(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-28
(45)【発行日】2024-12-06
(54)【発明の名称】除染装置、及び除染方法
(51)【国際特許分類】
G21F 9/28 20060101AFI20241129BHJP
G21F 9/00 20060101ALI20241129BHJP
G01T 1/167 20060101ALI20241129BHJP
G01T 1/169 20060101ALI20241129BHJP
B23C 9/00 20060101ALI20241129BHJP
B23Q 11/00 20060101ALI20241129BHJP
B23Q 17/24 20060101ALI20241129BHJP
B23C 3/00 20060101ALI20241129BHJP
【FI】
G21F9/28 501A
G21F9/00 Z
G01T1/167 D
G01T1/169 A
B23C9/00 Z
B23Q11/00 M
B23Q17/24 C
B23C3/00
G21F9/28 551Z
(21)【出願番号】P 2021201044
(22)【出願日】2021-12-10
【審査請求日】2024-02-01
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100149548
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100162868
【氏名又は名称】伊藤 英輔
(74)【代理人】
【識別番号】100161702
【氏名又は名称】橋本 宏之
(74)【代理人】
【識別番号】100189348
【氏名又は名称】古都 智
(74)【代理人】
【識別番号】100196689
【氏名又は名称】鎌田 康一郎
(72)【発明者】
【氏名】千田 哲也
(72)【発明者】
【氏名】小室 敏也
(72)【発明者】
【氏名】野田 雅紀
(72)【発明者】
【氏名】山本 剛
【審査官】右▲高▼ 孝幸
(56)【参考文献】
【文献】特開昭60-044899(JP,A)
【文献】特開平02-134597(JP,A)
【文献】米国特許第05679172(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G21F 9/00
G01T 1/16
B23C 9/00
B23Q 11/00
B23Q 17/24
B23C 3/00
(57)【特許請求の範囲】
【請求項1】
原子力設備から発生した除染対象物を除染するための除染装置であって、
前記除染対象物の表層に生じた汚染領域を切削する切削部と、
前記切削部による切削によって生じた切粉を回収する回収部と、
先端に前記切削部、及び前記回収部が設けられ、遠隔操作によって動作が可能なアーム部を有する作業装置と、
を備え、
前記アーム部の動作を制御する切削制御装置をさらに備え、
該切削制御装置は、
前記除染対象物における切削対象範囲を取得する範囲取得部と、
前記除染対象物における切削深さを取得する深さ取得部と、
前記切削対象範囲、及び前記切削深さに基づいて前記切削部が前記除染対象物の表面上で移動する基準経路を取得する経路取得部と、
前記基準経路に沿って前記切削部が移動するように前記アーム部を駆動する駆動部と、
を有する除染装置。
【請求項2】
前記切削制御装置は、
前記除染対象物の表面上における前記切削部の位置情報を取得する位置情報取得部と、
前記位置情報と前記基準経路とを照合することで前記切削部の該基準経路からの逸脱の有無を判定する経路判定部と、
をさらに有し、
前記経路判定部が前記基準経路からの逸脱があると判定した場合に、前記駆動部は、前記切削部が前記基準経路に戻るように該切削部の位置を修正する請求項
1に記載の除染装置。
【請求項3】
前記アーム部に設けられ、前記除染対象物の表面上における前記切削部の位置を画像として取得する撮像装置をさらに備え、
前記位置情報取得部は、前記撮像装置から入力された前記画像に基づいて前記位置情報を取得する請求項
2に記載の除染装置。
【請求項4】
前記範囲取得部は、予め得られている前記除染対象物の汚染の分布情報に基づいて前記切削対象範囲を取得する請求項
1から3のいずれか一項に記載の除染装置。
【請求項5】
前記深さ取得部は、予め得られている前記除染対象物の表面の形状情報に基づいて前記切削深さを取得する請求項
1から4のいずれか一項に記載の除染装置。
【請求項6】
前記深さ取得部は、予め定められている基準切削深さに対して、前記形状情報に基づいて前記基準切削深さからの増減量を取得して前記切削深さを決定する請求項
5に記載の除染装置。
【請求項7】
前記作業装置は、前記アーム部を回動自在に支持する上部旋回体と、該上部旋回体を上下方向に延びる旋回軸回りに旋回可能に支持するとともに、床面上で移動可能な下部走行体と、を有する作業車両である請求項1から
6のいずれか一項に記載の除染装置。
【請求項8】
前記切削部は、前記除染対象物の形状に応じて刃先が交換可能に構成されている請求項1から
7のいずれか一項に記載の除染装置。
【請求項9】
請求項1から
8のいずれか一項に記載の除染装置を用いて前記除染対象物の除染を行う除染方法であって、
前記除染装置を用いて前記汚染領域を切削しつつ、前記切粉を回収するステップと、
前記除染対象物の表面における放射線量を計測する計測することで、前記汚染領域のうち残存している領域を検出するステップと、
前記残存している領域に対して除染を行うステップと、
を含む除染方法。
【請求項10】
前記残存している領域に対して除染を行うステップの完了後に、該ステップで生じた二次廃棄物を回収するステップをさらに含む請求項
9に記載の除染方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、除染装置、及び除染方法に関する。
【背景技術】
【0002】
原子力発電プラント等の原子力設備では、廃炉作業に伴って各装置の解体と除染が必要となる。特に、一次冷却水や二次冷却水が流通する蒸気発生器、及びこれに付随する配管は放射線量が高いため、確実な除染を行う必要がある。例えば下記特許文献1には、蒸気発生器を予め解体した後、解体によって生じた各部材(除染対象物)を適宜除染するといった方法が記載されている。従来、除染作業は、作業員の人力によって行われる場合が多い。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、人力によって除染を行う場合、作業員の作業精度にばらつきが生じる。また、作業員が被ばくしてしまうという課題もある。
【0005】
本開示は上記課題を解決するためになされたものであって、高い精度のもと、より安全に除染を行うことが可能な除染装置、及び除染方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本開示に係る除染装置は、原子力設備から発生した除染対象物を除染するための除染装置であって、前記除染対象物の表層に生じた汚染領域を切削する切削部と、前記切削部による切削によって生じた切粉を回収する回収部と、先端に前記切削部、及び前記回収部が設けられ、遠隔操作によって動作が可能なアーム部を有する作業装置と、を備え、前記アーム部の動作を制御する切削制御装置をさらに備え、該切削制御装置は、前記除染対象物における切削対象範囲を取得する範囲取得部と、前記除染対象物における切削深さを取得する深さ取得部と、前記切削対象範囲、及び前記切削深さに基づいて前記切削部が前記除染対象物の表面上で移動する基準経路を取得する経路取得部と、前記基準経路に沿って前記切削部が移動するように前記アーム部を駆動する駆動部と、を有する。
【0007】
本開示に係る除染方法は、上記の除染装置を用いて前記除染対象物の除染を行う除染方法であって、前記除染装置を用いて前記汚染領域を切削しつつ、前記切粉を回収するステップと、前記除染対象物の表面における放射線量を計測する計測することで、前記汚染領域のうち残存している領域を検出するステップと、前記残存している領域に対して除染を行うステップと、を含む。
【発明の効果】
【0008】
本開示の除染装置、及び除染方法によれば、高い精度のもと、より安全に除染を行うことができる。
【図面の簡単な説明】
【0009】
【
図1】本開示の実施形態に係る蒸気発生器の構成を示す断面図である。
【
図2】本開示の実施形態に係る除染装置の構成を示す全体図である。
【
図3】本開示の実施形態に係る切削部による切削作業の様子を示す説明図である。
【
図4】本開示の実施形態に係る切削制御装置の構成を示す機能ブロック図である。
【
図5】本開示の実施形態に係る切削制御装置の処理の一例を示すフローチャートである。
【
図6】本開示の実施形態に係る除染方法の各工程を示すフローチャートである。
【
図7】本開示の実施形態に係る切削部による切削の基準経路の一例を示す模式図である。
【
図8】本開示の実施形態に係る切削部による切削の基準経路の他の一例を示す模式図である。
【
図9】本開示の実施形態に係る切削制御装置の構成を示すハードウェア構成図である。
【発明を実施するための形態】
【0010】
以下、本開示の実施形態に係る除染装置2、及び除染方法について、
図1から
図9を参照して説明する。
【0011】
(蒸気発生器の構成)
初めに、本実施形態に係る除染装置2、及び除染方法の適用対象(除染対象物43)となる蒸気発生器1の構成について説明する。
図1に示すように、蒸気発生器1は、胴部10と、水室20と、管板30と、複数の伝熱管40と、仕切板50と、を備える。
【0012】
胴部10は、上下方向に延びる軸線Oを中心とする筒状をなしている。胴部10の上端部には蒸気を排出するための蒸気口11が形成されている。また、胴部10の側面には二次冷却水を当該胴部10内に導くための二次冷却水導入口12が形成されている。水室20は胴部10の下端に一体に接続されている。水室20は、軸線Oを中心とする半球状をなしており、当該水室20によって胴部10の下方が閉止されている。水室20には、一次冷却水を水室20内外で流通させるための一次冷却水導入口21と一次冷却水排出口22とが形成されている。胴部10と水室20の内部には空間が形成されている。
【0013】
管板30は、上記の空間における胴部10と水室20の間に配置されている。管板30は、軸線O方向に直交する面(水平面)に沿って配置されている。これにより蒸気発生器1の内部には、管板30よりも下側の一次冷却水室23(一次領域)と、管板30よりも上側の二次冷却水室24(二次領域)と、が形成されている。仕切板50は、一次冷却水室23を入口側水室25と、出口側水室26とに区画している。
【0014】
複数の伝熱管40は、胴部10内に配置されている。複数の伝熱管40は、それぞれ一対の直管部41と、湾曲部42と、を有している。一対の直管部41は、各伝熱管40の両端部に形成されている。各直管部41は、一次領域側から二次領域側に延びている。湾曲部42は、各伝熱管40の中間部に形成されている。湾曲部42は、上方に向かって凸となるU字状をなしている。各伝熱管40の両端部(各直管部41の端部)は、管板30に形成された穴に挿通されている。
【0015】
一次冷却水室23の入口側水室25には、原子炉(図示省略)で加熱された一次冷却水が一次冷却水導入口21を通じて導入される。この入口側水室25に導入された一次冷却水は、二次冷却水室24内に露出する複数の伝熱管40内を通り、一次冷却水室23の出口側水室26へ流れる。
【0016】
二次冷却水室24内には、二次冷却水導入口12を通じて二次冷却水が外部から導入される。二次冷却水は、二次冷却水室24内で伝熱管40の内部を流れる一次冷却水と熱交換することで加熱されて蒸気になる。この二次冷却水室24内で生成された蒸気は、蒸気口11を通じて、蒸気発生器1の外部に設置されたタービン(図示省略)へと送られる。また、二次冷却水との熱交換によって冷却された一次冷却水は、一次冷却水排出口22を通じて原子炉へと送られる。
【0017】
(除染装置の構成)
加圧水型原子力発電プラントの廃炉作業に当たっては、一次冷却水から発生する放射線に曝された蒸気発生器1を解体して除染する必要がある。除染に先立って蒸気発生器1は、主として、上述した胴部10、水室20、管板30、及び伝熱管40に分かれるように解体される。解体作業には、エンジンカッターやグラインダー等の切削工具が適宜用いられる。
【0018】
本実施形態に係る除染装置2は、上記のような解体作業で発生した各部材(除染対象物43)を除染するために用いられる。特に、除染対象物43の表層には、クラッドと呼ばれる汚染領域が形成されている。除染装置2は、この汚染領域を取り除くための装置である。なお、以下の説明では、蒸気発生器1の各部材のうち、代表的に水室20の除染作業を行う場合について説明する。
【0019】
図2に示すように、除染装置2は、作業装置51と、切削部52と、回収部53と、撮像装置54と、切削制御装置55と、を備えている。
【0020】
作業装置51は、一例として、作業エリアの床面90上で移動可能な作業車両151である。作業車両151は、下部走行体61と、上部旋回体62と、アーム部63と、を有する。下部走行体61は、シャシー64と、複数の車輪65と、固定脚66と、を有する。シャシー64には不図示の動力装置(エンジン)や変速装置が搭載されており、車輪65を回転させることによって床面90上で走行可能である。固定脚66は、下部走行体61を床面90上の定められた位置で移動不能に固定するために設けられている。固定脚66によって作業車両151全体が床面90から上方に離間した状態で支持されている。
【0021】
上部旋回体62は、下部走行体61の上方に設けられている。上部旋回体62は、下部走行体61に対して、上下方向に延びる旋回軸回りに旋回可能とされている。アーム部63は、この上部旋回体62によって、三次元空間内で自在に回動することが可能な状態で支持されている。アーム部63は、関節を介して接続された複数の柱状部材によって構成されている。
【0022】
アーム部63の先端には、切削部52と、回収部53と、撮像装置54と、が設けられている。切削部52は、予め固定台91に固定された汚染対象物としての水室20の表面を切削する工具である。切削部52は、例えばエンドミルやロリポップミルであり、作業の特性や除染対象物43の形状に応じて刃先を選択して適宜交換できるように構成されている。
【0023】
回収部53は、切削部52による切削作業で生じる二次廃棄物としての切粉(切りくず)を捕捉して回収するために設けられている。回収部53は、アーム部63の先端に固定されるとともに、切削部52の加工領域を臨むように配置されたノズル72と、このノズル72の内部を負圧にするための吸引装置71と、を有している。ノズル72はアーム部63の動作に追従して自在に変形することが可能な樹脂等の可撓性のある材料で形成されている。吸引装置71は作業エリアの床面90上に配置されていることが望ましい。
【0024】
ここで、
図3を参照して除染装置2による切削作業について説明する。除染対象物43の母材45の表面には、ステンレスを含むオーバーレイ44と呼ばれる薄膜状の層が形成されている。このオーバーレイ44の表面から数mmの深さにある表層には、放射線による汚染領域が形成されている。切削部52は、この汚染領域を深さ0.1mm~2.0mmにわたって削り取ることによって除去する。切削に伴って放射性物質を含む切粉が発生する。
【0025】
切粉は回収部53によって回収される。吸引装置71を駆動することで、ノズル72を通じて加工領域の周囲の空気が吸引され、当該空気の流れに乗って切粉がノズル72内に回収される。ノズル72を通じて吸引装置71に到達した切粉は、不図示のフィルタによって捕捉され、二次廃棄物として事後的に処理される。
【0026】
撮像装置54は、アーム部63の先端から切削部52の加工領域を臨むように配置されている。撮像装置54は、加工領域の状況を連続的な動画、又は断続的な静止画として記録し、後述する切削制御装置55に電気信号として送信する。なお、撮像装置54が取得した動画、画像は、例えば遠隔にいる作業員が現場の状況を目視確認するために用いられてもよい。
【0027】
(切削制御装置の構成)
切削制御装置55は、上述したアーム部63の動作を制御することで切削部52による切削作業を自律的に行うために設けられている。切削制御装置55は、例えば
図2に示す端末92に搭載されていてもよいし、作業装置51自体に搭載されていてもよい。また、端末92と作業装置51に当該切削制御装置55の各機能ブロックが分散して実装されていてもよい。
【0028】
図4に示すように、切削制御装置55は、範囲取得部81と、深さ取得部82と、経路取得部83と、駆動部84と、位置情報取得部85と、経路判定部86と、範囲判定部87と、記憶部88と、を有している。
【0029】
範囲取得部81は、除染対象物43の表面上で切削部52が切削を行う範囲である切削対象範囲を取得する。上述した水室20を含む蒸気発生器1の主要部材には、汚染の分布情報を予め記録したインベントリと呼ばれるデータが準備されている。範囲取得部81は、このインベントリに基づいて切削が必要とされる範囲を決定する。つまり、汚染の状況によっては、切削対象範囲は除染対象物43表面の全域にもなり得るし、一部の領域のみにもなり得る。
【0030】
深さ取得部82は、切削部52による切削を行うべき深さ(厚さ方向の寸法)を取得する。水室20のような主要部材の表面には上述したオーバーレイと呼ばれる層が形成されていることから、表面粗さが比較的に高い。また、表面粗さの分布にも部位によって偏りが生じている場合がある。このような形状情報は、蒸気発生器1の建造時における設計情報の一部として予め取得・保管されている。深さ取得部82は、この形状情報に基づいて切削時に必要となる切削深さを決定する。
【0031】
なお、上記の切削深さには、標準値となる値(基準切削深さ)が予め設定されている。基準切削深さとしては、汚染領域が浸透しやすい深さである0.1mm~2.0mmの範囲内で適宜選択された値が設定される。深さ取得部82は、この基準切削深さに対して、上述の形状情報に基づいて増減量を設定することで最終的な切削深さを決定する。つまり、表面の形状(表面粗さ)が標準値による切削深さではカバーしきれない箇所では、上記のように形状情報に基づく切削深さの調節が深さ取得部82によって行われる。なお、上述した標準値の範囲は一例であり、最大で深さ5.0mmの範囲から標準値が選択されてもよい。
【0032】
経路取得部83は、上記の切削対象範囲、及び切削深さに基づいて、切削部52が除染対象物43の表面上で移動するための基準となる経路(基準経路R)を取得する。基準経路Rは、例えば
図7に示すように、半球状の水室20の内面上で中心点回りに渦巻きを描くような経路である。また、他の例として
図8に示すように、基準経路Rは半球状の水室20の内面を直線状に走査する複数の線状であってもよい。なお、基準経路Rの態様はこれらに限定されず、除染対象物43の形状に応じて、切削部52が汚染領域を効率的に走査することが可能な経路が基準経路Rとして適宜設定されることが望ましい。
【0033】
駆動部84は、上記の基準経路Rに沿って切削部52が移動するようにアーム部63を駆動する駆動信号を生成する。この駆動信号は作業装置51に送られる。アーム部63の先端に取り付けられた切削部52、及び回収部53は、当該駆動信号に基づいて基準経路R上をなぞるように動作する。
【0034】
位置情報取得部85は、除染対象物43の表面上で、切削部52の実際の位置情報を取得する。位置情報取得部85には、上述した撮像装置54から切削部52を含む動画又は画像が入力される。位置情報取得部85は、これら動画又は画像に基づいて画像解析を行い、切削部52の実際の位置を検出・特定する。位置情報取得部85が取得した切削部52の位置情報は、記憶部88を介して経路判定部86に入力される。
【0035】
経路判定部86は、位置情報取得部85が取得した切削部52の位置情報と、上述の基準経路Rとを照合して、当該基準経路Rから切削部52の位置が逸脱しているか否かを判定する。切削部52が基準経路Rから逸脱していると判定された場合、経路判定部86は駆動部84に信号を送信する。この信号に基づいて駆動部84は、切削部52が基準経路R上に戻るように、切削部52の位置を修正するための駆動信号を生成し、作業車両151に送信する。
【0036】
範囲判定部87は、切削部52による切削が上述した切削対象範囲の全域で完了したか否かを判定する。この判定は、例えば設定された基準経路Rの合計の経路長を切削部52が完全に移動し終えたか否かに基づいて行われる。
【0037】
(切削制御装置55による処理)
次に、
図5を参照して、切削制御装置55の処理について説明する。まず、ステップS101で、範囲取得部81が上述した切削対象範囲を取得する。次に、深さ取得部82が上述した切削深さを取得する(ステップS102)。なお、これらステップS101とステップS102の順番は入れ替えてもよいし、これらステップを平行して行うことも可能である。
【0038】
その後、経路取得部83が上述した基準経路Rを取得する(ステップS103)。続いて、範囲判定部87は、切削対象範囲で切削が完了したか否かを判定する(ステップS104)。なお、作業開始時には、このステップS104における判定結果は自動的にNoとなる。ステップS104でNoと判定された後で、駆動部84が作業装置51のアーム部63を動作させる(ステップS105)。このとき、アーム部63は上記の基準経路Rに沿って動作する。これにより、切削部52は当該基準経路Rに沿って汚染領域の切削を行う。
【0039】
次いで、経路判定部86が、切削中における実際の切削部52の位置と、基準経路Rとを照合する(ステップS106)。切削部52の位置情報は、上述した位置情報取得部85が取得する。続いて、経路判定部86は、切削部52の位置情報と基準経路Rとを照合した結果に基づいて、当該基準経路Rからの切削部52の位置に逸脱があるか否かを判定する(ステップS107)。ステップS106で基準経路Rからの逸脱があると判定された場合(ステップS106:Yes)、後続のステップS108で、経路判定部86が駆動部84に信号を送信する。この信号に基づいて駆動部84は、切削部52が基準経路R上に戻るように、切削部52の位置を修正するための駆動信号を生成する。
【0040】
ステップS107で基準経路Rからの逸脱がないと判定された場合(ステップS107:No)、再び上記のステップS104に戻る。当該ステップS104からステップS108までを、切削対象範囲の全域で基準経路Rに従った切削が完了するまで、つまりステップS104でYesと判定されるまで繰り返して実行する。ステップS104で切削が完了したと判定されると切削制御装置55の処理が完了する。
【0041】
(除染方法)
次に、
図6を参照して、本実施形態に係る除染方法について説明する。同図に示すように、この除染方法は、除染対象物43を固定するステップS1と、除染装置2を準備するステップS2と、除染装置2による除染を行うステップS3と、切粉を回収するステップS4と、線量を計測するステップS5と、汚染領域の残存の有無を判定するステップS6と、残存した汚染領域を除染するステップS7と、二次廃棄物を回収するステップS8と、を含む。
【0042】
ステップS1では、上述した固定台91に除染対象物43を固定する。ステップS2では、除染装置2を固定脚66によって床面90上で移動不能に固定する。続くステップS3では、当該除染装置2によって除染対象物43の表面を切削することによって除染が行われる。このステップS3による除染と平行して、又は事後的に、切削に伴って発生した切粉を回収部53によって回収する(ステップS4)。その後、上述した切削対象範囲の全域にわたって除染(切削)が完了したら、除染対象物43から発せられる放射線量を計測する(ステップS5)。なお、ステップS5は、作業員が除染対象物43に接近して行ってもよいし、上述した作業装置51のアーム部63に線量計を設けて遠隔から行ってもよい。
【0043】
続いて、ステップS5の計測結果に基づいて、汚染領域が残存しているか否かを判定する(ステップS6)。つまり、線量が予め定められた基準値以上となる領域が残存しているか否かが判定される。
【0044】
ステップS6で、汚染領域が残存していると判定された場合、当該残存している領域の除染を行う(ステップS7)。このステップS7の除染作業は、例えば作業員が除染対象物43に接近して手作業で行ってもよいし、又は上述の除染装置2を用いて行ってもよい。ステップS3で既に除染装置2による除染が完了していることから、作業員が除染対象物43に接近しても安全性は確保されている。
【0045】
最後に、ステップS7の除染で生じた二次廃棄物(切粉等)を回収する(ステップS8)。以上により、本実施形態に係る除染方法の全工程が完了する。
【0046】
(作用効果)
上述した蒸気発生器1の水室20を含む除染対象物43の除染に際しては、従来手作業に依らざるを得ないという実情がある。ところが、人力によって除染を行う場合、除染対象物43に作業員が近接せざるを得ないことから、当該除染対象物43から生じる放射線に作業員が被ばくしてしまうという課題があった。さらに、作業員ごとの特性に応じて除染の作業精度にばらつきが生じることもある。これにより、本来除染が必要となる範囲を超えて過剰に作業を行ってしまう虞がある。例えば切削によって汚染領域を除去する場合に、汚染領域の存在する深さを超えて、過剰な深さにかけて切削作業を行ってしまう例が考えられる。また、反対に、除染が必要であるにも関わらず必要な除染が行われていない部分が生じる場合もある。結果として、除染作業の工数・工期が増大し、除染作業の効率性が低下してしまうという課題もあった。そこで、本実施形態では上述の除染装置2による除染作業、及び当該除染装置2を用いた除染方法を採っている。
【0047】
上記構成によれば、作業装置51のアーム部63が遠隔操作可能とされている。アーム部63を遠隔で操作することにより、当該アーム部63の先端に取り付けられた切削部52、及び回収部53の位置が変化する。このアーム部63の動作に従って、切削部52による切削が行われる。これにより、除染対象物43の表層に形成された汚染領域を切削・除去することができる。したがって、例えば作業員が除染対象物43に近接した状態で除染を行う場合に比べて、除染作業の安全性を高めることができる。
【0048】
さらに、アーム部63の先端には切削部52に加えて回収部53が取り付けられている。切削部52による切削で生じた切粉は放射能汚染されているため、二次廃棄物として回収し、適切な処理を行うことが必要となる。上記構成によれば、この切粉は回収部53によって回収される。具体的には、回収部53の吸引装置71を駆動することで、ノズル72を通じて加工領域の周囲の空気が吸引され、当該空気の流れに乗って切粉がノズル72内に回収される。ノズル72を通じて吸引装置71に到達した切粉は、不図示のフィルタによって捕捉され、二次廃棄物として事後的に処理される。これにより、二次廃棄物が周囲に散乱してしまう可能性を低減することができ、除染作業をより効率的かつ安全に進めることが可能となる。
【0049】
さらに、上記構成によれば、切削制御装置55の範囲取得部81、及び深さ取得部82が、それぞれ切削対象範囲、及び切削深さを決定する。これら値の決定は、一例として、上述のようにインベントリと呼ばれる汚染の分布情報や除染対象物43の表面形状(形状情報)に基づいて決定される。これにより、切削が必要とされる範囲・深さを過不足なく設定することができる。したがって、例えば手作業で切削を行う場合に比べて、高い精度のもとで必要最小限の切削を行うことが可能となる。その結果、二次廃棄物としての切粉の発生量も削減することができる。
【0050】
また、上記の切削対象範囲、及び切削深さに基づいて、経路取得部83が基準経路Rを取得する。基準経路Rとしては、切削部52が切削対象範囲の全域を効率的に走査できる経路が設定される。この基準経路Rに沿って駆動部84が自律的に切削部52を移動させることで、より高い精度のもと切削作業を行うことができる。他方で、アーム部63を作業員が操作した場合には上述のような基準経路Rに沿って切削部52を精密に動かすことが難しく、作業精度が下がってしまう。その結果、無駄な切削による切粉(二次廃棄物)が新たに発生してしまう可能性がある。反対に、本来切削が必要な部分に対して十分な切削が行われずに除染作業の工数・工期が増大してしまう可能性もある。上記構成によれば、これらの可能性を低減することができる。つまり、除染対象物43における汚染領域と非汚染領域との切り分けを高い精度のもと効率的に行うことが可能となる。
【0051】
さらに、上記構成によれば、振動等の外乱要因によって切削部52が基準経路Rから逸脱した場合には、位置情報取得部85が切削部52の実際の位置を取得して、経路判定部86が当該位置情報と基準経路Rとを比較する。経路判定部86による比較の結果、切削部52が基準経路Rから逸脱していると判定された場合、経路判定部86は駆動部84に対して、切削部52の位置を修正するための駆動信号を生成するように指令を送信する。この駆動信号によって、切削部52は基準経路R上に復帰することができる。したがって、上記のような外乱要因が発生した場合であっても、その影響を最小限に抑え、高い精度のもとで自律的に切削作業を継続することが可能となる。
【0052】
加えて、上記構成によれば、位置情報取得部85は、アーム部63の先端に設けられた撮像装置54が取得した加工領域を被写体とする動画、又は静止画に基づいて切削部52の位置情報を取得する。これにより、例えば、作業員が目視のみによって切削部52の位置を特定する場合や、他のセンサー等によって位置を特定する場合に比べて、より高い精度で切削部52の位置を取得することが可能となる。したがって、切削作業の精度をさらに高めることができる。
【0053】
さらに、上記構成によれば、範囲取得部81は、汚染の分布情報であるインベントリに基づいて切削対象範囲を取得する。これにより、実際の分布情報に基づいて、必要十分な範囲のみを切削部52が切削することができる。したがって、例えば人力による切削を行った場合に比べて切削対象範囲は必要最小限の範囲となる。その結果、切粉を含む二次廃棄物の量を削減することができる。
【0054】
また、上記構成によれば、深さ取得部82は、除染対象物43の表面の形状情報に基づいて切削深さを取得する。そのため、除染対象物43の表面に凹凸や波打ちが生じていても、当該形状の変化の影響を考慮した上で最適な切削深さを決定することができる。これにより、表面の形状に応じてもれなく汚染領域を切削することができる。
【0055】
さらに、上記構成によれば、深さ取得部82では、標準値となる値(基準切削深さ)が予め設定されている。深さ取得部82は、この基準切削深さに対して、上述の形状情報に基づいて増減量を設定することで最終的な切削深さを決定する。つまり、表面の形状(表面粗さ)が標準値による切削深さではカバーしきれない箇所では、上記のように形状情報に基づく切削深さの調節が深さ取得部82によって行われる。言い換えると、表面に凹凸や波打ちが生じていない標準的な領域では、予め定められている基準切削深さに基づいて切削を行いつつも、形状が特に変化している個所では当該形状に応じて切削深さが増減される。これにより、表面の形状に応じて漏れなく汚染領域を切削することができる。
【0056】
加えて、上記構成によれば、アーム部63は、作業装置51としての作業車両151上に配置されている。作業車両151は下部走行体61を有することから、床面90(作業エリア)上で自在に移動することができる。そのため、除染装置2を各所に移動させて任意の場所で除染を行うことが可能となる。これにより、除染装置2の汎用性を高めることができる。
【0057】
さらに、上記構成によれば、切削部52は、除染対象物43の形状に応じて刃先が交換可能に構成されている。この構成によれば、除染対象物43の形状に応じて最も効率的に切削を行うことが可能な刃先を選択することが可能となる。これにより、より円滑かつ効率的に切削作業を進めることができる。
【0058】
また、上記の除染方法によれば、初めに除染装置2によって汚染領域の主要な部分を除染した後、後続のステップで、残存している汚染領域が検出される。残存している汚染領域がある場合にはさらに後続のステップで追加の除染が行われる。これにより、汚染領域の全域を余すことなく除染することができる。
【0059】
さらに、上記方法によれば、最終的な除染が完了した後に、二次廃棄物が回収される。二次廃棄物の除去が完了しない場合、作業エリアの放射線量が影響を受けてしまう。二次廃棄物を回収することによって作業エリアの放射線量が小さく抑えられ、作業の安全性をさらに高めることが可能となる。
【0060】
(その他の実施形態)
以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
【0061】
なお、上記実施形態では、位置情報取得部85が撮像装置54の撮影した動画、又は静止画に基づいて切削部52の位置情報を取得する例について説明した。しかしながら、位置情報取得部85は、アーム部63の先端に設けられた位置センサーやGPS(Global Positionning System)によって切削部52の実際の位置を取得するように構成されていてもよい。
【0062】
また、上記実施形態では、深さ取得部82が切削深さを設計情報に基づいて取得する例について説明した。しかしながら、深さ取得部82は、上述したインベントリに基づいて切削深さを取得してもよい。
【0063】
さらに、上記実施形態では、除染対象物43の一例として水室20が適用される例について説明した。しかしながら、除染対象物43は水室20に限られず、胴部10や伝熱管40、さらにはその他の配管(MCP:一次冷却水の流通する配管)であってもよいし、原子炉格納容器その他の原子力設備であってもよい。
【0064】
また、作業装置51としての作業車両151は一例であって、車輪65に代えてクローラを備える装置を用いることも可能である。さらに、アーム部63のみを有する作業用ロボットを作業装置51として適用することも可能である。
【0065】
なお、本開示の実施形態における処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。
【0066】
本開示の実施形態における記憶部88、その他の記憶装置のそれぞれは、適切な情報の送受信が行われる範囲においてどこに備えられていてもよい。また、記憶部88、その他の記憶装置のそれぞれは、適切な情報の送受信が行われる範囲において複数存在しデータを分散して記憶していてもよい。
【0067】
上述した切削制御装置55による処理の過程は、プログラムの形式でコンピュータ200が読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータ200が読み出して実行することによって、上記処理が行われる。コンピュータ200の具体例を以下に示す。
【0068】
図9に示すように、コンピュータ200は、CPU101と、メインメモリ102と、ストレージ103と、インターフェース104と、を備える。
例えば、上述の切削制御装置55はコンピュータ200に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ103に記憶されている。CPU101は、プログラムをストレージ103から読み出してメインメモリ102に展開し、当該プログラムに従って上記処理を実行する。また、CPU101は、プログラムに従って、上述した各記憶部88に対応する記憶領域をメインメモリ102に確保する。
【0069】
ストレージ103の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ103は、コンピュータ200のバスに直接接続された内部メディアであってもよいし、インターフェース104または通信回線を介してコンピュータ200に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ200に配信される場合、配信を受けたコンピュータ200が当該プログラムをメインメモリ102に展開し、上記処理を実行してもよい。なお、ストレージ103は、一時的でない有形の記憶媒体である。
【0070】
また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。
【0071】
なお、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)、GPU(Graphics Processing Unit)、及びこれらに類する処理装置を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。
【0072】
<付記>
各実施形態に記載の除染装置2、及び除染方法は、例えば以下のように把握される。
【0073】
(1)第1の態様に係る除染装置2は、原子力設備から発生した除染対象物43を除染するための除染装置2であって、前記除染対象物43の表層に生じた汚染領域を切削する切削部52と、前記切削部52による切削によって生じた切粉を回収する回収部53と、先端に前記切削部52、及び前記回収部53が設けられ、遠隔操作によって動作が可能なアーム部63を有する作業装置51と、を備える。
【0074】
上記構成によれば、アーム部63を遠隔操作することで切削部52によって汚染領域が切削される。これにより、除染作業の安全性を高めることができる。
【0075】
(2)第2の態様に係る除染装置2は、(1)の除染装置2であって、前記アーム部63の動作を制御する切削制御装置55をさらに備え、該切削制御装置55は、前記除染対象物43における切削対象範囲を取得する範囲取得部81と、前記除染対象物43における切削深さを取得する深さ取得部82と、前記切削対象範囲、及び前記切削深さに基づいて前記切削部52が前記除染対象物43の表面上で移動する基準経路Rを取得する経路取得部83と、前記基準経路Rに沿って前記切削部52が移動するように前記アーム部63を駆動する駆動部84と、を有する。
【0076】
上記構成によれば、基準経路Rに沿って切削部52を移動させることで、高い精度のもと切削作業を行うことができる。
【0077】
(3)第3の態様に係る除染装置2は、(2)の除染装置2であって、前記切削制御装置55は、前記除染対象物43の表面上における前記切削部52の位置情報を取得する位置情報取得部85と、前記位置情報と前記基準経路Rとを照合することで前記切削部52の該基準経路Rからの逸脱の有無を判定する経路判定部86と、をさらに有し、前記経路判定部86が前記基準経路Rからの逸脱があると判定した場合に、前記駆動部84は、前記切削部52が前記基準経路Rに戻るように該切削部52の位置を修正する。
【0078】
上記構成によれば、切削部52が基準経路Rから逸脱した場合であっても、当該切削部52の位置を修正し、基準経路Rに戻すことができる。これにより、さらに高い精度で切削作業を行うことができる。
【0079】
(4)第4の態様に係る除染装置2は、(3)の除染装置2であって、前記アーム部63に設けられ、前記除染対象物43の表面上における前記切削部52の位置を画像として取得する撮像装置54をさらに備え、前記位置情報取得部85は、前記撮像装置54から入力された前記画像に基づいて前記位置情報を取得する。
【0080】
上記構成によれば、実際の画像に基づいて切削部52の位置情報が取得される。これにより、より一層高い精度で切削部52の位置を取得することができる。
【0081】
(5)第5の態様に係る除染装置2は、(2)から(4)のいずれか一の除染装置2であって、前記範囲取得部81は、予め得られている前記除染対象物43の汚染の分布情報に基づいて前記切削対象範囲を取得する。
【0082】
上記構成によれば、汚染の分布情報に基づいて切削対象範囲が取得される。これにより、必要十分な範囲のみを切削することができるため、切粉を含む二次廃棄物の量を削減することができる。
【0083】
(6)第6の態様に係る除染装置2は、(2)から(5)のいずれか一の除染装置2であって、前記深さ取得部82は、予め得られている前記除染対象物43の表面の形状情報に基づいて前記切削深さを取得する。
【0084】
上記構成によれば、除染対象物43の表面の形状情報に基づいて切削深さが取得される。これにより、表面の形状に応じて漏れなく汚染領域を切削することができる。
【0085】
(7)第7の態様に係る除染装置2は、(6)の除染装置2であって、前記深さ取得部82は、予め定められている基準切削深さに対して、前記形状情報に基づいて前記基準切削深さからの増減量を取得して前記切削深さを決定する。
【0086】
上記構成によれば、予め定められている基準切削深さに基づいて切削を行いつつも、形状が特に変化している個所では当該形状に応じて切削深さを増減することで、表面の形状に応じてもれなく汚染領域を切削することができる。
【0087】
(8)第8の態様に係る除染装置2は、(1)から(7)のいずれか一の除染装置2であって、前記作業装置51は、前記アーム部63を回動自在に支持する上部旋回体62と、該上部旋回体62を上下方向に延びる旋回軸回りに旋回可能に支持するとともに、床面90上で移動可能な下部走行体61と、を有する作業車両151である。
【0088】
上記構成によれば、アーム部63が作業車両151上に配置されていることから、床面90(作業エリア)上で自在に移動することができる。これにより、除染装置2の汎用性を高めることができる。
【0089】
(9)第9の態様に係る除染装置2は、(1)から(8)のいずれか一の除染装置2であって、前記切削部52は、前記除染対象物43の形状に応じて刃先が交換可能に構成されている。
【0090】
上記構成によれば、除染対象物43の形状に応じて適切な刃先を用いて円滑に切削作業を進めることができる。
【0091】
(10)第10の態様に係る除染方法は、(1)から(9)のいずれか一の除染装置2を用いて前記除染対象物43の除染を行う除染方法であって、前記除染装置2を用いて前記汚染領域を切削しつつ、前記切粉を回収するステップと、前記除染対象物43の表面における放射線量を計測する計測することで、前記汚染領域のうち残存している領域を検出するステップと、前記残存している領域に対して除染を行うステップと、を含む。
【0092】
上記方法によれば、除染装置2によって汚染領域の大半を除染した後、後続のステップで、残存している汚染領域が検出され、除染される。これにより、汚染領域を余すことなく除染することができる。
【0093】
(11)第11の態様に係る除染装置2は、(10)の除染方法であって、前記残存している領域に対して除染を行うステップの完了後に、該ステップで生じた二次廃棄物を回収するステップをさらに含む。
【0094】
上記方法によれば、二次廃棄物が周囲に拡散してしまう可能性を低減することができる。
【符号の説明】
【0095】
1…蒸気発生器
2…除染装置
10…胴部
11…蒸気口
12…二次冷却水導入口
20…水室
21…一次冷却水導入口
22…一次冷却水排出口
23…一次冷却水室
24…二次冷却水室
25…入口側水室
26…出口側水室
30…管板
40…伝熱管
41…直管部
42…湾曲部
43…除染対象物
44…オーバーレイ
45…母材
50…仕切板
51…作業装置
52…切削部
53…回収部
54…撮像装置
55…切削制御装置
61…下部走行体
62…上部旋回体
63…アーム部
64…シャシー
65…車輪
66…固定脚
71…吸引装置
72…ノズル
81…範囲取得部
82…深さ取得部
83…経路取得部
84…駆動部
85…位置情報取得部
86…経路判定部
87…範囲判定部
88…記憶部
90…床面
91…固定台
92…端末
151…作業車両
101…CPU
102…メインメモリ
103…ストレージ
104…インターフェース
200…コンピュータ
O…軸線
R…基準経路