(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-28
(45)【発行日】2024-12-06
(54)【発明の名称】硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法
(51)【国際特許分類】
C01G 53/10 20060101AFI20241129BHJP
B22F 1/00 20220101ALI20241129BHJP
H01M 4/525 20100101ALI20241129BHJP
B22F 9/08 20060101ALI20241129BHJP
【FI】
C01G53/10
B22F1/00 M
H01M4/525
B22F9/08 A
(21)【出願番号】P 2023129004
(22)【出願日】2023-08-08
(62)【分割の表示】P 2020548068の分割
【原出願日】2019-07-26
【審査請求日】2023-08-08
(31)【優先権主張番号】P 2018180215
(32)【優先日】2018-09-26
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】南 博之
【審査官】國方 康伸
(56)【参考文献】
【文献】特許第5510623(JP,B1)
【文献】特開2017-186661(JP,A)
【文献】特開昭53-072768(JP,A)
【文献】特開平05-195024(JP,A)
【文献】特開2015-059253(JP,A)
【文献】特表2009-519192(JP,A)
【文献】国際公開第2015/118613(WO,A1)
【文献】米国特許出願公開第2015/0307955(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B22F 9/00 - 9/30
C01G 53/10
C22B 1/00 -61/00
C22C 19/03
C22C 32/00
H01M 4/525
(57)【特許請求の範囲】
【請求項1】
ニッケル源を溶融させて溶湯を得る工程と、
前記溶湯に
硫酸水溶液を吹き付けるアトマイズ法により、前記溶湯に含まれる溶融ニッケル
が前記硫酸水溶液に溶解した硫酸ニッケルを得る工程と、
を備
える、
硫酸ニッケ
ルの製造方法。
【請求項2】
前記ニッケル源と共に、ニッケルよりも酸化され易い金属を溶融させ、生成した前記金属の酸化物を除去する、請求項1に記載の
硫酸ニッケ
ルの製造方法。
【請求項3】
請求項
1に記載の製造方法により製造される硫酸ニッケルを用いた晶析法により、ニッケルを含有する水酸化物を得る工程と、
前記水酸化物とリチウム化合物を混合し、混合した粒子を焼成する工程と、
を備える、二次電池用正極活物質の製造方法。
【請求項4】
前記ニッケル源は、ニッケルカソード、フェローニッケル、ニッケル銑鉄、及び粗水酸化ニッケルから選択される少なくとも一種である、請求項1に記載の硫酸ニッケルの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法に関する。
【背景技術】
【0002】
燃費規制、環境保全の対策として、電気自動車、ハイブリッド自動車等の電動車両(xEV)に対する期待は大きく、今後、電動車両の生産量の増加が見込まれる。それに伴い、動力源となるリチウムイオン電池等の二次電池の生産量も増加するものと想定される。ところで、二次電池の正極活物質には、例えばニッケルコバルトマンガン酸リチウム(NCM)、ニッケルコバルトアルミン酸リチウム(NCA)等のニッケルを含有する複合酸化物が用いられている(例えば、特許文献1参照)。
【0003】
ニッケルを含有する複合酸化物は、一般的に、硫酸ニッケル、硝酸ニッケル等のニッケル塩を用いて、晶析法によりニッケルを含有する水酸化物を作製した後、当該水酸化物にリチウム化合物を混合し、高温焼成を行うことで製造できる。ニッケル塩は、高純度のニッケル地金を硫酸等に溶解することで得られるため、正極活物質の製造には、硫酸等の酸に溶解し易いニッケル地金を用いることが好ましい。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、今後、二次電池の生産量が増加すると、正極活物質の原料に適したニッケル地金の入手が困難になることが予測される。本開示の目的は、二次電池用正極活物質の原料に好適なニッケル地金(ニッケル粒子)の製造方法を提供することである。
【課題を解決するための手段】
【0006】
本開示の一態様である硫酸ニッケルの製造方法は、ニッケル源を溶融させて溶湯を得る工程と、前記溶湯に硫酸水溶液を吹き付けるアトマイズ法により、前記溶湯に含まれる溶融ニッケルが前記硫酸水溶液に溶解した硫酸ニッケルを得る工程とを備える。
【0008】
本開示の一態様である二次電池用正極活物質の製造方法は、上記製造方法により製造される硫酸ニッケルを用いた晶析法により、ニッケルを含有する水酸化物を得る工程と、前記水酸化物とリチウム化合物を混合し、混合した粒子を焼成する工程とを備える。
【発明の効果】
【0009】
本開示の一態様であるニッケル粒子の製造方法によれば、二次電池用正極活物質の原料に好適なニッケル粒子を製造できる。
【図面の簡単な説明】
【0010】
【
図1】実施形態の一例であるニッケル粒子の製造方法を説明するための図である。
【発明を実施するための形態】
【0011】
上述のように、正極活物質の原料に適したニッケル地金を確保することは、二次電池の生産において重要な課題である。現在、正極活物質の原料に使用可能な高純度のニッケル地金として、主に、ニッケル粒子を圧縮成形したブリケット、及び板状のカソードが存在する。ブリケットは、カソードと比べて硫酸に対する溶解性が高いため、正極活物質の製造にはブリケットが好んで使用される。しかし、ブリケットの生産量は限られており、今後、二次電池の生産量が増加すると、その入手が困難になると予測される。なお、カソードはブリケットよりも生産量は多いが、硫酸等の酸に対する溶解速度が遅く、カソードを使いこなして正極活物質を効率良く製造することは容易ではない。
【0012】
したがって、正極活物質の原料に適した新たなニッケル地金の製造技術、或いはニッケルカソードを加工して効率良く正極活物質を製造する技術が求められる。硫酸に対するニッケルカソードの溶解速度を上げるには、粉末化やペレット化により原料の表面積を大きくすることが有効であるが、カソードは強度が高いため、粉砕装置を用いて粉砕すると、装置由来の不純物が混入して品質(純度)が低下する。このように、カソードの加工は容易ではない。
【0013】
本発明者らは、上記課題について鋭意検討した結果、ニッケル源を溶融させて得た溶湯にガス又は水系媒体を吹き付けることでニッケル源が微粉化され、純度が高いニッケル粒子を製造できることを見出した。該ニッケル粒子は、硫酸等の酸に対する溶解性が高いため、正極活物質の原料に好適である。当該ニッケル源には、上記カソードを使用することができる。
【0014】
以下、図面を参照しながら、本開示の実施形態の一例であるニッケル粒子の製造方法、当該ニッケル粒子を用いた硫酸ニッケル及び二次電池用正極活物質の製造方法について詳細に説明する。
図1は、ニッケル粒子の製造方法の一例を説明するための図である。
【0015】
図1に例示するように、実施形態の一例であるニッケル粒子12の製造工程は、ニッケル源10を溶融させて溶湯11を得る工程(以下、「第1工程」という場合がある)と、溶湯11にガス又は水系媒体を吹き付けるアトマイズ法により、溶湯11に含まれる溶融ニッケルを粉末化する工程(以下、「第2工程」という場合がある)とを含む。本製造工程には、ニッケル源10を溶融させる溶融炉20、溶湯11に高圧のガス又は水系媒体を吹き付けるノズル21、及び粉末化されたニッケル粒子12を貯留するチャンバー(図示せず)が用いられる。
【0016】
本実施形態では、ニッケル源10として、ニッケルカソードを用いる。ニッケルカソードは、ニッケル板(種板)をカソードとして用い、その表面にニッケルを電着させて得られる。ニッケルカソードは、例えば5mm~15mmの厚みを有する板状体であって、電気ニッケルとも呼ばれる。カソードは、上述の通り、硫酸等の酸に溶解し難く、このままでは正極活物質の原料として不適である。ニッケル源10にニッケルカソードを用いて粉末化することにより、高純度で、かつ酸に対する溶解性が高い、正極活物質の原料に好適なニッケル粒子12が得られる。
【0017】
但し、ニッケル源10は、ニッケルカソードに限定されない。例えば、フェローニッケル、ニッケル銑鉄(NPI)等の純度の低いニッケル地金、或いはニッケルを含む鉱石などをニッケル源10に用いてもよい。また、粗水酸化ニッケルのような水和物や、二次電池のリサイクルから分離濃縮された正極合材を主成分とする原料を用いてもよい。
【0018】
ニッケル源10は、溶融炉20で溶かされ、これにより溶融したニッケルを含む溶湯11が得られる。溶融炉20には、例えば誘導炉が用いられる。溶融炉20は、ニッケル源10を少なくともニッケルの融点以上の温度に加熱し、底面に設けられた出湯口20aから溶湯11を落下(流出)させる。溶湯11を得る第1工程では、溶融炉20に貯留された溶湯11に浮かび上がるスラグ(不純物)を除去することが好ましい。溶融炉20の内壁材質には、不純物の混入を防ぐため耐熱性のセラミック材を用いることが好ましい。セラミック材としては、SiO2、Al2O3、MgO2、及びZrO2から選択される少なくとも1種が特に好ましい。
【0019】
本製造工程では、ニッケル源10と共に、ニッケルよりも酸化され易い金属13を溶融させ、生成した金属13の酸化物を除去してもよい。金属13は、ニッケル源10と共に、溶融炉20に投入されることが好ましい。金属13を用いることで、第1工程において金属13がニッケルよりも優先的に酸化するので、ニッケルの酸化を抑制できる。金属13の酸化物は、例えば溶融炉20に貯留された溶湯11に浮き上がるので、溶融ニッケルを含む溶湯11から分離できる。
【0020】
金属13には、酸化物のエリンガム図でニッケルよりも下方に位置する金属を用いることが好ましい。具体例としては、クロム(Cr)、マンガン(Mn)、ケイ素(Si)、チタン(Ti)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、鉄(Fe)等が挙げられる。中でも、電池に混入したとしても電池特性や安全性に影響を与え難い、Cr、Mn、Si、Ti、Al、及びMgが好ましい。これらは脱酸材として機能し、溶存酸素と反応して酸化物となり、ニッケルの酸化を抑制する。
【0021】
第1工程で得られた溶融ニッケルを含む溶湯11は、出湯口20aから流出し、第2工程に供給される。溶湯11は、ニッケルの融点以上の温度であればよいが、アトマイズ法で微粉化されるまでに一定の冷却を受けるので、当該冷却を考慮し、溶湯11の大幅な粘度上昇等が起こらないような温度とすることが好ましい。出湯口20aから流出する溶湯11における溶融ニッケルの含有量は、例えば、実質的に100%(溶湯11≒溶融ニッケル)である。
【0022】
図1に例示するように、出湯口20aの下方には、ガス又は水系媒体を噴射するノズル21が設けられている。ノズル21から噴射されるガス又は水系媒体の圧力を高くするほど、一般的に溶湯11に作用するせん断力が大きくなり、ニッケル粒子12の粒径が小さくなる。ノズル21は、高圧のガス又は水系媒体を斜め下方に噴射し、出湯口20aから落下する溶湯11の外周全体に略均一に吹き付けることが好ましい。ノズル21は、例えば落下する溶湯11を囲むように同心円状に配置される。
【0023】
第2工程では、上述の通り、出湯口20aから落下する溶湯11に高圧のガス又は水系媒体を吹き付けることで、溶融ニッケルが粉末化し、ニッケル粒子12が得られる。溶湯11にガスを吹き付けて溶湯11を粉末化する方法は、一般的にガスアトマイズ法と呼ばれる。他方、水系媒体を用いる方法は、一般的に水アトマイズ法と呼ばれる。ガスには、アルゴン、ヘリウム、窒素等の不活性ガスが使用される。ガスアトマイズ法によれば、一般的な水アトマイズ法と比較して、ニッケル粒子12の表面酸化を抑制し易い。アトマイズ法は、例えば空気雰囲気下、又はアルゴン等の不活性ガス雰囲気下で行われる。
【0024】
溶湯11に水系媒体を吹き付けて溶湯11を粉末化する水アトマイズ法では、ガスアトマイズ法と比較して、生産性が高く、粒径の小さなニッケル粒子12を製造することが容易である。水系媒体は、例えば水圧が90MPa以上の高圧水である。溶湯11(溶融ニッケル)に高圧水を吹き付けることで、溶融ニッケルが急冷凝固すると共に、大きなせん断力によって粒径の小さなニッケル粒子12が得られる。水アトマイズ法によれば、ニッケル粒子12が水中に分散したスラリーが得られ、チャンバーに貯留される。スラリーを濾過してニッケル粒子12を回収し、水洗、乾燥、解砕、分級等の処理を行ってもよい。
【0025】
第2工程で水アトマイズ法を適用する場合、水系媒体は、界面活性剤を含む水であってもよい。界面活性剤を含む高圧水を用いることで、ニッケル粒子12の表面酸化を抑えることができる。界面活性剤の濃度は、水系媒体の質量に対して、例えば0.01~5質量%、又は0.05~1質量%である。界面活性剤は、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤のいずれであってもよいが、好ましくはノニオン界面活性剤である。
【0026】
また、水系媒体は、硫酸水溶液であってもよい。この場合も、界面活性剤を用いる場合と同様に、ニッケル粒子12の表面酸化を抑えることができる。硫酸水溶液を用いた場合、例えば、硫酸水溶液中にニッケル粒子12が分散し、ニッケル粒子12の一部が溶解したスラリーが得られる。この場合、当該スラリーを固液分離することなく、濃度を適宜調整して正極活物質の製造に使用される硫酸ニッケルとして使用できる。硫酸の濃度は、水系媒体の質量に対して、例えば0.05~5mol/L、又は0.1~1mol/Lである。
【0027】
硫酸水溶液には、得られるニッケル粒子12の全量が溶解していてもよく、上述の通り一部だけが溶解していてもよい。ニッケル粒子12の溶け残りが存在する場合、後工程で硫酸水溶液を追加してニッケル粒子12を全量溶解させてもよい。水アトマイズ法に硫酸水溶液を用いた場合は、ニッケル粒子12が水アトマイズ直後から硫酸水溶液に溶解し、ニッケル粒子12の粒径が小さくなるため、出湯口20aのノズル径を大きくすることができ、生産性を高めることが可能である。
【0028】
ニッケル粒子12の体積基準のメジアン径は、酸に対する溶解性向上等の観点から、500μm以下が好ましく、100μm以下が特に好ましい。ニッケル粒子12の体積基準のメジアン径は、レーザ回折散乱法で測定される粒度分布において体積積算値が50%となる粒径であって、50%粒径(D50)又は中位径とも呼ばれる。ニッケル粒子12の粒径は、出湯口20aから落下する溶湯11の粘度、ノズル21から噴射されるガス又は水系媒体の圧力等により制御できる。また、ニッケル粒子12の粒子表面の酸素濃度は、10%以下であり、好ましくは6%以下、より好ましくは3%以下である。
【0029】
ニッケル粒子12の純度は、90質量%以上である。つまり、ニッケル粒子12に含まれる全成分に対して、ニッケルの含有率が90質量%以上である。純度が90質量%以上のニッケル粒子12は、正極活物質の原料として好適である。ニッケル粒子12には、5質量%未満の量でSi、Ti、Fe、Mg、Al等の金属元素、これらの酸化物等が含有されていてもよく、3質量%未満の量で酸素が含有されていてもよい。ニッケル粒子12は、例えば金属成分を98質量%以上含む。特に好ましくは、ニッケル粒子12に含まれる金属成分のうち、ニッケルの含有率が98質量%以上である。ニッケル粒子12は、不純物として、ランタン(La)を実質的に含まないことが好ましい。
【0030】
二次電池用の正極活物質は、上述の製造方法により得られるニッケル粒子12を用いて製造できる。まず初めに、ニッケル粒子12を硫酸水溶液に溶解することで硫酸ニッケルを得る。硫酸の濃度は、例えば3~15mol/Lである。ニッケル粒子12は、粒径が小さな小粒子であるから、硫酸水溶液に対する溶解性が高く、ニッケル粒子12を用いて容易に硫酸ニッケルを製造できる。
【0031】
正極活物質の製造工程は、硫酸ニッケルを用いた晶析法により、ニッケルを含有する水酸化物を得る工程と、当該水酸化物とリチウム化合物を混合し、混合した粒子を焼成する工程とを含む。なお、水アトマイズ法で硫酸水溶液を用いる場合、チャンバーに貯留されるニッケル粒子12のスラリーを固液分離することなく、当該スラリーに硫酸水溶液を追加する等して硫酸ニッケルを調製できる。硫酸水溶液を用いた水アトマイズ法において、ニッケル粒子12が硫酸水溶液に完全に溶解して、硫酸ニッケルが得られてもよい。
【0032】
正極活物質は、ニッケル(Ni)の他に、リチウム(Li)を含有し、さらにコバルト(Co)、マンガン(Mn)、アルミニウム(Al)等の金属元素を含有する複合酸化物である。複合酸化物は、他にも、Mg、Ti、Cr、Fe、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、ジルコニウム(Zr)、ニオブ(Nb)、インジウム(In)、スズ(Sn)、タンタル(Ta)、タングステン(W)、ホウ素(B)、バナジウム(V)等を含有していてもよい。Li、Ni、Co、Mnを含有する複合酸化物(NCM)を製造する場合、硫酸ニッケル、硫酸コバルト、及び硫酸マンガンを用いた共沈法により、ニッケルコバルトマンガン水酸化物を作製する。
【0033】
正極活物質は、少なくともNiを含有する水酸化物(例えば、ニッケルコバルトマンガン水酸化物)と、リチウム化合物とを混合した後、混合粒子を500~1000℃の温度で焼成し、焼成物を粉砕、分級して得られる。当該リチウム化合物の一例は、炭酸リチウムである。正極活物質のD50は、例えば1μm~30μmであり、好ましくは3μm~10μmである。
【実施例】
【0034】
以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
【0035】
<参考例1>
101.6mm角のニッケルカソードを高周波誘導炉に投入して、1600℃の温度で溶解させた。溶融ニッケルを誘導炉から流出(落下)させ、当該溶融ニッケルに高圧水を吹き付ける水アトマイズ法により粉末化し、D50が100μmのニッケル粒子を得た。ニッケル粒子の表面を走査型電子顕微鏡(SEM)で観察し、エネルギー分散型X線分析(EDS)により組成解析した結果、粒子表面の酸素濃度は6質量%であった。
【0036】
<参考例2>
ニッケルカソードに対して0.1質量%のSiを誘導炉に投入し、溶融ニッケルの表面に浮き上がった酸化物をスラグとして除去したこと以外は、参考例1と同様の方法で、D50が100μmのニッケル粒子を得た。この場合、粒子表面の酸素濃度は3質量%であった。
【0037】
<実施例3>
水アトマイズ法において、水の代わりに、硫酸水溶液(0.3mol/L)を用いたこと以外は、参考例1と同様の方法で処理を行った。この場合、ニッケル粒子の全量が溶解した硫酸水溶液(硫酸ニッケルの水溶液)が得られた。
【0038】
<参考例4>
水アトマイズ法において、水の代わりに、0.1質量%のノニオン界面活性剤水溶液を用いたこと以外は、参考例1と同様の方法で、D50が100μmのニッケル粒子を得た。この場合、粒子表面の酸素濃度は1.5質量%であった。
【0039】
以上のように、上述の製造方法によれば、ニッケルカソード等のニッケル源を用いて、純度が高く、かつ硫酸等の酸に対する溶解性が高い、正極活物質の原料に好適なニッケル粒子を製造できる。特に、Si等のNiよりも酸化し易い金属を溶湯に投入すること(参考例2)、水アトマイズ法の水系媒体として、界面活性剤を含む水を用いること(参考例4)により、粒子表面の酸素濃度が低い、より高純度のニッケル原料を得ることができる。また、水系媒体として硫酸水溶液を用いた場合(実施例3)は、ニッケル粒子の全量が硫酸水溶液に溶解し、硫酸ニッケルが得られた。
【符号の説明】
【0040】
10 ニッケル源、11 溶湯、12 ニッケル粒子、13 金属、20 溶融炉、20a 出湯口、21 ノズル