(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-29
(45)【発行日】2024-12-09
(54)【発明の名称】センサ及び電子装置
(51)【国際特許分類】
G01C 19/5755 20120101AFI20241202BHJP
G01C 19/5726 20120101ALI20241202BHJP
G01P 15/097 20060101ALI20241202BHJP
G01K 7/32 20060101ALI20241202BHJP
【FI】
G01C19/5755
G01C19/5726
G01P15/097 Z
G01K7/32 Z
(21)【出願番号】P 2021187035
(22)【出願日】2021-11-17
【審査請求日】2024-03-01
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(74)【代理人】
【識別番号】110004026
【氏名又は名称】弁理士法人iX
(72)【発明者】
【氏名】丸藤 竜之介
(72)【発明者】
【氏名】小野 大騎
(72)【発明者】
【氏名】冨澤 泰
(72)【発明者】
【氏名】宮崎 史登
(72)【発明者】
【氏名】加治 志織
(72)【発明者】
【氏名】増西 桂
(72)【発明者】
【氏名】平賀 広貴
(72)【発明者】
【氏名】小川 悦治
(72)【発明者】
【氏名】内田 健悟
【審査官】國田 正久
(56)【参考文献】
【文献】特開2015-222246(JP,A)
【文献】特開2020-187018(JP,A)
【文献】米国特許出願公開第2020/0025792(US,A1)
【文献】特開2010-203932(JP,A)
【文献】特開2008-003002(JP,A)
【文献】特開2019-120587(JP,A)
【文献】特開2022-162641(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 19/56 - 19/5783
G01P 15/097
G01K 7/32
(57)【特許請求の範囲】
【請求項1】
センサ素子と、
前記センサ素子を囲む筐体と、
処理部と、
を備え、
前記センサ素子は、
第1基体領域及び第2基体領域を含む基体と、
前記第1基体領域に設けられた第1センサ部であって、前記第1センサ部は振動可能な第1センサ可動部を含み、前記第1センサ可動部の振動は、第1方向の第1成分と、前記第1方向と交差する第2方向の第2成分と、を含む、前記第1センサ部と、
前記第2基体領域に設けられ、第1梁及び第2梁を含む第2センサ部と、
を含み、
前記処理部は、前記第1センサ可動部から得られる信号に基づいて、回転角度及び角速度を導出可能であり、
前記処理部は、前記第1梁の第1共振周波数と、前記第2梁の第2共振周波数と、に基づいて、加速度及び温度を検出可能であり、
前記処理部は、前記温度及び前記加速度の少なくともいずれかに基づいて、前記回転角度及び前記角速度の少なくともいずれかを補正可能である、センサ。
【請求項2】
前記処理部は、前記角速度に基づいて、前記加速度及び前記温度の少なくともいずれかを補正可能である、請求項1に記載のセンサ。
【請求項3】
前記処理部は、行列に基づいて、前記回転角度、前記角速度、前記加速度及び前記温度を補正可能である、請求項1または2に記載のセンサ。
【請求項4】
前記筐体の内部の空間の気圧は1気圧未満である、請求項1~3のいずれか1つに記載のセンサ。
【請求項5】
前記処理部は、第1モード及び第2モードを実施可能であり、
前記第1モードにおいて、前記処理部は、前記第1成分の第1振幅と、前記第2成分の第2振幅と、の比に基づいて、前記回転角度を導出可能であり、
前記第2モードにおいて、前記処理部は、前記第1センサ可動部の振動状態が一定となるような制御信号の変化に基づいて、前記角速度を導出可能である、請求項1~4のいずれか1つに記載のセンサ。
【請求項6】
前記第1センサ部は、
前記第1基体領域に固定された第1センサ固定部と、
前記第1センサ固定部に支持され前記第1センサ可動部を支持する第1センサ支持部と、
前記第1センサ可動部と対向する第1センサ対向電極と、
を含み、
前記基体と前記第1センサ支持部との間、及び、前記基体と前記第1センサ可動部との間に、第1間隙が設けられた、請求項1~5のいずれか1つに記載のセンサ。
【請求項7】
前記第1センサ可動部は、第1振動電極と、第2振動電極と、を含み、
前記第1センサ対向電極は、前記第1振動電極と対向する第1対向振動電極と、前記第2振動電極と対向する第2対向振動電極と、を含み、
前記第1センサ固定部から前記第1対向振動電極への方向、及び、前記第1センサ固定部から前記第2対向振動電極への方向は、前記第1基体領域から前記第1センサ固定部への方向と交差し、
前記第1センサ固定部から前記第1対向振動電極への前記方向は、前記第1センサ固定部から前記第2対向振動電極への前記方向と交差した、請求項6に記載のセンサ。
【請求項8】
前記第2センサ部は、
前記第2基体領域に固定された第2センサ固定部と、
第2センサ可動部と、
を含み、
前記基体と前記第2センサ可動部との間に第2間隙が設けられ、
前記第2センサ可動部は、
前記第2センサ固定部に支持された第1可動基部と、
前記第1可動基部と接続された第2可動基部と、
前記第1梁を含む第1可動梁と、
前記第2梁を含む第2可動梁と、
を含み、
前記第1梁は、第1端部及び第1他端部を含み、前記第1端部は前記第1可動基部と接続され、前記第1他端部は前記第2可動基部と接続され、
前記第2梁は、第2端部及び第2他端部を含み、前記第2端部は前記第1可動基部と接続され、前記第2他端部は前記第2可動基部と接続された、請求項1~7のいずれか1つに記載されたセンサ。
【請求項9】
前記第2センサ部が受ける前記加速度に応じて、前記第1共振周波数と前記第2共振周波数との差が変化する、請求項7または8に記載のセンサ。
【請求項10】
請求項1~9のいずれか1つに記載のセンサと、
前記センサから得られる信号に基づいて回路を制御可能な回路制御部と、
を備えた電子装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、センサ及び電子装置に関する。
【背景技術】
【0002】
ジャイロセンサなどのセンサがある。センサ及び電子装置において、検出精度の向上が望まれる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の実施形態は、精度を向上できるセンサ及び電子装置を提供する。
【課題を解決するための手段】
【0005】
本発明の実施形態によれば、センサは、センサ素子と、前記センサ素子を囲む筐体と、処理部と、を含む。前記センサ素子は、第1基体領域及び第2基体領域を含む基体と、第1センサ部と、第2センサ部と、を含む。前記第1センサ部は、前記第1基体領域に設けられる。前記第1センサ部は、振動可能な第1センサ可動部を含む。前記第1センサ可動部の振動は、第1方向の第1成分と、前記第1方向と交差する第2方向の第2成分と、を含む。前記第2センサ部は、前記第2基体領域に設けられ、第1梁及び第2梁を含む。前記処理部は、前記第1センサ可動部から得られる信号に基づいて、回転角度及び角速度を導出可能である。前記処理部は、前記第1梁の第1共振周波数と、前記第2梁の第2共振周波数と、に基づいて、加速度及び温度を検出可能である。前記処理部は、前記温度及び前記加速度の少なくともいずれかに基づいて、前記回転角度及び前記角速度の少なくともいずれかを補正可能である。
【図面の簡単な説明】
【0006】
【
図1】
図1(a)及び
図1(b)は、第1実施形態に係るセンサを例示する模式図である。
【
図2】
図2は、第1実施形態に係るセンサの動作を例示する模式図である。
【
図3】
図3は、第1実施形態に係るセンサの動作を例示する模式図である。
【
図4】
図4は、第1実施形態に係るセンサの一部を例示する模式的平面図である。
【
図5】
図5(a)及び
図5(b)は、第1実施形態に係るセンサの一部を例示する模式図である。
【
図6】
図6は、第1実施形態に係るセンサの一部を例示する模式的平面図である。
【
図7】
図7(a)~
図7(c)は、第1実施形態に係るセンサの一部を例示する模式的断面図である。
【
図8】
図8は、第2実施形態に係る電子装置を例示する模式図である。
【
図9】
図9(a)~
図9(h)は、電子装置の応用を例示する模式図である。
【発明を実施するための形態】
【0007】
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
図面は模式的または概念的なものであり、各部分の厚さと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0008】
(第1実施形態)
図1(a)及び
図1(b)は、第1実施形態に係るセンサを例示する模式図である。
図1(a)は平面図である。
図1(b)は、
図1(a)のZ1-Z2線断面図である。
【0009】
図1(a)及び
図1(b)に示すように、第1実施形態に係るセンサ110は、センサ素子10D、筐体80及び処理部70を含む。
【0010】
筐体80は、センサ素子10Dを囲む。この例では、処理部70の少なくとも一部は、筐体80に囲まれている。筐体80の内部の空間80sの気圧は、1気圧未満である。
【0011】
図1(b)に示すように、例えば、筐体80は、第1部材81a及び第2部材81bを含む。第2部材81bは、第1部材81aと接続される。第1部材81aは、例えば底部である。第2部材81bは、例えば蓋部である。
図1(a)は、第2部材81bが除去された状態を例示している。
【0012】
センサ素子10Dは、第1部材81aと第2部材81bとの間にある。第1部材81aから第2部材81bへの方向をZ軸方向とする。Z軸方向に対して垂直な1つの方向をX軸方向とする。Z軸方向及びX軸方向に対して垂直な方向をY軸方向とする。
【0013】
図1(a)及び
図1(b)に示すように、筐体80は、側部材82をさらに含む。側部材82は、第1部材81a及び第2部材81bと接続される。第1部材81aから第2部材81bへの方向(Z軸方向)と交差する方向において、側部材82の複数の領域の間にセンサ素子10Dがある。
【0014】
図1(a)に示すように、側部材82は、第1~第4側部材領域82a~82dを含む。例えば、X軸方向において、センサ素子10Dは、第1側部材領域82aと第2側部材領域82bとの間にある。例えば、Y軸方向において、センサ素子10Dは、第3側部材領域82cと第4側部材領域82dとの間にある。センサ素子10Dは、筐体80の内部の空間80sに気密に封止される。
【0015】
図1(b)に示すように、センサ素子10Dは、基体50S、第1センサ部10U及び第2センサ部20Uを含む。基体50Sは、第1基体領域50Sa及び第2基体領域50Sbを含む。第1センサ部10Uは、第1基体領域50Saに設けられる。第1センサ部10Uは、第1センサ可動部10Mを含む。第1センサ可動部10Mは、振動可能である。この振動は、第1方向の第1成分と、第2方向の第2成分と、を含む。第2方向は、第1方向と交差する。例えば、第1方向及び第2方向は、Z軸方向と交差する。
【0016】
図1(b)に示すように、この例では、第1センサ部10Uは、第1センサ固定部10F及び第1センサ支持部10Sを含む。第1センサ固定部10Fは、第1基体領域50Saに固定される。第1センサ支持部10Sは、第1センサ固定部10Fに支持される。第1センサ支持部10Sは、第1センサ可動部10Mを支持する。
図1(b)に示すように、基体50Sと第1センサ支持部10Sとの間、及び、基体50Sと第1センサ可動部10Mとの間に、第1間隙g1が設けられる。
【0017】
図1(b)に示すように、第2センサ部20Uは、第2基体領域50Sbに設けられる。第2センサ部20Uは、第1梁21及び第2梁22を含む(
図1(a)参照)。
【0018】
この例では、第2センサ部20Uは、第2センサ固定部20F及び第2センサ可動部20Mを含む。第2センサ固定部20Fは、第2基体領域50Sbに固定される。第2センサ可動部20Mは、第2センサ固定部20Fに支持される。後述するように、第1梁21は、第1可動梁に含まれる。後述するように、第2梁22は、第2可動梁に含まれる。これらの可動梁は、第2センサ可動部20Mに含まれる。
図1(b)に示すように、基体50Sと第2センサ可動部20Mとの間に第2間隙g2が設けられる。
【0019】
図1(b)に示すように、基体50Sは、第1部材81aに固定される。第1センサ可動部10Mと第2部材81bとの間、及び、第2センサ可動部20Mと第2部材81bとの間に、第3間隙g3が設けられる。後述するように、第1梁21と第2部材81bとの間、及び、第2梁22と第2部材81bとの間に第3間隙g3が設けられる。
【0020】
第1センサ可動部10Mと側部材82との間に第4間隙g4が設けられる。第1梁21と側部材82との間に第5間隙g5が設けられる。
【0021】
これらの間隙により、第1センサ可動部10Mは動くことができる。これらの間隙により、第2センサ可動部20M(第1梁21及び第2梁22など)は動くことができる。
【0022】
処理部70は、第1センサ可動部10Mから得られる信号に基づいて、回転角度及び角速度を導出可能である。第1センサ部10Uは、例えば、角度ジャイロセンサである。第1センサ部10Uは、例えば、RIG(Rate Integrating Gyroscope)である。第1センサ部10Uにより、検出対象の回転角度を直接計測することが可能である。第1センサ部10Uの例については、後述する。
【0023】
処理部70は、第1梁21の第1共振周波数と、第2梁22の共振周波数と、に基づいて、加速度及び温度を検出可能である。例えば、第2センサ部20Uに加速度が加わると、第1梁21及び第2梁22に応力が加わる。これにより、これらの梁のそれぞれの共振特性が変化する。第2センサ部20Uが受ける加速度に応じて、第1共振周波数と第2共振周波数との差が変化する。周波数の差を検出することで、加速度が検出できる。
【0024】
一方、共振周波数は、温度依存性を有する。共振周波数の温度特性を考慮して解析することで、温度が検出される。温度特性は、例えば、メモリ部70M(
図1(a)参照)に記憶されても良い。
【0025】
このように、処理部70は、第1センサ部10U及び第2センサ部20Uから得られる情報に基づいて、回転角度、角速度(回転角速度)、加速度(並進加速度)及び温度を検出できる。センサ110は、例えば、IMU(Inertial Measurement Unit)である。
【0026】
実施形態において、処理部70は、検出された温度及び検出された加速度の少なくともいずれかに基づいて、回転角度及び角速度の少なくともいずれかを補正可能である。これにより、高い精度が得られる。実施形態によれば、精度を向上できるセンサを提供できる。
【0027】
実施形態において、処理部70は、検出された角速度に基づいて、加速度及び温度の少なくともいずれかを補正可能でも良い。より高い精度が得られる。処理部70は、検出された角速度に基づいて、加速度を補正可能である。より高い精度が得られる。
【0028】
図2は、第1実施形態に係るセンサの動作を例示する模式図である。
図2は、処理部70の動作を例示している。
図2に示すように、処理部70は、第1モードOP1及び第2モードOP2を実施可能である。例えば、第1モードOP1と第2モードOP2とが切り替えられて実施される。後述するように、処理部70は、別のモードをさらに実施可能でも良い。
【0029】
第1モードOP1において、処理部70は、回転角度を導出可能である。例えば、記第1モードOP1において、処理部70は、第1センサ部10U(RIG)から信号を取得する。第1センサ可動部10Mが受ける回転を伴う力により、振動の第1成分及び第2成分が変化する。変化は、例えば、コリオリ力に基づく。信号は、第1センサ可動部10Mの振動の第1方向に沿う第1成分の第1振幅と、第1センサ可動部10Mの振動の2方向に沿う第2成分の第2振幅と、を含む。例えば、処理部70は、第1振幅及び第2振幅の比に基づいて、角度出力θ1を導出する。例えば、第1振幅を「Ax」とし、第2振幅を「Ay」とする。角度出力θ1は、例えば、tan-1(-Ay/Ax)に対応する。第1モードOP1は、例えば、WA(whole Angle)モードに対応する。角度出力θ1は、例えば、「deg」(度)で表される。処理部70は、角度出力θ1を変換して、回転角度θbを導出する。回転角度θbは、例えば、「deg」(度)で表される。
【0030】
第2モードOP1において、処理部70は、第1センサ可動部10Mの振動状態(例えば振動の回転角度)を一定とする制御信号の出力V1を第1センサ可動部10Mに供給する。処理部70は、制御信号の出力V1の変化に基づいて、角速度を導出可能である。第2モードOP2は、例えば、FR(Force Rebalance)モードに対応する。制御信号の出力V1は、例えば「V」(ボルト)で表される。処理部70は、制御信号の出力V1を変換して、角速度Ωbを導出する。角速度Ωbは、例えば、「dps」(degree per second)で表される。
【0031】
一方、第2センサ部20Uから得られる信号に基づいて、第1梁21の第1共振周波数F1と、第2梁22の第2共振周波数F2と、が導出される。これらの周波数の単位は、例えば「Hz」である。処理部70は、これらの周波数及びその差を変化して、加速度Ab、及び、温度Tbを導出する。加速度Abは、例えば、「g」または「G」または「m/s2」で表される。温度Tbの単位は、例えば、「degC」(℃)で表される。
【0032】
この例では、処理部70は、回転角度θb、角速度Ωb、加速度Ab及び温度Tbについて、初期値補正処理75を実施する。
【0033】
この例では、処理部70は、第1補正処理71、第2補正処理72、第3補正処理73及び第4補正処理74の少なくともいずれかを実施する。第1補正処理71において、処理部70は、温度Tbに基づいて、回転角度θb及び角速度Ωbの少なくともいずれかを補正する。第2補正処理72において、処理部70は、回転角度θb及び角速度Ωbの少なくともいずれかに基づいて、加速度Abを補正する。第3補正処理73において、処理部70は、加速度Abに基づいて、回転角度θb及び角速度Ωbの少なくともいずれかを補正する。第4補正処理74において、回転角度θb及び角速度Ωbの少なくともいずれかに基づいて、温度Tbを補正する。
【0034】
このような補正処理により、補正後の回転角度θc、補正後の角速度Ωc、補正後の加速度Ac及び補正後の温度Tcが得られる。
【0035】
このような処理は、例えば、感度行列70Pを用いた処理により実施されて良い。以下、感度行列70Pの例について説明する。
【0036】
図3は、第1実施形態に係るセンサの動作を例示する模式図である。
図3は、感度行列70Pを例示している。感度行列70Pは、例えば、4×4の要素を含む。感度行列70Pの行は、例えば、角度出力θ1、制御信号の出力V1、第1共振周波数F1及び第2共振周波数F2を含む。感度行列70Pの列は、推定対象の回転角度θ、推定対象の角速度Ω、推定対象の加速度G、及び、推定対象の温度Tを含む。これらの値は、求めらるべき(真の)値である。
【0037】
図3において、「SF」はスケールファクタ(例えば係数)である。「θ-θ1」、「Ω-V1」、「Ω-F1」、「Ω-F2」、「G-θ」、「G-V1」、「G-F1」、「G-F2」、「T-θ1」及び「T-V1」は、括弧内の前者と後者との間の変換係数である。「TCF1」及び「TCF2」は、「Temperature Coefficient of Frequency」である。
【0038】
処理部70は、このような行列(感度行列70P)に基づいて、検出された出力を補正する。これにより、補正後の回転角度θc、補正後の角速度Ωc、補正後の加速度Ac及び補正後の温度Tcが得られる。
図3に示すように、感度行列70Pは、非対角成分(非対角要素)を含む。非対角成分は、0ではない。
【0039】
以下、第1センサ部10Uの例について説明する。
図4は、第1実施形態に係るセンサの一部を例示する模式的平面図である。
図4に示すように、第1センサ部10Uは、第1センサ固定部10F、第1センサ支持部10S、第1センサ対向電極10CEを含む。既に説明したように、第1センサ固定部10Fは、第1基体領域50Saに固定される(
図1(b)参照)。第1センサ支持部10Sは、第1センサ固定部10Fに支持される。第1センサ支持部10Sは、第1センサ可動部10Mを支持する。第1センサ対向電極10CEは、第1センサ可動部10Mと対向する。
【0040】
Z軸方向(第1基体領域50Saから第1センサ固定部10Fへの方向)と交差する面内(X-Y平面)において、第1センサ可動部10Mは、第1センサ固定部10Fの少なくとも一部の周りに設けられる。第1センサ可動部10Mは、例えば、環状である。
【0041】
図4に示すように、第1センサ可動部10Mは、第1振動電極11Eと、第2振動電極12Eと、を含む。第1センサ対向電極10CEは、第1対向振動電極11CEと、第2対向振動電極12CEと、を含む。第1対向振動電極11CEは、第1振動電極11Eと対向する。第2対向振動電極12CEは、第2振動電極12Eと対向する。
【0042】
第1センサ固定部10Fから第1対向振動電極11CEへの方向、及び、第1センサ固定部10Fから第2対向振動電極12CEへの方向は、Z軸方向(第1基体領域50Saから第1センサ固定部10Fへの方向)と交差する。この例では、第1センサ固定部10Fから第1対向振動電極11CEへの方向は、Z軸方向に沿う。第1センサ固定部10Fから第2対向振動電極12CEへの方向は、Y軸方向に沿う。
【0043】
第1センサ固定部10Fから第1対向振動電極11CEへの方向(例えばX軸方向)は、第1センサ固定部10Fから第2対向振動電極12CEへの方向(例えばY軸方向)と交差する。
【0044】
例えば、処理部70は、第1振動電極11Eと第1対向振動電極11CEとの間に第1駆動信号を供給する。処理部70は、第2振動電極12Eと第2対向振動電極12CEとの間に第2駆動信号を供給する。これらの駆動信号により、第1センサ可動部10Mは、振動する。振動は、2つの方向の成分を有する。
【0045】
図4に示すように、第1センサ可動部10Mは、第1検出電極11sEと、第2検出電極12sEと、を含む。第1センサ対向電極10CEは、第1対向検出電極11CsE及び第2対向検出電極12CsEを含む。第1対向検出電極11CsEは、第1検出電極11sEと対向する。第2対向検出電極12CsEは、第2検出電極12sEと対向する。
【0046】
第1センサ固定部10Fは、第1振動電極11Eと第1検出電極11sEとの間にある。第1センサ固定部10Fは、第2振動電極12Eと第2検出電極12sEとの間にある。例えば、第1センサ可動部10Mの振動に伴い、第1検出電極11sEと第1対向検出電極11CsEとの間に第1検出信号Vs1が生じる。例えば、第1センサ可動部10Mの振動に伴い、第2検出電極12sEと第2対向検出電極12CsEとの間に第2検出信号Vs2が生じる。処理部70は、これらの信号を取得する。
【0047】
処理部70は、例えば、第1アンプ17a及び第2アンプ17bを含む。第1アンプ17aに第1検出信号Vs1が入力される。第2アンプ17bに第2検出信号Vs2が入力される。これらのアンプにより検出信号が増幅される。処理部70は、増幅された信号に基づいて、回転角度を検出する。処理部70は、第1センサ可動部10Mの振動状態が一定となるような制御信号(第1制御信号Vc1及び第2制御信号Vc2)を供給する。第1制御信号Vc1は、第1対向振動電極11CEに供給される。第2制御信号Vc2は、第2対向振動電極12CEに供給される。処理部70は、例えば、制御信号の変化に基づいて、角速度を導出可能である。
【0048】
第1振動電極11E、第2振動電極12E、第1検出電極11sE及び第2検出電極12sEと、基体50Sとの間に、第1間隙g1(
図1(b)参照)が設けられる。
【0049】
第1対向振動電極11CE、第2対向振動電極12CE、第1対向検出電極11CsE及び第2対向検出電極12CsEは、基体50Sに固定される。
【0050】
実施形態において、処理部70は、第3モードをさらに実施可能で良い。第3モードにおいて、処理部70は、第1センサ部10Uに第3モード信号Vm3を供給する。第3モード信号Vm3は、任意の状態で第1センサ可動部10Mを振動させる。第3モードは、例えば、VR(Virtual Rotation)モードである。第3モードは、例えば、センサの校正時などにおいて実施される。例えば、第1モードOP1、第2モードOP2及び第3モードが切り替えられて実施される。
【0051】
以下、第2センサ部20Uの例について説明する。
図5(a)及び
図5(b)は、第1実施形態に係るセンサの一部を例示する模式図である。
図5(a)は、平面図である。
図5(b)は、
図5(a)のX1-X2線断面図である。
図5(a)及び
図5(b)に示すように、第2センサ部20Uは、第2センサ固定部20F及び第2センサ可動部20Mを含む。第2センサ固定部20Fは、第2基体領域50Sbに固定される。基体50Sと第2センサ可動部20Mとの間に第2間隙g2が設けられる。
【0052】
第2センサ可動部20Mは、第1可動基部20A、第2可動基部20B、第1可動梁21M及び第2可動梁22Mを含む。第1可動基部20Aは、第2センサ固定部20Fに支持される。第2可動基部20Bは、第1可動基部20Aと接続される。この例では、第2センサ可動部20Mは、接続基部20Pをさらに含む。接続基部20Pは、第2可動基部20Bを第1可動基部20Aと接続する。
【0053】
第1可動梁21Mは、第1梁21を含む。第2可動梁22Mは、第2梁22を含む。第1梁21は、第1端部21e及び第1他端部21fを含む。第1端部21eは第1可動基部20Aと接続される。第1他端部21fは第2可動基部20Bと接続される。
【0054】
第2梁22は、第2端部22e及び第2他端部22fを含む。第2端部22eは第1可動基部20Aと接続される。第2他端部22fは第2可動基部20Bと接続される。
【0055】
第1可動基部20Aから第2可動基部20Bへの延在方向は、第2基体領域50Sbから第2センサ固定部20Fへの方向(Z軸方向)と交差する。この例では、延在方向は、X軸方向に沿う。
【0056】
第1梁21及び第2梁22は、延在方向(例えばX軸方向)に沿う。第2梁22から第1梁21への交差方向は、延在方向(X軸方向)、及び、Z軸方向(第2基体領域50Sbから第2センサ固定部20Fへの方向)を含む平面と交差する。交差方向は、例えばY軸方向である。接続基部20Pは、交差方向(Y軸方向)において、第2梁22と第1梁21との間にある。
【0057】
第2センサ可動部20Mは、可動部材20Xをさらに含んで良い。可動部材20Xは、第2可動基部20Bに接続される。第2可動基部20Bは、第1可動基部20Aと可動部材20Xとの間にある。第2可動基部20Bは、接続基部20Pと可動部材20Xとの間にある。
【0058】
例えば、第2センサ可動部20Mに加速度(または力)が加わると、可動部材20Xは、接続基部20Pを中心として、変位する。変位に伴って、第2可動基部20Bが変位する。これにより、第1梁21及び第2梁22の一方に、圧縮または引っ張りの一方の応力が加わる。第1梁21及び第2梁22の他方に、圧縮または引っ張りの他方の応力が加わる。これらの梁の共振周波数は、受ける応力により変化する。第1梁21の第1共振周波数F1と、第2梁22の第2共振周波数F2と、の差を検出することで、加速度検出できる。
【0059】
図5(a)に示すように、可動部材20Xの交差方向(Y軸方向)に沿う長さを長さLXとする。第2可動基部20Bの交差方向に沿う長さを長さL2とする。長さLXは、長さL2よりも長い。大きい可動部材20Xが設けられることで、梁に加わる応力を大きくできる。例えば、高い感度が得易い。
【0060】
図6は、第1実施形態に係るセンサの一部を例示する模式的平面図である。
図7(a)~
図7(c)は、第1実施形態に係るセンサの一部を例示する模式的断面図である。
図6は、
図5(a)の一部の拡大図である。
図7(a)は、
図6のA1-A2線断面図である。
図7(b)は、
図6のB1-B2線断面図である。
図7(c)は、
図6のC1-C2線断面図である。
【0061】
図6に示すように、接続基部20Pの交差方向(例えばY軸方向)に沿う長さを長さL3とする。第1可動基部20Aの交差方向に沿う長さを長さL1とする。第2可動基部20Bの交差方向に沿う長さを長さL2とする。長さL3は、長さL1よりも短く、長さL3よりも短い。接続基部20Pは、ピポット部として機能する。小さい接続基部20Pが設けられることで、可動部材20Xが変位し易い。第1梁21及び第2梁22に加わる応力が大きくなる。高い感度が得易い。
【0062】
図6に示すように、第1可動梁21Mは、第1可動接続部21C及び第1延在部21Eを含む。第1梁21は、第1中間部21gを含む。第1中間部21gは、第1端部21eと第1他端部21fとの間にある。第1可動接続部21Cは、第1延在部21Eを第1中間部21gと接続する。第1延在部21Eは、X軸方向に沿って延びる。
【0063】
図6に示すように、第2可動梁22Mは、第2可動接続部22C及び第2延在部22Eを含む。第2梁22は、第2中間部22gを含む。第2中間部22gは、第2端部22eと第2他端部22fとの間にある。第2可動接続部22Cは、第2延在部22Eを第2中間部22gと接続する。第2延在部22Eは、X軸方向に沿って延びる。
【0064】
図6に示すように、第2センサ部20Uは、第1電極51及び第2電極52を含む。第1電極51は、第1延在部21Eと対向する。第2電極52は、第2延在部22Eと対向する。第2センサ部20Uは、第1導電部61及び別の第1導電部61Aを含む。これらの導電部は、第1延在部21Eと対向する。第2センサ部20Uは、第2導電部62及び別の第2導電部62Aを含む。これらの導電部は、第2延在部22Eと対向する。
【0065】
処理部70は、第1電極51、第2電極52、第1導電部61、別の第1導電部61A、第2導電部62、及び、別の第2導電部62Aと電気的に接続される。電気的な接続に、例えば、配線70a~70fにより行われる。
【0066】
処理部70は、例えば、導電部と延在部との間に駆動信号を印加する。これにより、第1梁21及び第2梁22が振動する。処理部70は、電極と延在部との間に生じる信号を検出する。これにより、第1梁21の第1共振周波数F1、及び、第2梁22の第2共振周波数F2が検出できる。電極と延在部との間に駆動信号が印加され、導電部と延在部との間に生じる信号が検出されても良い。
【0067】
検出された第1共振周波数F1及び第2共振周波数F2に基づいて、メモリ部70Mに記憶された共振周波数の温度特性を参照して、温度Tが検出可能である。例えば、加速度G、温度T、第1共振周波数F1及び第2共振周波数F2の関係に関するデータがメモリ部70Mに記憶される。例えば、これらの値に関する表または関数が記憶される。記憶された表または関数に基づいて、加速度G及び温度Tが導出される。
【0068】
図7(a)~
図7(c)に示すように、基体50Sと第1梁21との間、及び、基体50Sと第2梁22との間に、第2間隙g2が設けられる。
【0069】
(第2実施形態)
第2実施形態は、電子装置に係る。
図8は、第2実施形態に係る電子装置を例示する模式図である。
図8に示すように、第2実施形態に係る電子装置310は、第1実施形態に係るセンサ110と、回路制御部170と、を含む。回路制御部170は、センサ110から得られる信号S1に基づいて回路180を制御可能である。回路180は、例えば駆動装置185の制御回路などである。実施形態によれば、高精度の検出結果に基づいて、駆動装置185を制御するための回路180などを高精度で制御できる。
【0070】
図9(a)~
図9(h)は、電子装置の応用を例示する模式図である。
図9(a)に示すように、電子装置310は、ロボットの少なくとも一部でも良い。
図9(b)に示すように、電子装置310は、製造工場などに設けられる工作ロボットの少なくとも一部でも良い。
図9(c)に示すように、電子装置310は、工場内などの自動搬送車の少なくとも一部でも良い。
図9(d)に示すように、電子装置310は、ドローン(無人航空機)の少なくとも一部でも良い。
図9(e)に示すように、電子装置310は、飛行機の少なくとも一部でも良い。
図9(f)に示すように、電子装置310は、船舶の少なくとも一部でも良い。
図9(g)に示すように、電子装置310は、潜水艦の少なくとも一部でも良い。
図9(h)に示すように、電子装置310は、自動車の少なくとも一部でも良い。第3実施形態に係る電子装置310は、例えば、ロボット及び移動体の少なくともいずれかを含んでも良い。
【0071】
実施形態は、以下の構成(例えば技術案)を含んでも良い。
【0072】
(構成1)
センサ素子と、
前記センサ素子を囲む筐体と、
処理部と、
を備え、
前記センサ素子は、
第1基体領域及び第2基体領域を含む基体と、
前記第1基体領域に設けられた第1センサ部であって、前記第1センサ部は振動可能な第1センサ可動部を含み、前記第1センサ可動部の振動は、第1方向の第1成分と、前記第1方向と交差する第2方向の第2成分と、を含む、前記第1センサ部と、
前記第2基体領域に設けられ、第1梁及び第2梁を含む第2センサ部と、
を含み、
前記処理部は、前記第1センサ可動部から得られる信号に基づいて、回転角度及び角速度を導出可能であり、
前記処理部は、前記第1梁の第1共振周波数と、前記第2梁の第2共振周波数と、に基づいて、加速度及び温度を検出可能であり、
前記処理部は、前記温度及び前記加速度の少なくともいずれかに基づいて、前記回転角度及び前記角速度の少なくともいずれかを補正可能である、センサ。
【0073】
(構成2)
前記処理部は、前記角速度に基づいて、前記加速度及び前記温度の少なくともいずれかを補正可能である、構成1に記載のセンサ。
【0074】
(構成3)
前記処理部は、前記角速度に基づいて、前記加速度を補正可能である、構成1または2に記載のセンサ。
【0075】
(構成4)
前記処理部は、行列に基づいて、前記回転角度、前記角速度、前記加速度及び前記温度を補正可能である、構成1~3のいずれか1つに記載のセンサ。
【0076】
(構成5)
前記行列は、非対角成分を含む、構成4に記載のセンサ。
【0077】
(構成6)
前記筐体の内部の空間の気圧は1気圧未満である、構成1~5のいずれか1つに記載のセンサ。
【0078】
(構成7)
前記処理部は、第1モード及び第2モードを実施可能であり、
前記第1モードにおいて、前記処理部は、前記第1成分の第1振幅と、前記第2成分の第2振幅と、の比に基づいて、前記回転角度を導出可能であり、
前記第2モードにおいて、前記処理部は、前記第1センサ可動部の振動状態が一定となるような制御信号の変化に基づいて、前記角速度を導出可能である、構成1~6のいずれか1つに記載のセンサ。
【0079】
(構成8)
前記処理部は、第3モードをさらに実施可能であり、
前記第3モードにおいて、前記処理部は、前記第1センサ可動部を任意の状態で振動させる第3モード信号を前記第1センサ部に供給可能である、構成7に記載のセンサ。
【0080】
(構成9)
前記第1センサ部は、
前記第1基体領域に固定された第1センサ固定部と、
前記第1センサ固定部に支持され前記第1センサ可動部を支持する第1センサ支持部と、
前記第1センサ可動部と対向する第1センサ対向電極と、
を含み、
前記基体と前記第1センサ支持部との間、及び、前記基体と前記第1センサ可動部との間に、第1間隙が設けられた、構成1~8のいずれか1つに記載のセンサ。
【0081】
(構成10)
前記第1基体領域から前記第1センサ固定部への方向と交差する面内において、前記第1センサ可動部は、前記第1センサ固定部の少なくとも一部の周りに設けられた、構成9に記載のセンサ。
【0082】
(構成11)
前記第1センサ可動部は、第1振動電極と、第2振動電極と、を含み、
前記第1センサ対向電極は、前記第1振動電極と対向する第1対向振動電極と、前記第2振動電極と対向する第2対向振動電極と、を含み、
前記第1センサ固定部から前記第1対向振動電極への方向、及び、前記第1センサ固定部から前記第2対向振動電極への方向は、前記第1基体領域から前記第1センサ固定部への方向と交差し、
前記第1センサ固定部から前記第1対向振動電極への前記方向は、前記第1センサ固定部から前記第2対向振動電極への前記方向と交差した、構成9に記載のセンサ。
【0083】
(構成12)
前記第1センサ可動部は、第1検出電極と、第2検出電極と、を含み、
前記第1センサ対向電極は、前記第1検出電極と対向する第1対向検出電極と、前記第2検出電極と対向する第2対向検出電極と、を含み、
前記第1センサ固定部は、前記第1振動電極と前記第1検出電極との間にあり、
前記第1センサ固定部は、前記第2振動電極と前記第2検出電極との間にある、構成11に記載のセンサ。
【0084】
(構成13)
前記第2センサ部は、
前記第2基体領域に固定された第2センサ固定部と、
第2センサ可動部と、
を含み、
前記基体と前記第2センサ可動部との間に第2間隙が設けられ、
前記第2センサ可動部は、
前記第2センサ固定部に支持された第1可動基部と、
前記第1可動基部と接続された第2可動基部と、
前記第1梁を含む第1可動梁と、
前記第2梁を含む第2可動梁と、
を含み、
前記第1梁は、第1端部及び第1他端部を含み、前記第1端部は前記第1可動基部と接続され、前記第1他端部は前記第2可動基部と接続され、
前記第2梁は、第2端部及び第2他端部を含み、前記第2端部は前記第1可動基部と接続され、前記第2他端部は前記第2可動基部と接続された、構成1~12のいずれか1つに記載されたセンサ。
【0085】
(構成14)
前記第1可動基部から前記第2可動基部への延在方向は、前記第2基体領域から前記第2センサ固定部への方向と交差し、
前記第1梁及び前記第2梁は、前記延在方向に沿い、
前記第2梁から前記第1梁への交差方向は、前記延在方向、及び、前記第2基体領域から前記第2センサ固定部への前記方向を含む平面と交差した、構成13に記載のセンサ。
【0086】
(構成15)
前記第2センサ可動部は、接続基部をさらに含み、
前記接続基部は、第2可動基部を前記第1可動基部と接続し、
前記接続基部の前記交差方向に沿う長さは、前記第1可動基部の前記交差方向に沿う長さよりも短く、前記第2可動部の前記交差方向に沿う長さよりも短い、構成14に記載のセンサ。
【0087】
(構成16)
前記第2センサ可動部は、前記第2可動基部に接続された可動部材をさらに含み、
前記第2可動基部は、前記第1可動基部と前記可動部材との間にあり、
前記可動部材の前記交差方向に沿う長さは、前記第2可動部の前記交差方向に沿う前記長さよりも長い、構成15に記載のセンサ。
【0088】
(構成17)
前記第2センサ部が受ける前記加速度に応じて、前記第1共振周波数と前記第2共振周波数との差が変化する、構成13~16のいずれか1つに記載のセンサ。
【0089】
(構成18)
前記筐体は、第1部材と、前記第1部材と接続された第2部材と、を含み、
前記第1部材と前記第2部材との間に前記センサ素子があり、
前記基体は、前記第1部材に固定され、
前記第1センサ可動部と前記第2部材との間、前記第1梁と前記第2部材との間、及び、前記第2梁と前記第2部材との間に第3間隙が設けられた、構成1~17のいずれか1つに記載のセンサ。
【0090】
(構成19)
前記筐体は、前記第1部材及び前記第2部材と接続された側部材をさらに含み、
前記第1部材から前記第2部材への方向と交差する方向において、前記側部材の複数の領域の間に前記センサ素子があり、
前記第1センサ可動部と前記側部材との間に第4間隙が設けられ、
前記第1梁と前記側部材との間に第5間隙が設けられた、構成18に記載のセンサ。
【0091】
(構成20)
構成1~19のいずれか1つに記載のセンサと、
前記センサから得られる信号に基づいて回路を制御可能な回路制御部と、
を備えた電子装置。
【0092】
実施形態によれば、精度を向上できるセンサ及び電子装置が提供できる。
【0093】
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、センサに含まれるセンサ素子、センサ部、可動部、固定部、支持部、基体及び制御部などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
【0094】
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
【0095】
その他、本発明の実施の形態として上述したセンサを基にして、当業者が適宜設計変更して実施し得る全てのセンサも、本発明の要旨を包含する限り、本発明の範囲に属する。
【0096】
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
【0097】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0098】
10CE…第1センサ対向電極、 10D…センサ素子、 10F…第1センサ固定部、 10M…第1センサ可動部、 10S…センサ支持部、 10U…第1センサ部、 11CE、12CE…第1、第2対向振動電極、 11CsE、12CsE…第1、第2対向検出電極、 11E、12E…第1、第2振動電極、 11sE、12sE…第1、第2検出電極、 17a、17b…第1、第2アンプ、 20A…第1可動基部、 20B…第2可動基部、 20F…第2センサ固定部、 20M…第2センサ可動部、 20P…接続基部、 20U…第2センサ部、 20X…可動部材、 21、22…第1、第2梁、 21C、22C…第1、第2可動接続部、 21E、22E…第1、第2延在部、 21M、22M…第1、第2可動梁、 21e、22e…第1、第2端部、 21f、22f…第1、第2他端部、 21g、22g…第1、第2中間部、 50S…基体、 50Sa、50Sb…第1、第2基体領域、 51、52…第1、第2電極、 61、62…第1、第2導電部、 61A、62A…別の第1、第2導電部、 70…処理部、
70M…メモリ部、 70P…感度行列、 70a~79f…配線、 71~74…第1~第4補正処理、 75…初期値補正処理、 80…筐体、 80s…空間、 81a、81b…第1、第2部材、 82…側部材、 82a~82d…第1~第4側部材領域、 110…センサ、 170…回路制御部、 180…回路、 185…駆動装置、 310…電子装置、 L1~L3、Lx…長さ、 OP1、OP2…第1、第2モード、 S1…信号、 Vc1、Vc2…第1、第2制御信号、 Vm3…モード信号、 Vs1、Vs2…第1、第2検出信号、 g1~g5…第1~第5間隙