(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-29
(45)【発行日】2024-12-09
(54)【発明の名称】移動ロボット、移動ロボットの制御方法、及び制御プログラム
(51)【国際特許分類】
B25J 13/00 20060101AFI20241202BHJP
【FI】
B25J13/00 Z
(21)【出願番号】P 2020080556
(22)【出願日】2020-04-30
【審査請求日】2023-02-27
(73)【特許権者】
【識別番号】315014671
【氏名又は名称】東京ロボティクス株式会社
(74)【代理人】
【識別番号】100098899
【氏名又は名称】飯塚 信市
(74)【代理人】
【識別番号】100163865
【氏名又は名称】飯塚 健
(72)【発明者】
【氏名】坂本 義弘
(72)【発明者】
【氏名】佐久間 史朗
(72)【発明者】
【氏名】松尾 雄希
【審査官】稲垣 浩司
(56)【参考文献】
【文献】特開2011-204145(JP,A)
【文献】特表2013-537487(JP,A)
【文献】特開2016-81403(JP,A)
【文献】特開平7-119178(JP,A)
【文献】特開2020-10771(JP,A)
【文献】特開2007-334500(JP,A)
【文献】山下翔平,他3名,”移動ロボットの顔向きによるすれ違いやすさの評価”,ロボティクスメカトロニクス講演会2019講演会論文集,一般社団法人日本機械学会,2019年06月05日,p.1A1-B14(1)-(4)
(58)【調査した分野】(Int.Cl.,DB名)
B25J 1/00 - 21/02
(57)【特許請求の範囲】
【請求項1】
全方位移動台車部により移動する移動ロボットであって、
正面を顔部とする頭部と、
前記頭部を駆動する駆動手段と、
前記駆動手段を制御する頭部制御部と、を備え、
前記頭部制御部は、前記駆動手段を制御して、
前記移動ロボットの移動中において、移動方向を変更する所定時間前に前記顔部を変更後の移動方向に向け、
前記所定時間は、前記移動ロボットの移動速度に応じて変更される、移動ロボット。
【請求項2】
前記駆動手段は、前記頭部を左右方向に回転駆動させる鉛直方向の回転軸を備える、請求項
1に記載の移動ロボット。
【請求項3】
移動経路を設定する移動経路設定部と、
人の頭の位置を検出する検出部と、
前記移動ロボットから所定距離内において、前記移動ロボットが前記移動経路を現在地からの移動方向に移動した場合に前記人と衝突するか否かを判定する衝突判定部と、をさらに備え、
前記衝突判定部が前記人と衝突すると判定した場合は、前記頭部制御部は、
前記頭部制御部による前記駆動手段の前記制御に代えて、前記顔部を前記人の頭に向ける、請求項1
または2のいずれか一項に記載の移動ロボット。
【請求項4】
前記駆動手段は、前記頭部を上下方向に駆動させる水平方向の回転軸をさらに備える、請求項
3に記載の移動ロボット。
【請求項5】
イメージセンサをさらに備え、
前記検出部は、前記イメージセンサが検出した画像データに基づいて前記人の頭の位置を検出する、請求項
3又は
4に記載の移動ロボット。
【請求項6】
前記衝突判定部が複数の前記人に衝突すると判定した場合に最初に衝突すると予測される人を特定する特定部をさらに備え、
前記衝突判定部が複数の前記人に衝突すると判定した場合は、前記頭部制御部は前記顔部を前記特定部が特定した前記人の頭に向ける、請求項
3から
5のいずれか一項に記載の移動ロボット。
【請求項7】
前記移動ロボットの移動を制御する移動制御部をさらに備え、
前記移動ロボットの移動中に前記移動経路上に前記人を含む障害物が検出された場合は、前記移動制御部は前記移動ロボットを減速又は停止させる、請求項
3から
6のいずれか一項に記載の移動ロボット。
【請求項8】
スピーカと、
前記スピーカを用いて所定の音を出力する報知制御部と、
をさらに備え、
前記報知制御部は、前記頭部制御部が前記顔部を前記人の頭に向けた後、一定時間経過しても前記衝突判定部が当該人と衝突すると判定する場合は、所定の音を出力する、請求項
3から
7のいずれか一項に記載の移動ロボット。
【請求項9】
マニピュレータ機構を有する一又は複数の腕部をさらに備える、請求項1から
8のいずれか一項に記載の移動ロボット。
【請求項10】
正面を顔部とする頭部と、
前記頭部を駆動する駆動手段と、を備え、全方位移動台車部により移動する移動ロボットの制御方法であって、
前記駆動手段を制御する頭部制御ステップ、を含み、
前記頭部制御ステップでは、前記駆動手段を制御して、
前記移動ロボットの移動中において、移動方向を変更する所定時間前に前記顔部を変更後の移動方向に向け、
前記所定時間は、前記移動ロボットの移動速度に応じて変更される、移動ロボットの制御方法。
【請求項11】
正面を顔部とする頭部と、
前記頭部を駆動する駆動手段と、を備え、全方位移動台車部により移動する移動ロボットの制御プログラムであって、
前記駆動手段を制御する頭部制御ステップ、を含み、
前記頭部制御ステップでは、前記駆動手段を制御して、
前記移動ロボットの移動中において、移動方向を変更する所定時間前に前記顔部を変更後の移動方向に向け、
前記所定時間は、前記移動ロボットの移動速度に応じて変更される、移動ロボットの制御プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、移動ロボット等に関する。
【背景技術】
【0002】
近年、工場や倉庫のみならず、商業ビルや空港、介護施設等、様々な場所にロボットが適用されている。例えば特許文献1では、工場で人と共有の作業領域を自律走行するような人協働型の移動ロボットが開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、人協働型の移動ロボットは、狭い通路での移動や人とのすれ違い移動等にも対応するため、移動機構として全方位への移動を可能にする全方位移動台車が採用されることが多い。しかしながら、全方位移動台車は移動方向を予測することが難しいため、ロボットの移動に対して近くにいる人に警戒心をいだかせる場合がある。
【0005】
本発明は、上述の技術的課題を解決するためになされたものであり、その目的とするところは、全方位移動台車を備える移動ロボットにおいて、近くの人に警戒心をいだかせずに安心感を与えることにある。
【課題を解決するための手段】
【0006】
上述の技術的課題は、以下の構成を有する移動ロボット等により解決することができる。
【0007】
すなわち、本発明に係る移動ロボットは、全方位移動台車部により移動する移動ロボットであって、正面を顔部とする頭部と、前記頭部を駆動する駆動手段と、前記駆動手段を制御する頭部制御部と、を備え、前記頭部制御部は、前記駆動手段を制御して、前記移動ロボットが移動を開始する時または移動を開始する所定時間前に前記顔部を移動方向に向ける、機能を備えている。
【0008】
このような構成によれば、移動ロボットが、移動を開始する時または移動を開始する所定時間前に顔部を移動方向に向けることで、近くの人に移動すること、および移動する方向を予告するので、予告なしの移動による人との衝突を回避できると共に人に予告なしの移動に対する警戒心をいだかせずに安心感を与えることができる。
【0009】
前記頭部制御部は、前記移動ロボットの移動中において、移動方向を変更する時または移動方向を変更する所定時間前に前記顔部を変更後の移動方向に向ける、ものであってよい。
【0010】
このような構成によれば、移動ロボットが、移動方向を変更(進路変更)する時または進路変更する所定時間前に顔部を変更後の移動方向に向けるので、予告なしの進路変更により起こり得る人との衝突を回避できると共に人に予告なしの進路変更に対する警戒心をいだかせずに安心感を与えることができる。
【0011】
前記所定時間は、前記移動ロボットの移動速度に応じて変更される、ものであってよい。
【0012】
このような構成によれば、頭部を駆動するタイミングと、停止時からの移動または進路変更の開始タイミングとの間に変更可能な所定時間を設けることができるので、例えば移動速度に応じた自然な頭部の動きを調整でき、違和感のない頭部の動きを実現することができる。
【0013】
前記駆動手段は、前記頭部を左右方向に回転駆動させる鉛直方向の回転軸を備える、ものであってよい。
【0014】
このような構成によれば、鉛直方向の回転軸の回転を制御することで、頭部の左右方向への回転駆動を実現することができる。
【0015】
移動経路を設定する移動経路設定部と、人の頭の位置を検出する検出部と、前記移動ロボットから所定距離内において、前記移動ロボットが前記移動経路を現在地からの移動方向に移動した場合に前記人と衝突するか否かを判定する衝突判定部と、をさらに備え、前記衝突判定部が前記人と衝突すると判定した場合は、前記頭部制御部は前記顔部を前記人の頭に向ける、ものであってよい。
【0016】
このような構成によれば、移動ロボットが移動する際に衝突すると予測される人の頭に顔部を向けることができるので、人に移動方向を予告するだけでなく、衝突を回避するための退避行動を促すことができる。
【0017】
前記駆動手段は、前記頭部を上下方向に駆動させる水平方向の回転軸をさらに備える、ものであってよい。
【0018】
このような構成によれば、水平方向の回転軸の回転を制御することで、上下を仰ぎ見るような頭部の動作を実現することができるので、移動ロボットの頭部よりも高い位置又は低い位置にある人の頭に顔部を向けることができる。
【0019】
イメージセンサをさらに備え、前記検出部は、前記イメージセンサが検出した画像データに基づいて前記人の頭の位置を検出する、ものであってよい。
【0020】
このような構成によれば、画像データを解析する種々のアルゴリズム(ソフトウェア)を用いて、人の頭の位置を容易に検出することができる。
【0021】
前記衝突判定部が複数の前記人に衝突すると判定した場合に最初に衝突すると予測される人を特定する人特定部をさらに備え、前記衝突判定部が複数の前記人に衝突すると判定した場合は、前記頭部制御部は前記顔部を前記人特定部が特定した前記人の頭に向ける、ものであってよい。
【0022】
このような構成によれば、移動ロボットが移動すると衝突すると予測される人が複数いる場合であっても、人の行動原理と同様の順番で特定された人に対して、順次、違和感なく退避を促すことができる。
【0023】
前記移動ロボットの移動を制御する移動制御部をさらに備え、前記ロボットの移動中に前記移動経路上に前記人を含む障害物が検出された場合は、前記移動制御部は前記移動ロボットを減速又は停止させる、ものであってよい。
【0024】
このような構成によれば、移動中の移動ロボットが人と遭遇した場合であっても、余裕をもって、安全に退避を促すことができる。
【0025】
スピーカと、前記スピーカを用いて所定の音を出力する報知制御部と、をさらに備え、前記報知制御部は、前記頭部制御部が前記顔部を前記人の頭に向けた後、一定時間経過しても前記衝突判定部が当該人と衝突すると判定する場合は、所定の音を出力する、ものであってよい。
【0026】
このような構成によれば、スピーカを用いて人の聴覚に訴えることができるので、より強く、より明確に退避を促すことができる。
【0027】
マニピュレータ機構を有する一又は複数の腕部をさらに備える、ものであってよい。
【0028】
このような構成によれば、移動を予告する機能、または、それに加えて退避を促す機能を備える移動マニピュレータを実現することができる。
【0029】
本発明は、方法として観念することもできる。すなわち、本発明にかかる移動ロボットの制御方法は、正面を顔部とする頭部と、前記頭部を駆動する駆動手段と、を備え、全方位移動台車部により移動する移動ロボットの制御方法であって、前記駆動手段を制御する頭部制御ステップ、を含み、前記頭部制御ステップでは、前記駆動手段を制御して、前記移動ロボットが移動を開始する時または移動を開始する所定時間前に前記顔部を移動方向に向ける。
【0030】
本発明は、コンピュータプログラムとして観念することもできる。すなわち、本発明に係る移動ロボットの制御プログラムは、正面を顔部とする頭部と、前記頭部を駆動する駆動手段と、を備え、全方位移動台車部により移動する移動ロボットの制御プログラムであって、前記駆動手段を制御する頭部制御ステップ、を含み、前記頭部制御ステップでは、前記駆動手段を制御して、前記移動ロボットが移動を開始する時または移動を開始する所定時間前に前記顔部を移動方向に向ける。
【発明の効果】
【0031】
本発明によれば、全方位移動台車を備える移動ロボットにおいて、近くの人に警戒心をいだかせずに安心感を与えることができる。
【図面の簡単な説明】
【0032】
【
図1】
図1は、第1実施形態の移動ロボットの概略構成図である。
【
図2】
図2は、第1実施形態の移動ロボットの外観を示すが概略構成図である。
【
図3】
図3は、移動ロボットの頭部を説明する図である。
【
図4】
図4は、第1実施形態の頭部駆動制御を説明するフローチャートである。
【
図5】
図5は、頭部駆動処理に係る動作を説明する図である。
【
図6】
図6は、第2実施形態の移動ロボットの概略構成図である。
【
図7】
図7は、第2実施形態の頭部駆動制御を説明するフローチャートである。
【
図8】
図8は、衝突判定処理の手法を説明する図である。
【
図9】
図9は、人対応頭部駆動処理に係る動作を説明する図である。
【
図10】
図10は、人対応頭部駆動処理が実行される状況を説明する図である。
【
図11】
図11は、人対応頭部駆動処理が実行されない状況を説明する図である。
【
図12】
図12は、第2実施形態の移動処理の詳細を説明するフローチャートである。
【
図13】
図13は、移動中に実行される衝突判定処理を説明する図である。
【
図14】
図14は、人特定部が行う特定処理を説明する図である。
【発明を実施するための形態】
【0033】
<第1実施形態>
図1から
図3は、本発明の第1実施形態に係る移動ロボット100の構成例を説明する図である。本実施形態の移動ロボット100は、人と共有の作業領域内を移動することが想定されるロボットであって、例えば、工場等で部品をピックして所定場所に運搬する機能等を有する移動マニピュレータや、空港等の施設で旅行者等の客を案内するサービスロボット等に適用されてよい。本実施形態では、移動ロボット100が、
図2に示すような頭部30とマニピュレータ機構を有する腕部40とを備える略人型の移動マニピュレータに適用された例について説明する。
【0034】
図1に示すとおり、本実施形態の移動ロボット100は、移動ロボット100の動作を制御する制御装置として機能するコントローラ1と、移動機構駆動手段2と、頭部駆動手段3とを含んで構成される。
【0035】
本実施形態のコントローラ1は、移動経路設定部11、移動制御部12、および頭部方向制御部13等の機能部を有する。コントローラ1は、例えば、プロセッサとしての中央演算装置(CPU)、記憶媒体としての読み出し専用メモリ(ROM)およびランダムアクセスメモリ(RAM)、入出力インタフェース(I/Oインタフェース)等がバスを介して接続されて構成される情報処理装置である。また、コントローラ1が備えるROMには、前述の各機能部がそれぞれに有する各機能を実行するためのプログラム(制御プログラム)が格納されている。すなわち、コントローラ1は、記憶媒体に格納された各種プログラムを実行することによって、移動経路設定部11、移動制御部12、および頭部方向制御部13等の各機能部の機能を実現するように構成される。なお、コントローラ1を構成するプロセッサおよび記憶媒体として上述した構成は例示であって、これらに加えて、或いは代えて、GPU、フラッシュメモリ、ハードディスク、ストレージ等を含んでもよい。また、上述の各機能部の機能は、必ずしもコントローラ1のみによって実現される必要はなく、機能部毎に適宜選択された複数のコントローラがそれぞれ、或いは協調することによって実現されるように構成されてもよい。コントローラ1の各機能部の機能について以下説明する。
【0036】
移動経路設定部11は、移動ロボット100が移動しようとする経路(移動経路)を設定する。具体的には、移動経路設定部11は、作業領域の地図情報(マップデータ)に基づいて所定位置から目的地までの経路を計画するいわゆるパスプランニングにより生成された経路を移動ロボット100の移動経路として設定する。ここでの所定位置は、予め定められた所定の位置であってもよいし、移動ロボット100の現在位置であってもよい。移動ロボット100が所定位置から目的地までの移動経路を生成する具体的な手法は特に限定されず、既存の移動マニピュレータ等の移動ロボットに用いられている公知の手法が適宜採用されてよい。ただし、設定される移動経路は必ずしもコントローラ1が生成する必要はない。移動経路設定部11は、例えば無線通信等を介して取得した目的地までの経路を移動ロボット100の移動経路として設定してもよい。
【0037】
移動制御部12は、移動経路設定部11が設定した移動経路に沿って移動ロボット100を移動させるために、移動機構駆動手段2を制御する。移動機構駆動手段2については
図2を参照して後述する。
【0038】
頭部方向制御部13は、移動ロボット100に備わる頭部30(
図2参照)を駆動するために、頭部駆動手段3を制御する。具体的には、頭部方向制御部13は、頭部駆動手段3を介して頭部30の正面の向く方向を制御する。頭部駆動手段3の詳細については
図2を参照して後述する。
【0039】
図2は、移動ロボット100の構成を説明する図であって、主に移動ロボット100の外観例を示す。
【0040】
図示するように、本実施形態の移動ロボット100は、略人型の形状を有しており、ロボット本体部10と、ロボット本体部10を支持する移動台車20と、ロボット本体部10の上端に設けられた頭部30と、ロボット本体部10の前面から延びる腕部40とから構成されている。
【0041】
ロボット本体部10を支持する移動台車20は、移動ロボット100が置かれた面(床面)の上を移動する機能を有する全方位移動台車である。全方位移動台車とは、駆動輪として例えば複数のオムニホイールを備え、全方向に移動することができるように構成された台車である。全方位移動台車は、全方位台車、全方向移動台車、または全方向台車と称されてもよい。また、全方位移動台車は、360度の全方向への移動が可能であり狭い通路等でも自在に移動できる特徴がある一方で、一般的な台車のように駆動輪の向く方向から移動方向を判断しづらいので、移動方向を予測するのが難しいという側面がある。本実施形態の移動台車20は、図示するように、外観に表されるスカート20aの内側に、三つの駆動輪20bと、駆動輪20bをベルト等を介して駆動するための移動機構駆動手段2とから構成されてよい。本実施形態の移動機構駆動手段2は一または複数のモータから構成されるものとし、以下では、移動機構駆動手段2をモータ2とも称する。
【0042】
頭部30は、略人型の移動ロボット100において、人の頭(首より上の部分)に相当する構成としてロボット本体部10の上端に設けられてよい。頭部30は、人が見た際にその正面を顔として認識できるように構成されるのが望ましい。頭部30は、正面が向く方向を制御可能に構成される。具体的には、本実施形態の移動ロボット100は、一又は複数の頭部駆動手段3(アクチュエータ3)を備え、頭部駆動手段3を介して頭部を動かすことによりその正面の向きを制御できるように構成される。なお、以下では、頭部30の正面を顔部31と称する。
【0043】
本実施形態の移動ロボット100は、頭部30を床面に対して水平方向(左右方向)に回転させる鉛直方向の回転軸を有し頭部30の左右方向への回転駆動を可能とする頭部駆動手段3(サーボモータ3a)を有する。これにより、移動ロボット100は、頭部30のみを鉛直方向に対して左右へ回転駆動させることができる。ただし、サーボモータ3aの配置は、図示する配置に制限されず、顔部31の向きを左右方向に動かすことができる限り適宜変更されてよい。例えば、サーボモータ3aは、ロボット本体部10を移動台車20に対して左右へ回転駆動させるように設けられてもよい。この場合、サーボモータ3aは、頭部30をロボット本体部10とともに垂直方向に対して左右へ回転駆動させることにより顔部31の向きを変えることができる。
【0044】
また、移動ロボット100は、頭部30を床面に対して上下方向に駆動させる水平方向の回転軸を有し頭部30の上下を仰ぎ見る動作を可能とする頭部駆動手段3(サーボモータ3b)を有してもよい。これにより、移動ロボット100は、顔部31の向きを上下方向にも動かすことができる。
【0045】
図3は、本実施形態の頭部30の構成例をより具体的に説明する図である。頭部30の形状は、正面を顔部31として認識できる限り特に制限されない。例えば、顔部31は、正面を顔部31として容易に認識されるように、頭部30の正面部分にのみ視認される構造的な特徴を有していることが望ましい。例えば、
図3(a)のように、人の顔を模した二つの目に相当する構成を頭部30の正面にのみ設けることにより、正面を顔部31として容易に認識されることができる。また、
図3(b)に示すように、例えば透過部材等を用いて構成された特徴的な部分(太矢印で示す部分)が頭部30の正面に設けられることでも正面を顔部31として容易に認識されることができる。また、図示しないが、例えば略長球形等の頭部30において、正面のみを平面にする等してもよい。
【0046】
また、頭部30は、図示するように、人間の首に相当する構成(頸部)を介してロボット本体部10に設けられてもよいし、ロボット本体部10の上端に直接設けられてもよい。すなわち、サーボモータ3a、3bは、頸部に設けられてもよいし、頭部30に設けられてもよい。なお、頭部30の正面部分、例えば、
図3(a)に示す目に相当する部分や
図3(b)に示す透過部材からなる部分に、移動ロボット100の周辺環境を認識するためのセンサ或いはカメラ等の外部環境認識手段(検出手段)が設けられてもよい。外部環境認識手段は、移動ロボット100が自律走行するための構成として、および又は、第2実施形態で後述する検出手段4として構成されてよい。
【0047】
図2に示すとおり、移動ロボット100はロボット本体部10の前面に腕部40を備える。腕部40は、マニピュレータ機構を備え、運搬する物品等を把持するための把持機構41が自由端に相当する先端に設けられている。ただし、腕部40の形状、数、および配置は図示する態様に制限されず目的に応じて適宜変更されてよい。例えば、移動ロボット100は、ロボット本体部10の両側面に腕部40を備える双腕ロボットとして構成されてもよい。
【0048】
以上が、本実施形態の移動ロボット100の構成例である。なお、移動ロボット100は、
図2では省略されているが、移動ロボット100の動作を制御するのに必要となる他の構成、例えば、腕部40等を駆動する他のアクチュエータや、電力源となるバッテリ等を備えてもよい。
【0049】
次に、
図4および
図5を参照して、移動ロボット100の動作について説明する。
【0050】
図4は、本実施形態の移動ロボット100が行う頭部駆動制御を説明するフローチャートである。コントローラ1が備える記憶媒体には、図示のフローチャートを参照して以下に説明する処理を実行する制御プログラムが格納されている。
【0051】
ステップS11では、コントローラ1はタスク取得処理を実行する。タスク取得処理は、移動ロボット100が後述の移動経路設定処理(S12)によって設定される移動経路を生成するために必要な情報を取得するための処理である。タスク取得処理では、コントローラ1は例えば、ピックする部品の識別情報(部品ID)や、目的地の位置情報(例えば位置座標)等を取得する。取得方法に制限はなく、公知の無線通信技術を利用して取得してもよいし、不図示の情報入力手段(例えばタッチパネル等)を介して取得するように構成されてもよい。
【0052】
ステップS12では、コントローラ1(移動経路設定部11)は、タスク取得処理によって取得した情報に応じて生成された経路を移動ロボット100の移動経路として設定する。例えば、タスク取得処理によって部品IDを取得した場合には、移動経路設定部11は、当該部品IDにより特定される部品が置かれている場所を目的地として生成された現在地から当該目的地までの経路を移動経路として設定する。目的地までの移動経路が設定されると、続いて頭部駆動処理が実行される(S13)。
【0053】
ステップS13では、コントローラ1(頭部方向制御部13)は顔部31の向く方向を制御する頭部駆動処理を実行する。本ステップにおける頭部駆動処理は、移動ロボット100が移動を開始すると同時に、または移動を開始する所定時間前に実行される。ここでの所定時間は適宜設定されてよく、例えば移動を開始する直前(例えば1秒以内)でもよいし、比較的長めの時間(例えば3秒以上)が設定されてもよい。
【0054】
頭部駆動処理(S13)では、頭部方向制御部13が、顔部31が移動方向を向くようにサーボモータ3aを制御する。そして、顔部31が移動方向を向く動作を開始するのと同時に、もしくは当該動作を開始してから上述の所定時間を経過した時に、移動処理(S14)が実行される。
【0055】
ここで、頭部駆動処理を実行する際の移動ロボット100の動作について
図5を参照して説明する。
【0056】
図5は、頭部駆動処理を実行する際の移動ロボット100の動作を説明する図である。本図では、移動マニピュレータとして機能する移動ロボット100が部品をピックした後、移動を開始する直前までの動作が表されている。
図5(a)は、部品をピックする作業を行う移動ロボット100と、移動ロボット100の隣で作業をしている人(作業者)とを示す。
図5(b)は、移動ロボット100が部品をピックする作業を終えて停止している状態を示す。この時、移動ロボット100は、移動経路設定処理(S12)を実行して移動経路を設定してよい。図示する矢印は、設定した移動経路の一部であって、移動ロボット100の直近の移動方向(現在地からの移動方向)を示している。
【0057】
ここで、移動ロボット100が頭部駆動処理を行わずに移動を開始すると、移動方向にいる作業者は、自分に向かって突然動き出す移動ロボット100を避けきれずに衝突されるおそれがある。また、衝突を避けられたとしても、自分に向かって突然動き出す可能性のある移動ロボット100が近くにいる状況下では、移動ロボット100の次の動作を警戒し、その心理的な負担により作業効率が低下するおそれがある。本実施形態の移動ロボット100は、近くにいる人に次の動作を予告するための頭部駆動処理を実行することで、このようなおそれを解消することができるように構成される。
【0058】
図5(c)は、移動ロボット100が頭部駆動処理を実行して、顔部31を移動方向に向けている状態を示す。頭部駆動処理が実行されることで、移動ロボット100は、近くの人に対して移動する方向を示すとともに、続く移動動作を予告することができる。これにより、移動ロボット100は、人に移動経路からの退避行動を促すことができるので、人との衝突を回避することができる。また、移動ロボット100が移動開始時または移動を開始する前に移動方向に顔部31を向けることが作業者等に周知されることにより、自分のいる方向に突然移動してくることに対する警戒心をいだかせずに、共有の作業領域にいる人に安心感を与えることができる。
【0059】
なお、移動開始前の停止状態における顔部31の方向と移動方向とが一致している場合には、移動ロボット100は、頭部駆動処理を実行せずに移動を開始してもよいが、顔部31の向きを、例えば上下左右のいずれかの方向に一旦動かして、その後に移動方向に向けるようにしてもよい。こうすることで、移動ロボット100は、停止状態における顔部31の方向と移動方向とが一致している場合であっても、頭部30の動きでこれから移動することを近くにいる人に予告することができる。以上が頭部駆動処理(S13)に係る動作の詳細である。
図4のフローチャートに戻って以下説明を続ける。
【0060】
ステップS14では、コントローラ1(移動制御部12)は、移動ロボット100を目的地まで移動させる移動処理を実行する。移動処理では、移動制御部12がモータ2を制御して、自動ロボット100を設定された移動経路に沿って目的地まで移動させる。移動ロボット100を目的地まで移動させる具体的な手法は特に制限されず、公知の種々の手法が適宜採用されてよい。例えば、移動ロボット100は、パスプランニングにより計画された経路と、予め記憶されたマップデータとに基づいて、オドメトリ、スキャンマッチング等の公知の自己位置推定を行いながらモータ2を制御して、目的地までの自律的な移動(自律走行)を実現するように構成されてよい。
【0061】
なお、移動ロボット100は、移動中(移動処理中)においても頭部駆動処理を実行するように構成されてよい。すなわち、コントローラ1(頭部方向制御部13)は、移動ロボット100の移動中において、移動方向を変更する時または移動方向を変更する所定時間前に顔部31を変更後の移動方向に向けるように頭部駆動処理を実行してもよい。所定時間は、適宜設定されてよく、例えば移動ロボット100の現在の移動速度に応じて変更されてよい。例えば、移動速度が速ければ速いほど、所定時間を短く設定してもよい。この場合には、移動速度がゼロ、すなわち停止状態時に頭部駆動処理を実行してから移動を開始するまでにかかる所定時間よりも、移動中に頭部駆動処理を実行してから進路変更を開始するまでにかかる所定時間の方が短く設定される。このように、所定時間を移動ロボット100の移動速度に応じて変更可能とすることにより、移動ロボット100の移動速度に応じた頭部30の動きを調整することができるので、周囲の人に安心感を与えつつ違和感のない頭部30の自然な動きを実現することができる。
【0062】
このようにして、移動ロボット100は、顔部31の向く方向によって、停止状態からの移動開始時だけでなく、移動中においても、移動方向を変更すること及びその変更後の移動方向を近くの人に予告することができる。移動ロボット100が目的地に到達すると移動処理が終了する。
【0063】
以上が、第1実施形態の移動ロボット100が行う頭部駆動制御の詳細である。なお、
図4で示すフローチャートは本実施形態の頭部駆動制御を説明するための例示であって、図示するとおりに必ず実行されることを制限するものではない。例えば、タスク取得処理及び移動経路設定処理は、頭部駆動処理の前に実行されなくてもよい。
【0064】
以上が第1実施形態の移動ロボット100の詳細である。以上説明したように、移動ロボット100は、移動方向に顔部31を向けるので、近くにいる人に移動方向を予告することができる。その結果、移動ロボット100は、同じ空間を共有する人に対して、移動ロボット100の移動に対する警戒心をいだかせず、安心感を与えることができる。
【0065】
<第2実施形態>
以下、第2実施形態の移動ロボット200について説明する。移動ロボット200は、周囲に存在する人の位置、特に人の頭の位置を検出可能に構成される点が第1実施形態と主に相違する。以下、
図6~
図14を参照しながら移動ロボット100との相違点を中心に説明する。なお、移動ロボット100と同様の構成については説明を割愛する。
【0066】
図6は、移動ロボット200の構成を説明する図である。図示するように、本実施形態の移動ロボット200は、第1実施形態の移動ロボット100に加えて、検出手段4と、コントローラ1の機能部としての人検出部21および衝突予測部22と、をさらに備える。
【0067】
検出手段4は、移動ロボット200の周囲環境に存在する障害物を検出する。ここでの障害物は主に人である。検出手段4は、例えば、センサ(イメージセンサ、ライダ、レーザスキャナ等)、ステレオカメラ等の少なくとも一つを含む。本実施形態の検出手段4は、イメージセンサから構成されるものとし、検出手段4を以下ではセンサ4とも称する。なお、イメージセンサは、光学系を通して検出した光を電気信号に変換する撮像素子を有するセンサであってその種類については特に制限されない。センサ4は、少なくとも前方を含む周囲環境に存在する障害物を検出可能に構成され、例えば、
図3(a)で示す顔部31に構成された人の目に相当する部分等に設けられてよい。また、いわゆる360度カメラと言われるような全方位を検出できるセンサ4が例えば頭部30の頭頂部に設けられてもよい。本実施形態のセンサ4は、移動ロボット100の少なくとも前方を含む周辺に存在する人の位置と姿勢を認識可能な画像データを検出して、検出データ(画像データ)をコントローラ1に送信する。
【0068】
人検出部21は、センサ4が取得した画像データに基づいて、人の位置と姿勢とを検出する。ここで検出する姿勢は、必ずしも体全体の構えではなく、少なくとも人の頭の位置を判別可能であればよい。画像データに基づいて人の位置と姿勢とを検出する手法として、公知の種々の手法を採用し得るが、本実施形態では、画像データから人の骨格(ボーン)を検出して人の位置と姿勢とを検出する手法が採用される。当該手法は、ボーンモデル、ボーン検出等とも称される。このような手法を採用することにより、人検出部21は、移動ロボット200の周辺にいる人の頭の位置を容易に検出することができる。
【0069】
衝突予測部22は、移動ロボット200が設定された移動経路に沿って移動した場合に、移動ロボット200と人とが衝突するか否かを予測する。移動ロボット200と人との衝突を予測する手法としては、公知の種々の手法が適宜採用されてよい。本実施形態で採用される衝突予測の具体例については
図8を参照して後述する。
【0070】
以上が移動ロボット200の主な構成である。以下、
図7から
図14を参照して、移動ロボット200の動作について説明する。
【0071】
図7は、第2実施形態の移動ロボット200が行う頭部駆動制御を説明するフローチャートである。コントローラ1が備える記憶媒体には、図示のフローチャートを参照して以下に説明する処理を実行する制御プログラムが格納されている。
【0072】
ステップS21~ステップS23は、移動ロボット200が設定された移動経路に沿って移動を開始する時、又は移動を開始する前の停止状態時に実行される。
【0073】
ステップS21では、コントローラ1(衝突予測部22)は、移動ロボット200と人とが衝突するか否かを予測する衝突判定処理を実行する。衝突判定処理の詳細について
図8を参照して説明する。
【0074】
図8は、本実施形態の衝突予測部22が行う衝突判定処理を説明する図である。
図8では、移動ロボット200と人検出部21により検出された人300とが示されている。移動ロボット200から延びる点線矢印は、設定された移動経路を示す。また、移動ロボット200から延びる実線矢印は、移動ロボット200の直近の移動方向を示す。直近の移動方向とは、設定された移動経路上における現在地からの移動方向を示すものであり、原則として現在地を起点とする直線で示される。換言すれば、直近の移動方向とは、現在地から、移動経路上において最初に方向転換する地点(第1経由点)に向かう方向である。
【0075】
本実施形態の衝突判定処理は、移動ロボット200および人300を、上方から床面に投射された単純な二次元図形とみなし、当該二次元図形同士が干渉する否かを判定することにより行われる。
図8で例示されるように、移動ロボット200は、例えば、移動台車20や腕部40の各リンクに対応して投射された円の連なりで表現される。また、人300は、腕を水平方向に伸ばした場合に水平方向に広がる領域を考慮した円で表現されている。なお、投射された二次元図形の外縁すなわち円の直径は、上方から見た移動ロボット200の水平方向幅の最大値、および人300が両腕を水平方向に広げた場合の水平方向幅の最大値にそれぞれ一致する必要は必ずしもない。投射された二次元図形は、若干広くして余裕を持たせたり、現実的な可動範囲を考慮して狭めたりするなど適宜調整されてよい。
【0076】
また、移動ロボット200に対応する円は、移動ロボット200が所定距離または所定時間移動する間の移動経路に沿って生成される。
図8では、点線円で示す所定距離内における移動経路を直近の移動方向に移動する移動ロボット200に対応する円が時系列に示されている。図示するように、本実施形態の上記所定距離は、直近の移動方向への移動距離(現在地から第1経由点までの距離)以下の距離に設定されてよい。本図では、移動ロボット200に対応する現在の円を(t)とし、移動経路に沿って時系列に生成された円を(t+1)、(t+2)として示している。そして、衝突予測部22は、移動ロボット200から所定距離内において、移動ロボット200に対応する円と人300に対応する円とが接触(干渉)するか否かを計算する。接触するか否かは、例えば円と円との中心間距離と、各円のそれぞれの半径とに基づいて容易に計算することができる。これにより、衝突予測部22は、例えば図示のように、移動ロボット200が(t+2)において人300と衝突し得ることを予測することができる。
【0077】
なお、図中の点線円で示す所定距離、すなわち現在地を基準とする衝突予測の距離的範囲は移動ロボット200の移動速度等に応じて適宜調整されてよい。また、図示の(t+1)、(t+2)で示す二次元図形の生成間隔は、移動ロボット200および人300の少なくともいずれか一方の移動速度、検出部21により人300を検出する際のサンプリング周波数等を考慮して適宜調整されてよい。なお、衝突検証用図形として上述のような二次元図形を生成する衝突判定手法は一例であって、これに限られない。衝突予測部22は、衝突検証用図形として三次元図形を生成する公知の他の衝突判定手法を採用してもよい。この場合には、移動ロボット200および人300の各リンクは、衝突検証用図形として3次元の球体またはポリゴンメッシュで表されてもよい。
【0078】
以上が衝突予測部22が行う衝突判定処理(S21)の詳細である。以下、
図7のフローチャートに戻って説明を続ける。
【0079】
衝突判定処理によって人と衝突しないと判定されると(S21、NO判定)、頭部駆動処理を行うステップS22の処理が実行される。本ステップに係る頭部駆動処理は、第1実施形態において上述した頭部駆動処理と同様である(S13、
図5(c)参照)。頭部駆動処理が実行されると、設定された移動経路に沿って移動するために続く移動処理(S24)に進む。他方、人と衝突すると判定されると(YES判定)、ステップS23の人対応頭部駆動処理が実行される。
【0080】
ステップS23では、コントローラ1(頭部方向制御部13)は、人対応頭部駆動処理を実行する。人対応頭部駆動処理は、移動ロボット200の現在地から所定距離内において、移動ロボット200が現在地からの移動方向(直近の移動方向)に移動すると衝突すると判定された人に対して実行される処理である。
【0081】
図9は、停止状態から移動を開始する際に実行される人対応頭部駆動処理(S23)を説明する図である。
図9で示すように、人対応頭部駆動処理(S23)では、頭部方向制御部13は、頭部駆動手段3を制御して、顔部31を衝突すると判定された人の頭に向ける。図示するように顔部31を上方に向けるためには、頭部方向制御部13がサーボモータ3bの駆動を制御すればよい。
【0082】
ここで、停止状態の移動ロボット200が移動を開始するにあたって、顔部31を人の頭に向ける場合と向けない場合の各状況を
図10および
図11を用いて整理する。
図10および
図11では、移動ロボット200と、移動ロボット200から延びる点線矢印で示す移動経路と、移動ロボット200から延びる実線矢印で示す直近の移動方向と、点線円で示す移動ロボット200からの所定距離と、人とが示されている。
【0083】
図10は、顔部31を人の頭に向ける場合の状況を説明する図である。
図10(a)で示すように、人が、所定距離内であって、且つ移動経路上における直近の移動方向にいる場合には、当然衝突すると予測されるので、移動ロボット200は顔部31を人の頭に向ける。また、
図10(b)で示すように、人が、移動経路上における直近の移動方向からずれた位置にいる場合でも、所定距離内であって、且つ移動ロボット200が直近の移動方向に移動した場合に衝突すると予測される位置にいる場合には、移動ロボット200は顔部31を人の頭に向ける。これにより、移動ロボット200は、衝突すると予測される人に対して移動動作を予告することができるとともに、移動経路からの退避を促すことができる。
【0084】
他方、
図11は、顔部31を人の頭に向けない場合の状況を説明する図である。
図11(a)および
図11(b)では、人が所定範囲内におらず、移動ロボット200と衝突すると予測されないので、直近の移動方向にいるいないに関わらず、移動ロボット200は顔部31を人の頭に向けない。また、
図11(c)および
図11(d)では、人が所定範囲内にいるものの、移動ロボット200が直近の移動方向に移動しても当該人に近づく可能性が低いことなどを理由に、衝突しないと予測されるので、移動ロボット200は顔部31を人の頭に向けない。
【0085】
人対応頭部駆動処理(S23)が実行されると、衝突すると予測される人がいなくなるまで、すなわち、前段で行われた衝突判定処理(S21)によって衝突すると判定された人が移動経路上から立ち退く等するまで、ステップS21からステップS23の処理が繰り返し実行される。この間、移動ロボット200は、顔部31を人の頭に向けた状態を維持し、無言の圧力を与え続けることにより、直近の移動方向からの退避を促し続けることができる。
【0086】
ただし、ステップS21からステップS23の処理を繰り返す間、必ずしも、顔部31を人の頭に向けた状態が維持され続ける必要はない。例えば、衝突が予測される人が一定時間立ち退かない場合には、衝突が予測される人が移動ロボット200の予告動作により早く気付くように、頭部30を左右に振るなどの目立つ動作を行ってもよい。また、移動ロボット200は、不図示の報知手段を備え、当該報知手段を用いて、衝突が予測される人に対して移動経路からの退避をより直接的に訴えるように構成されてよい。
【0087】
例えば、移動ロボット200は、報知手段としてのスピーカと、報知手段を制御するコントローラ1の機能部(報知手段制御部)と、をさらに備えてもよい。そして、移動ロボット200は、人対応頭部駆動処理(S23)によって顔部31を人の頭に向けた後、一定時間経過してもなお当該人と衝突すると判定され続けた場合には、スピーカから所定の音を出力するように構成されてよい。ここでの所定の音は、例えばブザー音からなる警告音でもよいし、「すみません、移動します」、「通ります」といった音声でもよい。これにより、移動ロボット200は、衝突が予測される人に対してより明確でより強い移動予告を行うことができる。
【0088】
衝突すると予測される人がいなくなると(S21、NO判定)、顔部31を移動方向に向けて(S22)、移動経路に沿って移動するための移動処理が実行される(S24)。
【0089】
以上、第2実施形態の人対応頭部駆動制御について説明した。続いて、
図7に示すステップS24の移動処理の詳細について、
図12を参照して説明する。
【0090】
図12は、第2実施形態の移動ロボット200が行う移動処理を説明するフローチャートである。本フローチャートで説明する移動処理は、移動ロボット200が設定された移動経路に沿って目的地まで移動している間常時実行される。なお、コントローラ1が備える記憶媒体には、図示のフローチャートを参照して以下に説明する処理を実行する制御プログラムが格納されている。
【0091】
ステップS221では、コントローラ1(衝突予測部22)は衝突判定処理を実行する。衝突判定処理は、第1実施形態において上述した手法と同様であってよい(
図8参照)。ただし、本ステップで実行される衝突判定処理は、移動ロボット200の移動中に行われることを考慮して次のように実行されてもよい。
【0092】
図13は、特に移動ロボット200の移動中に実行される衝突判定処理を説明する図である。
図13では、移動ロボット200と、移動ロボット200から延びる点線矢印で示す移動経路と、移動ロボット200から延びる実線矢印で示す直近の移動方向と、点線円で示す移動ロボット200からの所定距離と、一点鎖線円で示す減速開始エリアと、人とが示されている。
【0093】
移動時における移動制御部12は、人検出部21が移動経路上に人を検出した場合に、移動ロボット200の移動を減速または停止させる処理(減速処理)を実行してもよい。
図13(a)に示す一点鎖線円は、人が検出された場合に減速処理を実行するように設定された減速開始エリア(減速開始距離)を例示する円である。
【0094】
そして、減速処理が行われた後、所定範囲内における移動経路上であって且つ直近の移動方向に人が検出された場合に(
図13(b)参照)、頭部方向制御部13は、人対応頭部駆動処理(S23)を実行する。これにより、移動中に人と遭遇した場合であっても、移動経路からの退避を衝突する前に安全に促すことができる。なお、減速開始エリアの大きさ、および停止を含む減速の度合いは、移動ロボット200および人の移動速度等を考慮して適宜調整されてよい。また、減速処理は、減速エリア内において人が検出された場合だけでなく、移動ロボット200の移動を妨げうる何らかの障害物が検出された場合にも実行されてよい。
【0095】
図12のステップS221に戻って説明を続ける。ステップS221において人と衝突しないと判定された場合には(NO判定)、目的地に到達するまで、ステップS221からステップS222の処理が繰り返し実行される。人と衝突すると判定された場合には(YES判定)、ステップS223の処理が実行される。
【0096】
ステップS223では、コントローラ1は、衝突判定処理によって衝突すると判定された人が複数か否かを判定する。複数ではなく一人であれば(NO判定)、衝突が予測される人の頭に顔部31を向けるために人対応頭部駆動処理(S225)を実行する。他方、複数人であれば(YES判定)、顔部31を向ける人を特定するために人特定処理(S224)を実行する。
【0097】
図14は、人特定処理を説明する図である。
図14では、移動ロボット200と、移動ロボット200から延びる点線矢印で示す移動経路と、移動ロボット200から延びる実線矢印で示す直近の移動方向と、点線円で示す移動ロボット200からの所定距離と、人Aおよび人Bを含む複数の人と、が示されている。
【0098】
図14に示す人Aおよび人Bは、両者とも衝突が予測される人である。このように、移動ロボット200が直近の移動方向に移動した場合に衝突すると予測される人が複数いる場合には、頭部30は、最初に衝突が予測される人の頭に顔部31を向けるように制御される。すなわち、人特定処理では、コントローラ1は、移動ロボット200が移動した際に最初に衝突すると予測される人を特定する。具体的には、移動ロボット200に一番近い人(人A)が、最初に衝突が予測される人と特定される。ただし、最初に衝突が予測される人を特定する際に、人の移動速度や移動方向が考慮されてもよい。この場合、例えば、人Aが移動ロボット200からゆっくりと遠ざかる一方で、人Bが移動ロボット200に速やかに近づいている場合には、人Bが最初に衝突が予測される人として特定される場合があってよい。人特定処理により顔部31を向ける人が特定されると、ステップS225の処理が実行される。
【0099】
ステップS225では、コントローラ1(頭部方向制御部13)は、人の頭に顔部31を向けるために人対応頭部駆動処理を実行する。ここでの人対応頭部駆動処理は、
図7のステップS23で説明した処理と同様である(
図9等参照)。そして、衝突が予測される人がいなくなると(S221、NO判定)、目的地に到着するまで、ステップS221からステップS222の処理が繰り返し実行される。
【0100】
そして、移動ロボット200が目的地に到着すると、コントローラ1(移動制御部12)は、移動ロボット200の移動を停止し、移動処理は終了する。これにより、移動ロボット200は、直近の移動方向に移動すると人と衝突すると予測される場合には、当該人の頭に対して顔部31を向けることで、移動ロボット200が移動することを直接的に訴えかけることができるので、当該人に対して移動経路からの退避をより強く促すことができる。
【0101】
以上が、第2実施形態の移動ロボット200が行う頭部駆動制御および移動処理の詳細である。なお、
図7および
図12で示すフローチャートは本実施形態の頭部駆動制御および移動処理を説明するための例示であって、必ずしも図示するとおりに実行されることを制限するものではない。本実施形態の頭部駆動制御では、上述したように、少なくとも停止中又は移動中に人と衝突するか否かを判定し、人と衝突すると判定された場合に人対応頭部駆動処理が行わればよく適宜変更されてよい。
【0102】
例えば、
図7に示す頭部駆動処理(S22)は、衝突判定処理(S21)の前に実行されてよい。特に、例えばセンサ4が顔部31に設けられ、頭部30の前方にいる人のみを検出するように構成されている場合には、衝突判定処理(S21)が実行される前に、移動方向に顔部31を向ける頭部駆動処理(S2
2)が実行されるのが望ましい。また、例えば、
図12に示す人特定処理の一連の流れ(S223、S224)は、
図7のステップS21のYES判定後に実行されてもよい。
【0103】
以上が第2実施形態の移動ロボット200の詳細である。以上説明したように、移動ロボット200は、移動すると衝突すると予測される人の頭に顔部31を向けるので、近くにいる人に移動方向を予告するだけでなく、衝突を回避するための退避を促すことができる。その結果、移動ロボット200は、同じ空間を共有する人が移動ロボット200の移動に対していだき得る警戒心を解消し、安心感を与えることができる。
【0104】
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記の実施形態は、矛盾が生じない範囲で適宜組み合わせ可能である。
【0105】
例えば、
図2で示す移動ロボット100、200の構成は、少なくとも頭部30を備え、全方位移動台車部(移動台車20)により移動可能に構成される限り適宜変更されてよい。例えば、移動ロボット100、200は、ロボット本体部10を備えなくてもよい。この場合、頭部30は、移動台車20に直接設けられるように構成されてよい。
【産業上の利用可能性】
【0106】
本発明は、少なくとも移動ロボット等を製造する産業において利用可能である。
【符号の説明】
【0107】
1 コントローラ
2 移動機構駆動手段
3 頭部駆動手段
4 検出手段
10 ロボット本体部
11 移動経路設定部
12 移動制御部
13 頭部方向制御部(頭部制御部)
20 移動台車(全方位移動台車部)
21 人検出部(検出部)
22 衝突予測部
30 頭部
40 腕部
100 移動ロボット(第1実施形態)
200 移動ロボット(第2実施形態)
300 人