IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン電子株式会社の特許一覧

<>
  • 特許-シート給送装置及び画像読取装置 図1
  • 特許-シート給送装置及び画像読取装置 図2
  • 特許-シート給送装置及び画像読取装置 図3
  • 特許-シート給送装置及び画像読取装置 図4
  • 特許-シート給送装置及び画像読取装置 図5
  • 特許-シート給送装置及び画像読取装置 図6
  • 特許-シート給送装置及び画像読取装置 図7
  • 特許-シート給送装置及び画像読取装置 図8
  • 特許-シート給送装置及び画像読取装置 図9
  • 特許-シート給送装置及び画像読取装置 図10
  • 特許-シート給送装置及び画像読取装置 図11
  • 特許-シート給送装置及び画像読取装置 図12
  • 特許-シート給送装置及び画像読取装置 図13
  • 特許-シート給送装置及び画像読取装置 図14
  • 特許-シート給送装置及び画像読取装置 図15
  • 特許-シート給送装置及び画像読取装置 図16
  • 特許-シート給送装置及び画像読取装置 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-28
(45)【発行日】2024-12-06
(54)【発明の名称】シート給送装置及び画像読取装置
(51)【国際特許分類】
   H04N 1/00 20060101AFI20241129BHJP
   B65H 7/06 20060101ALI20241129BHJP
   B65H 1/00 20060101ALI20241129BHJP
   G03G 15/00 20060101ALI20241129BHJP
【FI】
H04N1/00 519
B65H7/06
B65H1/00 Z
G03G15/00 107
H04N1/00 567J
【請求項の数】 4
(21)【出願番号】P 2023073490
(22)【出願日】2023-04-27
(62)【分割の表示】P 2021022015の分割
【原出願日】2014-01-10
(65)【公開番号】P2023101495
(43)【公開日】2023-07-21
【審査請求日】2023-04-27
(73)【特許権者】
【識別番号】000104652
【氏名又は名称】キヤノン電子株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】福田 法旦
【審査官】花田 尚樹
(56)【参考文献】
【文献】特開2003-312897(JP,A)
【文献】特開2006-298579(JP,A)
【文献】特開2010-024053(JP,A)
【文献】特開平01-192645(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 1/00
B65H 7/00 - 7/20
43/00 -43/08
B65H 1/00 - 3/68
G03G 13/04 -13/056
15/00
15/04 -15/047
15/056
(57)【特許請求の範囲】
【請求項1】
シート載置台上からシートを1枚ずつ分離して給送する分離給送手段と、
前記分離給送手段により給送されているシートの端部の位置を検出する、シートの搬送方向に直交する方向の異なる位置に配置された第1の一対のセンサ
ートの搬送方向において、前記第1の一対のセンサとは異なる位置であって、シートの搬送方向に直交する方向に前記第1の一対のセンサよりも搬送路の幅方向両端部側、かつ、前記第1の一対のセンサよりも搬送方向上流側に配置された第2の一対のセンサ
シートの搬送方向において、前記第1の一対のセンサとは異なる位置であって、シートの搬送方向に直交する方向に前記第2の一対のセンサよりも搬送路の幅方向両端部側、かつ、前記第2の一対のセンサよりも搬送方向上流側に配置された第3の一対のセンサと、
を備え、
搬送方向に直交する方向において、前記分離給送手段は、前記第3の一対のセンサの間に配置され、
前記第1及び第2の一対のセンサは、前記分離給送手段よりも搬送方向下流側であって、前記分離給送手段よりも搬送路の幅方向両端部側に配置されたことを特徴とするシート給送装置。
【請求項2】
前記第1、第2及び第3の一対のセンサでシートの斜行を検知する斜行検知領域は、前記分離給送手段による分離給送領域に対して少なくとも部分的に重なり、前記斜行検知領域の搬送方向下流側の端部は、前記分離給送領域よりも搬送方向下流に位置することを特徴とする請求項に記載のシート給送装置。
【請求項3】
前記斜行検知領域の面積は、前記分離給送領域よりも広いことを特徴とする請求項に記載のシート給送装置。
【請求項4】
請求項1乃至のいずれか1項に記載のシート給送装置と、
前記シート給送装置によって搬送されたシートの画像を読み取る読取手段と、
を備えることを特徴とする画像読取装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は銀行等に設置されている自動紙幣入出金機や、学校、病院等で使用されているOCR(光学文字読み取り装置)のようなシート類を取り扱う自動シート類処理装置等において、シートの搬送状態、たとえばスキューや重送、及びシート間の間隔に異常が生じていないかどうか等を監視するシート監視方法、搬送機構に関する。
【背景技術】
【0002】
近年、画像形成装置は、提供可能な機能を複数備えるようになっており、多機能化を迎えている。その機能は、コピー機能をはじめ、ファクシミリ送信機能、スキャン機能、プリント機能、等があり、種類も様々である。さらに、上記機能の多様化とともに、シートを自動的に順次給送可能な自動シート給送装置(ADF)も搭載されるようになってきている。
【0003】
ここで、上記機能を適切に実行していくためには、画像形成の対象となるシート類が斜めに傾くことなく、用紙搬送路内を搬送させることが不可欠である。
【0004】
通常、シート処理装置のシート搬送は、駆動ローラと駆動ローラ側にばねなどにより付勢された従動ローラとの間にシートを狭持して搬送するか、あるいは、無端状の搬送ベルト間にシートを狭持して搬送する方式が用いられている。
【0005】
このようなシート処理装置において、最も大きな問題の一つにシート詰まりがある。例えばシート挿入口に対してシートが斜めに挿入されたり、あるいはシート挿入口後方の搬送手段のベルトやローラの押圧力の不均衡によってシートが斜めに搬送される場合などに、シート詰まりの問題が発生しやすい。
【0006】
またシートが斜めに傾いた状態(斜行状態)で搬送されると、画像が斜めに傾いた状態で読み取られたり、傾きがひどい場合には搬送路内に紙が詰まり、シートの破損の原因になることがある。搬送性能の問題については、搬送されるシートの種類に関わらず、同じような問題が起こりうる。
【0007】
従来のシートの搬送状態を検出する手段としては、特許文献1に記載の装置のように、イメージセンサによりシート類のスキューやシフトを検出するものがある。搬送路上に設けられたイメージセンサで搬送されてくるシートの全幅を読み取り、イメージセンサの出力を2値化し長手方向にたどってデータのパターンを作成し、作成したデータパターンを調べることによってシートがどのような状態で搬送されたかを解析する。
【0008】
また特許文献2に記載の装置のように、透過型の発光素子と受光素子をシートが搬送する方向と交差する方向に、それぞれ並設させ、発光素子から照射された光が、導光体によって搬送路を複数回横切って受光素子に入射する構成としている。搬送されるシートが、発光素子と受光素子の光路を遮っている期間、受光素子に入射される光は遮光されるため、遮光時間を計測することでシートの傾き度合いを解析することが可能となる。
【先行技術文献】
【特許文献】
【0009】
【文献】特開平6-183605号公報
【文献】特開2000-285278号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、特許文献1に記載の技術では、イメージセンサで読み取った画像データから、搬送されるシートの斜行状況を判断し、シフトやスキューを検出することはできるものの、イメージセンサで読み取った画像データをAD変換し画像データ化した後に判断しなければならないので、制御部の処理負担が大きくなるという問題があった。
【0011】
また読み取った画像データからシートの搬送状態を判断するため、シート類の斜行状態や、紙詰まりなどの検知が遅れてしまい、シートの破損に繋がるという問題があった。
【0012】
またシートの搬送状態を検出するためだけにイメージセンサを設置する必要があり、設置箇所の面積の増大、コストの増大に繋がっているという問題があった。
【0013】
本願発明は上述した課題に鑑みてなされたものであり、その目的は、より確実にシートの紙詰まりの発生を防止することができるシート搬送装置を安価な構成で実現することである。
【課題を解決するための手段】
【0014】
本発明に係わるシート給送装置は、シート載置台上からシートを1枚ずつ分離して給送する分離給送手段と、前記分離給送手段により給送されているシートの端部の位置を検出する、シートの搬送方向に直交する方向の異なる位置に配置された第1の一対のセンサートの搬送方向において、前記第1の一対のセンサとは異なる位置であって、シートの搬送方向に直交する方向に前記第1の一対のセンサよりも搬送路の幅方向両端部側、かつ、前記第1の一対のセンサよりも搬送方向上流側に配置された第2の一対のセンサシートの搬送方向において、前記第1の一対のセンサとは異なる位置であって、シートの搬送方向に直交する方向に前記第2の一対のセンサよりも搬送路の幅方向両端部側、かつ、前記第2の一対のセンサよりも搬送方向上流側に配置された第3の一対のセンサと、を備え、搬送方向に直交する方向において、前記分離給送手段は、前記第3の一対のセンサの間に配置され、前記第1及び第2の一対のセンサは、前記分離給送手段よりも搬送方向下流側であって、前記分離給送手段よりも搬送路の幅方向両端部側に配置されたことを特徴とする。
【発明の効果】
【0015】
本発明によれば、より確実にシートの紙詰まりの発生を防止することができるシート搬送装置を安価な構成で実現することが可能となる。
【図面の簡単な説明】
【0016】
図1】本発明の実施形態の画像読取装置の概略構成を示す正面断面図。
図2図1に示す画像読取装置の要部を示す概略断面図。
図3】シート給送装置101のシート分離機構主要部を概略的に示す側面図。
図4】シート給送装置101のシート分離機構主要図を概略的に示す上面図。
図5】分離機構主要部と、搬送状態検知手段の配置領域を概略的に示す上面図。
図6】搬送装置の電気的構成を示すブロック図。
図7】シート搬送不良判断手段によって異常判定をする項目を示した図。
図8】ステープル原稿を給送したときにシートが回転する様子を概略的に示した上面図。
図9】幅の広いステープル原稿を給送したときにシートが回転する様子を概略的に示した上面図。
図10】原稿がS1RまたはS1Lに掛っている様子を示した上面図。
図11】シートが分離ローラ対42によってジャムとなっている様子を概略的に示した上面図。
図12】本発明の実施形態における、シート搬送状態検出処理のフローチャート。
図13】本発明の別の形態の分離機構主要部を概略的に示す上面図。
図14】本発明の別の形態の分離機構主要部を概略的に示す上面図。
図15】本発明の別の形態の分離機構主要部を概略的に示す上面図。
図16】本発明の別の形態の分離機構主要部を概略的に示す上面図。
図17】他の実施形態における分離給送領域と異常検知領域の位置関係を示す図。
【発明を実施するための形態】
【0017】
本発明の実施形態は、シート給送時の異常を検知するための仕組みに特徴があり、特に、シート載置台からシートを1枚ずつ分離して給送する際の異常を検出することに特徴がある。
【0018】
詳細には、本発明の実施形態では、シート載置台上からシートを1枚ずつ分離して給送する分離給送手段と、分離給送時の異常を検知する異常検知手段と、を備え、分離給送手段による分離給送領域と、異常検知手段による異常検知領域とが少なくとも部分的に重なるようにした点に特徴がある。
【0019】
ここで、上記分離給送領域は、異常検知領域のうちシート給送方向上流側で部分的に重なることが好ましい。これにより、分離給送領域におけるシートの異常状態を即座に検知することが可能となる。また、上記異常検知領域は、分離給送領域よりも実質的に大きい面積で形成するのがよい。これは、分離給送領域内を起点として動くシートの状態変化を的確に検出することが可能となるからである。さらに、上記異常検知領域は、シート給送方向と直交する方向において、分離給送領域の両端からその外側に広がった領域で形成するのがよい。これは、詳細は後述するが、例えば、異常検知領域を複数のセンサを配置して形成する場合、これら複数のセンサを分離給送領域の外側で配置することができるため、複数のセンサの配置と分離給送の構成とが干渉するのを有効に防ぐことが可能となるからである。また、分離給送領域の外側であって分離給送領域に近いところで異常検知を行うことで、分離給送時におけるシートの動きを即座に把握することが可能となり、異常検知精度を高めることが可能となる。つまり、異常検知領域内に分離給送領域が包含されるように複数のセンサによって異常検知領域を形成することで、異常検知精度を高めることが可能となる。
【0020】
なお、異常検知領域は、シート給送方向におけるシート面方向の角度(傾き)やシートの給送姿勢等の状態が変化する状態変化を検出するための領域であって、例えば、複数のセンサ群、すなわち、複数のセンサの配置によって分離給送領域またはその周囲を実質的に囲むことにより形成することが可能である。また、例えば、複数のセンサとして光学センサを用いれば、分離給送の構成との物理的な干渉を防いで、非接触でシートの状態変化を的確に把握することが可能となる。
【0021】
例えば、異常検知領域は、シート給送方向と直交する方向において対向する一対の検知センサを、シート給送方向に複数配置して形成された矩形領域を含むようにするのがよい。これにより、シートの給送方向における複数個所でシートの異常状態、あるいは状態変化を時間軸で把握することが可能となる。
【0022】
また、分離給送領域は、例えば、分離パッドや分離ローラ等を用いた分離給送手段がシートに接触している部分を含む領域となる。分離給送手段が物理的にシートに接触することでシートの給送姿勢が変化することがあり、この変化を上記異常検知領域で検知することで、迅速な対応が可能となる。
【0023】
なお、分離給送領域は、シートに物理的に接触する部分として、シートを分離する分離領域を少なくとも含む。この分離領域は、シートとの摩擦を制御してシート束からシートを1枚ずつ分離するため、この分離過程でシートの進行方向が変化することがある。
【0024】
本発明の実施形態では、このようなシートの進行方向(給送方向における姿勢)が変化する際に、その状態を分離給送手段の近いところでいち早く検出するために、異常検知領域は、分離給送領域のうち分離給送手段がシートに接触している部分からシート給送方向下流側に至る領域として形成するのがよい。
【0025】
なお、本発明の実施形態では、分離給送領域を少なくともローラ構造を含めて構成する場合には、例えば、ローラ軸に複数のローラ(分割ローラ)を装着し、それらローラ間の隙間を有効に活用して、異常検知領域を形成する複数のセンサを配置することが可能となる。特に、光学センサのような、シートに対する非接触型のセンサであれば、ローラ間の隙間に対応して異常検知領域を形成することが可能となる。これにより、分離給送領域内でも異常検知領域を実質的に形成することが可能となる。また、1つのローラを取り囲むように1つの異常検知領域を設けてもよい。例えば、1つの回転軸に2つのローラを装着してシートの給送を行う場合においては、各ローラを個別に取り囲むように異常検知領域をそれぞれ設けてもよい。また、他の形態として、分割ローラではなく、ローラの外周に対してローラ軸の軸方向において複数の溝を設けた櫛歯状のローラを採用する場合には、当該溝部分の隙間のそれぞれに対応して、光学センサの検出領域をそれぞれ設けて、これら複数の光学センサの検出領域によって異常検知領域を形成することで、分離給送領域内に異常検知領域を実質的に形成することが可能となる。また、このように分離給送領域内で異常検知領域を形成しつつ、分離給送領域の外側まで異常検知領域を広げて形成すれば、より効果的な異常検知を実現することが可能となる。特に、本発明は、幅寸法の異なるシートを混載して給送する異種混載型のシート給送において、有効な異常検知を実現することが可能となる。
【0026】
以下、本発明の一実施形態について添付図面を参照して、より具体的に説明する。
【0027】
図1は、本発明の一実施形態であるシート搬送装置(原稿給送装置)を備える画像読取装置を説明するための概略断面図、図2図1に示す画像読取装置の要部を模式的に示す図である。
【0028】
図1および図2に示すように、本実施形態の画像読取装置200は、シートFが複数枚積載されて、原稿台駆動モータ2により昇降駆動される原稿台1を備える。原稿台1の、シートFの幅方向の両側には、原稿台1に積載されたシート束の幅方向の両側部に接してシートFの斜行を規制する規制板51が設けられている。原稿検知センサ3は、原稿台1に積載されたシートFを検知する。ピックアップローラ4は、原稿台1に積載されるシートを原稿台1から送り出す。ピックアップモータ5は、ピックアップローラ4を回転駆動する。
【0029】
給送ローラ6は、給送モータ8によってシートFを下流側に搬送する方向に回転駆動される。分離ローラ7は、シートFを上流側に搬送する回転力を不図示のトルクリミッタを介して分離モータ9から受けている。給送モータ8は、ステッピングモータを使用し、入力ステップ数に応じてモータは回転する。
【0030】
給送ローラ6と分離ローラ7との間にシートが1枚存在するときは、上記トルクリミッタが分離ローラ7へ伝達する、シートを上流側に押し戻す方向の回転トルクの上限値より、給送ローラ6によるシートを下流側に給送する方向への回転トルクが上回る。これにより、分離ローラ7は、給送ローラ6に追従して回転する。
【0031】
一方、給送ローラ6と分離ローラ7との間にシートが複数枚存在するときは、分離ローラ7はシートを上流側に押し戻す方向に保持し、最も上のシート以外の進入を防ぐ。
【0032】
このように、シートが複数枚重なって給送ローラ6と分離ローラ7とのニップ部13(図3)に送り込まれたとき、給送ローラ6がシートを下流側に給送する作用と分離ローラ7がシートを上流側に押し戻す作用とにより、最も上のシートのみ下流側に給送される。最も上のシート以外は上流側に戻され、重なったシートが分離される。よって、給送ローラ6と分離ローラ7とは、一対の分離ローラ対42を構成する。
【0033】
なお、本実施形態では、分離給送手段として分離ローラ対42を採用しているが、分離ローラ対42の代わりに分離ローラ7と給送ローラ6のどちらか一方をベルトにした、分離ベルトローラ対を採用してもよい。あるいは分離ローラ7のかわりに分離パッドを用いてもよい。
【0034】
また、分離モータ9を使用せず、トルクリミッタの力のみで分離してもよい。分離モータ9は保持させて、軸が回転しないようにする。特に薄いシートに対しては、トルクリミッタの戻し力により分離した方が、シートの先端折れに起因するジャムを低減できることがある。
【0035】
搬送モータ10は、分離給送後のシートをシート読取位置から排出位置まで搬送するためのローラを駆動する。また、搬送モータ10は、シートの読取に最適な速度や、シートの解像度等の設定に応じてシートの搬送速度を変更できるようにローラを駆動する。
【0036】
画像読取部43は、シートの画像を読み取る読取センサ14,15を備えており、シートの読み取り速度と解像度に基づき走査間隔を変更する。原稿排出センサ16は、シートが画像読取部43を通過して排紙トレイ44に排出されたことを検知する。
【0037】
ニップ隙間調整モータ11は、給送ローラ6と分離ローラ7との隙間、あるいは分離ローラ7に対してシートを介して給送ローラ6が圧接する圧接力を調整する。これにより、シートの厚みに適合した隙間、或いは圧接力が調整されシートを分離給送することができる。
【0038】
画像読取部43は、シートの画像情報を読み取る画像読取センサ14,15を備えており、シートの読取速度と解像度の設定に基づきライン走査を行う間隔を変更するよう制御される。画像読取センサ14は、シートの表面の画像を読み取り、画像読取センサ15は、シートの裏面の画像を読み取る。
【0039】
原稿搬送ローラ対20,21、原稿搬送ローラ対22,23、及び、下流側のローラ対は、原稿を排紙トレイ44に搬送する。上ガイド板40および下ガイド板41は、分離ローラ対42、レジストローラ対17,18、搬送ローラ対20,21、搬送ローラ対22,23、及び下流側のローラ対により搬送されるシートを案内する。
【0040】
レジスト前センサ32,レジスト後センサ33は搬送路を搬送されるシートを検知するセンサであり、これらのセンサによるシート検知タイミングに基づいてシートの搬送が制御される。
【0041】
搬送状態検知手段60は、シートFが搬送路に挿入された直後の給送ローラ6と分離ローラ7近傍に配置されており、シートFの搬送状況を検出する。搬送状態検知手段60の検知結果をもとに不図示のシート搬送不良判断手段が搬送異常と判断した場合、制御部45はシートの搬送動作を停止するように制御する。
【0042】
全てのシートの分離給送動作が終了し、原稿台1にシートが載置されるのを待機する際には、原稿台1は下降し、駆動範囲の最下部に移動して停止される。そして、シートが原稿台1に載置され、分離給送動作の開始指示がなされるまで待機する。
【0043】
レジスト前センサ32は、レジストローラ対17,18の上流側に配設され、搬送されるシートを検知する。レジスト後センサ33は、レジストローラ対17,18の下流側に配設され、搬送されるシートを検知する。
【0044】
制御部45は、シート搬送装置101を備えた画像読取装置200全体を制御する。例えば、上記各シートを検知するセンサからの出力信号に基づいて上記各モータを制御して上記各ローラの回転を制御し、シートを搬送する。さらに、搬送されるシートの画像を読み取るよう制御する。
【0045】
図3図1におけるシート搬送装置101のシート分離機構主要部を概略的に示す側面図であり、図4は同シート搬送装置101のシート分離機構主要図を概略的に示す上視面図である。図3では、搬送状態検知手段60、給送ローラ6、分離ローラ7、および、給送ローラ6と分離ローラ7とが接触しているニップ部13の位置関係を示している。図4では原稿台1、シート束F、シートF1、ピックアップローラ4、給送ローラ6、分離ローラ7、搬送状態検知手段60、及び規制板51との位置関係を示している。
【0046】
このように構成されたシート搬送機構における分離手段において、給送ローラ6がシートを下流側に給送する作用と、分離ローラ7のシートを上流側に押し戻す作用とによって、シートが重なって給送ローラ6と分離ローラ7とのニップ部に送り込まれたとき、最も上のシートのみ下流側に給送される。
【0047】
図1図2に示す搬送状態検知手段60として、図3図4のように、分離ローラ対42の周囲に、搬送方向におけるシートの端部を検知する非接触式の光学センサであるシート検知センサS1L,S1R,S2L,S2R,S3L,S3Rを配置する。シート検知センサS1L,S2L,S3Lは、分離ローラ7の左側にシートの搬送方向に等間隔に並べられている。シート検知センサS1R,S2R,S3Rも同様に、分離ローラ7の右側(シート検知センサS1L等とは反対側)にシートの搬送方向に等間隔に並べられている。シート検知センサS1RとS1L、シート検知センサS2RとS2L、シート検知センサS3RとS3Lのそれぞれは搬送方向に直交する方向の同一線上に離れて配置する。
【0048】
搬送状態検知手段60のセンサのうち、最も上流側にあるシート検知センサS1L、S1Rは、図3に示すように、給送ローラ6と分離ローラ7とのニップ部の付近に配置される。給送ローラ6と分離ローラ7の周辺の側面図を図3に示す。給送ローラ6は分離ローラ7から一定の圧力を受けてローラ同士がたわみ、当接している領域がニップ部13である。シートFを分離すると、シートFの上位側から2枚目のシートFの先端は、ニップ部13の領域に留まり、最上位のシートF1のみ給送される。シートF1の給送が終わったときに、2枚目のシートFの先端よりも下流側にシート検知センサS1L,S1Rがあれば、そのシートを給送し始めたときにシート先端が通過するタイミングを検知することができる。一方、より早くシートの異常を検知するためには、できるだけシート検知センサS1L、S1Rを上流側に配置する必要がある。そのため、両者を満たすように、シート検知センサS1L,S1Rは、ニップ部13の下流側の境界線上に配置する。
【0049】
シート検知センサS2L,S2R,S3L,S3Rは、分離されたシートがレジストローラ17,18にかかるまでに給送異常を検知できるように、図5に示す点線の領域内に配置される。搬送状態検知手段60をレジストローラ17,18よりもシート幅方向内側に配置する場合、シート検知センサS2L,S2R,S3L,S3Rはレジストローラ17,18よりも上流側に配置する。レジストローラ17,18よりも外側に配置する場合は、レジストローラ17,18よりも下流側に配置してもよい。これは、レジストローラ17,18と分離ローラ対42との距離が近い場合、シートが斜行していたときに、シートがレジストローラ17,18にかかる前に、シート先端がレジストローラ17,18よりも下流側に先行する場合もあるためである。図5の配置領域では、シートの斜行を考慮して、幅方向の外側になるほど搬送方向下流側に広くしている。
【0050】
次に搬送状態検知手段60としてシート検知センサS1R,S1L,S2R,S2L,S3R,S3Lを使用した場合の給送異常判定方法について説明する。
【0051】
図6は本実施形態のシート搬送装置の電気的ブロック構成を概略的に示す図である。図6において、シート検知センサS1L,S1R,S2L,S2R,S3L,S3Rの各出力は、それぞれ計測部61に送られる。計測部61では、後述するようにシート検知センサS1L,S1R,S2L,S2R,S3L,S3Rの各出力結果に基づき、各種搬送情報を算出する。算出する情報は、シートの不送り、斜行、回転、搬送距離、速度変動である。これらの搬送情報は比較器62に送られる。比較器62は、計測部61で計測されたシートの搬送情報と、記憶部12に記憶しておいた基準値とを比較する。その結果、正常条件を満たせない場合に、シート搬送不良判断手段64は搬送異常が発生したものと判断し、異常検出信号を制御部45に送る。制御部45は、異常検出信号を受取ると、搬送手段を停止し、シートの搬送を停止する。
【0052】
なお、計測部61でカウントするタイマーは、カウンタなどを用いたハードウェア構成でも、ソフトウェアによる構成でもよい。
【0053】
上記の搬送情報について、以下に詳細を説明する。
【0054】
まず、シート検知センサS1L,S1R,S2L,S2R,S3L,S3Rとレジスト前センサ32へのシートの到達タイミングについて説明する。シートの到達タイミングは、給紙開始からシート先端が各センサに到達するまでの搬送距離で表わす。搬送距離は、シート検知センサS1L,S1R,S2L,S2R,S3R,S3Lとレジスト前センサ32それぞれに対し、順にtS1L,tS1R,tS2L,tS2R,tS3L,tS3R,tBRとして表す。給送モータ8はステッピングモータを使うため、搬送距離はモータへ入力するステップ数とする。給送モータ8を駆動するとき常に一定速とする場合は、搬送距離としてステップ数ではなく、時間で表わしてもよい。給紙を開始して給送モータ8を駆動すると、モータのステップ数をカウントし、シート検知センサの搬送距離としてtS1L,tS1R,tS2L,tS2R,tS3L,tS3R,tBRに同じ値を格納する。この処理は、給紙開始してからシートの先端をまだ検知していないセンサのみ継続する。これにより、各センサ位置におけるシートの検知タイミングを確認することができる。
【0055】
これら各センサの搬送距離をもとにシートの各種情報を算出し、給送異常かどうかを判定する。判定する項目と、その検知区間の種類は図7に示す通りである。図7には、判定する検知項目と、その検知区間、各検知区間で検知するために使用するセンサ、判定するために算出した比較値、判定をすべき判定タイミング、正常と判定する条件、判定結果が異常だったときにユーザーへ通知するエラーの種類について示している。
【0056】
図6をもとに、各検知項目について具体的に説明する。なお図6では、シート検知センサS1L,S1R,S2L,S2R,S3L,S3Rの搬送方向の配置から、S1L,S1Rを1段目、S2L,S2Rを2段目、S3L,S3Rを3段目のセンサと記載している。
【0057】
まず、分離上流の不送りについて説明する。分離上流の不送りは、原稿台1にシートが積載された後、給送を開始するものの、シートが分離ローラ対42に到達せず、シートを給紙できない状態を検知する。これは、給紙を開始した後に、原稿台1に積載されたシートが取り除かれて給紙できないことを検知する。シート検知センサは1段目のS1L,S1Rを使用する。給紙を開始してから閾値TH0だけ搬送給送してもS1L,S1Rのいずれにもシート先端が到達しない場合に不送りと判定する。判定条件は、tS1L≦TH0、または、tS1R≦TH0のいずれかを満たせなくなったら不送りとなる。不送りと判定した場合は、給紙を停止し、ユーザーへは原稿台1に紙がなかった旨のメッセージなどを通知する。
【0058】
次に、斜行について説明する。斜行では、シートが規定量以上傾いたまま給送される状態を検知する。画像の読み取り開始タイミングとしてレジスト後センサ33をもとに決定する場合、シートが斜行したまま搬送されると、シートの先端と後端が切れて、読み取れない部分が生じる。また、シートの角が搬送路の端に衝突してシートが破損する可能性もある。これらを防止するために、斜行を検知する。
【0059】
分離ローラ7の左側にあるシート検知センサS1L,S2L,S3Lのうちの1個と、右側にあるシート検知センサS1R,S2R,S3Rのうちの1個、これら2個の組み合わせで検知タイミングの差から斜行量を算出する。組み合わせは、図7の7通りとする。7通りのうち、搬送方向に対して直交する方向の組み合わせは3通りあり、S1LとS1R、S2LとS2R、S3LとS3Rの組み合わせとなる。斜行量はそれぞれt11、t22、t33として表す。シートの斜行量として許容する閾値の絶対値をTH1とする。比較値の算出は、シートの右側先端が下流側に先行した状態の斜行量を正の値となるように、検知タイミングの差分を計算する。シートの左側先端が下流側に先行した斜行の場合は負の値となる。判定できるタイミングは、給送開始後いつでも可能である。1個のセンサでシートを検知するまでは斜行量0となり、シートを検知してから斜行量が増加または減少し、2個検知すると斜行量が確定する。
【0060】
また、図7の7通りのうち、残りの4通りの斜行量は、シート幅方向に対して傾いた方向のセンサの組み合わせとして、S1LとS2R、S2LとS3R、S2LとS1R、S3LとS2Rとし、斜行量はそれぞれt12、t23、t21、t32として表す。これらの組み合わせでは、センサ間で搬送方向に距離が離れているため、その分だけ斜行量として大きく現れる。判定条件として、センサ間の搬送方向の距離分を補正するため、搬送距離のオフセット値Aを加算する。このオフセットにより許容できる検知タイミング差の範囲のうち、上限と下限の絶対値が異なる。そこで、判定タイミングは、左右いずれかのセンサを検知した以降とし、先に検知したセンサごとに判定条件を変更している。
【0061】
次に回転について説明する。シートの回転は、すでに算出している7通りの斜行量t11,t22,t33,t12,t23,t21,t32をもとに、検知区間ごとに斜行量の差(回転量)を算出する。検知区間は4通りとし、S1L・S1RからS2L・S2Rの間、S2L・S2RからS3L・S3Rの間、S1L・S2RからS2L・S3Rの間、S2L・S1RからS3L・S2Rの間とする。各検知区間は、左右のシート検知センサをつなぐ直線が平行となるように決めている。
【0062】
シートの回転検知は特にステープルで止められたシートを搬送したときに有効である。図8は、ステープルシートが給送されたときのシートの状態を示す。図8(a)は、ステープルシートの先端が分離ローラ対42のニップ部13に到達したときの図である。この段階ではまだ斜行は生じていない。さらに給送を続けると、図8(b)のようになり、ステープルシートの1枚目は少し斜行しつつ、2枚目のシートは1枚目とは逆方向に回転する。ここでS1LとS1Rとでシート検知のタイミング差で少しの斜行を検知する。さらに給送すると、図8(c)のように、1枚目のシートはさらに回転し、S2LとS2Rとで斜行量が拡大したのを検知できる。
【0063】
シートの表面の状態やシートのサイズによっては、シートが回転しづらいこともある。図9は、図8よりも幅の広いステープルシートを給送したときの図である。図9では、ステープルシートを給送するにつれてステープル付近でシートに皺ができるが、シート検知センサの付近ではシートの回転が図8よりも遅れている。ステープルシートの先端がS1L・S1Rの地点にあるとき(図9(a))は斜行がほとんどないが、S2L・S2Rまで進むと少し斜行が進み(図9(b))、さらに進んでから斜行が大きくなる(図9(c))。このように、図8のように分離のニップ部直後から斜行が始まるステープルシートもあれば、図9のように、少し進んでから斜行が大きくなるステープルシートもある。そのため、ニップ部直後だけでなく、搬送方向の複数区間において斜行量を検知し、シートの回転を検知することは有効である。
【0064】
また、シート幅方向に対して傾いた方向のセンサ対も使うのは、例えば、図10(a)、図10(b)のように給紙開始時にすでにS1RやS1Lでシートを検知していた場合、これらのセンサのシート検知タイミングが不明なため、異常の判定ができない。この場合、検知区間はS2L・S2RからS3L・S3Rの間でもよいが、S1Rを検知していたときは、S1Rを除いてできるだけ上流側のセンサを用いるとよい。この場合は、S1L・S2RからS2L・S3Rの間を用いた方がより早い段階でシートの回転を検知できる。また、検知区間を多くすることで、より精度よく検知することもできる。
【0065】
回転の判定条件では、検知区間によって閾値にTH2とTH3とを用いている。最も上流側のシート検知センサS1LとS1Rをともに使用する検知区間ではTH2を、それ以外ではTH3を用い、両者の関係はTH2>TH3として上流側の閾値を大きくする。これは、上流側の検知区間では回転の許容範囲を広くし、下流側では許容範囲を狭くするようにするためである。シート検知センサは分離ローラ対42のニップ部13の下流側境界からさらに下流側に配置しているため、シートの斜行がなければ、シート検知センサS1L・S1Rにシートが掛ったときには給送ローラ6により安定して給送される。しかし、シートが給紙開始前から斜行していた場合、シートがニップ部13に挟まれる面積が不十分で、給送がまだ不安定なままセンサS1RまたはS1Lに先端が到達する場合がある。これは、ピックアップローラ4と給送ローラ6とに周速の差があることや、斜行したシートの先端が搬送路に接触したときの摩擦などによって、シートの給送が不安定になる。この状態で給送を続けると、先端が安定するまでの間に斜行量が変化しやすいため、上流側の検知区間では閾値を大きくしている。また、シートの先端がニップ部13を超えて給送が安定すると、異常な要因以外での斜行量の変化は少なくなるため、閾値は上流側よりも小さくできる。このように検知区間ごとに最適な閾値を設定することで、シートの異常な回転を精度よく検知できる。
【0066】
次に搬送距離について説明する。シートの搬送距離は、図7のように5つの検知区間で算出する。5つのうち4つの検知区間は、分離ローラ対42の左側のシート検知センサS1L,S2L,S3Lと、右側のシート検知センサS1R,S2R,S3Rとを使用し、分離ローラ対42の左右それぞれでシート先端の搬送距離を算出する。左側では、まず、シート先端がS1LからS2Lまで移動するために要した搬送距離を、シート検知タイミングの差により算出する。同様に、S2LからS3Lまで、右側もS1RからS2Rまで,S2RからS3Rまで、以上4通りの搬送距離を算出し、それぞれtL1,tL2,tR1,tR2で表わす。これらの搬送距離は、給送ローラ6を駆動したときのローラの回転距離に対して、極端にシートの搬送距離が少なければ異常と判定する。閾値はTH4を用いる。
【0067】
搬送距離の5つ目の検知区間は、図5のようにシート検知センサS3L,S3Rよりも下流側にレジスト前センサ32を配置する場合に検知できる。シート検知センサS3L,S3Rからレジスト前センサ32までの区間の搬送距離を算出する。判定閾値はTH5とする。
【0068】
次に速度変動について説明する。シートの速度変動は、すでに算出している4通りの搬送距離tL1,tL2,tR1,tR2をもとに、分離ローラ対42の左右それぞれの検知区間において搬送距離の差を算出して求める。この値は、特に薄紙の異常検知において有効である。薄紙の分離給送では次のような問題がある。薄紙の最上紙を給送しているときに、2枚目以降の紙は、先端が分離ローラ7によって止められつつ、給送される1枚目との摩擦によって搬送方向へ押されている。これによって2枚目以降の先端付近には皺ができやすくなっている。薄紙が何枚も分離ローラ7に接触しながら分離されていると、積載した薄紙の束のうち下方では、上方の薄紙が給送されるたびに分離ローラ7に押されるため、先端の皺が拡大していく。その薄紙が最上紙となって給送されるときに、先端が分離ローラ7や搬送路に引っかかって搬送される。このとき、薄紙の先端の移動速度は、分離ローラ対42のニップ部13を抜けたところでは給送速度に近い速度で送られるが、その後すぐに引っかかったり、搬送路自体に詰まったりして、移動速度が極端に低下する。このとき図11(b)のように、シートの中央が引っかかるように詰まるため、斜行量の変化はあまり生じないことが多い。この場合には、シートの速度変動を検知することでシートの破損の拡大を防止することができる。判定条件としては、許容できる速度変動の絶対値をTH6とする。
【0069】
次にこのような構成において、各シート検知センサS1L,S1R,S2L,S2R,S3L,S3Rに到達した時間でシートの傾きを計測する処理について、図12に示すフローチャートを参照して説明する。ここでは、シート1枚を給紙するフローを説明するが、実際は、このフローを連続的に繰り返してシートを次々に搬送していく(S101)。
【0070】
まず、シート検知センサが各検知区間において搬送情報を検知できるかを確認する(S102)。シートの給紙を開始する前にセンサがすでにシートを検知している場合は、そのセンサでは検知タイミングが不明となるため、そのセンサを使用する搬送情報は算出しないようにする。図7において、「使用センサ」の欄にシートを検知しているセンサを含む搬送情報については算出せずに、後の異常判定も行わない。
【0071】
次に、給紙ステップカウンタをクリアする(S103)。給紙ステップカウンタは、搬送距離のもととなる給紙モータを駆動するためのステップをカウントする。給紙開始時にこのカウンタをクリアすることで、給紙開始からの給紙モータの駆動ステップ数が分かる。そして、給紙ステップカウンタのカウントを開始した(S104)後、給紙モータを駆動し(S105)、シートの給紙を開始する。
【0072】
搬送異常の検知のために、各センサにおける搬送距離を記憶しておく必要がある。そのために、紙なし状態のセンサのみ搬送距離を更新する(S106)。各センサで検知する搬送距離は、給紙ステップカウンタの値を格納する。紙ありとなったセンサの搬送距離は更新しないため、シートの先端を検知したときの給紙ステップカウンタの値がセンサごとに保持される。
【0073】
次に異常判定のために搬送情報の値を比較する項目を決定する(S107)。使用するセンサや項目によっては、センサがいくつかシートを検知してからでないと算出できない場合がある。図7の「判定タイミング」に紙検知の条件がある場合は、それを満たした場合のみ判定ができる。また、ステップS102にて給紙開始時にシートを検知していたセンサを含む項目については判定ができないため、算出の対象から除く。ここでは、判定可能な項目を記憶しておく。この記憶した項目に対し、異常判定のために用いる比較値を搬送情報ごとに算出する(S108)。ここでは図7の「比較値」の欄の通りにそれぞれ算出する。算出できた項目については異常か否かを判定する(S109)。比較の結果、すべての項目で正常であれば(S109-Yes)、シート後端がレジスト前センサ32を抜けたかを確認する(S110)。シートの後端がレジスト前センサ32を抜けたら1枚の給紙終了とする(S111)。まだ終了できない場合(S110-No)、S106、S107、S108、S109を繰り返し、シートの異常判定を繰り返す。もし、異常と判定した場合(S109-No)、直ちに給紙モータを停止し(S112)、シートが破損しないようにする。続けて、異常の発生をユーザーへ通知する(S113)。通知するエラーの内容は、図7の「通知エラー」の欄に記載のように検知した項目に応じてメッセージを変更する。そして、異常終了となる(S114)。
【0074】
ステップS109では、比較したすべての項目のうちいずれか1つでも異常と判定した場合に給紙異常としたが、特定の複数項目の組み合わせで給紙異常としてもよい。例えば、斜行と通知するエラーについては、検知区間が「左右3段目」の項目のみを使用する。ジャムと通知するエラーについては、回転と速度変動の計6項目のうちいずれかが異常となり、かつ、搬送距離のうち「左右3段目~レジスト前センサ」の項目が異常となったときのみエラーとする。この判定方法では、斜行の判定に下流側の検知区間のシート検知センサを使うことで、斜行量が安定しているときにエラー判定ができる。また、ジャムの判定については、上流側から下流側まで複数の領域で異常が継続しているのが検知できるため、幅広い紙種の異常の判定に適している。
【0075】
また、ステップS109で判定する項目をユーザーに選択させるようにしてもよい。
【0076】
本実施形態においては、シート検知センサS1L,S1R,S2L,S2R,S3L,S3Rを分離ローラ対42の近傍に配置しているが、シート検知センサS1L,S1R,S2L,S2R,S3L,S3Rの配置はこの配置に限定されるものではない。
【0077】
給送ローラ6の表面の摩擦係数が高い場合や、分離ローラ7による給送ローラ6への押圧力が強い場合などでは、ステープルで止められたシートが分離ローラ7近傍で斜行しない場合がある。その例として、図9を用いて前述した。もしシート幅が広いシートを搬送することが多ければ、図13のように、分離ローラの左右のセンサの間隔を広くしてもよい。この場合、図13(a)のように、ステープル留めされている位置に近い領域を検知できるため、シートの回転を検知しやすい。
【0078】
また、シートの幅が広くなると、シートが回転したときのセンサ位置での搬送距離も大きくなる。より広い範囲で検知するために、図13(b)のように、搬送方向の間隔を広くしても良い。これによって、分離のニップ直後だけでなく、より広い範囲で回転を検知できる。
【0079】
さらに、センサは左右1対のみでなくてもよい。図14のように、左右1対のさらに両側に配置することで、多様なシート幅に対応できる。
【0080】
本実施形態では、シートの検知センサを搬送方向に3個並べて配置したが、個数は2個でも良いし、図15のようにより多数並べてもよい。2個にするとコスト削減が図れる。また、多数並べると検知可能な領域を広くすることができるため、より検知精度を良くすることができる。
【0081】
また、本実施形態では、シートの検知センサを搬送方向に一列に配置したが、図16のように搬送方向に対して傾いた角度に配置してもよい。この場合、より少ないセンサ個数で多様なシート幅に対応できる。
【0082】
また、本実施形態では、斜行の異常と判定する閾値としてTH1のみを用いた。これを検知区間ごとに異なる閾値を用いてもよい。回転も同様に検知区間ごとに閾値TH2、TH3を用いたが、さらに多くの閾値を設定してもよい。搬送距離のTH4、速度変動のTH6も同様に検知区間ごとに閾値を個別に設定してもよい。
【0083】
また、シートの分離をしない非分離モードを有するシート給送装置もある。非分離モードでは、分離モータ9からの連結を切って分離ローラ7を空転させるようにし、給送ローラ6の回転によって分離ローラ7は従動させ、シートを綴られたまま分離せずに給送する(分離力をシートに伝達しないモード)。分離モータ9から分離ローラ7までの連結は、電磁クラッチで切断できるようにしてもよいし、切り替えレバーを設け、ユーザーによって手動で切り替えるようにしてもよい。この非分離モードは、例えば半折りシートや複数枚糊付けされた伝票などを分離せずに搬送したいときに使用する。シートのピックアップ方法としては、原稿台1にシートを積載してピックアップローラ4によって給送する方法と、ピックアップローラ4を使用せずにユーザーが手で給送ローラ6まで差し込む方法とがある。
【0084】
この非分離モードでは、シートを分離する分離モードと比較すると分離ローラ7によるシートへの負荷が少ないため、シートの破損は少なくなる。しかし、非分離モードでは状態の悪いシートを搬送することが多く、分離給送領域周辺で搬送異常が生じる場合もあるため、搬送異常の検知は必要となる。そこで、非分離モードではシートへの負荷が少ないため、異常と判定するための各種閾値を小さくし、より素早く搬送を停止するようにしてもよい。また、非分離モードでは、シートの分離をしないため、シートの回転や速度変動は生じにくい。状態の悪いシートや半折りシートを手で積載し、給紙が始まったら手を離して給紙することがあるので、シートの斜行は生じやすくなる。そこで、非分離モードでは、回転や速度変動の閾値を小さく、斜行の閾値を大きくしてもよい。
【0085】
また、分離ローラ対42のニップ圧を変更できる構成においては、シートの回転の兆候を検知したら、ニップ圧を弱くし、シートの回転が生じやすくしてもよい。例えば、上流側のS1R・S1Lによってシートの斜行を検知したり、S1R・S1L・S2R・S2Lで回転を検知したりしたとき、ニップ隙間調整モータ11を駆動し、ニップ圧を弱くする。そして、さらに下流側で回転や斜行量が大きく拡大していた場合、異常と判定してシートの搬送を停止する。異常と判定しなかった場合は、ニップ圧を元の圧に戻す。この動作により、分離ローラ対42にてシートの回転が素早く生じるようにして検知精度を向上させることができる。
【0086】
また、上記の実施形態においてはOCR等のようにシート状の用紙を取り扱うシート搬送取扱装置について説明したが、これに限定されるものではなく、伝票や郵便物の処理装置における搬送装置、紙幣を取り扱う入出金装置、小切手や株券など、紙幣以外の有価証券、あるいは、伝票や郵便物の処理装置にも同様に適用できる。
【0087】
さらに、本発明は、シートのセット方向、すなわち、上述した実施形態のような、シート積載トレイ面上にシート面を向けてシートを重ねる、いわゆる平置き型のシート搬送装置にも適用できる他、シート束の厚さ方向を水平方向としてシート積載トレイ面上に載置する、いわゆる縦置き型のシート搬送装置にも適用できる。後者の場合、例えば、磁気インク文字(MICR文字等)が付されたチェックシートを、搬送路内に儲けた磁気読取手段で読み取るチェックスキャナにおいては、シート積載トレイからチェックのシート束を1枚ずつ分離給送して搬送路に供給するにあたり、本発明における異常検知領域を当該分離給送領域に重なるように設けることで、上述した実施形態と同等の効果を得ることができる。なお、磁気読取手段では、チェックシートが傾いて読み取られると、磁気波形が変動して誤読(誤判定)のおそれがあるため、磁気読取の精度向上のために、チェックシートの傾きを磁気読取よりも前(未然)に検知して給送を停止するなどの措置を取って作業効率を向上してもよいし、あるいはチェックシートの傾きを考慮した磁気判定を行うようにして磁気判定の精度向上にも寄与する。
【0088】
またシート搬送状態を検知するセンサは、シートの搬送方向における端部を検知可能なセンサであればよく、例えば、光学式透過型センサ、光学式反射型センサ、接触式変位検知センサ、紙質等を検知可能なメディアセンサ、赤外線センサ等を採用することができる。
【0089】
(他の実施形態)
上記の実施形態では、分離給送領域である給送ローラ6及び分離ローラ7と、異常検知領域であるS1L,S1R,S2L,S2R,S3L,S3R、レジスト前センサ32で囲まれる領域を図3図4に示すような位置関係で配置する例を示した。そしてこの例では、分離給送領域と異常検知領域の重なる領域は比較的小さい。
【0090】
しかし、本発明では、図17(a)、(b)に示すように、分離給送領域と異常検知領域をより大きく重なるようにしてもよいし、図17(a)のように異常検知領域が分離給送領域を完全に含むように配置してもよい。このように異常検知領域を配置することにより、シートまたは原稿が分離搬送されるより初期の段階で、搬送の異常を検知することが可能となる。
【0091】
図17(a)では、異常検知領域の上流側端部が分離給送領域よりも上流側の領域を含むように当該異常検知領域を配置している。この配置では、例えば、分離給送領域である給送ローラ6及び分離ローラ7よりも、給送方向上流側にある図示しないピックアップローラを用いて、原稿を分離給送領域(給送ローラ6及び分離ローラ7)に向けて給紙するときに、より初期の段階(すなわち、給送ローラ6及び分離ローラ7とピックアップローラとの間)で原稿の異常を検知できる。また、この配置は、特にピックアップローラによる原稿束への押し付け圧を弱くしている場合に有効である。例えば、ピックアップローラの押し付け圧が強い場合、原稿束はより強く分離給送領域へ送り込まれ、原稿束の最上位1枚を給紙した後に上位数枚の先端が分離給送領域に突入している確率が高くなる。この場合、異常検知領域の上流側端部はこの原稿先端よりも下流側に配置すると効率良く原稿先端の動きを検知できる。逆に、ピックアップローラの押し付け圧が弱い場合、原稿束の上位数枚の原稿が分離給送領域へ送り込まれる力は弱く、原稿束の最上位1枚を給紙した後に上位数枚の先端は分離給送領域まで到達していないことが比較的多くなる。この場合は、異常検知領域を分離給送領域よりも上流側へ配置する方がよい。
【0092】
また、原稿先端が分離給送領域に達していない状態では原稿はピックアップローラのみで送られるため、原稿の搬送力が弱くなる。異常検知領域に用いるセンサとして接触式のセンサを用いると原稿の搬送に影響を与えてしまうが、光学センサを用いれば異常検知のために原稿の搬送に影響を与えることがない。そのため、光学センサを用いる場合、図17(a)の配置では特に有効になる。
【0093】
なお、分離給送領域よりも上流側の給送口付近の形状とピックアップローラの配置によっては、図17(b)のように分離給送領域と異常検知領域との重なりを小さくしてもよい。例えば、図3では、分離ローラ7の上流側にある給送口付近では、原稿載置面から相対的に高い位置にある給送口に向けて傾斜した斜面状のガイド部が形成されており、このガイド部の斜面分離によって原稿束が多数同時に分離のニップ部13に突入するのを実質的に防止している。このような斜面分離構造では、原稿が給紙前から斜行していたとき、原稿が斜面から負荷を受けたり、斜面を登っているときに原稿先端が上側の搬送路に突っ込んだりして、原稿の斜行が僅かに矯正されることがある。この点を考慮して、原稿先端が分離給送領域に到達した後から異常検知を始めることで十分な異常検知を行えるため、図17(a)よりも異常検知領域を下流側へ移動させて配置するようにしてもよい。
【0094】
図17(a)の配置は非分離モードでも有効である。非分離モードは上述したとおり、例えば、ステープルなどで綴じられた数枚のシート束、あるいは半折シート等を分離せずに給紙するモードである。しかし、そのシート束をピックアップローラによって給送ローラ6及び分離ローラ7に向けて給紙するときに、特にシート束が腰の弱い薄紙であれば、シートと原稿台との摩擦によってシート束の一部が斜行して給紙され、読み取った画像で原稿の形状が異常なものとなってしまう。これを防止するためには、給送ローラ6及び分離ローラ7とによるニップ部13にシート先端が突入するまでの間にシートの斜行を検知するのがよく、このような場合に図17(a)の配置が有効となる。
【符号の説明】
【0095】
1 原稿台
2 原稿台駆動モータ
S1R,S1L,S2R,S2L,S3R,S3L シート検知センサ
F 原稿(シート)
F1 シート束の最上位シート
3 シート検知センサ(原稿台部)
4 ピックアップローラ
5 ピックアップモータ
6 給送ローラ
7 分離ローラ
8 給送モータ
9 分離モータ
10 搬送モータ
11 ニップ隙間調整モータ
12 記憶部
13 ニップ部
14,15 画像読取センサ
17,18 レジストローラ
19 レジストクラッチ
20,21 原稿搬送ローラ(シート供給搬送手段)
22,24 原稿搬送ローラ(シート排出搬送手段)
26 排紙従動ローラ
27 搬送ローラ
28 排紙モータ
32 レジスト前センサ
33 レジスト後センサ
40 上ガイド板
41 下ガイド板
42 分離ローラ対
43 画像読取部
44 排紙トレイ
45 制御部
51 規制板
60 搬送状態検知手段
101 シート搬送装置
200 画像読取装置
tS1L、tS1R、tS2L、tS2R、tS3L、tS3R 搬送距離
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17