60L 7/06 20060101ALI20241127BHJP
   B60L 9/18 20060101ALN20241127BHJP
【FI】
H02P29/68
B60L15/20 S
B60L7/06
B60L9/18 P
【請求項の数】 10
(21)【出願番号】P 2021117078
(22)【出願日】2021-07-15
(65)【公開番号】P2023013126
(43)【公開日】2023-01-26
【審査請求日】2024-04-17
(73)【特許権者】
【識別番号】000137292
【氏名又は名称】株式会社マキタ
(74)【代理人】
【識別番号】110000110
【氏名又は名称】弁理士法人 快友国際特許事務所
(72)【発明者】
【氏名】梅本 亮
(72)【発明者】
【氏名】山本 浩克
【審査官】池田 貴俊
(56)【参考文献】
【文献】特開2003-143704(JP,A)
【文献】特開2007-225226(JP,A)
【文献】特開2007-195385(JP,A)
【文献】米国特許出願公開第2005/0218843(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 29/68
B60L 15/20
B60L 7/06
B60L 9/18
(57)【特許請求の範囲】
【請求項1】
運搬車であって、
駆動輪と、
前記駆動輪を回転させるモータと、
前記モータを駆動するように構成されたモータ駆動回路と、
前記モータを電気的に制動するように構成されたモータ制動回路と、
前記運搬車の進行速度が上限進行速度以下となるように、前記モータ駆動回路と前記モータ制動回路を介して前記モータを制御するように構成された制御ユニットと、
前記モータ制動回路の温度を検出する温度センサと、
ユーザによる操作を受け入れる操作部材を備えており、
前記制御ユニットが、前記上限進行速度が第1上限進行速度であり、前記温度センサで検出される温度が第1所定温度を超える場合に、前記上限進行速度を前記第1上限進行速度よりも低い第2上限進行速度に変更するように構成されており、
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第1所定温度よりも低い第2所定温度を下回る場合に、前記上限進行速度を前記第1上限進行速度に戻すように構成されており、
前記操作部材がオンの場合に前記モータが駆動し、前記操作部材がオフの場合に前記モータが停止する手動モードと、前記操作部材のオン/オフに関わらず、前記モータが駆動する自動モードで動作可能であって、
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第2所定温度を下回る場合であっても、前記運搬車の動作モードが前記自動モードであれば、前記上限進行速度を前記第1上限進行速度に戻さないように構成されている、運搬車。
【請求項2】
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第2所定温度を下回り、かつ前記運搬車の動作モードが前記自動モードでない場合であっても、前記運搬車が停止していなければ、前記上限進行速度を前記第1上限進行速度に戻さないように構成されている、請求項の運搬車。
【請求項3】
運搬車であって、
駆動輪と、
前記駆動輪を回転させるモータと、
前記モータを駆動するように構成されたモータ駆動回路と、
前記モータを電気的に制動するように構成されたモータ制動回路と、
前記運搬車の進行速度が上限進行速度以下となるように、前記モータ駆動回路と前記モータ制動回路を介して前記モータを制御するように構成された制御ユニットと、
前記モータ制動回路の温度を検出する温度センサを備えており、
前記制御ユニットが、前記上限進行速度が第1上限進行速度であり、前記温度センサで検出される温度が第1所定温度を超える場合に、前記上限進行速度を前記第1上限進行速度よりも低い第2上限進行速度に変更するように構成されており、
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第1所定温度よりも低い第2所定温度を下回る場合に、前記上限進行速度を前記第1上限進行速度に戻すように構成されており、
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第2所定温度を下回る場合であっても、前記運搬車が停止していなければ、前記上限進行速度を前記第1上限進行速度に戻さないように構成されている、運搬車。
【請求項4】
運搬車であって、
駆動輪と、
前記駆動輪を回転させるモータと、
前記モータを駆動するように構成されたモータ駆動回路と、
前記モータを電気的に制動するように構成されたモータ制動回路と、
前記運搬車の進行速度が上限進行速度以下となるように、前記モータ駆動回路と前記モータ制動回路を介して前記モータを制御するように構成された制御ユニットと、
前記モータ制動回路の温度を検出する温度センサと、
ユーザによる操作を受け入れる操作部材を備えており、
前記制御ユニットが、前記上限進行速度が第1上限進行速度であり、前記温度センサで検出される温度が第1所定温度を超える場合に、前記上限進行速度を前記第1上限進行速度よりも低い第2上限進行速度に変更するように構成されており、
前記操作部材がオンの場合に前記モータが駆動し、前記操作部材がオフの場合に前記モータが停止する手動モードと、前記操作部材のオン/オフに関わらず、前記モータが駆動する自動モードで動作可能であって、
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記運搬車の動作モードが前記自動モードでない場合に、前記上限進行速度を前記第1上限進行速度に戻すように構成されている、運搬車。
【請求項5】
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記運搬車の動作モードが前記自動モードでない場合であっても、前記運搬車が停止していなければ、前記上限進行速度を前記第1上限進行速度に戻さないように構成されている、請求項の運搬車。
【請求項6】
運搬車であって、
駆動輪と、
前記駆動輪を回転させるモータと、
前記モータを駆動するように構成されたモータ駆動回路と、
前記モータを電気的に制動するように構成されたモータ制動回路と、
前記運搬車の進行速度が上限進行速度以下となるように、前記モータ駆動回路と前記モータ制動回路を介して前記モータを制御するように構成された制御ユニットと、
前記モータ制動回路の温度を検出する温度センサを備えており、
前記制御ユニットが、前記上限進行速度が第1上限進行速度であり、前記温度センサで検出される温度が第1所定温度を超える場合に、前記上限進行速度を前記第1上限進行速度よりも低い第2上限進行速度に変更するように構成されており、
前記制御ユニットが、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記運搬車が停止した場合に、前記上限進行速度を前記第1上限進行速度に戻すように構成されている、運搬車。
【請求項7】
第2駆動輪と、
前記第2駆動輪を回転させる第2モータと、
前記第2モータを駆動するように構成された第2モータ駆動回路と、
前記第2モータを電気的に制動するように構成された第2モータ制動回路と、
前記第2モータ制動回路の温度を検出する第2温度センサをさらに備えており、
前記制御ユニットが、前記運搬車の進行速度が前記上限進行速度以下となるように、前記第2モータ駆動回路と前記第2モータ制動回路を介して前記第2モータを制御するように構成されており、
前記制御ユニットが、前記上限進行速度が前記第1上限進行速度であり、前記第2温度センサで検出される温度が前記第1所定温度を超える場合にも、前記上限進行速度を前記第2上限進行速度に変更するように構成されている、請求項1からの何れか一項の運搬車。
【請求項8】
前記モータ制動回路を冷却する冷却ユニットをさらに備えており、
前記冷却ユニットが、前記モータが停止している間も、前記モータ制動回路の冷却を実行するように構成されている、請求項1からの何れか一項の運搬車。
【請求項9】
前記モータ制動回路が、15分以上にわたって、前記モータを電気的に制動可能である、請求項1からの何れか一項の運搬車。
【請求項10】
前記上限進行速度が、0km/h以上10km/h以下である、請求項1からの何れか一項の運搬車。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書で開示する技術は、運搬車に関する。
【背景技術】
【0002】
特許文献1には、運搬車が開示されている。前記運搬車は、駆動輪と、前記駆動輪を回転させるモータと、前記モータを駆動するように構成されたモータ駆動回路と、前記モータを電気的に制動するように構成されたモータ制動回路と、前記運搬車の進行速度が上限進行速度以下となるように、前記モータ駆動回路と前記モータ制動回路を介して前記モータを制御するように構成された制御ユニットを備えている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開平8-268286号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
モータ制動回路がモータを電気的に制動する際には、モータ制動回路を流れる電流によって、モータ制動回路が発熱する。モータ制動回路が過剰に高温となると、モータ制動回路が正常に動作しなくなるおそれがある。本明細書では、運搬車において、モータ制動回路が過剰に高温となることを抑制することが可能な技術を提供する。
【課題を解決するための手段】
【0005】
本明細書が開示する運搬車は、駆動輪と、前記駆動輪を回転させるモータと、前記モータを駆動するように構成されたモータ駆動回路と、前記モータを電気的に制動するように構成されたモータ制動回路と、前記運搬車の進行速度が上限進行速度以下となるように、前記モータ駆動回路と前記モータ制動回路を介して前記モータを制御するように構成された制御ユニットと、前記モータ制動回路の温度を検出する温度センサを備えていてもよい。前記制御ユニットは、前記上限進行速度が第1上限進行速度であり、前記温度センサで検出される温度が第1所定温度を超える場合に、前記上限進行速度を前記第1上限進行速度よりも低い第2上限進行速度に変更するように構成されていてもよい。
【0006】
運搬車の進行速度が高くなると、モータを制動する際のモータ制動回路の発熱量が増加し、それだけモータ制動回路も高温となってしまう。上記の構成によれば、温度センサで検出されるモータ制動回路の温度が第1所定温度を超えると、運搬車の上限進行速度を第1上限進行速度から第2上限進行速度に低減させることで、モータを制動する際のモータ制動回路の発熱量を低減させることができる。モータ制動回路が過剰に高温となることを抑制することができる。
【図面の簡単な説明】
【0007】
図1】実施例に係る運搬車2を前方右方上方から見た斜視図である。
図2】実施例に係る車台ユニット4を前方右方下方から見た斜視図である。
図3】実施例に係る車台ユニット4を後方右方上方から見た斜視図である。
図4】実施例に係る車台ユニット4の右前過積載検知機構302aを前方右方上方から見た斜視図である。
図5】実施例に係る車台ユニット4において、過積載検知センサ320aがオフの状態での右前過積載検知機構302aの縦断面図である。
図6】実施例に係る車台ユニット4において、過積載検知センサ320aがオンの状態での右前過積載検知機構302aの縦断面図である。
図7】変形例に係る車台ユニット4において、過積載検知センサ380がオフの状態での過積載検知機構364の縦断面図である。
図8】変形例に係る車台ユニット4において、過積載検知センサ380がオンの状態での過積載検知機構364の縦断面図である。
図9】実施例に係る車台ユニット4を前後方向および上下方向に沿った断面で見た断面図である。
図10】実施例に係る車台ユニット4を左右方向および上下方向に沿った断面で見た断面図である。
図11】実施例に係るハンドルユニット8を後方右方上方から見た斜視図である。
図12】実施例に係るハンドルユニット8の下部を前方右方下方から見た斜視図である。
図13】実施例に係るハンドルユニット8の支持パイプ78と、クランプ部材80と、固定部材82と、ハンドルシャフト84と、回動角度センサ88を、前方右方下方から見た斜視図である。
図14】実施例に係るハンドルユニット8の可動カム部材90を、後方左方上方から見た斜視図である。
図15】実施例に係るハンドルユニット8の固定カム部材92を、前方左方上方から見た斜視図である。
図16】実施例に係るハンドルユニット8において、右方向へ操舵する操作が行われた状態での、ハンドルユニット8の下部を前後方向および左右方向に沿った断面で見た断面図である。
図17】実施例に係るハンドルユニット8において、右方向へ操舵する操作が行われた状態での、ハンドルユニット8の下部を前方右方下方から見た斜視図である。
図18】実施例に係る操舵ユニット10および前輪ユニット12を前方左方上方から見た斜視図である。
図19】実施例に係る操舵ユニット10を前方左方上方から見た斜視図である。
図20】実施例に係る操舵ユニット10を前後方向および左右方向に沿った断面で見た断面図である。
図21】実施例に係る操舵ユニット10のスピンドル178、カムホイール180、可動ギヤ182およびコイルバネ184を、後方左方下方から見た分解斜視図である。
図22】実施例に係る操舵ユニット10を前後方向および上下方向に沿った断面で見た断面図である。
図23】実施例に係る右前輪ユニット12aを前方左方上方から見た斜視図である。
図24】実施例に係る右前輪ユニット12aを左右方向および上下方向に沿った断面で見た断面図である。
図25】実施例に係る後輪ユニット14を後方右方上方から見た斜視図である。
図26】実施例に係る右後輪ユニット14aを後方左方上方から見た斜視図である。
図27】実施例に係るバンパユニット16を前方右方上方から見た斜視図である。
図28】実施例に係るバンパユニット16の直動軸受522の近傍を前後方向および左右方向に沿った断面で見た断面図である。
図29】実施例に係るバンパユニット16を後方左方上方から見た斜視断面図である。
図30】実施例に係る運搬車2の回路構成を模式的に示す図である。
図31】実施例に係る切換回路436の回路構成を模式的に示す図である。
図32】実施例に係る遮断回路438、モータドライバ454,456,458,460、ブレーキ回路468,470,472,474の回路構成を模式的に示す図である。
図33】実施例に係る遮断回路440、電磁ブレーキドライバ464,466の回路構成を模式的に示す図である。
図34】実施例に係る遮断回路442、モータドライバ462の回路構成を模式的に示す図である。
図35】実施例に係る運搬車2のメインMCU434が実行する処理のフローチャートである。
図36】実施例に係る運搬車2のメインMCU434が手動モードで実行する処理のフローチャートである。
図37】実施例に係る運搬車2のメインMCU434が自動モードで実行する処理のフローチャートである。
図38】実施例に係る運搬車2のモータMCU444,446が実行する処理のフローチャートである。
図39】実施例に係る運搬車2のモータMCU444,446が実行する処理のフローチャートである。
図40】実施例に係る運搬車2のモータMCU448,450が実行する処理のフローチャートである。
図41】実施例に係る運搬車2のモータMCU448,450が実行する処理のフローチャートである。
図42】実施例に係る運搬車2が手動モードで平地および下り坂を走行する場合の進行速度と、ブレーキ電流と、ブレーキ回路温度の経時的な変化の例を示すグラフである。
図43】実施例に係る運搬車2のモータMCU452が実行する処理のフローチャートである。
【発明を実施するための形態】
【0008】
以下では、本発明の代表的かつ非限定的な具体例について、図面を参照して詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本発明の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善された運搬車、その製造方法及び使用方法を提供するために、他の特徴や発明とは別に、又は共に用いることができる。
【0009】
また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本発明の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本発明の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
【0010】
本明細書及び/又は特許請求の範囲に記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
【0011】
1つまたはそれ以上の実施形態において、運搬車は、駆動輪と、前記駆動輪を回転させるモータと、前記モータを駆動するように構成されたモータ駆動回路と、前記モータを電気的に制動するように構成されたモータ制動回路と、前記運搬車の進行速度が上限進行速度以下となるように、前記モータ駆動回路と前記モータ制動回路を介して前記モータを制御するように構成された制御ユニットと、前記モータ制動回路の温度を検出する温度センサを備えていてもよい。前記制御ユニットは、前記上限進行速度が第1上限進行速度であり、前記温度センサで検出される温度が第1所定温度を超える場合に、前記上限進行速度を前記第1上限進行速度よりも低い第2上限進行速度に変更するように構成されていてもよい。
【0012】
運搬車の進行速度が高くなると、モータを制動する際のモータ制動回路の発熱量が増加し、それだけモータ制動回路も高温となってしまう。上記の構成によれば、温度センサで検出されるモータ制動回路の温度が第1所定温度を超えると、運搬車の上限進行速度を第1上限進行速度から第2上限進行速度に低減させることで、モータを制動する際のモータ制動回路の発熱量を低減させることができる。モータ制動回路が過剰に高温となることを抑制することができる。
【0013】
1つまたはそれ以上の実施形態において、前記制御ユニットは、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第1所定温度よりも低い第2所定温度を下回る場合に、前記上限進行速度を前記第1上限進行速度に戻すように構成されていてもよい。
【0014】
上記の構成によれば、モータ制動回路が高温となって上限進行速度を低減させた後は、モータ制動回路が十分に低温となるまでは上限進行速度を元に戻さないので、上限進行速度が頻繁に増減を繰り返してしまうことを抑制することができる。
【0015】
1つまたはそれ以上の実施形態において、前記運搬車は、ユーザによる操作を受け入れる操作部材をさらに備えていてもよい。前記運搬車は、前記操作部材がオンの場合に前記モータが駆動し、前記操作部材がオフの場合に前記モータが停止する手動モードと、前記操作部材のオン/オフに関わらず、前記モータが駆動する自動モードで動作可能であってもよい。前記制御ユニットは、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第2所定温度を下回る場合であっても、前記運搬車の動作モードが前記自動モードであれば、前記上限進行速度を前記第1上限進行速度に戻さないように構成されていてもよい。
【0016】
モータ制動回路が十分に低温となって、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車が自動モードで動作していると、運搬車が急加速してしまうおそれがある。上記の構成によれば、モータ制動回路が高温となって上限進行速度を低減させた後は、モータ制動回路が十分に低温となっていても、運搬車の動作モードが自動モードであれば上限進行速度を元に戻さないので、運搬車が急加速してしまうことを抑制することができる。
【0017】
1つまたはそれ以上の実施形態において、前記制御ユニットは、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第2所定温度を下回り、かつ前記運搬車の動作モードが前記自動モードでない場合であっても、前記運搬車が停止していなければ、前記上限進行速度を前記第1上限進行速度に戻さないように構成されていてもよい。
【0018】
モータ制動回路が十分に低温となり、かつ運搬車の動作モードが自動モードではなくても、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車が停止していないと、運搬車が急加速してしまうおそれがある。上記の構成によれば、モータ制動回路が高温となって上限進行速度を低減させた後は、モータ制動回路が十分に低温となり、かつ運搬車の動作モードが自動モードではなくても、運搬車が停止するまでは上限進行速度を元に戻さないので、運搬車が急加速してしまうことを抑制することができる。
【0019】
1つまたはそれ以上の実施形態において、前記制御ユニットは、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記温度センサで検出される温度が前記第2所定温度を下回る場合であっても、前記運搬車が停止していなければ、前記上限進行速度を前記第1上限進行速度に戻さないように構成されていてもよい。
【0020】
モータ制動回路が十分に低温となって、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車が停止していないと、運搬車が急加速してしまうおそれがある。上記の構成によれば、モータ制動回路が高温となって上限進行速度を低減させた後は、モータ制動回路が十分に低温となっても、運搬車が停止するまでは上限進行速度を元に戻さないので、運搬車が急加速してしまうことを抑制することができる。
【0021】
1つまたはそれ以上の実施形態において、前記運搬車は、ユーザによる操作を受け入れる操作部材をさらに備えていてもよい。前記運搬車は、前記操作部材がオンの場合に前記モータが駆動し、前記操作部材がオフの場合に前記モータが停止する手動モードと、前記操作部材のオン/オフに関わらず、前記モータが駆動する自動モードで動作可能であってもよい。前記制御ユニットは、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記運搬車の動作モードが前記自動モードでない場合に、前記上限進行速度を前記第1上限進行速度に戻すように構成されていてもよい。
【0022】
上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車が自動モードで動作していると、運搬車が急加速してしまうおそれがある。上記の構成によれば、モータ制動回路が高温となって上限進行速度を低減させた後は、運搬車の動作モードが自動モードであれば上限進行速度を元に戻さないので、運搬車が急加速してしまうことを抑制することができる。
【0023】
1つまたはそれ以上の実施形態において、前記制御ユニットは、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記運搬車の動作モードが前記自動モードでない場合であっても、前記運搬車が停止していなければ、前記上限進行速度を前記第1上限進行速度に戻さないように構成されていてもよい。
【0024】
運搬車の動作モードが自動モードではなくても、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車が停止していないと、運搬車が急加速してしまうおそれがある。上記の構成によれば、モータ制動回路が高温となって上限進行速度を低減させた後は、運搬車の動作モードが自動モードではなくても、運搬車が停止するまでは上限進行速度を元に戻さないので、運搬車が急加速してしまうことを抑制することができる。
【0025】
1つまたはそれ以上の実施形態において、前記制御ユニットは、前記上限進行速度を前記第1上限進行速度から前記第2上限進行速度に変更した後、前記運搬車が停止した場合に、前記上限進行速度を前記第1上限進行速度に戻すように構成されていてもよい。
【0026】
上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車が停止していないと、運搬車が急加速してしまうおそれがある。上記の構成によれば、モータ制動回路が高温となって上限進行速度を低減させた後は、運搬車が停止するまでは上限進行速度を元に戻さないので、運搬車が急加速してしまうことを抑制することができる。
【0027】
1つまたはそれ以上の実施形態において、前記運搬車は、第2駆動輪と、前記第2駆動輪を回転させる第2モータと、前記第2モータを駆動するように構成された第2モータ駆動回路と、前記第2モータを電気的に制動するように構成された第2モータ制動回路と、前記第2モータ制動回路の温度を検出する第2温度センサをさらに備えていてもよい。前記制御ユニットは、前記運搬車の進行速度が前記上限進行速度以下となるように、前記第2モータ駆動回路と前記第2モータ制動回路を介して前記第2モータを制御するように構成されていてもよい。前記制御ユニットは、前記上限進行速度が前記第1上限進行速度であり、前記第2温度センサで検出される温度が前記第1所定温度を超える場合にも、前記上限進行速度を前記第2上限進行速度に変更するように構成されていてもよい。
【0028】
上記の構成によれば、モータ制動回路と第2モータ制動回路の何れか一方が第1所定温度を超えると、運搬車の上限進行速度を第1上限進行速度から第2上限進行速度に低減させることで、モータおよび第2モータを制動する際のモータ制動回路および第2モータ制動回路の発熱量を低減させることができる。モータ制動回路や第2モータ制動回路が過剰に高温となることを抑制することができる。
【0029】
1つまたはそれ以上の実施形態において、前記運搬車は、前記モータ制動回路を冷却する冷却ユニットをさらに備えていてもよい。前記冷却ユニットは、前記モータが停止している間も、前記モータ制動回路の冷却を実行するように構成されていてもよい。
【0030】
上記の構成によれば、モータが停止している間も、冷却ユニットによってモータ制動回路を冷却することができるので、モータ制動回路を十分に低温とすることができ、その後の運搬車の動作においてモータ制動回路が過剰に高温となることを抑制することができる。
【0031】
1つまたはそれ以上の実施形態において、前記モータ制動回路は、15分以上にわたって、前記モータを電気的に制動可能であってもよい。
【0032】
上記の構成によれば、モータ制動回路によるモータの制動を長時間にわたって継続することができ、運搬車の動作をより安定させることができる。
【0033】
1つまたはそれ以上の実施形態において、前記上限進行速度が、0km/h以上10km/h以下であってもよい。
【0034】
上記の構成によれば、運搬車が過剰に高い速度で走行することを抑制することができ、運搬車が走行する際の安全性をより高めることができる。
【0035】
(実施例)
図1に示す運搬車2は、車台ユニット4と、荷台ユニット6と、ハンドルユニット8と、操舵ユニット10と、前輪ユニット12と、後輪ユニット14と、バンパユニット16を備えている。運搬車2は、荷台ユニット6に積載された荷物を運搬する。運搬車2は、車台ユニット4に搭載された受信機(図示せず)を備えている。運搬車2は、手動モード、自動モードまたはパーキングモードの何れかで動作することができる。手動モードでは、運搬車2は、ハンドルユニット8の後方に立ったユーザがハンドルユニット8を把持した状態で、ユーザによる操作に応じて前方または後方へ移動する。自動モードでは、運搬車2は、車台ユニット4の前方に立ったユーザが携帯するビーコン(図示せず)を追尾して移動する追従運転や、ユーザが操作するリモコン(図示せず)からの指示に応じて移動するリモコン運転を行う。この場合、運搬車2は、受信機によって、ビーコンやリモコンからの電波を受信する。パーキングモードでは、運搬車2は、後輪ユニット14をロックしてその場で停止し続ける。
【0036】
(車台ユニット4)
図2図3に示すように、車台ユニット4は、ベースプレート20と、前側支持部材22と、後側支持部材24と、右下側フレーム26と、左下側フレーム28と、右上側フレーム30と、左上側フレーム32と、バッテリボックス34と、過積載検知機構302と、緊急停止スイッチケース304と、上側コントローラケース306と、下側コントローラケース36を備えている。過積載検知機構302は、右前過積載検知機構302aと、左前過積載検知機構302bと、右後過積載検知機構302cと、左後過積載検知機構302dを備えている。
【0037】
図2に示すように、ベースプレート20は、アルミ製の部材であって、長手方向が前後方向に沿っており、短手方向が左右方向に沿った、略矩形の平板形状を有している。緊急停止スイッチケース304は、樹脂製の部材であって、ベースプレート20の前端において、ベースプレート20の下面に固定されている。緊急停止スイッチケース304の前面には、ユーザが押圧操作可能な緊急停止スイッチ308が設けられている。緊急停止スイッチ308は、通常時はオフであり、ユーザにより押圧操作されるとオンになる。緊急停止スイッチ308は、後述するメイン制御回路基板44に電気的に接続されている。なお、緊急停止スイッチケース304は、ベースプレート20の後端、右端または左端に設けられていてもよく、それに応じて、緊急停止スイッチ308は、緊急停止スイッチケース304の後面、右面または左面に設けられていてもよい。
【0038】
前側支持部材22は、鋼製の部材であって、ベースプレート20の前部において、右前過積載検知機構302aおよび左前過積載検知機構302bを介してベースプレート20の下面に取り付けられている。図3に示すように、後側支持部材24は、鋼製の部材であって、ベースプレート20の後部において、右後過積載検知機構302cおよび左後過積載検知機構302dを介してベースプレート20の下面に取り付けられている。右下側フレーム26と左下側フレーム28は、いずれも鋼製の部材であって、ベースプレート20よりも下方で、前後方向に延びている。右下側フレーム26の前部と左下側フレーム28の前部は、それぞれ、前側支持部材22に固定されている。右下側フレーム26の後部と左下側フレーム28の後部は、それぞれ、後側支持部材24に固定されている。
【0039】
右前過積載検知機構302aと、左前過積載検知機構302bと、右後過積載検知機構302cと、左後過積載検知機構302dは、いずれも同様の構成を備えている。図4に示すように、右前過積載検知機構302aと、左前過積載検知機構302bと、右後過積載検知機構302cと、左後過積載検知機構302dは、いずれも、ピラー部材312a,312b,312c,312dと、コイルバネ314a,314b,314c,314dと、検知プレート316a,316b,316c,316dと、ベース部材318a,318b,318c,318dと、過積載検知センサ320a,320b,320c,320dを備えている。図5に示すように、ピラー部材312a,312b,312c,312dは、円柱部322a,322b,322c,322dと、フランジ部324a,324b,324c,324dと、上側小径部326a,326b,326c,326dと、下側小径部328a,328b,328c,328dを備えている。円柱部322a,322b,322c,322dは、軸方向が上下方向に沿った略円柱形状を有している。フランジ部324a,324b,324c,324dは、円柱部322a,322b,322c,322dの上方に配置されており、円柱部322a,322b,322c,322dよりも径方向外側に突出した形状を有している。上側小径部326a,326b,326c,326dは、フランジ部324a,324b,324c,324dの上方に配置されており、円柱部322a,322b,322c,322dよりも小径の略円柱形状を有している。下側小径部328a,328b,328c,328dは、円柱部322a,322b,322c,322dの下方に配置されており、円柱部322a,322b,322c,322dよりも小径の略円柱形状を有している。
【0040】
上側小径部326a,326b,326c,326dは、ベースプレート20に形成された貫通孔330a,330b,330c,330dに下方から挿入されている。ピラー部材312a,312b,312c,312dの上端には、ネジ穴332a,332b,332c,332dが形成されている。ネジ穴332a,332b,332c,332dには、ワッシャ334a,334b,334c,334dを介してボルト336a,336b,336c,336dが螺合している。ボルト336a,336b,336c,336dがネジ穴332a,332b,332c,332dに螺合した状態では、ベースプレート20がワッシャ334a,334b,334c,334dとフランジ部324a,324b,324c,324dによって挟持される。貫通孔20a,20b,20c,20dの内径は、上側小径部326a,326b,326c,326dの外径よりも僅かに大きいので、ピラー部材312a,312b,312c,312dはベースプレート20に対して僅かに傾動可能である。
【0041】
下側小径部328a,328b,328c,328dは、前側支持部材22(または後側支持部材24)に形成された貫通孔338a,338b,338c,338dに上方から挿入されている。貫通孔338a,338b,338c,338dの内径は、下側小径部328a,328b,328c,328dの外径よりも僅かに大きいので、ピラー部材312a,312b,312c,312dは前側支持部材22(または後側支持部材24)に対して僅かに傾動可能である。ピラー部材312a,312b,312c,312dには、コイルバネ314a,314b,314c,314dが取り付けられている。コイルバネ314a,314b,314c,314dの上端は、ワッシャ340a,340b,340c,340dの下面に当接している。ワッシャ340a,340b,340c,340dの上面は、フランジ部324a,324b,324c,324dの下面に当接している。コイルバネ314a,314b,314c,314dの下端は、前側支持部材22(または後側支持部材24)の上面に当接している。コイルバネ314a,314b,314c,314dは、ピラー部材312a,312b,312c,312dを前側支持部材22(または後側支持部材24)に対して上方に向けて付勢している。
【0042】
ピラー部材312a,312b,312c,312dの下端には、ネジ穴342a,342b,342c,342dが形成されている。ネジ穴342a,342b,342c,342dには、検知プレート316a,316b,316c,316dを介してボルト344a,344b,344c,344dが螺合している。検知プレート316a,316b,316c,316dは、前後方向および左右方向に沿った略平板形状を有する支持部346a,346b,346c,346dと、支持部346a,346b,346c,346dの端部から下方に向けて屈曲しており、前後方向および上下方向に沿った略平板形状を有する検知部348a,348b,348c,348dを備えている。
【0043】
ベース部材318a,318b,318c,318dは、係合部350a,350b,350c,350dと、ナット部352a,352b,352c,352dと、ガイド部354a,354b,354c,354dと、センサ保持部356a,356b,356c,356dを備えている。係合部350a,350b,350c,350dは、前側支持部材22(または後側支持部材24)に係合可能である。ナット部352a,352b,352c,352dには、ボルト358a,358b,358c,358dが螺合している。ボルト358a,358b,358c,358dの下端は、ナット部352a,352b,352c,352dを貫通して、前側支持部材22(または後側支持部材24)の上面に当接する。ベース部材318a,318b,318c,318dは、係合部350a,350b,350c,350dを前側支持部材22(または後側支持部材24)に係合させた状態で、ナット部352a,352b,352c,352dに対してボルト358a,358b,358c,358dを締め付けることで、前側支持部材22(または後側支持部材24)に固定されている。ガイド部354a,354b,354c,354dは、検知プレート316a,316b,316c,316dの上下方向の移動をガイドする形状を有している。センサ保持部356a,356b,356c,356dには、過積載検知センサ320a,320b,320c,320dが取り付けられている。過積載検知センサ320a,320b,320c,320dのセンサ保持部356a,356b,356c,356dに対する上下方向の取付位置は、調整可能である。
【0044】
本実施例の過積載検知センサ320a,320b,320c,320dは、いわゆるフォトインタラプタである。過積載検知センサ320a,320b,320c,320dは、互いに対向して配置された発光素子360a,360b,360c,360dおよび受光素子362a,362b,362c,362dを備えている。過積載検知センサ320a,320b,320c,320dは、発光素子360a,360b,360c,360dと受光素子362a,362b,362c,362dの間が遮られていない場合にオフとなり、発光素子360a,360b,360c,360dと受光素子362a,362b,362c,362dの間が遮られている場合にオンとなる。過積載検知センサ320a,320b,320c,320dは、後述するメイン制御回路基板44(図9参照)に電気的に接続されている。
【0045】
図5に示すように、荷台ユニット6に荷物が積載されておらず、ベースプレート20に荷台ユニット6からの荷重が作用しない状態では、コイルバネ314a,314b,314c,314dの付勢力によって、検知プレート316a,316b,316c,316dの支持部346a,346b,346c,346dの上面が前側支持部材22(または後側支持部材24)の下面に当接する。この状態では、検知プレート316a,316b,316c,316dの検知部348a,348b,348c,348dは発光素子360a,360b,360c,360dと受光素子362a,362b,362c,362dの間を遮っていないため、過積載検知センサ320a,320b,320c,320dはオフとなっている。
【0046】
図5に示す状態から、荷台ユニット6に荷物が載置され、ベースプレート20に荷台ユニット6からの荷重が作用すると、コイルバネ314a,314b,314c,314dの付勢力に抗して、ピラー部材312a,312b,312c,312dと検知プレート316a,316b,316c,316dが前側支持部材22(または後側支持部材24)に対して下方に移動する。この際に、ピラー部材312a,312b,312c,312dに所定の上限荷重(例えば25kgf)以上の荷重が作用すると、図6に示すように、検知プレート316a,316b,316c,316dが発光素子360a,360b,360c,360dと受光素子362a,362b,362c,362dの間を遮り、過積載検知センサ320a,320b,320c,320dはオフからオンに切り換わる。なお、ピラー部材312a,312b,312c,312dと検知プレート316a,316b,316c,316dは、円柱部322a,322b,322c,322dの下面がベースプレート20の上面に当接するまで、ベースプレート20に対して下方に移動可能である。このような構成とすることによって、過積載検知機構302は、荷台ユニット6への過積載を検知することができる。例えば、右前過積載検知機構302aと、左前過積載検知機構302bと、右後過積載検知機構302cと、左後過積載検知機構302dのそれぞれの上限荷重が25kgfである場合には、過積載検知機構302は、荷台ユニット6に100kgを超える荷物が載置された場合に、荷台ユニット6への過積載を検知する。
【0047】
上記のように、過積載検知センサ320a,320b,320c,320dは、いずれも、非接触式の検知センサである。このため、荷台ユニット6からの振動や衝撃が過積載検知センサ320a,320b,320c,320dに伝達して過積載検知センサ320a,320b,320c,320dが故障することを抑制することができる。
【0048】
なお、右前過積載検知機構302aと、左前過積載検知機構302bと、右後過積載検知機構302cと、左後過積載検知機構302dとして、図7に示す過積載検知機構364を用いてもよい。過積載検知機構364は、支持部材366と、ピラー部材368と、コイルバネ370と、検知プレート372と、上側ハウジング374と、センサ保持部材376と、下側ハウジング378と、過積載検知センサ380と、キャップ382を備えている。
【0049】
支持部材366は、ベースプレート20の下面に固定されている。ピラー部材368は、円柱部384と、上側小径部386と、下側小径部388を備えている。円柱部384は、軸方向が上下方向に沿った略円柱形状を有している。上側小径部386は、円柱部384の上方に配置されており、円柱部384よりも小径の略円柱形状を有している。下側小径部388は、円柱部384の下方に配置されており、円柱部384よりも小径の略円柱形状を有している。上側小径部386は、支持部材366に形成された貫通孔390に下方から挿入されている。ピラー部材368の上端には、ネジ穴392が形成されている。ネジ穴392には、ワッシャ394,396を介してボルト398が螺合している。ボルト398がネジ穴392に螺合した状態では、支持部材366がワッシャ396と円柱部384によって挟持される。貫通孔390の内径は、上側小径部386の外径よりも僅かに大きいので、ピラー部材368は支持部材366に対して僅かに傾動可能である。
【0050】
下側小径部388と円柱部384は、上側ハウジング374に形成された収容室400に上方から挿入されている。下側小径部388は、収容室400の底壁402に形成された貫通孔404に上方から挿入されている。貫通孔404の内径は、下側小径部388の外径よりも僅かに大きいので、ピラー部材368は上側ハウジング374に対して僅かに傾動可能である。ピラー部材368には、コイルバネ370が取り付けられている。コイルバネ370の上端は、円柱部384の下面に当接している。コイルバネ370の下端は、底壁402の上面に当接している。コイルバネ370は、ピラー部材368を上側ハウジング374に対して上方に向けて付勢している。収容室400の内径は、円柱部384の外径より僅かに大きい。収容室400の上端近傍には、円柱部384の側面と摺動可能に当接するシール部材406が設けられている。シール部材406は、例えば樹脂製のOリングである。シール部材406によって、収容室400の内部に異物が侵入することが抑制されている。また、上側ハウジング374の上端には、円環状のクッション408が設けられている。
【0051】
ピラー部材368の下端には、ネジ穴410が形成されている。ネジ穴410には、検知プレート372を介してボルト412が螺合している。検知プレート372は、前後方向および左右方向に沿った略平板形状を有する支持部414と、支持部414の端部から下方に向けて屈曲しており、前後方向および上下方向に沿った略平板形状を有する検知部416を備えている。上側ハウジング374の下部には、検知プレート372の上下方向の移動をガイドするガイド部418が形成されている。
【0052】
上側ハウジング374の下端には、センサ保持部材376が固定されている。センサ保持部材376には、過積載検知センサ380が取り付けられている。本実施例の過積載検知センサ380は、いわゆるフォトインタラプタである。過積載検知センサ380は、互いに対向して配置された発光素子420および受光素子422を備えている。過積載検知センサ380は、発光素子420と受光素子422の間が遮られていない場合にオフとなり、発光素子420と受光素子422の間が遮られている場合にオンとなる。過積載検知センサ380は、後述するメイン制御回路基板44(図9参照)に電気的に接続されている。
【0053】
下側ハウジング378には、下側ハウジング378を上方から下方まで貫通する収容空間424が形成されている。上側ハウジング374の下部は、下側ハウジング378の収容空間424に上方から挿入されている。検知プレート372と、センサ保持部材376と、過積載検知センサ380は、収容空間424内に収容されている。下側ハウジング378は、上側ハウジング374とともに、前側支持部材22(または後側支持部材24)に対して固定されている。下側ハウジング378の下端には、キャップ382が着脱可能に取り付けられている。
【0054】
図7に示すように、荷台ユニット6に荷物が積載されておらず、ベースプレート20に荷台ユニット6からの荷重が作用しない状態では、コイルバネ370の付勢力によって、検知プレート372の支持部414の上面が上側ハウジング374の底壁402の下面に当接する。この状態では、検知プレート372の検知部416は発光素子420と受光素子422の間を遮っていないため、過積載検知センサ380はオフとなっている。
【0055】
図7に示す状態から、荷台ユニット6に荷物が載置され、ベースプレート20に荷台ユニット6からの荷重が作用すると、コイルバネ370の付勢力に抗して、ピラー部材368と検知プレート372が上側ハウジング374に対して下方に移動する。この際に、ピラー部材368に所定の上限荷重(例えば25kgf)以上の荷重が作用すると、図8に示すように、検知プレート372が発光素子420と受光素子422の間を遮ぎり、過積載検知センサ380はオフからオンに切り換わる。なお、ピラー部材368と検知プレート372は、支持部材366の下面がクッション408の上面に当接するまで、ベースプレート20に対して下方に移動可能である。このような構成とすることによって、過積載検知機構302は、荷台ユニット6への過積載を検知することができる。
【0056】
上記のように、過積載検知センサ380は、非接触式の検知センサである。このため、荷台ユニット6からの振動や衝撃が過積載検知センサ380に伝達して過積載検知センサ380が故障することを抑制することができる。
【0057】
過積載検知機構302では、上側ハウジング374と下側ハウジング378、キャップ382によって、コイルバネ370、検知プレート372、過積載検知センサ380の周囲が覆われている。このような構成とすることによって、コイルバネ370、検知プレート372、過積載検知センサ380等に異物が付着して過積載検知機構302の動作に影響を及ぼすことを抑制することができる。
【0058】
図3に示すように、右上側フレーム30と左上側フレーム32は、いずれもアルミ製の部材であって、ベースプレート20よりも上方で、前後方向に延びている。右上側フレーム30と左上側フレーム32は、それぞれ、ベースプレート20の上面に固定されている。上側コントローラケース312は、樹脂製の部材であって、右上側フレーム30と左上側フレーム32の間で、ベースプレート20の上面に固定されている。図9に示すように、上側コントローラケース312の内部には、自動運転制御回路基板426が収容されている。自動運転制御回路基板426には、車台ユニット4に搭載された受信機と電気的に接続された無線インターフェース(以下ではI/Fともいう)428(図30参照)、無線I/F428と電気的に接続された自動運転マイクロコントローラユニット(以下ではMCUともいう)430(図30参照)等が搭載されている。自動運転制御回路基板426は、後述するメイン制御回路基板44に電気的に接続されている。
【0059】
図3に示すように、バッテリボックス34は、樹脂製の部材であって、ベースプレート20の後部近傍で、ベースプレート20よりも下方に配置されている。バッテリボックス34は、後側支持部材24に固定されている。図9に示すように、バッテリボックス34の内部には、バッテリパック38を着脱可能なバッテリ取付部40が設けられている。バッテリパック38は、例えばリチウムイオン電池セル等の二次電池セルを備えている。運搬車2は、バッテリ取付部40に取り付けられたバッテリパック38から供給される電力によって動作する。バッテリボックス34の後部には、開閉可能なバッテリカバー42が設けられている。バッテリカバー42を開いた状態とし、バッテリパック38をバッテリ取付部40に対して前後方向にスライドさせることで、バッテリパック38をバッテリ取付部40に対して着脱することができる。
【0060】
図2に示すように、下側コントローラケース36は、樹脂製の部材であって、ベースプレート20の中央近傍で、ベースプレート20よりも下方に配置されている。下側コントローラケース36は、右下側フレーム26の上面および左下側フレーム28の上面に載置された状態で、右下側フレーム26と左下側フレーム28に固定されている。図9図10に示すように、下側コントローラケース36は、1つのメイン制御回路基板44と、2つの駆動制御回路基板46,48と、4つの電気ブレーキ回路基板50,52,54,56を保持している。
【0061】
図9に示すように、メイン制御回路基板44は、回路基板ケース44aの内部に収容されている。回路基板ケース44aは、下側コントローラケース36の内部の後方に収容されている。回路基板ケース44aは、メイン制御回路基板44が上下方向および左右方向に沿うように配置されている。メイン制御回路基板44には、後述する制御電源回路432,メインMCU434,切換回路436,遮断回路438,440,442(図30参照)等が搭載されている。
【0062】
図10に示すように、駆動制御回路基板46,48は、それぞれ、回路基板ケース46a,48aの内部に収容されている。図9に示すように、回路基板ケース46a,48aは、下側コントローラケース36の内部の前方下方に収容されている。回路基板ケース46a,48aは、駆動制御回路基板46,48が前後方向および左右方向に沿うように配置されている。駆動制御回路基板46,48は、それぞれ、メイン制御回路基板44に電気的に接続されている。駆動制御回路基板46には、後述するモータMCU444,448,452、モータドライバ454,458,462、電磁ブレーキドライバ464(図30参照)等が搭載されている。駆動制御回路基板48には、後述するモータMCU446,450、モータドライバ456,460、電磁ブレーキドライバ466(図30参照)等が搭載されている。
【0063】
図10に示すように、電気ブレーキ回路基板50,52,54,56は、それぞれ、放熱ケース50a,52a,54a,56aに取り付けられている。放熱ケース50a,52a,54a,56aは、それぞれ、電気ブレーキ回路基板50,52,54,56を収容する回路基板収容部50b、52b、54b、56bと、放熱フィン50c、52c、54c、56cと、冷却ファン50d,52d,54d,56dを備えている。放熱ケース50a,52aは、下側コントローラケース36の内部の前方上方に収容されている。放熱ケース50a,52aは、電気ブレーキ回路基板50,52が前後方向および左右方向に沿うように、かつ冷却ファン50d、52dが上方を向くように配置されている。放熱ケース54a,56aは、下側コントローラケース36の外部の前方下方で下側コントローラケース36に固定された放熱プレート58に固定されている。放熱ケース54a,56aは、電気ブレーキ回路基板54,56が前後方向および左右方向に沿うように、かつ冷却ファン54d,56dが下方を向くように配置されている。電気ブレーキ回路基板50,54および冷却ファン50d,54dは、駆動制御回路基板46に電気的に接続されている。電気ブレーキ回路基板52,56および冷却ファン52d,56dは、駆動制御回路基板48に電気的に接続されている。電気ブレーキ回路基板50,52,54,56には、それぞれ、後述するブレーキ回路468,470,472,474(図30参照)等が搭載されている。
【0064】
(荷台ユニット6)
図1に示すように、荷台ユニット6は、メインフレーム60と、右側ガード62と、左側ガード64と、前側ガード66を備えている。メインフレーム60と、右側ガード62と、左側ガード64と、前側ガード66は、いずれも、鋼製の丸パイプから構成されている。メインフレーム60は、車台ユニット4のベースプレート20の上方において、前後方向および左右方向に沿うように配置されている。メインフレーム60は、車台ユニット4の右上側フレーム30と左上側フレーム32の上面に載置された状態で、右上側フレーム30と左上側フレーム32に固定されている。メインフレーム60の上面には、運搬車2によって運搬する荷物が載置される。右側ガード62は、メインフレーム60の上面よりも上方に突出するように、メインフレーム60の右端に取り付けられている。右側ガード62は、前後方向および上下方向に沿うように配置されている。左側ガード64は、メインフレーム60の上面よりも上方に突出するように、メインフレーム60の左端に取り付けられている。左側ガード64は、前後方向および上下方向に沿うように配置されている。前側ガード66は、メインフレーム60の上面よりも上方に突出するように、メインフレーム60の前端に取り付けられている。前側ガード66は、左右方向および上下方向に沿うように配置されている。
【0065】
(ハンドルユニット8)
図11に示すように、ハンドルユニット8は、スイッチボックス70と、右側ハンドル72と、左側ハンドル74と、ハンドルアーム76と、支持パイプ78と、クランプ部材80と、固定部材82と、ハンドルシャフト84と、ベース部材86と、回動角度センサ88と、可動カム部材90と、固定カム部材92と、コイルバネ94を備えている。なお、以下では右側ハンドル72と、左側ハンドル74と、ハンドルアーム76と、支持パイプ78を総称して、操舵ハンドル73ともいう。
【0066】
スイッチボックス70には、主電源スイッチ96と、モード切換スイッチ98と、トリガスイッチ100と、進行方向切換スイッチ102と、速度切換スイッチ104と、警笛スイッチ106と、LED476が設けられている。主電源スイッチ96は、運搬車2の主電源のオン/オフを切り替えることができる。モード切換スイッチ98は、運搬車2の動作モードを、手動モード、自動モードおよびパーキングモードの間で切り換えることができる。トリガスイッチ100は、手動モードにおいて、運搬車2の前進や後退のオン/オフを切り替えることや、運搬車2の進行速度の調整を行うことができる。進行方向切換スイッチ102は、手動モードにおいて、運搬車2の進行方向を切り換えることができる。速度切換スイッチ104は、手動モードにおいて、運搬車2の上限進行速度を切り換えることができる。警笛スイッチ106は、スイッチボックス70に内蔵されたブザー478(図30参照)によって警笛を鳴らすことができる。LED476は、運搬車2の主電源のオン/オフや、設定されている進行方向や上限進行速度を表示することができる。主電源スイッチ96、モード切換スイッチ98、トリガスイッチ100、進行方向切換スイッチ102、速度切換スイッチ104、警笛スイッチ106、LED476、ブザー478は、それぞれ、メイン制御回路基板44(図9参照)に電気的に接続されている。
【0067】
右側ハンドル72は、上下方向に伸びる支持部72aと、支持部72aの上端から右方に屈曲したハンドル部72bを備えている。支持部72aの下端は、ハンドルアーム76に固定されている。ハンドル部72bの右端には、右側グリップ72cが設けられている。スイッチボックス70は、右側グリップ72cよりも左方で、ハンドル部72bに固定されている。左側ハンドル74は、上下方向に伸びる支持部74aと、支持部74aの上端から左方に屈曲したハンドル部74bを備えている。支持部74aの下端は、ハンドルアーム76に固定されている。ハンドル部74bの左端には、左側グリップ74cが設けられている。ハンドルアーム76には、支持パイプ78の上端が固定されている。支持パイプ78は、上下方向に延びている。クランプ部材80は、支持パイプ78を左右両側から挟持するクランプ片80a,80bを備えている。クランプ片80a,80bの後端には、締結具(図示せず)により締結される締結部80cが形成されている。締結部80cの締結具が締め付けられると、クランプ片80a,80bが支持パイプ78の外面に強く押し付けられ、支持パイプ78はクランプ部材80に対して固定される。締結部80cの締結具が緩められると、クランプ片80a,80bが支持パイプ78の外面に押し付けられず、支持パイプ78はクランプ部材80に対して上下方向に移動可能となり、かつ上下方向周りに回動可能となる。締結部80cの締結具を緩めた状態で、支持パイプ78をクランプ部材80に対して所望の位置および角度に調整した後、締結部80cの締結具を締め付けることで、クランプ部材80に対する支持パイプ78の位置および角度を固定することができる。
【0068】
図12に示すように、クランプ部材80の前部は、固定部材82に固定されている。固定部材82には、ハンドルシャフト84の上端が固定されている。ハンドルシャフト84の下端は、ベース部材86に回動可能に支持されている。ベース部材86は、車台ユニット4のベースプレート20の上面に固定されている。ベース部材86の下部には、回動角度センサ88が固定されている。回動角度センサ88は、ハンドルシャフト84の下端に連結している。回動角度センサ88は、ベース部材86に対するハンドルシャフト84の回動角度を検出する。回動角度センサ88は、例えば、回動角度の変化に応じた電気抵抗値の変化を検出するポテンショメータであってもよい。あるいは、回動角度センサ88は、ベース部材86に対して位置が固定されたホール素子と、ハンドルシャフト84に対して位置が固定された永久磁石を備える磁気ロータリセンサであってもよい。回動角度センサ88は、メイン制御回路基板44(図9参照)に電気的に接続されている。
【0069】
図13に示すように、ハンドルシャフト84には、ガイド突起84aが設けられている。ガイド突起84aは、ハンドルシャフト84の外周面から径方向外側に突出しており、ハンドルシャフト84の軸方向に沿って延びている。
【0070】
図14に示すように、可動カム部材90は、略円筒形状を有している。可動カム部材90の下部には、下方に向けて延びるカム凸部90a,90bが形成されている。カム凸部90a,90bには、それぞれ、第1カム面90c,90dと、第2カム面90e,90fが設けられている。第1カム面90c,90dは、可動カム部材90を上方から見たときに、時計方向に向かうにつれて下方から上方へ向かうように傾斜している。第2カム面90e,90fは、可動カム部材90を上方から見たときに、反時計方向に向かうにつれて下方から上方へ向かうように傾斜している。可動カム部材90の内周面には、ガイド溝90gが形成されている。ガイド溝90gは、ガイド突起84a(図13参照)に対応する幅を有しており、可動カム部材90の中心軸に沿う方向に延びている。可動カム部材90がハンドルシャフト84に取り付けられる際には、ガイド突起84aがガイド溝90gに上下方向に摺動可能に係合する。このため、可動カム部材90はハンドルシャフト84に上下方向に移動可能に保持される。可動カム部材90の上部には、コイルバネ94を支持するバネ受け部90hが形成されている。図12に示すように、コイルバネ94は、固定部材82に対して可動カム部材90を下方に向けて付勢する。
【0071】
図15に示すように、固定カム部材92は、略円筒形状の円筒部92aと、円筒部92aの下端から径方向外側に延びるフランジ部92bを備えている。固定カム部材92は、フランジ部92bがベース部材86(図12参照)の上面に締結具(図示せず)により締結されることで、ベース部材86に固定されている。円筒部92aの上部には、可動カム部材90のカム凸部90a,90bに対応するカム凹部92c,92dが形成されている。カム凹部92c,92dには、それぞれ、第1カム面92e,92fと、第2カム面92g,92hが設けられている。第1カム面92e,92fは、それぞれ、可動カム部材90の第1カム面90c,90dに対応している。第2カム面92g,92hは、それぞれ、可動カム部材90の第2カム面90e,90fに対応している。また、円筒部92aの内周面には、ストッパ部92i,92jが設けられている。図16に示すように、ストッパ部92i,92jは、ハンドルシャフト84が固定カム部材92に対して回動した時に、ハンドルシャフト84のガイド突起84aに当接することで、ハンドルシャフト84の回動範囲を規制する。
【0072】
図11に示すハンドルユニット8において、ユーザが操舵ハンドル73を上方から見て時計方向(または反時計方向)に回動させると、ハンドルシャフト84が時計方向(または反時計方向)に回動する。この際に、図17に示すように、可動カム部材90がハンドルシャフト84と一体的に回動することで、可動カム部材90の第1カム面90c,90d(または第2カム面90e,90f)が固定カム部材92の第1カム面92e,92f(または第2カム面92g,92h)に対して摺動し、可動カム部材90は固定カム部材92に対して相対的に回動しながら、コイルバネ94の付勢力に抗して上方に向けて移動する。この際に可動カム部材90が固定カム部材92から受ける反力によるトルクが、操舵ハンドル73を回動させるユーザに作用する。
【0073】
(操舵ユニット10)
図18に示すように、操舵ユニット10は、車台ユニット4のベースプレート20(図2参照)の前部下方において、前側支持部材22に取り付けられている。操舵ユニット10は、前輪ユニット12に連結されており、前輪ユニット12の操舵を行う。
【0074】
図19に示すように、操舵ユニット10は、モータハウジング160と、モータ支持部材162と、ギヤハウジング164と、操舵角センサ166と、操舵シャフト168と、操舵プレート170と、右側タイロッド172と、左側タイロッド174を備えている。モータハウジング160は、モータ支持部材162に固定されている。モータ支持部材162は、ギヤハウジング164に固定されている。ギヤハウジング164は、車台ユニット4の前側支持部材22(図18参照)に固定されている。
【0075】
図20に示すように、モータハウジング160の内部には、操舵モータ176が収容されている。操舵モータ176は、例えば、インナロータ型のブラシレスDCモータである。操舵モータ176は、駆動制御回路基板46(図10参照)に電気的に接続されている。操舵モータ176は、前後方向に延びるモータシャフト176aと、モータシャフト176aの回転を検出するホールセンサ480(図34参照)を備えている。モータシャフト176aは、後端近傍においてモータハウジング160に回転可能に保持されており、前部においてモータ支持部材162に回転可能に保持されている。モータシャフト176aの前部は、モータ支持部材162を貫通して、ギヤハウジング164の内部に入り込んでいる。モータシャフト176aの前端近傍には、ギヤ部176bが形成されている。
【0076】
ギヤハウジング164の内部には、スピンドル178と、カムホイール180と、可動ギヤ182と、コイルバネ184と、円筒ウォーム186と、ウォームホイール188と、中継シャフト190が収容されている。スピンドル178は、前後方向に沿うように配置されている。スピンドル178は、前端近傍と後部において、ギヤハウジング164に回転可能に保持されている。また、スピンドル178は、後端近傍において、モータ支持部材162に回転可能に保持されている。
【0077】
カムホイール180は、スピンドル178の後端近傍に固定されている。図21に示すように、カムホイール180の前面には、カム溝180aが形成されている。可動ギヤ182は、カムホイール180よりも前方で、スピンドル178に取り付けられている。可動ギヤ182は、スピンドル178に対して前後方向に移動可能であり、かつ前後方向周りに回転可能に、スピンドル178に保持されている。可動ギヤ182の外周面には、モータシャフト176aのギヤ部176b(図20参照)と噛み合うギヤ部182aが形成されている。可動ギヤ182の後部には、カムホイール180が入り込む凹部182bが形成されている。凹部182bには、カムホイール180のカム溝180aに対応するカム突起182cが形成されている。コイルバネ184は、可動ギヤ182よりも前方で、スピンドル178に取り付けられている。コイルバネ184は、スピンドル178に設けられたバネ受け部178aに保持されている。コイルバネ184は、スピンドル178に対して可動ギヤ182を後方に向けて付勢する。
【0078】
モータシャフト176a(図20参照)が回転すると、可動ギヤ182も回転する。可動ギヤ182のカム突起182cがカムホイール180のカム溝180aに係合している場合、可動ギヤ182の回転に伴ってカムホイール180が回転し、それによってスピンドル178も回転する。可動ギヤ182とカムホイール180の間に作用するトルクが小さい場合、コイルバネ184の付勢力によってカム突起182cとカム溝180aの係合が維持されて、モータシャフト176aからスピンドル178への回転の伝達が維持される。これに対して、可動ギヤ182とカムホイール180の間に作用するトルクが大きい場合は、コイルバネ184の付勢力に抗して可動ギヤ182が前方に向けて移動し、カム突起182cとカム溝180aの係合が解除されて、モータシャフト176aからスピンドル178への回転の伝達が遮断される。すなわち、カムホイール180と、可動ギヤ182と、コイルバネ184によって、トルクリミッタ181が構成されている。
【0079】
図20に示すように、円筒ウォーム186は、スピンドル178の前部に固定されている。ウォームホイール188は、円筒ウォーム186と噛み合うように配置されている。図22に示すように、ウォームホイール188は、中継シャフト190の上部に固定されている。中継シャフト190は、上下方向に沿うように配置されている。中継シャフト190は、上端近傍と中央部において、ギヤハウジング164に回転可能に保持されている。中継シャフト190の下端近傍には、ギヤ部190aが形成されている。
【0080】
ギヤハウジング164の上部には、操舵角センサ166が固定されている。操舵角センサ166は、中継シャフト190の上端に連結している。操舵角センサ166は、ギヤハウジング164に対する中継シャフト190の回動角度を検出する。操舵角センサ166は、例えば、回動角度の変化に応じた電気抵抗値の変化を検出するポテンショメータであってもよい。あるいは、操舵角センサ166は、ギヤハウジング164に対して位置が固定されたホール素子と、中継シャフト190に対して位置が固定された永久磁石を備える磁気ロータリセンサであってもよい。操舵角センサ166は、メイン制御回路基板44(図9参照)に電気的に接続されている。
【0081】
操舵シャフト168は、上端近傍と上部において、ギヤハウジング164に回転可能に保持されている。操舵シャフト168は、上下方向に沿うように配置されている。操舵シャフト168の上部には、中継シャフト190のギヤ部190aと噛み合うギヤ部168aが形成されている。操舵シャフト168の下端は、操舵プレート170の前端近傍に固定されている。図19に示すように、操舵プレート170は、前後方向に長手方向を有しており、左右方向に短手方向を有する、細長い平板形状を有している。操舵プレート170の後端近傍には、右側タイロッド172の後端と、左側タイロッド174の後端が、それぞれ連結されている。右側タイロッド172の後端は、操舵プレート170に対して、右側タイロッド172の長手方向に直交する二軸周りに回動可能に連結されている。左側タイロッド174の後端は、操舵プレート170に対して、左側タイロッド174の長手方向に直交する二軸周りに回動可能に連結されている。
【0082】
図20に示すように、モータシャフト176aの回転によってスピンドル178が回転すると、円筒ウォーム186とウォームホイール188を介して、スピンドル178の回転が中継シャフト190に伝達する。図22に示すように、中継シャフト190が回動すると、それに伴って操舵シャフト168が回動し、操舵プレート170の後端が左右方向に回動する。この操舵プレート170の回動により、図19に示す右側タイロッド172および左側タイロッド174が移動し、前輪ユニット12の操舵が行われる。なお、以下の説明では、操舵シャフト168と、操舵プレート170と、右側タイロッド172と、左側タイロッド174と、スピンドル178と、トルクリミッタ181と、円筒ウォーム186と、ウォームホイール188と、中継シャフト190を総称して、伝達機構169ともいう。
【0083】
メイン制御回路基板44(図9参照)は、手動モードにおいて、ハンドルユニット8(図11参照)の回動角度センサ88からの検出信号に基づいて、操舵ユニット10において実現されるべき操舵角を算出する。そして、メイン制御回路基板44は、操舵ユニット10において実現されるべき操舵角に基づいて、操舵モータ176で実現されるべき回転角度を算出し、駆動制御回路基板46に操舵モータ176の駆動を指示する。これによって、操舵ユニット10において、ハンドルユニット8でのユーザの操作に応じた操舵角が実現される。
【0084】
(前輪ユニット12)
図18に示すように、前輪ユニット12は、車台ユニット4のベースプレート20(図2参照)の前部下方において、前側支持部材22に取り付けられている。前輪ユニット12は、右前輪ユニット12aと、左前輪ユニット12bを備えている。右前輪ユニット12aは、右前輪192と、右側ギヤハウジング194と、右側モータハウジング196と、右側キングピン198と、右側スリーブ200と、右上側アーム202と、右下側アーム204と、右側緩衝部材206と、右側操舵プレート208を備えている。左前輪ユニット12bは、左前輪212と、左側ギヤハウジング214と、左側モータハウジング216と、左側キングピン218と、左側スリーブ220と、左上側アーム222と、左下側アーム224と、左側緩衝部材226と、左側操舵プレート228を備えている。なお、以下の説明では、右側ギヤハウジング194と、右側キングピン198と、右側スリーブ200と、右側操舵プレート208を総称して右側保持部材195ともいい、左側ギヤハウジング214と、左側キングピン218と、左側スリーブ220と、左側操舵プレート228を総称して左側保持部材215ともいう。また、右側保持部材195と、右上側アーム202と、右下側アーム204と、右側緩衝部材206と、左側保持部材215と、左上側アーム222と、左下側アーム224と、左側緩衝部材226と、操舵ユニット10を総称して、懸架機構11ともいう。
【0085】
図23に示すように、右側ギヤハウジング194は、右前輪192の左側に配置されている。右側モータハウジング196は、右側ギヤハウジング194の左部に固定されている。図24に示すように、右側モータハウジング196の内部には、右前輪モータ232が収容されている。右前輪モータ232は、例えば、インナロータ型のブラシレスDCモータである。右前輪モータ232は、駆動制御回路基板46(図10参照)に電気的に接続されている。右前輪モータ232は、左右方向に延びる右前輪モータシャフト232aと、右前輪モータシャフト232aの回転を検出するホールセンサ482(図32参照)を備えている。右前輪モータシャフト232aは、左端近傍において右側モータハウジング196に回転可能に保持されており、右端近傍において右側ギヤハウジング194に回転可能に保持されている。右前輪192は、左方に延びる右前輪アクスル192aを備えている。右前輪アクスル192aは、左端近傍において右側ギヤハウジング194に回転可能に保持されている。右側ギヤハウジング194の内部には、遊星歯車機構234が収容されている。遊星歯車機構234は、右前輪モータシャフト232aの回転を減速して右前輪アクスル192aに伝達する。右前輪モータ232が駆動すると、右前輪モータシャフト232aの回転が遊星歯車機構234を介して右前輪アクスル192aに伝達して、右前輪192が回転する。
【0086】
右側キングピン198は、右側ギヤハウジング194の上部に固定されている。右側キングピン198は、上下方向に沿って延びている。右側キングピン198の上部は、右側スリーブ200の内部に入り込んでいる。右側キングピン198は、右側スリーブ200の上端近傍と下端近傍において、右側スリーブ200に回転可能に保持されている。図23に示すように、右側スリーブ200の上部には、右上側アーム202の右端が、前後方向に沿った回動軸周りに回動可能に連結している。右側スリーブ200の下部には、右下側アーム204の右端が、前後方向に沿った回動軸周りに回動可能に連結している。図18に示すように、右上側アーム202の左端は、前側支持部材22の右上側連結部22aに、前後方向に沿った回動軸周りに回動可能に連結している。右下側アーム204の左端は、前側支持部材22の右下側連結部22bに、前後方向に沿った回動軸周りに回動可能に連結している。このため、右側スリーブ200は、前側支持部材22に、右上側アーム202と右下側アーム204の可動範囲内で移動可能に支持されている。
【0087】
右側緩衝部材206は、ダンパ206aと、コイルバネ206bを備えている。右側緩衝部材206の上端は、前側支持部材22の前面に、前後方向に沿った回動軸周りに回動可能に連結している。右側緩衝部材206の下端は、右下側アーム204の前面に、前後方向に沿った回動軸周りに回動可能に連結している。このため、右前輪192が前側支持部材22に対して上下方向に移動する際には、ダンパ206aによる減衰力と、コイルバネ206bによる弾性復元力により、右前輪192からの衝撃や振動が車台ユニット4に伝達することが抑制される。
【0088】
図23に示すように、右側操舵プレート208は、右側キングピン198の下端近傍に固定されている。右側操舵プレート208の左前端には、右側タイロッド172の前端が、右側タイロッド172の長手方向に直交する二軸周りに回動可能に連結されている。右前輪ユニット12aを上方から見た時に、右側タイロッド172は、右上側アーム202および右下側アーム204に対して交差している。前輪ユニット12が右方向(または左方向)に操舵される場合には、操舵プレート170(図19参照)の後端が右方向(または左方向)に移動し、それによって右側操舵プレート208と、右側キングピン198と、右側ギヤハウジング194と、右側モータハウジング196と、右前輪192が、右側キングピン198の軸方向を転舵軸として、右側スリーブ200を上方から見た時に、右側スリーブ200に対して時計回りに(または反時計回りに)回動する。
【0089】
図18に示すように、左前輪ユニット12bは、右前輪ユニット12aと左右対称の構成を備えている。以下では、右前輪ユニット12aを図示した図23図24を参照しながら、左前輪ユニット12bについて説明する。
【0090】
図23に示すように、左側ギヤハウジング214は、左前輪212の右側に配置されている。左側モータハウジング216は、左側ギヤハウジング214の右部に固定されている。図24に示すように、左側モータハウジング216の内部には、左前輪モータ242が収容されている。左前輪モータ242は、例えば、インナロータ型のブラシレスDCモータである。左前輪モータ242は、駆動制御回路基板48(図10参照)に電気的に接続されている。左前輪モータ242は、左右方向に延びる左前輪モータシャフト242aと、左前輪モータシャフト242aの回転を検出するホールセンサ484(図32参照)を備えている。左前輪モータシャフト242aは、右端近傍において左側モータハウジング216に回転可能に保持されており、左端近傍において左側ギヤハウジング214に回転可能に保持されている。左前輪212は、右方に延びる左側アクスル212aを備えている。左側アクスル212aは、右端近傍において左側ギヤハウジング214に回転可能に保持されている。左側ギヤハウジング214の内部には、遊星歯車機構244が収容されている。遊星歯車機構244は、左前輪モータシャフト242aの回転を減速して左側アクスル212aに伝達する。左前輪モータ242が駆動すると、左前輪モータシャフト242aの回転が遊星歯車機構244を介して左側アクスル212aに伝達して、左前輪212が回転する。
【0091】
左側キングピン218は、左側ギヤハウジング214の上部に固定されている。左側キングピン218は、上下方向に沿って延びている。左側キングピン218の上部は、左側スリーブ220の内部に入り込んでいる。左側キングピン218は、左側スリーブ220の上端近傍と下端近傍において、左側スリーブ220に回転可能に保持されている。図23に示すように、左側スリーブ220の上部には、左上側アーム222の左端が、前後方向に沿った回動軸周りに回動可能に連結している。左側スリーブ220の下部には、左下側アーム224の左端が、前後方向に沿った回動軸周りに回動可能に連結している。図18に示すように、左上側アーム222の右端は、前側支持部材22の左上側連結部22cに、前後方向に沿った回動軸周りに回動可能に連結している。左下側アーム224の右端は、前側支持部材22の左下側連結部22dに、前後方向に沿った回動軸周りに回動可能に連結している。このため、左側スリーブ220は、前側支持部材22に、左上側アーム222と左下側アーム224の可動範囲内で移動可能に支持されている。
【0092】
左側緩衝部材226は、ダンパ226aと、コイルバネ226bを備えている。左側緩衝部材226の上端は、前側支持部材22の前面に、前後方向に沿った回動軸周りに回動可能に連結している。左側緩衝部材226の下端は、左下側アーム224の前面に、前後方向に沿った回動軸周りに回動可能に連結している。このため、左前輪212が前側支持部材22に対して上下方向に移動する際には、ダンパ226aによる減衰力と、コイルバネ226bによる弾性復元力により、左前輪212からの衝撃や振動が車台ユニット4に伝達することが抑制される。
【0093】
図23に示すように、左側操舵プレート228は、左側キングピン218の下端近傍に固定されている。左側操舵プレート228の右前端には、左側タイロッド174の前端が、左側タイロッド174の長手方向に直交する二軸周りに回動可能に連結されている。左前輪ユニット12bを上方から見た時に、左側タイロッド174は、左上側アーム222および左下側アーム224に対して交差している。前輪ユニット12が右方向(または左方向)に操舵される場合には、操舵プレート170(図19参照)の後端が右方向(または左方向)に移動し、それによって左側操舵プレート228と、左側キングピン218と、左側ギヤハウジング214と、左側モータハウジング216と、左前輪212が、左側キングピン218の軸方向を転舵軸として、左側スリーブ220を上方から見た時に、左側スリーブ220に対して時計回りに(または反時計回りに)回動する。
【0094】
(後輪ユニット14)
図25に示すように、後輪ユニット14は、車台ユニット4のベースプレート20(図2参照)の後部下方において、後側支持部材24に取り付けられている。後輪ユニット14は、右後輪ユニット14aと、左後輪ユニット14bを備えている。右後輪ユニット14aは、右後輪252と、右側ギヤハウジング254と、右側モータハウジング256と、右側ブレーキハウジング258と、右側クラッチレバー260と、右側緩衝部材264を備えている。左後輪ユニット14bは、左後輪272と、左側ギヤハウジング274と、左側モータハウジング276と、左側ブレーキハウジング278と、左側クラッチレバー280と、左側緩衝部材284を備えている。
【0095】
図26に示すように、右側ギヤハウジング254は、右後輪252の左側に配置されており、右後輪252の右後輪アクスル(図示せず)を回転可能に保持している。右側ギヤハウジング254は、右後輪アクスルから前方上方に延びている。右側モータハウジング256は、右側ギヤハウジング254の前方上方の左部に固定されている。右側ブレーキハウジング258は、右側モータハウジング256の左部に固定されている。右側モータハウジング256の内部には、右後輪モータ486(図30参照)が収容されている。右後輪モータ486は、例えば、インナロータ型のブラシレスDCモータである。右後輪モータ486は、駆動制御回路基板46(図10参照)に電気的に接続されている。右後輪モータ486は、左右方向に延びる右後輪モータシャフト(図示せず)と、右後輪モータシャフトの回転を検出するホールセンサ488(図32参照)を備えている。右側ブレーキハウジング258には、右後輪電磁ブレーキ490(図30参照)が収容されている。右後輪電磁ブレーキ490は、右後輪モータシャフトに連結している。右後輪電磁ブレーキ490は、右後輪モータシャフトの回転を許容する状態と回転を禁止する状態の間で切り換わる。右後輪電磁ブレーキ490は、駆動制御回路基板46(図10参照)に電気的に接続されている。パーキングモードにおいては、右後輪電磁ブレーキ490は、右後輪モータシャフトの回転を禁止する状態で維持される。
【0096】
右側ギヤハウジング254の内部には、平歯車機構(図示せず)と、クラッチ機構(図示せず)が収容されている。平歯車機構は、右後輪モータシャフトの回転を減速して右後輪アクスルに伝達する。右後輪モータ486が駆動すると、右後輪モータシャフトの回転が平歯車機構を介して右後輪アクスルに伝達して、右後輪252が回転する。クラッチ機構は、右側クラッチレバー260への操作に応じて、右後輪モータシャフトから右後輪アクスルへの回転の伝達を許容する状態と遮断する状態の間で切り換わる。このため、右後輪電磁ブレーキ490が右後輪モータシャフトの回転を禁止した時に、クラッチ機構を右後輪モータシャフトから右後輪アクスルへの回転の伝達を遮断する状態に切り換えることで、右後輪252がロックしてしまうことを抑制することができる。
【0097】
右側ギヤハウジング254の前上端近傍には、連結部254aが設けられている。連結部254aは、後側支持部材24に、左右方向に沿った回動軸周りに回動可能に連結している。右側緩衝部材264は、ダンパ264aと、コイルバネ264bを備えている。右側緩衝部材264の上端は、連結部254aよりも後方上方で、後側支持部材24に、左右方向に沿った回動軸周りに回動可能に連結している。右側緩衝部材264の下端は、右側ギヤハウジング254の後上面に、左右方向に沿った回動軸周りに回動可能に連結している。このため、右後輪252が後側支持部材24に対して上下方向に移動する際には、ダンパ264aによる減衰力と、コイルバネ264bによる弾性復元力により、右後輪252からの衝撃や振動が車台ユニット4に伝達することが抑制される。
【0098】
図25に示すように、左後輪ユニット14bは、右後輪ユニット14aと左右対称の構成を備えている。以下では、右後輪ユニット14aを図示した図26を参照しながら、左後輪ユニット14bについて説明する。
【0099】
図26に示すように、左側ギヤハウジング274は、左後輪272の右側に配置されており、左後輪272の左後輪アクスル(図示せず)を回転可能に保持している。左側ギヤハウジング274は、左後輪アクスルから前方上方に延びている。左側モータハウジング276は、左側ギヤハウジング274の前方上方の右部に固定されている。左側ブレーキハウジング278は、左側モータハウジング276の右部に固定されている。左側モータハウジング276の内部には、左後輪モータ492(図30参照)が収容されている。左後輪モータ492は、例えば、インナロータ型のブラシレスDCモータである。左後輪モータ492は、駆動制御回路基板48(図10参照)に電気的に接続されている。左後輪モータ492は、左右方向に延びる左後輪モータシャフト(図示せず)と、左後輪モータシャフトの回転を検出するホールセンサ494(図32参照)を備えている。左側ブレーキハウジング278には、左後輪電磁ブレーキ496(図30参照)が収容されている。左後輪電磁ブレーキ496は、左後輪モータシャフトに連結している。左後輪電磁ブレーキ496は、左後輪モータシャフトの回転を許容する状態と回転を禁止する状態の間で切り換わる。左後輪電磁ブレーキ496は、駆動制御回路基板48(図10参照)に電気的に接続されている。駆動制御回路基板48は、左後輪電磁ブレーキ496の動作を制御する。パーキングモードにおいては、左後輪電磁ブレーキ496は、左後輪モータシャフトの回転を禁止する状態で維持される。
【0100】
左側ギヤハウジング274の内部には、平歯車機構(図示せず)と、クラッチ機構(図示せず)が収容されている。平歯車機構は、左後輪モータシャフトの回転を減速して左後輪アクスルに伝達する。左後輪モータ492が駆動すると、左後輪モータシャフトの回転が平歯車機構を介して左後輪アクスルに伝達して、左後輪272が回転する。クラッチ機構は、左側クラッチレバー280への操作に応じて、左後輪モータシャフトから左後輪アクスルへの回転の伝達を許容する状態と遮断する状態の間で切り換わる。このため、左後輪電磁ブレーキ496が左後輪モータシャフトの回転を禁止した時に、クラッチ機構を左後輪モータシャフトから左後輪アクスルへの回転の伝達を遮断する状態に切り換えることで、左後輪272がロックしてしまうことを抑制することができる。
【0101】
左側ギヤハウジング274の前上端近傍には、連結部274aが設けられている。連結部274aは、後側支持部材24に、左右方向に沿った回動軸周りに回動可能に連結している。左側緩衝部材284は、ダンパ284aと、コイルバネ284bを備えている。左側緩衝部材284の上端は、連結部274aよりも後方上方で、後側支持部材24に、左右方向に沿った回動軸周りに回動可能に連結している。左側緩衝部材284の下端は、左側ギヤハウジング274の後上面に、左右方向に沿った回動軸周りに回動可能に連結している。このため、左後輪272が後側支持部材24に対して上下方向に移動する際には、ダンパ284aによる減衰力と、コイルバネ284bによる弾性復元力により、左後輪272からの衝撃や振動が車台ユニット4に伝達することが抑制される。
【0102】
(バンパユニット16)
図1に示すように、バンパユニット16は、車台ユニット4のベースプレート20の前部下方において、前側支持部材22に取り付けられている。図27に示すように、バンパユニット16は、ベース部材500と、ハウジング502と、右側前照灯504と、左側前照灯506と、バンパフレーム508と、バンパ支持部材510,512と、直動パイプ514,516と、コイルバネ518,520と、直動軸受522,524(図28参照)と、当接プレート526,528(図29参照)と、衝突検知スイッチ530,532(図29参照)を備えている。
【0103】
ベース部材500は、車台ユニット4の前側支持部材22(図2参照)に固定されている。図27に示すように、ハウジング502は、ベース部材500に固定されている。ハウジング502は、左右方向に長手方向を有する略直方体の箱型形状を有する収容部502aと、収容部502aの右端に形成された右側支持部502bと、収容部502aの左端部に形成された左側支持部502cを備えている。右側前照灯504は、右側支持部502bに固定されている。左側前照灯506は、左側支持部502cに固定されている。右側前照灯504と左側前照灯506は、それぞれ、運搬車2の前方を照明する。右側前照灯504と左側前照灯506は、それぞれ、メイン制御回路基板44(図9参照)に電気的に接続されている。
【0104】
バンパフレーム508は、鋼製の丸パイプから構成されている。バンパ支持部材510,512は、それぞれ、バンパフレーム508よりも後方に配置されており、バンパフレーム508に固定されている。バンパ支持部材510は、ボルト534a,534bおよびナット536a,536b(図28参照)を介して、直動パイプ514に取り付けられている。バンパ支持部材512は、ボルト538a,538bおよびナット540a,540bを介して、直動パイプ516に取り付けられている。
【0105】
図28に示すように、直動パイプ514は、長手方向が前後方向に沿うように配置されている。直動パイプ514の前端近傍には、前後方向に並んで配置されており、それぞれが前後方向に長手方向を有する、長孔514a,514bが形成されている。ボルト534aは、長孔514aを貫通しており、ボルト534bは、長孔514bを貫通している。このため、バンパ支持部材510は、ボルト534a,534bが長孔514a,514bの前縁に当接する位置と、ボルト534a,534bが長孔514a,514bの後縁に当接する位置の間で前後方向に移動可能に、直動パイプ514に支持されている。同様に、直動パイプ516は、長手方向が前後方向に沿うように配置されている。直動パイプ516の前端近傍には、前後方向に並んで配置されており、それぞれが前後方向に長手方向を有する、長孔516a,516bが形成されている。ボルト538aは、長孔516aを貫通しており、ボルト538bは、長孔516bを貫通している。このため、バンパ支持部材512は、ボルト538a,538bが長孔516a,516bの前縁に当接する位置と、ボルト538a,538bが長孔516a,516bの後縁に当接する位置の間で前後方向に移動可能に、直動パイプ516に支持されている。
【0106】
直動パイプ514,516の後端は、ベース部材500とハウジング502の前壁を貫通して、ハウジング502の内部に入り込んでいる。直動パイプ514,516は、後端近傍において、直動軸受522,524に前後方向に移動可能に支持されている。直動軸受522,524は、ハウジング502の前壁に固定されている。直動パイプ514,516には、コイルバネ518,520が取り付けられている。コイルバネ518,520の前端は、バンパ支持部材510,512の後面に当接しており、コイルバネ518,520の後端は、ベース部材500の前面に当接している。コイルバネ518,520は、ベース部材500に対して、バンパ支持部材510,512を前方に向けて付勢している。
【0107】
図29に示すように、直動パイプ514,516の後端には、当接プレート526,528が固定されている。当接プレート526,528は、径方向外側に延びる当接部526a,528aを備えている。当接部526a,528aの前方には、衝突検知スイッチ530,532が配置されている。バンパフレーム508に外力が作用していない状態では、コイルバネ518,520の付勢力によって、直動パイプ514,516はハウジング502に対して前方に移動している。この場合、当接部526a,528aが衝突検知スイッチ530,532に当接しており、衝突検知スイッチ530,532はオフとなっている。バンパフレーム508に後方に向けた外力が作用すると、コイルバネ518,520の付勢力に抗して、直動パイプ514,516はハウジング502に対して後方に移動する。この場合、当接部526a,528aが衝突検知スイッチ530,532から離反して、衝突検知スイッチ530,532はオンとなる。衝突検知スイッチ530,532は、それぞれ、メイン制御回路基板44(図9参照)に電気的に接続されている。
【0108】
(運搬車2の回路構成)
図30に示すように、制御電源回路432は、主電源スイッチ96に電気的に接続されている。制御電源回路432は、主電源スイッチ96にオン操作が行われた場合に、バッテリパック38からの電力の供給を許容し、主電源スイッチ96にオフ操作が行われた場合に、バッテリパック38からの電力の供給を禁止する。制御電源回路432は、運搬車2の主電源がオンの場合に、バッテリパック38から供給される電力を、バッテリパック38の電圧(Vbat)から降圧することなく、遮断回路438,440,442へ供給する。また、制御電源回路432は、運搬車2の主電源がオンの場合に、バッテリパック38から供給される電力を、バッテリパック38の電圧(Vbat)から所定の電圧(Vcc)まで降圧して、メインMCU434,切換回路436,自動運転MCU430,モータMCU444,446,448,450,452等の各電子部品に供給する。以下では、バッテリパック38の電圧(Vbat)の電位をバッテリ電位ともいい、制御電源回路432によって降圧された電圧(Vcc)の電位を電源電位ともいう。
【0109】
メインMCU434は、運搬車2の全般的な動作を制御する。メインMCU434には、主電源スイッチ96、速度切換スイッチ104、警笛スイッチ106、LED476、ブザー478、操舵角センサ166、過積載検知センサ320a,320b,320c,320d、右側前照灯504、左側前照灯506が電気的に接続されている。また、メインMCU434には、モード切換スイッチ98、トリガスイッチ100、進行方向切換スイッチ102、緊急停止スイッチ308、衝突検知スイッチ530,532、回動角度センサ88が、切換回路436を介して、電気的に接続されている。さらに、メインMCU434には、無線I/F428が、自動運転MCU430を介して、電気的に接続されている。自動運転MCU430は、無線I/F428からの信号に基づいて、運搬車2が自動モードで行う追従運転やリモコン運転の際に運搬車2が実現すべき走行軌道を生成して、メインMCU434へ指令値として出力する。
【0110】
モータMCU444,446,448,450,452は、メインMCU434に電気的に接続されている。モータMCU444は、モータドライバ454を介して右前輪モータ232の動作を制御するとともに、ブレーキ回路468、冷却ファン50dの動作を制御する。モータMCU446は、モータドライバ456を介して左前輪モータ242の動作を制御するとともに、ブレーキ回路470、冷却ファン52dの動作を制御する。モータMCU448は、モータドライバ458を介して右後輪モータ486の動作を制御するとともに、ブレーキ回路472、冷却ファン54dの動作を制御する。また、モータMCU448は、電磁ブレーキドライバ464を介して右後輪電磁ブレーキ490の動作を制御する。モータMCU450は、モータドライバ460を介して左後輪モータ492の動作を制御するとともに、ブレーキ回路474、冷却ファン56dの動作を制御する。また、モータMCU450は、電磁ブレーキドライバ466を介して左後輪電磁ブレーキ496の動作を制御する。モータMCU452は、モータドライバ462を介して操舵モータ176の動作を制御する。
【0111】
遮断回路438は、制御電源回路432からモータドライバ454,456,458,460への電力供給経路上に設けられている。遮断回路438は、制御電源回路432からモータドライバ454,456,458,460への電力供給を許容する状態と禁止する状態の間で切り換わる。遮断回路440は、制御電源回路432から電磁ブレーキドライバ464,466への電力供給経路上に設けられている。遮断回路440は、制御電源回路432から電磁ブレーキドライバ464,466への電力供給を許容する状態と禁止する状態の間で切り換わる。遮断回路442は、制御電源回路432からモータドライバ462への電力供給経路上に設けられている。遮断回路442は、制御電源回路432からモータドライバ462への電力供給を許容する状態と禁止する状態の間で切り換わる。遮断回路438,440,442は、いずれも、メインMCU434と切換回路436に電気的に接続されている。
【0112】
(切換回路436の構成)
図31に示すように、切換回路436は、キャンセル回路542,544,546と、遅延回路548と、ANDゲート550,552と、ORゲート554,556と、NOTゲート558,560,562,564,566と、抵抗器568,570,572,574,576,578を備えている。
【0113】
モード切換スイッチ98は、接地端子98aと、手動モード端子98bと、自動モード端子98cを備えている。接地端子98aは、接地電位に接続されている。手動モード端子98bは、抵抗器568を介して電源電位に接続されているとともに、メインMCU434に接続されている。自動モード端子98cは、抵抗器570を介して電源電位に接続されているとともに、メインMCU434に接続されている。
【0114】
ユーザがモード切換スイッチ98において手動モードを選択した場合、接地端子98aと手動モード端子98bは導通となり、接地端子98aと自動モード端子98cは非導通となる。この場合、手動モード端子98bはL電位となり、自動モード端子98cはH電位となる。メインMCU434は、手動モード端子98bからの入力がL電位となると、ユーザによって手動モードが選択されたと認識する。ユーザがモード切換スイッチ98において自動モードを選択した場合、接地端子98aと手動モード端子98bは非導通となり、接地端子98aと自動モード端子98cは導通となる。この場合、手動モード端子98bはH電位となり、自動モード端子98cはL電位となる。メインMCU434は、自動モード端子98cからの入力がL電位となると、ユーザによって自動モードが選択されたと認識する。ユーザがモード切換スイッチ98においてパーキングモードを選択した場合、接地端子98aと手動モード端子98bは非導通となり、接地端子98aと自動モード端子98cも非導通となる。この場合、手動モード端子98bはH電位となり、自動モード端子98cもH電位となる。メインMCU434は、手動モード端子98bからの入力と自動モード端子98cからの入力の両方がH電位となると、ユーザによってパーキングモードが選択されたと認識する。
【0115】
キャンセル回路542は、トランジスタ542aと、抵抗器542b,542c,542dを備えている。トランジスタ542aは、PNP型のトランジスタである。抵抗器542bは、一端がトランジスタ542aのエミッタに接続されており、他端がトランジスタ542aのベースに接続されている。抵抗器542cは、一端がトランジスタ542aのベースに接続されており、他端がモード切換スイッチ98の自動モード端子98cに接続されている。抵抗器542dは、一端が回動角度センサ88に接続されており、他端がトランジスタ542aのコレクタに接続されている。また、トランジスタ542aのエミッタは電源電位に接続されており、トランジスタ542aのコレクタはメインMCU434に接続されている。
【0116】
回動角度センサ88は、回動角度に応じた電位をキャンセル回路542に出力する。自動モード端子98cがH電位の場合には、トランジスタ542aはオフであり、メインMCU434には回動角度センサ88から出力された電位が入力される。自動モード端子98cがL電位の場合には、トランジスタ542aはオンとなり、回動角度センサ88から出力された電位に関わらず、メインMCU434にはH電位が入力される。すなわち、キャンセル回路542は、モード切換スイッチ98において自動モードが選択されている場合に、回動角度センサ88からの入力信号をキャンセルする。
【0117】
トリガスイッチ100は、接地端子100aと、トリガ端子100bと、可変抵抗器100cを備えている。接地端子100aは、接地電位に接続されている。トリガ端子100bは、抵抗器572を介して電源電位に接続されている。ユーザがトリガスイッチ100をオン操作していない場合、接地端子100aとトリガ端子100bは非導通となり、トリガ端子100bはH電位となる。ユーザがトリガスイッチ100をオン操作している場合、接地端子100aとトリガ端子100bは導通となり、トリガ端子100bはL電位となる。トリガスイッチ100の可変抵抗器100cは、一端が接地電位に接続されており、他端が電源電位に接続されており、ユーザがトリガスイッチ100をオン操作した時の押し込み量に応じた電位をキャンセル回路544に出力する。
【0118】
キャンセル回路544は、トランジスタ544aと、抵抗器544b,544c,544dを備えている。トランジスタ544aは、PNP型のトランジスタである。抵抗器544bは、一端がトランジスタ544aのエミッタに接続されており、他端がトランジスタ544aのベースに接続されている。抵抗器544cは、一端がトランジスタ544aのベースに接続されており、他端がモード切換スイッチ98の自動モード端子98cに接続されている。抵抗器544dは、一端がトリガスイッチ100の可変抵抗器100cに接続されており、他端がトランジスタ544aのコレクタに接続されている。また、トランジスタ544aのエミッタは電源電位に接続されており、トランジスタ544aのコレクタはメインMCU434に接続されている。
【0119】
自動モード端子98cがH電位の場合には、トランジスタ544aはオフであり、メインMCU434には可変抵抗器100cから出力された電位が入力される。この場合、メインMCU434は、可変抵抗器100cから出力された電位に基づいて、トリガスイッチ100に対するユーザの操作を認識する。自動モード端子98cがL電位の場合には、トランジスタ544aはオンとなり、可変抵抗器100cから出力された電位に関わらず、メインMCU434にはH電位が入力される。すなわち、キャンセル回路544は、モード切換スイッチ98において自動モードが選択されている場合に、トリガスイッチ100の可変抵抗器100cからの入力信号をキャンセルする。
【0120】
トリガスイッチ100のトリガ端子100bは、NOTゲート558を介して、ORゲート554の第1入力端子に接続している。モード切換スイッチ98の自動モード端子98cは、NOTゲート560を介して、ORゲート554の第2入力端子に接続している。ORゲート554の出力端子は、ANDゲート550の第1入力端子に接続している。ANDゲート550の出力端子は、遮断回路438に接続されている。後述するように、遮断回路438は、ANDゲート550の出力端子がH電位の場合に、モータドライバ454,456,458,460への電力供給を許容し、ANDゲート550の出力端子がL電位の場合に、モータドライバ454,456,458,460への電力供給を遮断する。
【0121】
後述するように、ANDゲート550の第2入力端子には、通常はH電位が入力される。この場合、自動モード端子98cがH電位であれば、トリガ端子100bがH電位の時に、ORゲート554の出力端子とANDゲート550の出力端子はL電位となり、トリガ端子100bがL電位の時に、ORゲート554の出力端子とANDゲート550の出力端子はH電位となる。このため、モード切換スイッチ98で自動モードが選択されていない場合、トリガスイッチ100がオン操作されていると遮断回路438にH電位が入力され、トリガスイッチ100がオン操作されていないと遮断回路438にL電位が入力される。これに対して、自動モード端子98cがL電位であれば、トリガ端子100bの電位に関わらず、ORゲート554の出力端子とANDゲート550の出力端子はH電位となる。このため、モード切換スイッチ98で自動モードが選択されている場合、トリガスイッチ100へのオン操作の有無に関わらず、切換回路436から遮断回路438にH電位が入力される。
【0122】
ANDゲート550の出力端子は、遅延回路548の入力端子にも接続されている。遅延回路548の出力端子は、遮断回路440に接続されている。後述するように、遮断回路440は、遅延回路548の出力端子がH電位の場合に、電磁ブレーキドライバ464,466への電力供給を許容し、遅延回路548の出力端子がL電位の場合に、電磁ブレーキドライバ464,466への電力供給を遮断する。遅延回路548は、ダイオード548aと、抵抗器548bと、キャパシタ548cと、バッファゲート548dを備えている。ダイオード548aのアノードは、遅延回路548の入力端子に接続されている。ダイオード548aのカソードは、バッファゲート548dの入力端子に接続されている。抵抗器548bは、一端がダイオード548aのカソードに接続されており、他端が接地電位に接続されている。キャパシタ548cは、一端がダイオード548aのカソードに接続されており、他端が接地電位に接続されている。バッファゲート548dの出力端子は、遅延回路548の出力端子に接続されている。ANDゲート550の出力端子がL電位からH電位に切り換わる場合、抵抗器548bとキャパシタ548cの時定数により定まる所定の遅延時間が経過した後に、遅延回路548の出力端子もL電位からH電位に切り換わる。また、ANDゲート550の出力端子がH電位からL電位に切り換わる場合、抵抗器548bとキャパシタ548cの時定数により定まる所定の遅延時間が経過した後に、遅延回路548の出力端子もH電位からL電位に切り換わる。
【0123】
緊急停止スイッチ308は、接地端子308aと、緊急停止端子308bを備えている。接地端子308aは、接地電位に接続されている。緊急停止端子308bは、抵抗器574を介して電源電位に接続されているとともに、メインMCU434に接続されている。緊急停止スイッチ308がオフの場合に、接地端子308aと緊急停止端子308bは導通となり、緊急停止端子308bはL電位となる。緊急停止スイッチ308がオンの場合に、接地端子308aと緊急停止端子308bは非導通となり、緊急停止端子308bはH電位となる。メインMCU434は、緊急停止端子308bからの入力がH電位となると、ユーザによって緊急停止スイッチ308がオンされたと認識する。
【0124】
衝突検知スイッチ530は、接地端子530aと、衝突検知端子530bを備えている。衝突検知スイッチ532は、接地端子532aと、衝突検知端子532bを備えている。接地端子530aは、接地電位に接続されている。衝突検知端子530bは接地端子532aに接続されている。衝突検知端子532bは、抵抗器576を介して電源電位に接続されているとともに、メインMCU434に接続されている。衝突検知スイッチ530がオフの場合に、接地端子530aと衝突検知端子530bは導通となり、衝突検知スイッチ530がオンの場合に、接地端子530aと衝突検知端子530bは非導通となる。衝突検知スイッチ532がオフの場合に、接地端子532aと衝突検知端子532bは導通となり、衝突検知スイッチ532がオンの場合に、接地端子532aと衝突検知端子532bは非導通となる。このため、衝突検知スイッチ530,532の両方ともがオフの場合に、衝突検知端子532bはL電位となり、衝突検知スイッチ530,532の一方または両方がオンの場合に、衝突検知端子532bはH電位となる。メインMCU434は、衝突検知端子532bからの入力がH電位となると、衝突検知スイッチ530,532によって衝突が検知されたと認識する。
【0125】
進行方向切換スイッチ102は、接地端子102aと、進行方向端子102bを備えている。接地端子102aは、接地電位に接続されている。進行方向端子102bは、キャンセル回路546に接続されている。進行方向切換スイッチ102では、ユーザによって前進が選択されている場合に、接地端子102aと進行方向端子102bが非導通となり、ユーザによって後退が選択されている場合に、接地端子102aと進行方向端子102bが導通となる。
【0126】
キャンセル回路546は、トランジスタ546aと、抵抗器546b,546c,546dを備えている。トランジスタ546aは、PNP型のトランジスタである。抵抗器546bは、一端がトランジスタ546aのエミッタに接続されており、他端がトランジスタ546aのベースに接続されている。抵抗器546cは、一端がトランジスタ546aのベースに接続されており、他端がモード切換スイッチ98の自動モード端子98cに接続されている。抵抗器546dは、一端が進行方向切換スイッチ102の進行方向端子102bに接続されており、他端がトランジスタ546aのコレクタに接続されている。また、トランジスタ546aのエミッタは電源電位に接続されており、トランジスタ546aのコレクタは抵抗器578を介して電源電位に接続されているとともに、メインMCU434に接続されている。
【0127】
自動モード端子98cがH電位の場合には、トランジスタ546aはオフであり、トランジスタ546aのコレクタは、進行方向切換スイッチ102で前進が選択されていればH電位となり、進行方向切換スイッチ102で後退が選択されていればL電位となる。この場合、メインMCU434は、入力される電位に基づいて、前進と後退の何れが選択されているのかを認識する。自動モード端子98cがL電位の場合には、トランジスタ546aはオンとなり、進行方向切換スイッチ102で前進と後退の何れが選択されているかに関わらず、トランジスタ546aのコレクタはH電位となる。すなわち、キャンセル回路546は、モード切換スイッチ98において自動モードが選択されている場合に、進行方向切換スイッチ102からの入力信号をキャンセルする。
【0128】
緊急停止スイッチ308の緊急停止端子308bは、NOTゲート562を介して、ANDゲート552の第1入力端子に接続されている。衝突検知スイッチ532の衝突検知端子532bは、NOTゲート562を介して、ORゲート556の第1入力端子に接続されている。キャンセル回路546のトランジスタ546aのコレクタは、NOTゲート564を介して、ORゲート556の第2入力端子に接続されている。ORゲート556の出力端子は、ANDゲート552の第2入力端子に接続されている。ANDゲート552の出力端子は、ANDゲート550の第2入力端子に接続されているとともに、遮断回路442に接続されている。後述するように、遮断回路442は、ANDゲート552の出力端子がH電位の場合に、モータドライバ462への電力供給を許容し、ANDゲート552の出力端子がL電位の場合に、モータドライバ462への電力供給を遮断する。
【0129】
緊急停止端子308bがH電位の場合、ORゲート556の出力端子の電位に関わらず、ANDゲート552の出力端子はL電位となる。このため、緊急停止スイッチ308がオンとなった場合、モード切換スイッチ98や衝突検知スイッチ530,532、進行方向切換スイッチ102の状態に関わらず、ANDゲート550の第2入力端子にL電位が入力されるとともに、切換回路436から遮断回路442にL電位が入力される。
【0130】
緊急停止端子308bがL電位であり、ORゲート556の第2入力端子にL電位が入力される場合には、衝突検知端子532bがL電位であれば、ORゲート556の出力端子とANDゲート552の出力端子はH電位となり、衝突検知端子532bがH電位であれば、ORゲート556の出力端子とANDゲート552の出力端子はL電位となる。このため、衝突検知スイッチ530,532で衝突が検知されていないと、ANDゲート550の第2入力端子がH電位となり、切換回路436から遮断回路442にH電位が入力される。衝突検知スイッチ530,532で衝突が検知されると、ANDゲート550の第2入力端子にL電位が入力され、切換回路436から遮断回路442にL電位が入力される。すなわち、衝突検知スイッチ530,532による衝突検知が有効化される。
【0131】
緊急停止端子308bがL電位であり、ORゲート556の第2入力端子にH電位が入力される場合には、衝突検知端子532bの電位に関わらず、ORゲート556の出力端子とANDゲート552の出力端子はH電位となる。このため、衝突検知スイッチ530,532の状態に関わらず、ANDゲート550の第2入力端子にH電位が入力され、切換回路436から遮断回路442にH電位が入力される。すなわち、衝突検知スイッチ530,532による衝突検知が無効化される。
【0132】
自動モード端子98cがH電位の場合には、キャンセル回路546のトランジスタ546aはオフであるため、進行方向端子102bがH電位であれば、ORゲート556の第2入力端子にL電位が入力され、進行方向端子102bがL電位であれば、ORゲート556の第2入力端子にH電位が入力される。すなわち、モード切換スイッチ98で自動モードが選択されていない場合、進行方向切換スイッチ102で前進が選択されていると、衝突検知スイッチ530,532による衝突検知が有効化され、進行方向切換スイッチ102で後退が選択されていると、衝突検知スイッチ530,532による衝突検知が無効化される。
【0133】
自動モード端子98cがL電位の場合には、キャンセル回路546のトランジスタ546aはオンであるため、進行方向端子102bの電位に関わらず、ORゲート556の第2入力端子にL電位が入力される。すなわち、モード切換スイッチ98で自動モードが選択されている場合、進行方向切換スイッチ102の状態に関わらず、衝突検知スイッチ530,532による衝突検知が有効化される。
【0134】
(遮断回路438の構成)
図32に示すように、遮断回路438は、スイッチング素子438aと、ドライバIC438bと、ANDゲート438cを備えている。スイッチング素子438aは、例えば、電界効果トランジスタであり、詳しくは、絶縁ゲートを有するnチャネル型のMOSFETである。スイッチング素子438aのドレインは制御電源回路432のバッテリ電位(Vbat)出力に接続されており、スイッチング素子438aのソースはモータドライバ454,456,458,460に接続されており、スイッチング素子438aのゲートはドライバIC438bに接続されている。ANDゲート438cの第1入力端子は、切換回路436に接続されており、ANDゲート438cの第2入力端子は、メインMCU434に接続されており、ANDゲート438cの出力端子は、ドライバIC438bに接続されている。ドライバIC438bは、ANDゲート438cの出力端子がH電位の場合、すなわちANDゲート438cの第1入力端子と第2入力端子の両方がH電位の場合に、スイッチング素子438aを導通とする。ドライバIC438bは、ANDゲート438cの出力端子がL電位の場合、すなわちANDゲート438cの第1入力端子と第2入力端子の一方または両方がL電位の場合に、スイッチング素子438aを非導通とする。
【0135】
(モータドライバ454,456,458,460の構成)
モータドライバ454,456,458,460は、U相出力端子、V相出力端子およびW相出力端子を介して、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492と接続されている。また、モータドライバ454,456,458,460は、ブレーキ回路出力端子を介して、ブレーキ回路468,470,472,474と接続されている。
【0136】
モータドライバ454,456,458,460は、第1スイッチング素子454a,456a,458a,460aと、第2スイッチング素子454b,456b,458b,460bと、第3スイッチング素子454c,456c,458c,460cと、第4スイッチング素子454d,456d,458d,460dと、第5スイッチング素子454e,456e,458e,460eと、第6スイッチング素子454f,456f,458f,460fと、第1ダイオード454g,456g,458g,460gと、第2ダイオード454h,456h,458h,460hと、第3ダイオード454i,456i,458i,460iを備えている。第1スイッチング素子454a,456a,458a,460aと、第2スイッチング素子454b,456b,458b,460bと、第3スイッチング素子454c,456c,458c,460cと、第4スイッチング素子454d,456d,458d,460dと、第5スイッチング素子454e,456e,458e,460eと、第6スイッチング素子454f,456f,458f,460fは、例えば、電界効果トランジスタであり、詳しくは、絶縁ゲートを有するnチャネル型のMOSFETである。
【0137】
第1スイッチング素子454a,456a,458a,460aのドレインは遮断回路438のスイッチング素子438aのソースに接続されており、第1スイッチング素子454a,456a,458a,460aのソースはU相出力端子に接続されており、第1スイッチング素子454a,456a,458a,460aのゲートはモータMCU444,446,448,450に接続されている。第2スイッチング素子454b,456b,458b,460bのドレインはU相出力端子に接続されており、第2スイッチング素子454b,456b,458b,460bのソースは接地電位に接続されており、第2スイッチング素子454b,456b,458b,460bのゲートはモータMCU444,446,448,450に接続されている。
【0138】
第3スイッチング素子454c,456c,458c,460cのドレインは遮断回路438のスイッチング素子438aのソースに接続されており、第3スイッチング素子454c,456c,458c,460cのソースはV相出力端子に接続されており、第3スイッチング素子454c,456c,458c,460cのゲートはモータMCU444,446,448,450に接続されている。第4スイッチング素子454d,456d,458d,460dのドレインはV相出力端子に接続されており、第4スイッチング素子454d,456d,458d,460dのソースは接地電位に接続されており、第4スイッチング素子454d,456d,458d,460dのゲートはモータMCU444,446,448,450に接続されている。
【0139】
第5スイッチング素子454e,456e,458e,460eのドレインは遮断回路438のスイッチング素子438aのソースに接続されており、第5スイッチング素子454e,456e,458e,460eのソースはW相出力端子に接続されており、第5スイッチング素子454e,456e,458e,460eのゲートはモータMCU444,446,448,450に接続されている。第6スイッチング素子454f,456f,458f,460fのドレインはW相出力端子に接続されており、第6スイッチング素子454f,456f,458f,460fのソースは接地電位に接続されており、第6スイッチング素子454f,456f,458f,460fのゲートはモータMCU444,446,448,450に接続されている。
【0140】
モータMCU444,446,448,450には、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492のホールセンサ482,484,488,494の検出信号が入力される。モータMCU444,446,448,450は、ホールセンサ482,484,488,494からの検出信号に応じて、第1スイッチング素子454a,456a,458a,460a、第2スイッチング素子454b,456b,458b,460b、第3スイッチング素子454c,456c,458c,460c、第4スイッチング素子454d,456d,458d,460d、第5スイッチング素子454e,456e,458e,460e、第6スイッチング素子454f,456f,458f,460fのオン/オフを切り換えることによって、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492を所望の回転速度で動作させることができる。また、モータMCU444,446,448,450は、第2スイッチング素子454b,456b,458b,460bと、第4スイッチング素子454d,456d,458d,460dと、第6スイッチング素子454f,456f,458f,460fをオンに切り換えることで、いわゆる短絡ブレーキによって右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492の回転を制動することができる。
【0141】
第1ダイオード454g,456g,458g,460gのアノードは、U相出力端子に接続されており、第1ダイオード454g,456g,458g,460gのカソードは、ブレーキ回路出力端子に接続されている。第2ダイオード454h,456h,458h,460hのアノードは、V相出力端子に接続されており、第2ダイオード454h,456h,458h,460hのカソードは、ブレーキ回路出力端子に接続されている。第3ダイオード454i,456i,458i,460iのアノードは、W相出力端子に接続されており、第3ダイオード454i,456i,458i,460iのカソードは、ブレーキ回路出力端子に接続されている。
【0142】
(ブレーキ回路468,470,472,474の構成)
ブレーキ回路468,470,472,474は、スイッチング素子468a,470a,472a,472aと、抵抗器468b,470b,472b,474bと、増幅器468c,470c,472c,474cと、オペアンプ468d,470d,472d,474dと、サーミスタ468e,470e,472e,474eを備えている。
【0143】
スイッチング素子468a,470a,472a,472aは、例えば、電界効果トランジスタであり、詳しくは、絶縁ゲートを有するnチャネル型のMOSFETである。スイッチング素子468a,470a,472a,472aのドレインは、モータドライバ454,456,458,460のブレーキ回路出力端子に接続されており、スイッチング素子468a,470a,472a,472aのソースは、抵抗器468b,470b,472b,474bを介して接地電位に接続されており、スイッチング素子468a,470a,472a,472aのゲートは、オペアンプ468d,470d,472d,474dの出力端子に接続されている。スイッチング素子468a,470a,472a,472aは、ゲート電圧の大きさに応じて、ゲート電圧が変動するとドレイン電流も略線形に変動する線形モードと、ゲート電圧が変動してもドレイン電流がそれほど変動しないスイッチングモードでの動作が可能である。
【0144】
増幅器468c,470c,472c,474cは、抵抗器468b,470b,472b,474bの一端と他端の間の電圧を検出して、検出された電圧を増幅してオペアンプ468d,470d,472d,474dの反転入力端子に出力する。オペアンプ468d,470d,472d,474dの非反転入力端子は、モータMCU444,446,448,450に接続されている。オペアンプ468d,470d,472d,474dは、モータMCU444,446,448,450から非反転入力端子に入力される電流指令値と、増幅器468c,470c,472c,474cから反転入力端子に入力される電流検出値の差に応じた電圧をスイッチング素子468a,470a,472a,472aのゲートに印加する。これによって、スイッチング素子468a,470a,472a,472aが線形モードで動作し、モータMCU444,446,448,450からの電流指令値に応じた電流が抵抗器468b,470b,472b,474bを流れるように、スイッチング素子468a,470a,472a,472aの動作が制御される。すなわち、ブレーキ回路468,470,472,474は、リニアレギュレータということができる。
【0145】
右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492が回転している時に、モータドライバ454,456,458,460からブレーキ回路468,470,472,474に大電流が流れると、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に強力な制動力が作用する。このため、モータMCU444,446,448,450は、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492の回転中に、ブレーキ回路468,470,472,474によって右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に大きな制動力を作用させることができる。
【0146】
ブレーキ回路468,470,472,474によって右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に制動力を作用させると、スイッチング素子468a,470a,472a,472aと抵抗器468b,470b,472b,474bに大電流が流れるため、発熱によってブレーキ回路468,470,472,474の温度が上昇する。このため、モータMCU444,446,448,450は、ブレーキ回路468,470,472,474を動作させる際には、冷却ファン50d,52d,54d,56dを駆動して、ブレーキ回路468,470,472,474を冷却する。また、モータMCU444,446,448,450には、サーミスタ468e,470e,472e,474eが接続されている。サーミスタ468e,470e,472e,474eは、ブレーキ回路468,470,472,474の温度を検出して、モータMCU444,446,448,450に出力する。
【0147】
なお、ブレーキ回路468,470,472,474は、スイッチング素子468a,470a,472a,472aと、抵抗器468b,470b,472b,474bと、増幅器468c,470c,472c,474cと、オペアンプ468d,470d,472d,474dと、サーミスタ468e,470e,472e,474eの組を複数(例えば6つ)用意して、それらを互いに並列に接続した構成としてもよい。このような構成とすることによって、モータドライバ454,456,458,460からブレーキ回路468,470,472,474により大きな電流を流すことができ、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492により大きな制動力を作用させることができる。
【0148】
(遮断回路440の構成)
図33に示すように、遮断回路440は、スイッチング素子440aと、ドライバIC440bと、ANDゲート440cを備えている。スイッチング素子440aは、例えば、電界効果トランジスタであり、詳しくは、絶縁ゲートを有するnチャネル型のMOSFETである。スイッチング素子440aのドレインは制御電源回路432のバッテリ電位(Vbat)出力に接続されており、スイッチング素子440aのソースは電磁ブレーキドライバ464,466に接続されており、スイッチング素子440aのゲートはドライバIC440bに接続されている。ANDゲート440cの第1入力端子は、切換回路436に接続されており、ANDゲート440cの第2入力端子は、メインMCU434に接続されており、ANDゲート440cの出力端子は、ドライバIC440bに接続されている。ドライバIC440bは、ANDゲート440cの出力端子がH電位の場合、すなわちANDゲート440cの第1入力端子と第2入力端子の両方がH電位の場合に、スイッチング素子440aを導通とする。ドライバIC440bは、ANDゲート440cの出力端子がL電位の場合、すなわちANDゲート440cの第1入力端子と第2入力端子の一方または両方がL電位の場合に、スイッチング素子440aを非導通とする。
【0149】
(電磁ブレーキドライバ464,466の構成)
電磁ブレーキドライバ464,466は、正極出力端子および負極出力端子を介して、右後輪電磁ブレーキ490、左後輪電磁ブレーキ496と接続されている。電磁ブレーキドライバ464,466は、スイッチング素子464a,466aと、ダイオード464b,466bを備えている。
【0150】
スイッチング素子464a,466aは、例えば、電界効果トランジスタであり、詳しくは、絶縁ゲートを有するnチャネル型のMOSFETである。スイッチング素子464a,466aのドレインは負極出力端子に接続されており、スイッチング素子464a,466aのソースは接地電位に接続されており、スイッチング素子464a,466aのゲートはモータMCU448,450に接続されている。ダイオード464b,466bのアノードは負極出力端子に接続されており、ダイオード464b,466bのカソードは正極出力端子に接続されている。
【0151】
右後輪電磁ブレーキ490、左後輪電磁ブレーキ496は、正極出力端子と負極出力端子の間に電圧が印加されていない場合に、右後輪モータ486、左後輪モータ492へ制動力を作用させ、正極出力端子と負極出力端子の間に電圧が印加されると、右後輪モータ486、左後輪モータ492への制動力を解除する。遮断回路440のスイッチング素子440aがオンの状態で、モータMCU448,450が電磁ブレーキドライバ464,466のスイッチング素子464a,466aをオンにすると、正極出力端子と負極出力端子の間にバッテリ電圧(Vbat)が印加されて、右後輪電磁ブレーキ490、左後輪電磁ブレーキ496の制動力が解除される。なお、ダイオード464b,466bは、右後輪電磁ブレーキ490、左後輪電磁ブレーキ496からのバックサージを吸収する。
【0152】
(遮断回路442の構成)
図34に示すように、遮断回路442は、スイッチング素子442aと、ドライバIC442bと、ANDゲート442cを備えている。スイッチング素子442aは、例えば、電界効果トランジスタであり、詳しくは、絶縁ゲートを有するnチャネル型のMOSFETである。スイッチング素子442aのドレインは制御電源回路432のバッテリ電位(Vbat)出力に接続されており、スイッチング素子442aのソースはモータドライバ462に接続されており、スイッチング素子442aのゲートはドライバIC442bに接続されている。ANDゲート442cの第1入力端子は、切換回路436に接続されており、ANDゲート442cの第2入力端子は、メインMCU434に接続されており、ANDゲート442cの出力端子は、ドライバIC442bに接続されている。ドライバIC442bは、ANDゲート442cの出力端子がH電位の場合、すなわちANDゲート442cの第1入力端子と第2入力端子の両方がH電位の場合に、スイッチング素子442aを導通とする。ドライバIC442bは、ANDゲート442cの出力端子がL電位の場合、すなわちANDゲート442cの第1入力端子と第2入力端子の一方または両方がL電位の場合に、スイッチング素子442aを非導通とする。
【0153】
(モータドライバ462の構成)
モータドライバ462は、U相出力端子、V相出力端子およびW相出力端子を介して、操舵モータ176と接続されている。モータドライバ462は、第1スイッチング素子462aと、第2スイッチング素子462bと、第3スイッチング素子462cと、第4スイッチング素子462dと、第5スイッチング素子462eと、第6スイッチング素子462fを備えている。第1スイッチング素子462aと、第2スイッチング素子462bと、第3スイッチング素子462cと、第4スイッチング素子462dと、第5スイッチング素子462eと、第6スイッチング素子462fは、例えば、電界効果トランジスタであり、詳しくは、絶縁ゲートを有するnチャネル型のMOSFETである。
【0154】
第1スイッチング素子462aのドレインは遮断回路442のスイッチング素子442aのソースに接続されており、第1スイッチング素子462aのソースはU相出力端子に接続されており、第1スイッチング素子462aのゲートはモータMCU452に接続されている。第2スイッチング素子462bのドレインはU相出力端子に接続されており、第2スイッチング素子462bのソースは接地電位に接続されており、第2スイッチング素子462bのゲートはモータMCU452に接続されている。
【0155】
第3スイッチング素子462cのドレインは遮断回路442のスイッチング素子442aのソースに接続されており、第3スイッチング素子462cのソースはV相出力端子に接続されており、第3スイッチング素子462cのゲートはモータMCU452に接続されている。第4スイッチング素子462dのドレインはV相出力端子に接続されており、第4スイッチング素子462dのソースは接地電位に接続されており、第4スイッチング素子462dのゲートはモータMCU452に接続されている。
【0156】
第5スイッチング素子462eのドレインは遮断回路442のスイッチング素子442aのソースに接続されており、第5スイッチング素子462eのソースはW相出力端子に接続されており、第5スイッチング素子462eのゲートはモータMCU452に接続されている。第6スイッチング素子462fのドレインはW相出力端子に接続されており、第6スイッチング素子462fのソースは接地電位に接続されており、第6スイッチング素子462fのゲートはモータMCU452に接続されている。
【0157】
モータMCU452には、操舵モータ176のホールセンサ480の検出信号が入力される。モータMCU452は、ホールセンサ480からの検出信号に応じて、第1スイッチング素子462a、第2スイッチング素子462b、第3スイッチング素子462c、第4スイッチング素子462d、第5スイッチング素子462e、第6スイッチング素子462fのオン/オフを切り換えることによって、操舵モータ176を所望の回転速度で動作させることができる。また、モータMCU452は、第2スイッチング素子462bと、第4スイッチング素子462dと、第6スイッチング素子462fをオンに切り換えることで、いわゆる短絡ブレーキによって操舵モータ176の回転を制動することができる。
【0158】
(メインMCU434が行う処理)
運搬車2の主電源がオンになると、メインMCU434は、図35図37に示す処理を実行する。
【0159】
図35に示すように、S2では、メインMCU434は、温度保護フラグを0に設定する。
【0160】
S4では、メインMCU434は、過積載検知センサ320a,320b,320c,320dの何れかで過積載が検知されるか否かを判断する。過積載が検知される場合(YESの場合)、処理はS6へ進む。S6では、メインMCU434は、過積載検知フラグを1に設定する。S4で過積載が検知されない場合(NOの場合)、処理はS8へ進む。S8では、メインMCU434は、過積載検知フラグを0に設定する。S6またはS8の後、処理はS10へ進む。
【0161】
S10では、メインMCU434は、衝突検知スイッチ530,532の何れかで衝突が検知されるか否かを判断する。衝突が検知される場合(YESの場合)、処理はS12へ進む。S12では、メインMCU434は、衝突検知フラグを1に設定する。S10で衝突が検知されない場合(NOの場合)、処理はS14へ進む。S14では、メインMCU434は、衝突検知フラグを0に設定する。S12またはS14の後、処理はS16へ進む。
【0162】
S16では、メインMCU434は、サーミスタ468e,470e,472e,474eで検出されるブレーキ回路温度Tが、温度保護しきい値T1を超えているか否かを判断する。ブレーキ回路温度Tが温度保護しきい値T1を超えている場合(YESの場合)、処理はS18へ進む。S18では、メインMCU434は、温度保護フラグを1に設定する。S18の後、処理はS20へ進む。S16でブレーキ回路温度Tが温度保護しきい値T1を超えていない場合(NOの場合)、処理はS20へ進む。
【0163】
S20では、メインMCU434は、モード切換スイッチ98で手動モードが選択されているか否かを判断する。手動モードが選択されている場合(YESの場合)、処理はS34(図36参照)に進む。手動モードが選択されていない場合(NOの場合)、処理はS22へ進む。
【0164】
S22では、メインMCU434は、モード切換スイッチ98で自動モードが選択されているか否かを判断する。自動モードが選択されている場合(YESの場合)、処理はS72(図37参照)に進む。自動モードが選択されていない場合(NOの場合)、処理はS24へ進む。
【0165】
S24の処理は、モード切換スイッチ98で手動モードも自動モードも選択されていない場合、すなわちモード切換スイッチ98でパーキングモードが選択されている場合に実行される。S24では、メインMCU434は、運搬車2の目標進行速度Vを0km/hに設定し、運搬車2の目標旋回角度θを0°に設定する。S26では、メインMCU434は、遮断回路438,440,442に通電禁止信号を送信する。
【0166】
S28では、メインMCU434は、目標進行速度Vと目標旋回角度θから、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に対する回転速度指令値と、操舵モータ176に対する操舵角指令値を算出する。
【0167】
S30では、メインMCU434は、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に対する回転速度指令値と、操舵モータ176に対する操舵角指令値を、モータMCU444,446,448,450,452へ送信する。
【0168】
S32では、メインMCU434は、モータMCU444,446,448,450,452から、状態信号を受信する。S32の後、処理はS2へ戻る。
【0169】
(手動モードでのメインMCU434の処理)
図36に示すS34の処理は、モード切換スイッチ98で手動モードが選択されている場合に実行される。S34では、メインMCU434は、トリガスイッチ100から入力されるトリガスイッチ100の押し込み量に基づいて、トリガスイッチ100がオン操作されているか否かを判断する。トリガスイッチ100がオン操作されている場合(YESの場合)、処理はS36へ進む。S36では、メインMCU434は、遮断回路438,440,442に通電許可信号を送信する。S36の後、処理はS46へ進む。
【0170】
S34でトリガスイッチ100がオン操作されていない場合(NOの場合)、処理はS38へ進む。S38では、メインMCU434は、運搬車2の目標進行速度Vを0km/hに設定し、運搬車2の目標旋回角度θを0°に設定する。
【0171】
S40では、メインMCU434は、遮断回路438,440,442に通電禁止信号を送信する。
【0172】
S42では、メインMCU434は、サーミスタ468e,470e,472e,474eで検出されるブレーキ回路温度Tが、温度保護解除しきい値T2を下回るか否かを判断する。ブレーキ回路温度Tが温度保護解除しきい値T2を下回る場合(YESの場合)、処理はS44へ進む。S42でブレーキ回路温度Tが温度保護解除しきい値T2以上の場合(NOの場合)、処理はS28(図35参照)へ進む。
【0173】
S44の処理は、モード切換スイッチ98で手動モードが選択されており、運搬車2の目標進行速度Vが0km/hに設定され、メインMCU434から遮断回路438,440,442に通電禁止信号が送信されており(すなわち、運搬車2が停止しており)、かつ、ブレーキ回路温度Tが温度保護解除しきい値T2を下回る場合に実行される。S44では、メインMCU434は、温度保護フラグを0に設定する。S44の後、処理はS28(図35参照)へ進む。
【0174】
S46では、メインMCU434は、進行方向切換スイッチ102で前進が選択されているか否かを判断する。前進が選択されている場合(YESの場合)、処理はS48へ進む。
【0175】
S48では、メインMCU434は、衝突検知フラグが0であるか否かを判断する。衝突検知フラグが0である場合(YESの場合)、処理はS50へ進む。
【0176】
S50では、メインMCU434は、過積載検知フラグが0であるか否かを判断する。衝突検知フラグが0である場合(YESの場合)、処理はS52へ進む。
【0177】
S52では、メインMCU434は、温度保護フラグが0であるか否かを判断する。温度保護フラグが0である場合(YESの場合)、処理はS54へ進む。
【0178】
S54では、メインMCU434は、運搬車2の上限進行速度を第1上限進行速度(例えば5km/h)に設定する。S54の後、処理はS58へ進む。
【0179】
S50で過積載検知フラグが1である場合(NOの場合)や、S52で温度保護フラグが1である場合(NOの場合)、処理はS56へ進む。S56では、メインMCU434は、運搬車2の上限進行速度を第1上限進行速度よりも小さい第2上限進行速度(例えば1km/h)に設定する。S56の後、処理はS58へ進む。
【0180】
S58では、メインMCU434は、トリガスイッチ100から入力されるトリガスイッチ100の押し込み量に基づいて、運搬車2の目標進行速度Vを特定する。この際に、トリガスイッチ100の押し込み量に基づいて特定される目標進行速度VがS54,S56で設定された上限進行速度以上である場合には、メインMCU434は、目標進行速度Vを上限進行速度に一致させる。
【0181】
S60では、メインMCU434は、回動角度センサ88から入力されるハンドルシャフト84の回動角度に基づいて、運搬車2の目標旋回角度θを特定する。S60の後、処理はS28(図35参照)へ進む。
【0182】
S48において衝突検知フラグが1である場合(NOの場合)、処理はS62へ進む。S62の処理は、モード切換スイッチ98で手動モードが選択されており、進行方向切換スイッチ102で前進が選択されており、かつ衝突検知フラグが1である場合に実行される。S62では、メインMCU434は、運搬車2の目標進行速度Vを0km/hに設定し、運搬車2の目標旋回角度θを0°に設定する。S64では、メインMCU434は、遮断回路438,440,442に通電禁止信号を送信する。S64の後、処理はS28(図35参照)へ進む。
【0183】
S46において進行方向切換スイッチ102で後退が選択されている場合(NOの場合)、処理はS66へ進む。S66の処理は、モード切換スイッチ98で手動モードが選択されており、進行方向切換スイッチ102で後退が選択されている場合に実行される。S66では、メインMCU434は、運搬車2の上限進行速度を第2上限進行速度(例えば1km/h)に設定する。
【0184】
S68では、メインMCU434は、トリガスイッチ100から入力されるトリガスイッチ100の押し込み量に基づいて、運搬車2の目標進行速度Vを特定する。この際に、トリガスイッチ100の押し込み量に基づいて特定される目標進行速度VがS66で設定された上限進行速度以上である場合には、メインMCU434は、目標進行速度Vを上限進行速度に一致させる。
【0185】
S70では、メインMCU434は、回動角度センサ88から入力されるハンドルシャフト84の回動角度に基づいて、運搬車2の目標旋回角度θを特定する。S70の後、処理はS28(図35参照)へ進む。
【0186】
なお、S54の処理における運搬車2の上限進行速度は、速度切換スイッチ104の操作に応じて、適宜変更されてもよい。例えば、速度切換スイッチ104で運搬車2の進行速度が高速に設定されている場合、運搬車2の上限進行速度は、第1上限進行速度(例えば5km/h)に設定されてもよく、速度切換スイッチ104で運搬車2の進行速度が中速に設定されている場合、運搬車2の進行速度は、第1上限進行速度よりも小さく、第2上限進行速度よりも大きい第3上限進行速度(例えば3km/h)に設定されてもよく、速度切換スイッチ104で運搬車2の進行速度が低速に設定されている場合、運搬車2の進行速度は、第3上限進行速度よりも小さく、第2上限進行速度よりも大きい第4上限進行速度(例えば1.5km/h)に設定されてもよい。
【0187】
(自動モードでのメインMCU434の処理)
図37に示すS72の処理は、モード切換スイッチ98で自動モードが選択されている場合に実行される。S72では、メインMCU434は、衝突検知フラグが0であるか否かを判断する。衝突検知フラグが0である場合(YESの場合)、処理はS74へ進む。
【0188】
S74では、メインMCU434は、過積載検知フラグが0であるか否かを判断する。衝突検知フラグが0である場合(YESの場合)、処理はS76へ進む。
【0189】
S76では、メインMCU434は、遮断回路438,440,442に通電許可信号を送信する。
【0190】
S78では、メインMCU434は、温度保護フラグが0であるか否かを判断する。温度保護フラグが0である場合(YESの場合)、処理はS80へ進む。S80では、メインMCU434は、運搬車2の上限進行速度を第3上限進行速度(例えば3km/h)に設定する。S80の後、処理はS84へ進む。
【0191】
S78で、温度保護フラグが1である場合(NOの場合)、処理はS82へ進む。S82では、メインMCU434は、運搬車2の上限進行速度を第2進行速度(例えば1km/h)に設定する。S82の後、処理はS84へ進む。
【0192】
S84では、メインMCU434は、自動運転MCU430からの指令値に基づいて、運搬車2の目標進行速度Vを特定する。この際に、自動運転MCU430からの指令値に基づいて特定される目標進行速度VがS80,S82で設定された上限進行速度以上である場合には、メインMCU434は、目標進行速度Vを上限進行速度に一致させる。
【0193】
S86では、メインMCU434は、自動運転MCU430からの指令値に基づいて、運搬車2の目標旋回角度θを特定する。S86の後、処理はS28(図35参照)へ進む。
【0194】
S72で衝突検知フラグが1である場合(NOの場合)や、S74で過積載検知フラグが1である場合(NOの場合)、処理はS88へ進む。S88の処理は、モード切換スイッチ98で自動モードが選択されており、かつ衝突検知フラグが1である場合、あるいは、モード切換スイッチ98で自動モードが選択されており、かつ過積載検知フラグが1である場合に実行される。S88では、メインMCU434は、運搬車2の目標進行速度Vを0km/hに設定し、運搬車2の目標旋回角度θを0°に設定する。S90では、メインMCU434は、遮断回路438,440,442に通電禁止信号を送信する。S90の後、処理はS28(図35参照)へ進む。
【0195】
(モータMCU444,446が行う処理)
運搬車2の主電源がオンになると、モータMCU444,446は、図38図39に示す処理を実行する。
【0196】
図38に示すように、S102では、モータMCU444,446は、メインMCU434から指令信号を受信する。
【0197】
S104では、モータMCU444,446は、メインMCU434から受信した指令信号に基づいて、右前輪モータ232、左前輪モータ242の目標回転速度RS1を特定する。
【0198】
S106では、モータMCU444,446は、ホールセンサ482,484から受信した検出信号に基づいて、右前輪モータ232、左前輪モータ242の現在の回転速度RS2を特定する。
【0199】
S108では、モータMCU444,446は、S104で特定した目標回転速度RS1がS106で特定した現在の回転速度RS2より大きいか否かを判断する。目標回転速度RS1が現在の回転速度RS2よりも大きい場合(YESの場合)、処理はS110へ進む。
【0200】
S110では、モータMCU444,446は、モータドライバ454,456によって右前輪モータ232、左前輪モータ242をPWM制御して、右前輪モータ232,左前輪モータ242の回転を加速させる。なお、S110では、モータMCU444,446は、ブレーキ回路468,470に電流指令値として0を入力し、ブレーキ回路468,470の動作を無効化する。
【0201】
S112では、モータMCU444,446は、S104で特定した目標回転速度RS1とS106で特定した現在の回転速度RS2の差に基づいて、目標回転加速度RA1を特定する。
【0202】
S114では、モータMCU444,446は、ホールセンサ482,484から受信した検出信号に基づいて、現在の回転加速度RA2を特定する。
【0203】
S116では、モータMCU444,446は、S112で特定された目標回転加速度RA1がS114で特定された現在の回転加速度RA2より大きいか否かを判断する。目標回転加速度RA1が現在の回転加速度RA2より高い場合(YESの場合)、処理はS118へ進む。S118では、モータMCU444,446は、モータドライバ454,456による右前輪モータ232、左前輪モータ242のPWM制御におけるデューティ比を増加させる。S116で目標回転加速度RA1が現在の回転加速度RA2以下の場合(NOの場合)、処理はS120へ進む。S120では、モータMCU444,446は、モータドライバ454,456による右前輪モータ232、左前輪モータ242のPWM制御におけるデューティ比を低減させる。S118またはS120の後、処理はS134(図39参照)へ進む。
【0204】
S108で目標回転速度RS1が現在の回転速度RS2以下の場合(NOの場合)、処理はS122へ進む。S122では、モータMCU444,446は、ブレーキ回路468,470を介して、右前輪モータ232,左前輪モータ242の回転を減速させる。なお、S122では、モータMCU444,446は、モータドライバ454,456の動作を無効化する。
【0205】
S124では、モータMCU444,446は、S104で特定した目標回転速度RS1とS106で特定した現在の回転速度RS2の差に基づいて、目標回転減速度RD1を特定する。
【0206】
S126では、モータMCU444,446は、ホールセンサ482,484から受信した検出信号に基づいて、現在の回転減速度RD2を特定する。
【0207】
S128では、モータMCU444,446は、S124で特定された目標回転減速度RD1がS126で特定された現在の回転減速度RD2より低いか否かを判断する。目標回転減速度RD1が現在の回転減速度RD2より低い場合(YESの場合)、処理はS130へ進む。S130では、モータMCU444,446は、ブレーキ回路468,470への電流指令値を増加させる。S128で目標回転減速度RD1が現在の回転減速度RD2以下の場合(NOの場合)、処理はS132へ進む。S132では、モータMCU444,446は、ブレーキ回路468,470への電流指令値を低減させる。S130またはS132の後、処理はS134(図39参照)へ進む。
【0208】
図39に示すように、S134では、モータMCU444,446は、サーミスタ468e,470eで検出されるブレーキ回路温度Tが、冷却開始温度T3を上回るか否かを判断する。ブレーキ回路温度Tが冷却開始温度T3を上回る場合(YESの場合)、処理はS136へ進む。S136では、モータMCU444,446は、冷却ファン50d、52dを駆動して、電気ブレーキ回路基板50,52を冷却する。S136の後、処理はS138へ進む。S134でブレーキ回路温度Tが冷却開始温度T3以下の場合(NOの場合)、処理はS138へ進む。
【0209】
S138では、モータMCU444,446は、サーミスタ468e,470eで検出されるブレーキ回路温度Tが、冷却開始温度T3よりも低い冷却終了温度T4を下回るか否かを判断する。ブレーキ回路温度Tが冷却終了温度T4を下回る場合(YESの場合)、処理はS140へ進む。S140では、モータMCU444,446は、冷却ファン50d、52dを停止して、電気ブレーキ回路基板50,52の冷却を終了する。S140の後、処理はS142へ進む。S138でブレーキ回路温度Tが冷却終了温度T4以上の場合(NOの場合)、処理はS142へ進む。
【0210】
S142では、モータMCU444,446は、メインMCU434に状態信号を送信する。S142の後、処理はS102(図38参照)に戻る。
【0211】
上記のように、モータMCU444,446は、サーミスタ468e,470eで検出されるブレーキ回路温度Tに基づいて、冷却ファン50d,52dを駆動して電気ブレーキ回路基板50,52を冷却する。このような構成とすることで、モータMCU444,446は、ブレーキ回路468,470による右前輪モータ232,左前輪モータ242の制動を長時間にわたって継続的に行うことができる。例えば、モータMCU444,446は、ブレーキ回路468,470による右前輪モータ232,左前輪モータ242の制動を、15分以上にわたって、詳しくは30分以上にわたって、より詳しくは1時間以上にわたって継続的に行うことができる。
【0212】
(モータMCU448,450が行う処理)
運搬車2の主電源がオンになると、モータMCU448,450は、図40図41に示す処理を実行する。
【0213】
図40に示すように、S152では、モータMCU448,450は、メインMCU434から指令信号を受信する。
【0214】
S154では、モータMCU448,450は、メインMCU434から受信した指令信号に基づいて、右後輪モータ486、左後輪モータ492の目標回転速度RS1を特定する。
【0215】
S156では、モータMCU448,450は、ホールセンサ488,494から受信した検出信号に基づいて、右後輪モータ486、左後輪モータ492の現在の回転速度RS2を特定する。
【0216】
S158では、モータMCU448,450は、S154で特定した目標回転速度RS1が下限回転速度RS0以上であるか否かを判断する。目標回転速度RS1が下限回転速度RS0以上である場合(YESの場合)、処理はS160へ進む。S160では、モータMCU448,450は、電磁ブレーキドライバ464,466を介して、右後輪電磁ブレーキ490、左後輪電磁ブレーキ496をオフにする。S160の後、処理はS162へ進む。目標回転速度RS1が下限回転速度RS0を下回る場合(NOの場合)、処理はS162へ進む。
【0217】
S162では、モータMCU448,450は、S156で特定した現在の回転速度RS2が下限回転速度RS0以下であるか否かを判断する。現在の回転速度RS2が下限回転速度RS0以下である場合(YESの場合)、処理はS164へ進む。S164では、モータMCU448,450は、電磁ブレーキドライバ464,466を介して、右後輪電磁ブレーキ490、左後輪電磁ブレーキ496をオンにする。S164の後、処理はS192(図41参照)へ進む。現在の回転速度RS2が下限回転速度RS0を上回る場合(NOの場合)、処理はS166へ進む。
【0218】
S166では、モータMCU448,450は、S154で特定した目標回転速度RS1がS156で特定した現在の回転速度RS2より大きいか否かを判断する。目標回転速度RS1が現在の回転速度RS2よりも大きい場合(YESの場合)、処理はS168へ進む。
【0219】
S168では、モータMCU448,450は、モータドライバ458,460によって右後輪モータ486、左後輪モータ492をPWM制御して、右後輪モータ486,左後輪モータ492の回転を加速させる。なお、S168では、モータMCU448,450は、ブレーキ回路472,474に電流指令値として0を入力し、ブレーキ回路472,474の動作を無効化する。
【0220】
S170では、モータMCU448,450は、S154で特定した目標回転速度RS1とS156で特定した現在の回転速度RS2の差に基づいて、目標回転加速度RA1を特定する。
【0221】
S172では、モータMCU448,450は、ホールセンサ488,494から受信した検出信号に基づいて、現在の回転加速度RA2を特定する。
【0222】
S174では、モータMCU448,450は、S170で特定された目標回転加速度RA1がS172で特定された現在の回転加速度RA2より大きいか否かを判断する。目標回転加速度RA1が現在の回転加速度RA2より高い場合(YESの場合)、処理はS176へ進む。S176では、モータMCU448,450は、モータドライバ458,460による右後輪モータ486、左後輪モータ492のPWM制御におけるデューティ比を増加させる。S174で目標回転加速度RA1が現在の回転加速度RA2以下の場合(NOの場合)、処理はS178へ進む。S178では、モータMCU448,450は、モータドライバ458,460による右後輪モータ486、左後輪モータ492のPWM制御におけるデューティ比を低減させる。S176またはS178の後、処理はS192(図41参照)へ進む。
【0223】
S166で目標回転速度RS1が現在の回転速度RS2以下の場合(NOの場合)、処理はS180へ進む。S180では、モータMCU448,450は、ブレーキ回路472,474を介して、右後輪モータ486,左後輪モータ492の回転を減速させる。なお、S180では、モータMCU448,450は、モータドライバ458,460の動作を無効化する。
【0224】
S182では、モータMCU448,450は、S154で特定した目標回転速度RS1とS156で特定した現在の回転速度RS2の差に基づいて、目標回転減速度RD1を特定する。
【0225】
S184では、モータMCU448,450は、ホールセンサ488,494から受信した検出信号に基づいて、現在の回転減速度RD2を特定する。
【0226】
S186では、モータMCU448,450は、S182で特定された目標回転減速度RD1がS184で特定された現在の回転減速度RD2より低いか否かを判断する。目標回転減速度RD1が現在の回転減速度RD2より低い場合(YESの場合)、処理はS188へ進む。S188では、モータMCU448,450は、ブレーキ回路472,474への電流指令値を増加させる。S186で目標回転減速度RD1が現在の回転減速度RD2以下の場合(NOの場合)、処理はS190へ進む。S190では、モータMCU448,450は、ブレーキ回路472,474への電流指令値を低減させる。S188またはS190の後、処理はS192(図41参照)へ進む。
【0227】
図41に示すように、S192では、モータMCU448,450は、サーミスタ472e,474eで検出されるブレーキ回路温度Tが、冷却開始温度T3を上回るか否かを判断する。ブレーキ回路温度Tが冷却開始温度T3を上回る場合(YESの場合)、処理はS194へ進む。S194では、モータMCU448,450は、冷却ファン54d,56dを駆動して、電気ブレーキ回路基板54,56を冷却する。S194の後、処理はS196へ進む。S192でブレーキ回路温度Tが冷却開始温度T3以下の場合(NOの場合)、処理はS196へ進む。
【0228】
S196では、モータMCU448,450は、サーミスタ472e,474eで検出されるブレーキ回路温度Tが、冷却終了温度T4を下回るか否かを判断する。ブレーキ回路温度Tが冷却終了温度T4を下回る場合(YESの場合)、処理はS198へ進む。S198では、モータMCU448,450は、冷却ファン54d,56dを停止して、電気ブレーキ回路基板54,56の冷却を終了する。S198の後、処理はS200へ進む。S196でブレーキ回路温度Tが冷却終了温度T4以上の場合(NOの場合)、処理はS200へ進む。
【0229】
S200では、モータMCU448,450は、メインMCU434に状態信号を送信する。S200の後、処理はS152(図40参照)に戻る。
【0230】
図42は、運搬車2が手動モードで平地および下り坂を走行する場合の進行速度と、ブレーキ電流と、ブレーキ回路温度の経時的な変化の例を示している。図42に示す例では、モード切換スイッチ98で手動モードが選択されており、前進/後退切換スイッチで前進が選択されている。時刻t1でトリガスイッチ100がオフからオンに切り換わると、電磁ブレーキドライバ464,466によって右後輪電磁ブレーキ490、左後輪電磁ブレーキ496が解除されて、モータドライバ454,456,458,460が右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492を駆動して、運搬車2は前進を開始する。時刻t2で運搬車2の進行速度が第1上限進行速度に到達すると、ブレーキ回路468,470,472,474が作動して右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に電気ブレーキが作用する。運搬車2が平地から下り坂へ移動しても、ブレーキ回路468,470,472,474が作動することで、運搬車2の進行速度は第1上限進行速度で維持される。また、ブレーキ回路468,470,472,474が作動することで、ブレーキ回路468,470,472,474の温度は上昇していく。時刻t3でブレーキ回路468,470,472,474の温度が温度保護しきい値T1を超えると、運搬車2の上限進行速度が第1上限進行速度から第2上限進行速度に切り換わり、ブレーキ回路468,470,472,474が右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に、より強い電気ブレーキを作用させる。これにより、運搬車2の進行速度は低減していくものの、ブレーキ回路468,470,472,474の温度はより急峻に上昇していく。時刻t4で運搬車2の進行速度が第2上限進行速度まで低減すると、ブレーキ回路468,470,472,474が右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に作用させる電気ブレーキが弱まることで、ブレーキ回路468,470,472,474の温度は下降していく。ブレーキ回路468,470,472,474の温度が温度保護しきい値T1を下回り、さらに温度保護解除しきい値T2を下回っても、運搬車2が停止するまでは温度保護は解除されず、運搬車2の上限進行速度は第2上限進行速度のまま維持される。時刻t5でトリガスイッチ100がオンからオフに切り換わると、ブレーキ回路468,470,472,474によって右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に強い電気ブレーキが作用する。時刻t6で運搬車2が停止すると、温度保護が解除されて、運搬車2の上限進行速度は第2上限進行速度から第1上限進行速度に切り換わる。また、時刻t6で運搬車2が停止すると、ブレーキ回路468,470,472,474による電気ブレーキは終了し、モータドライバ454,456,458,460による短絡ブレーキが右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に作用し、その後に右後輪電磁ブレーキ490と左後輪電磁ブレーキ496によって右後輪252と左後輪272がロックされる。ブレーキ回路468,470,472,474による電気ブレーキが終了した後は、ブレーキ回路468,470,472,474の温度が下降していく。その後、時刻t7で再びトリガスイッチ100がオフからオンに切り換わると、電磁ブレーキドライバ464,466によって右後輪電磁ブレーキ490、左後輪電磁ブレーキ496が解除されて、モータドライバ454,456,458,460が右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492を駆動して、運搬車2は前進を開始する。時刻t8で運搬車2の進行速度が第1上限進行速度に到達すると、ブレーキ回路468,470,472,474が作動して右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492に電気ブレーキが作用する。
【0231】
(モータMCU452が行う処理)
運搬車2の主電源がオンになると、モータMCU452は、図43に示す処理を実行する。
【0232】
S202では、モータMCU452は、メインMCU434から指令信号を受信する。
【0233】
S204では、モータMCU452は、メインMCU434から受信した指令信号に基づいて、操舵ユニット10の目標操舵角δを特定する。
【0234】
S206では、モータMCU452は、操舵角センサ166から受信した検出信号に基づいて、操舵ユニット10の現在の操舵角γを特定する。
【0235】
S208では、モータMCU452は、S204で特定された目標操舵角δとS206で特定された現在の操舵角γが一致するか否かを判断する。目標操舵角δと現在の操舵角γが一致しない場合(NOの場合)、処理はS210へ進む。
【0236】
S210では、モータMCU452は、S204で特定された目標操舵角δとS206で特定された現在の操舵角γの差に基づいて、操舵モータ176の目標回転速度PR1を特定する。
【0237】
S212では、モータMCU452は、操舵モータ176がS210で特定された目標回転速度PR1で回転するように、モータドライバ462を介したPWM制御によって、操舵モータ176を駆動する。S212の後、処理はS216へ進む。
【0238】
S208で目標操舵角δと現在の操舵角γが一致する場合(YESの場合)、処理はS214へ進む。S214では、モータMCU452は、モータドライバ462を介して、操舵モータ176に短絡ブレーキをかける。S214の後、処理はS216へ進む。
【0239】
S216では、モータMCU452は、メインMCU434に状態信号を送信する。S216の後、処理はS202に戻る。
【0240】
(変形例)
上記の実施例において、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492は、右前輪192、左前輪212、右後輪252、左後輪272に組み込まれたインホイールモータ(図示せず)であってもよい。
【0241】
上記の実施例において、操舵モータ176、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492は、アウタロータ型のブラシレスDCモータであってもよいし、ブラシ付きDCモータであってもよいし、ACモータであってもよいし、他の種類のモータであってもよい。
【0242】
上記の実施例において、モータMCU444,446,448,450,452は、ホールセンサ482,484,488,494,480の代わりに、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492、操舵モータ176の誘起電圧を検出する回路を用いて、右前輪モータ232、左前輪モータ242、右後輪モータ486、左後輪モータ492、操舵モータ176の回転速度を検出してもよい。
【0243】
上記の実施例において、前輪ユニット12や後輪ユニット14の代わりに、前後に並んで配置された駆動輪および従動輪と、駆動輪および従動輪に架け渡されたベルトと、駆動輪を回転させるモータを備えるクローラユニットによって、運搬車2を移動させる構成としてもよい。
【0244】
上記の実施例において、操舵ユニット10は、操舵モータ176の代わりに、他の種類のアクチュエータを用いて操舵シャフト168を回動させる構成としてもよい。
【0245】
上記の実施例では、バンパユニット16が、運搬車2の前方に設けられており、衝突検知スイッチ530,532が、運搬車2の前方からの衝突を検知する。これとは異なり、バンパユニット16が、運搬車2の後方に設けられており、衝突検知スイッチ530,532が、運搬車2の後方からの衝突を検知する構成としてもよい。あるいは、2つのバンパユニット16が、運搬車2の前方と後方にそれぞれ設けられており、それぞれのバンパユニット16の衝突検知スイッチ530,532が、運搬車2の前方と後方からの衝突をそれぞれ検知する構成としてもよい。バンパユニット16が、運搬車2の後方に設けられており、衝突検知スイッチ530,532が、運搬車2の後方からの衝突を検知する場合、図36のS46で前進が選択されている場合(YESの場合)に、処理はS50へ進み、S46で後退が選択されている場合(NOの場合)に、処理はS48へ進み、S48で衝突検知フラグが0である場合(YESの場合)に、処理はS66へ進み、S48で衝突検知フラグが1である場合(NOの場合)に、処理はS62へ進むようにしてもよい。
【0246】
上記の実施例において、ハンドルユニット8は、可動カム部材90と、固定カム部材92と、コイルバネ94と、ハンドルシャフト84の一部を覆うカバー部材(図示せず)を備えていてもよい。この場合、固定部材82は、カバー部材の一部を構成していてもよい。
【0247】
上記の実施例において、ハンドルユニット8は、コイルバネ94の代わりに、他の種類の弾性部材を備えていてもよい。また、ハンドルユニット8は、ハンドルシャフト84の回動に対して減衰力を作用させるダンパ(図示せず)を備えていてもよい。
【0248】
上記の実施例では、過積載検知センサ320a,320b,320c,320d,380が、フォトインタラプタである場合について説明したが、過積載検知センサ320a,320b,320c,320d,380は、検知部348a,348b,348c,348d,416による光の反射の有無を検出するフォトリフレクタであってもよいし、検知部348a,348b,348c,348d,416に設けられた磁石からの磁気を検出する磁気センサであってもよいし、他の種類の非接触式の検知センサであってもよい。あるいは、過積載検知センサ320a,320b,320c,320d,380は、接触式の検知センサであってもよい。
【0249】
上記の実施例では、ブレーキ回路468,470,472,474のスイッチング素子468a,470a,472a,472aは、nチャネル型のMOSFETである場合について説明したが、スイッチング素子468a,470a,472a,472aは、pチャネル型のMOSFETであってもよいし、IGBTであってもよいし、バイポーラトランジスタであってもよいし、他の種類のトランジスタであってもよい。あるいは、スイッチング素子468a,470a,472a,472aは、サイリスタ等の他の種類の電子的可変抵抗素子であってもよい。スイッチング素子468a,470a,472a,472aは、Si半導体から構成されていてもよいし、SiC半導体から構成されていてもよいし、GaN半導体から構成されていてもよいし、他の種類の半導体から構成されていてもよい。
【0250】
以上のように、1つまたはそれ以上の実施形態において、運搬車2は、右前輪192(または左前輪212、右後輪252、左後輪272)(駆動輪の例)と、右前輪192(または左前輪212、右後輪252、左後輪272)を回転させる右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)(モータの例)と、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)を駆動するように構成されたモータドライバ454(またはモータドライバ456,458,460)(モータ駆動回路の例)と、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)を電気的に制動するように構成されたブレーキ回路468(またはブレーキ回路470,472,474)(モータ制動回路の例)と、運搬車2の進行速度が上限進行速度以下となるように、モータドライバ454(またはモータドライバ456,458,460)とブレーキ回路468(またはブレーキ回路470,472,474)を介して右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)を制御するように構成されたメインMCU434およびモータMCU444,446,448,450(制御ユニットの例)と、ブレーキ回路468(またはブレーキ回路470,472,474)の温度を検出するサーミスタ468e(またはサーミスタ470e,472e,474e)(温度センサの例)を備えている。メインMCU434は、上限進行速度が第1上限進行速度(例えば5km/h)であり、サーミスタ468e(またはサーミスタ470e,472e,474e)で検出される温度が温度保護しきい値T1(第1所定温度の例)を超える場合に、上限進行速度を第1上限進行速度よりも低い第2上限進行速度(例えば1km/h)に変更するように構成されている。
【0251】
運搬車2の進行速度が高くなると、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)を制動する際のブレーキ回路468(またはブレーキ回路470,472,474)の発熱量が増加し、それだけブレーキ回路468(またはブレーキ回路470,472,474)も高温となってしまう。上記の構成によれば、サーミスタ468e(またはサーミスタ470e,472e,474e)で検出されるブレーキ回路468(またはブレーキ回路470,472,474)の温度が温度保護しきい値T1を超えると、運搬車2の上限進行速度を第1上限進行速度から第2上限進行速度に低減させることで、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)を制動する際のブレーキ回路468(またはブレーキ回路470,472,474)の発熱量を低減させることができる。ブレーキ回路468(またはブレーキ回路470,472,474)が過剰に高温となることを抑制することができる。
【0252】
1つまたはそれ以上の実施形態において、メインMCU434は、上限進行速度を第1上限進行速度から第2上限進行速度に変更した後、サーミスタ468e(またはサーミスタ470e,472e,474e)で検出される温度が温度保護しきい値T1よりも低い温度保護解除しきい値T2(第2所定温度の例)を下回る場合に、上限進行速度を第1上限進行速度に戻すように構成されている。
【0253】
上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)が高温となって上限進行速度を低減させた後は、ブレーキ回路468(またはブレーキ回路470,472,474)が十分に低温となるまでは上限進行速度を元に戻さないので、上限進行速度が頻繁に増減を繰り返してしまうことを抑制することができる。
【0254】
1つまたはそれ以上の実施形態において、運搬車2は、ユーザによる操作を受け入れるトリガスイッチ100(操作部材の例)をさらに備えている。運搬車2は、トリガスイッチ100がオンの場合に右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が駆動し、トリガスイッチ100がオフの場合に右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が停止する手動モードと、トリガスイッチ100のオン/オフに関わらず、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が駆動する自動モードで動作可能である。メインMCU434は、上限進行速度を第1上限進行速度から第2上限進行速度に変更した後、サーミスタ468e(またはサーミスタ470e,472e,474e)で検出される温度が温度保護解除しきい値T2を下回る場合であっても、運搬車2の動作モードが自動モードであれば、上限進行速度を第1上限進行速度に戻さないように構成されている。
【0255】
ブレーキ回路468(またはブレーキ回路470,472,474)が十分に低温となって、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車2が自動モードで動作していると、運搬車2が急加速してしまうおそれがある。上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)が高温となって上限進行速度を低減させた後は、ブレーキ回路468(またはブレーキ回路470,472,474)が十分に低温となっていても、運搬車2の動作モードが自動モードであれば上限進行速度を元に戻さないので、運搬車2が急加速してしまうことを抑制することができる。
【0256】
1つまたはそれ以上の実施形態において、メインMCU434は、上限進行速度を第1上限進行速度から第2上限進行速度に変更した後、サーミスタ468e(またはサーミスタ470e,472e,474e)で検出される温度が温度保護解除しきい値T2を下回り、かつ運搬車2の動作モードが自動モードでない場合であっても、運搬車2が停止していなければ、上限進行速度を第1上限進行速度に戻さないように構成されている。
【0257】
ブレーキ回路468(またはブレーキ回路470,472,474)が十分に低温となり、かつ運搬車2の動作モードが自動モードではなくても、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車2が停止していないと、運搬車2が急加速してしまうおそれがある。上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)が高温となって上限進行速度を低減させた後は、ブレーキ回路468(またはブレーキ回路470,472,474)が十分に低温となり、かつ運搬車2の動作モードが自動モードではなくても、運搬車2が停止するまでは上限進行速度を元に戻さないので、運搬車2が急加速してしまうことを抑制することができる。
【0258】
1つまたはそれ以上の実施形態において、メインMCU434は、上限進行速度を第1上限進行速度から第2上限進行速度に変更した後、サーミスタ468e(またはサーミスタ470e,472e,474e)で検出される温度が温度保護解除しきい値T2を下回る場合であっても、運搬車2が停止していなければ、上限進行速度を第1上限進行速度に戻さないように構成されていてもよい。
【0259】
ブレーキ回路468(またはブレーキ回路470,472,474)が十分に低温となって、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車2が停止していないと、運搬車2が急加速してしまうおそれがある。上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)が高温となって上限進行速度を低減させた後は、ブレーキ回路468(またはブレーキ回路470,472,474)が十分に低温となっても、運搬車2が停止するまでは上限進行速度を元に戻さないので、運搬車2が急加速してしまうことを抑制することができる。
【0260】
1つまたはそれ以上の実施形態において、運搬車2は、ユーザによる操作を受け入れるトリガスイッチ100(操作部材の例)をさらに備えている。運搬車2は、トリガスイッチ100がオンの場合に右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が駆動し、トリガスイッチ100がオフの場合に右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が停止する手動モードと、トリガスイッチ100のオン/オフに関わらず、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が駆動する自動モードで動作可能である。メインMCU434は、上限進行速度を第1上限進行速度から第2上限進行速度に変更した後、運搬車2の動作モードが自動モードでない場合に、上限進行速度を第1上限進行速度に戻すように構成されている。
【0261】
上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車2が自動モードで動作していると、運搬車2が急加速してしまうおそれがある。上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)が高温となって上限進行速度を低減させた後は、運搬車2の動作モードが自動モードであれば上限進行速度を元に戻さないので、運搬車2が急加速してしまうことを抑制することができる。
【0262】
1つまたはそれ以上の実施形態において、メインMCU434は、上限進行速度を第1上限進行速度から第2上限進行速度に変更した後、運搬車2の動作モードが自動モードでない場合であっても、運搬車2が停止していなければ、上限進行速度を第1上限進行速度に戻さないように構成されている。
【0263】
運搬車2の動作モードが自動モードではなくても、上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車2が停止していないと、運搬車2が急加速してしまうおそれがある。上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)が高温となって上限進行速度を低減させた後は、運搬車2の動作モードが自動モードではなくても、運搬車2が停止するまでは上限進行速度を元に戻さないので、運搬車2が急加速してしまうことを抑制することができる。
【0264】
1つまたはそれ以上の実施形態において、メインMCU434は、上限進行速度を第1上限進行速度から第2上限進行速度に変更した後、運搬車2が停止した場合に、上限進行速度を第1上限進行速度に戻すように構成されている。
【0265】
上限進行速度を第2上限進行速度から第1上限進行速度に戻す際に、運搬車2が停止していないと、運搬車2が急加速してしまうおそれがある。上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)が高温となって上限進行速度を低減させた後は、運搬車2が停止するまでは上限進行速度を元に戻さないので、運搬車2が急加速してしまうことを抑制することができる。
【0266】
1つまたはそれ以上の実施形態において、運搬車2は、左前輪212(または右後輪252、左後輪272、右前輪192)(第2駆動輪の例)と、左前輪212(または右後輪252、左後輪272、右前輪192)を回転させる左前輪モータ242(または右後輪モータ486、左後輪モータ492、右前輪モータ232)(第2モータの例)と、左前輪モータ242(または右後輪モータ486、左後輪モータ492、右前輪モータ232)を駆動するように構成されたモータドライバ456(またはモータドライバ458,460,454)(第2モータ駆動回路の例)と、左前輪モータ242(または右後輪モータ486、左後輪モータ492、右前輪モータ232)を電気的に制動するように構成されたブレーキ回路470(またはブレーキ回路472,474,468)(第2モータ制動回路の例)と、ブレーキ回路470(またはブレーキ回路472,474,468)の温度を検出するサーミスタ470e(またはサーミスタ472e,474e,468e)(第2温度センサの例)をさらに備えている。メインMCU434およびモータMCU444,446,448,450は、運搬車2の進行速度が上限進行速度以下となるように、モータドライバ456(またはモータドライバ458,460,454)とブレーキ回路470(またはブレーキ回路472,474,468)を介して左前輪モータ242(または右後輪モータ486、左後輪モータ492、右前輪モータ232)を制御するように構成されている。メインMCU434は、上限進行速度が第1上限進行速度であり、サーミスタ470e(またはサーミスタ472e,474e,468e)で検出される温度が温度保護しきい値T1を超える場合にも、上限進行速度を第2上限進行速度に変更するように構成されている。
【0267】
上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)とブレーキ回路470(またはブレーキ回路472,474,468)の何れか一方が温度保護しきい値T1を超えると、運搬車2の上限進行速度を第1上限進行速度から第2上限進行速度に低減させることで、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)および左前輪モータ242(または右後輪モータ486、左後輪モータ492、右前輪モータ232)を制動する際のブレーキ回路468(またはブレーキ回路470,472,474)およびブレーキ回路470(またはブレーキ回路472,474,468)の発熱量を低減させることができる。ブレーキ回路468(またはブレーキ回路470,472,474)やブレーキ回路470(またはブレーキ回路472,474,468)が過剰に高温となることを抑制することができる。
【0268】
1つまたはそれ以上の実施形態において、運搬車2は、ブレーキ回路468(またはブレーキ回路470,472,474)を冷却する冷却ファン50d(または冷却ファン52d,54d,56d)(冷却ユニットの例)をさらに備えている。冷却ファン50d(または冷却ファン52d,54d,56d)は、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が停止している間も、ブレーキ回路468(またはブレーキ回路470,472,474)の冷却を実行するように構成されている。
【0269】
上記の構成によれば、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)が停止している間も、冷却ファン50d(または冷却ファン52d,54d,56d)によってブレーキ回路468(またはブレーキ回路470,472,474)を冷却することができるので、ブレーキ回路468(またはブレーキ回路470,472,474)を十分に低温とすることができ、その後の運搬車2の動作においてブレーキ回路468(またはブレーキ回路470,472,474)が過剰に高温となることを抑制することができる。
【0270】
1つまたはそれ以上の実施形態において、ブレーキ回路468(またはブレーキ回路470,472,474)は、15分以上にわたって、右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)を電気的に制動可能である。
【0271】
上記の構成によれば、ブレーキ回路468(またはブレーキ回路470,472,474)による右前輪モータ232(または左前輪モータ242、右後輪モータ486、左後輪モータ492)の制動を長時間にわたって継続することができ、運搬車2の動作をより安定させることができる。
【0272】
1つまたはそれ以上の実施形態において、上限進行速度は、0km/h以上10km/h以下である。
【0273】
上記の構成によれば、運搬車2が過剰に高い速度で走行することを抑制することができ、運搬車2が走行する際の安全性をより高めることができる。
【符号の説明】
【0274】
2 :運搬車
4 :車台ユニット
6 :荷台ユニット
8 :ハンドルユニット
10 :操舵ユニット
11 :懸架機構
12 :前輪ユニット
12a :右前輪ユニット
12b :左前輪ユニット
14 :後輪ユニット
14a :右後輪ユニット
14b :左後輪ユニット
16 :バンパユニット
20 :ベースプレート
20a :貫通孔
20b :貫通孔
20c :貫通孔
20d :貫通孔
22 :前側支持部材
22a :右上側連結部
22b :右下側連結部
22c :左上側連結部
22d :左下側連結部
24 :後側支持部材
26 :右下側フレーム
28 :左下側フレーム
30 :右上側フレーム
32 :左上側フレーム
34 :バッテリボックス
36 :下側コントローラケース
38 :バッテリパック
40 :バッテリ取付部
42 :バッテリカバー
44 :メイン制御回路基板
44a :回路基板ケース
46 :駆動制御回路基板
46a :回路基板ケース
48 :駆動制御回路基板
48a :回路基板ケース
50 :電気ブレーキ回路基板
50a :放熱ケース
50b :回路基板収容部
50c :放熱フィン
50d :冷却ファン
52 :電気ブレーキ回路基板
52a :放熱ケース
52b :回路基板収容部
52c :放熱フィン
52d :冷却ファン
54 :電気ブレーキ回路基板
54a :放熱ケース
54b :回路基板収容部
54c :放熱フィン
54d :冷却ファン
56 :電気ブレーキ回路基板
56a :放熱ケース
56b :回路基板収容部
56c :放熱フィン
56d :冷却ファン
58 :放熱プレート
60 :メインフレーム
62 :右側ガード
64 :左側ガード
66 :前側ガード
70 :スイッチボックス
72 :右側ハンドル
72a :支持部
72b :ハンドル部
72c :右側グリップ
73 :操舵ハンドル
74 :左側ハンドル
74a :支持部
74b :ハンドル部
74c :左側グリップ
76 :ハンドルアーム
78 :支持パイプ
80 :クランプ部材
80a :クランプ片
80b :クランプ片
80c :締結部
82 :固定部材
84 :ハンドルシャフト
84a :ガイド突起
86 :ベース部材
88 :回動角度センサ
90 :可動カム部材
90a :カム凸部
90b :カム凸部
90c :第1カム面
90d :第1カム面
90e :第2カム面
90f :第2カム面
90g :ガイド溝
90h :バネ受け部
92 :固定カム部材
92a :円筒部
92b :フランジ部
92c :カム凹部
92d :カム凹部
92e :第1カム面
92f :第1カム面
92g :第2カム面
92h :第2カム面
92i :ストッパ部
92j :ストッパ部
94 :コイルバネ
96 :主電源スイッチ
98 :モード切換スイッチ
98a :接地端子
98b :手動モード端子
98c :自動モード端子
100 :トリガスイッチ
100a :接地端子
100b :トリガ端子
100c :可変抵抗器
102 :進行方向切換スイッチ
102a :接地端子
102b :進行方向端子
104 :速度切換スイッチ
106 :警笛スイッチ
108 :ハンドルユニット
126 :ハンドルシャフト
136 :コイルバネ
160 :モータハウジング
162 :モータ支持部材
164 :ギヤハウジング
166 :操舵角センサ
168 :操舵シャフト
168a :ギヤ部
169 :伝達機構
170 :操舵プレート
172 :右側タイロッド
174 :左側タイロッド
176 :操舵モータ
176a :モータシャフト
176b :ギヤ部
178 :スピンドル
178a :バネ受け部
180 :カムホイール
180a :カム溝
181 :トルクリミッタ
182 :可動ギヤ
182a :ギヤ部
182b :凹部
182c :カム突起
184 :コイルバネ
186 :円筒ウォーム
188 :ウォームホイール
190 :中継シャフト
190a :ギヤ部
192 :右前輪
192a :右前輪アクスル
194 :右側ギヤハウジング
195 :右側保持部材
196 :右側モータハウジング
198 :右側キングピン
200 :右側スリーブ
202 :右上側アーム
204 :右下側アーム
206 :右側緩衝部材
206a :ダンパ
206b :コイルバネ
208 :右側操舵プレート
212 :左前輪
212a :左側アクスル
214 :左側ギヤハウジング
215 :左側保持部材
216 :左側モータハウジング
218 :左側キングピン
220 :左側スリーブ
222 :左上側アーム
224 :左下側アーム
226 :左側緩衝部材
226a :ダンパ
226b :コイルバネ
228 :左側操舵プレート
232 :右前輪モータ
232a :右前輪モータシャフト
234 :遊星歯車機構
242 :左前輪モータ
242a :左前輪モータシャフト
244 :遊星歯車機構
252 :右後輪
254 :右側ギヤハウジング
254a :連結部
256 :右側モータハウジング
258 :右側ブレーキハウジング
260 :右側クラッチレバー
264 :右側緩衝部材
264a :ダンパ
264b :コイルバネ
272 :左後輪
274 :左側ギヤハウジング
274a :連結部
276 :左側モータハウジング
278 :左側ブレーキハウジング
280 :左側クラッチレバー
284 :左側緩衝部材
284a :ダンパ
284b :コイルバネ
302 :過積載検知機構
302a :右前過積載検知機構
302b :左前過積載検知機構
302c :右後過積載検知機構
302d :左後過積載検知機構
304 :緊急停止スイッチケース
306 :上側コントローラケース
308 :緊急停止スイッチ
308a :接地端子
308b :緊急停止端子
312 :上側コントローラケース
312a :ピラー部材
312b :ピラー部材
312c :ピラー部材
312d :ピラー部材
314a :コイルバネ
314b :コイルバネ
314c :コイルバネ
314d :コイルバネ
316a :検知プレート
316b :検知プレート
316c :検知プレート
316d :検知プレート
318a :ベース部材
318b :ベース部材
318c :ベース部材
318d :ベース部材
320a :過積載検知センサ
320b :過積載検知センサ
320c :過積載検知センサ
320d :過積載検知センサ
322a :円柱部
322b :円柱部
322c :円柱部
322d :円柱部
324a :フランジ部
324b :フランジ部
324c :フランジ部
324d :フランジ部
326a :上側小径部
326b :上側小径部
326c :上側小径部
326d :上側小径部
328a :下側小径部
328b :下側小径部
328c :下側小径部
328d :下側小径部
330a :貫通孔
330b :貫通孔
330c :貫通孔
330d :貫通孔
332a :ネジ穴
332b :ネジ穴
332c :ネジ穴
332d :ネジ穴
334a :ワッシャ
334b :ワッシャ
334c :ワッシャ
334d :ワッシャ
336a :ボルト
336b :ボルト
336c :ボルト
336d :ボルト
338a :貫通孔
338b :貫通孔
338c :貫通孔
338d :貫通孔
340a :ワッシャ
340b :ワッシャ
340c :ワッシャ
340d :ワッシャ
342a :ネジ穴
342b :ネジ穴
342c :ネジ穴
342d :ネジ穴
344a :ボルト
344b :ボルト
344c :ボルト
344d :ボルト
346a :支持部
346b :支持部
346c :支持部
346d :支持部
348a :検知部
348b :検知部
348c :検知部
348d :検知部
350a :係合部
350b :係合部
350c :係合部
350d :係合部
352a :ナット部
352b :ナット部
352c :ナット部
352d :ナット部
354a :ガイド部
354b :ガイド部
354c :ガイド部
354d :ガイド部
356a :センサ保持部
356b :センサ保持部
356c :センサ保持部
356d :センサ保持部
358a :ボルト
358b :ボルト
358c :ボルト
358d :ボルト
360a :発光素子
360b :発光素子
360c :発光素子
360d :発光素子
362a :受光素子
362b :受光素子
362c :受光素子
362d :受光素子
364 :過積載検知機構
366 :支持部材
368 :ピラー部材
370 :コイルバネ
372 :検知プレート
374 :上側ハウジング
376 :センサ保持部材
378 :下側ハウジング
380 :過積載検知センサ
382 :キャップ
384 :円柱部
386 :上側小径部
388 :下側小径部
390 :貫通孔
392 :ネジ穴
394 :ワッシャ
396 :ワッシャ
398 :ボルト
400 :収容室
402 :底壁
404 :貫通孔
406 :シール部材
408 :クッション
410 :ネジ穴
412 :ボルト
414 :支持部
416 :検知部
418 :ガイド部
420 :発光素子
422 :受光素子
424 :収容空間
426 :自動運転制御回路基板
428 :無線I/F
430 :自動運転MCU
432 :制御電源回路
434 :メインMCU
436 :切換回路
438 :遮断回路
438a :スイッチング素子
438b :ドライバIC
438c :ANDゲート
440 :遮断回路
440a :スイッチング素子
440b :ドライバIC
440c :ANDゲート
442 :遮断回路
442a :スイッチング素子
442b :ドライバIC
442c :ANDゲート
446 :モータMCU
448 :モータMCU
450 :モータMCU
452 :モータMCU
454 :モータドライバ
454a :第1スイッチング素子
454b :第2スイッチング素子
454c :第3スイッチング素子
454d :第4スイッチング素子
454e :第5スイッチング素子
454f :第6スイッチング素子
454g :第1ダイオード
454h :第2ダイオード
454i :第3ダイオード
456 :モータドライバ
456a :第1スイッチング素子
456b :第2スイッチング素子
456c :第3スイッチング素子
456d :第4スイッチング素子
456e :第5スイッチング素子
456f :第6スイッチング素子
456g :第1ダイオード
456h :第2ダイオード
456i :第3ダイオード
458 :モータドライバ
458a :第1スイッチング素子
458b :第2スイッチング素子
458c :第3スイッチング素子
458d :第4スイッチング素子
458e :第5スイッチング素子
458f :第6スイッチング素子
458g :第1ダイオード
458h :第2ダイオード
458i :第3ダイオード
460 :モータドライバ
460a :第1スイッチング素子
460b :第2スイッチング素子
460c :第3スイッチング素子
460d :第4スイッチング素子
460e :第5スイッチング素子
460f :第6スイッチング素子
460g :第1ダイオード
460h :第2ダイオード
460i :第3ダイオード
462 :モータドライバ
462a :第1スイッチング素子
462b :第2スイッチング素子
462c :第3スイッチング素子
462d :第4スイッチング素子
462e :第5スイッチング素子
462f :第6スイッチング素子
464 :電磁ブレーキドライバ
464a :スイッチング素子
464b :ダイオード
466 :電磁ブレーキドライバ
466a :スイッチング素子
466b :ダイオード
468 :ブレーキ回路
468a :スイッチング素子
468b :抵抗器
468c :増幅器
468d :オペアンプ
468e :サーミスタ
470 :ブレーキ回路
470a :スイッチング素子
470b :抵抗器
470c :増幅器
470d :オペアンプ
470e :サーミスタ
472 :ブレーキ回路
472a :スイッチング素子
472b :抵抗器
472c :増幅器
472d :オペアンプ
472e :サーミスタ
474 :ブレーキ回路
474b :抵抗器
474c :増幅器
474d :オペアンプ
474e :サーミスタ
476 :LED
478 :ブザー
480 :ホールセンサ
482 :ホールセンサ
484 :ホールセンサ
486 :右後輪モータ
488 :ホールセンサ
490 :右後輪電磁ブレーキ
492 :左後輪モータ
494 :ホールセンサ
496 :左後輪電磁ブレーキ
500 :ベース部材
502 :ハウジング
502a :収容部
502b :右側支持部
502c :左側支持部
504 :右側前照灯
506 :左側前照灯
508 :バンパフレーム
510 :バンパ支持部材
512 :バンパ支持部材
514 :直動パイプ
514a :長孔
514b :長孔
516 :直動パイプ
516a :長孔
516b :長孔
518 :コイルバネ
520 :コイルバネ
522 :直動軸受
524 :直動軸受
526 :当接プレート
526a :当接部
528 :当接プレート
528a :当接部
530 :衝突検知スイッチ
530a :接地端子
530b :衝突検知端子
532 :衝突検知スイッチ
532a :接地端子
532b :衝突検知端子
534a :ボルト
534b :ボルト
536a :ナット
536b :ナット
538a :ボルト
538b :ボルト
540a :ナット
540b :ナット
542 :キャンセル回路
542a :トランジスタ
542b :抵抗器
542c :抵抗器
542d :抵抗器
544 :キャンセル回路
544a :トランジスタ
544b :抵抗器
544c :抵抗器
544d :抵抗器
546 :キャンセル回路
546a :トランジスタ
546b :抵抗器
546c :抵抗器
546d :抵抗器
548 :遅延回路
548a :ダイオード
548b :抵抗器
548c :キャパシタ
548d :バッファゲート
550 :ANDゲート
552 :ANDゲート
554 :ORゲート
556 :ORゲート
558 :NOTゲート
560 :NOTゲート
562 :NOTゲート
564 :NOTゲート
566 :ゲート
568 :抵抗器
570 :抵抗器
572 :抵抗器
574 :抵抗器
576 :抵抗器
578 :抵抗器
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
図37
図38
図39
図40
図41
図42
図43