IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アヴェドロ・インコーポレーテッドの特許一覧

特許7596262角膜架橋治療のための光活性化システム及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-29
(45)【発行日】2024-12-09
(54)【発明の名称】角膜架橋治療のための光活性化システム及び方法
(51)【国際特許分類】
   A61F 9/01 20060101AFI20241202BHJP
   A61F 9/007 20060101ALI20241202BHJP
   A61F 9/008 20060101ALI20241202BHJP
【FI】
A61F9/01
A61F9/007 180
A61F9/008 120A
A61F9/008 120C
A61F9/008 120D
A61F9/008 120F
A61F9/008 160
【請求項の数】 10
(21)【出願番号】P 2021519601
(86)(22)【出願日】2019-10-09
(65)【公表番号】
(43)【公表日】2022-01-13
(86)【国際出願番号】 US2019055482
(87)【国際公開番号】W WO2020077015
(87)【国際公開日】2020-04-16
【審査請求日】2022-09-20
(31)【優先権主張番号】62/743,338
(32)【優先日】2018-10-09
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/810,497
(32)【優先日】2019-02-26
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】510017365
【氏名又は名称】アヴェドロ・インコーポレーテッド
【氏名又は名称原語表記】AVEDRO,INC.
(74)【代理人】
【識別番号】110001508
【氏名又は名称】弁理士法人 津国
(72)【発明者】
【氏名】アドラー,デスモンド・シー
(72)【発明者】
【氏名】アッシャー,デイビッド
(72)【発明者】
【氏名】イルディズヤン,アレックス
【審査官】松山 雛子
(56)【参考文献】
【文献】特表2013-525014(JP,A)
【文献】特表2014-519914(JP,A)
【文献】特表2016-511652(JP,A)
【文献】特開2003-245300(JP,A)
【文献】米国特許出願公開第2018/0206719(US,A1)
【文献】特表2014-519866(JP,A)
【文献】特表平7-506733(JP,A)
【文献】米国特許出願公開第2015/0164314(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61F 9/01
A61F 9/007
A61F 9/008
(57)【特許請求の範囲】
【請求項1】
眼を治療するためのシステムであって、
角膜に施与された架橋剤を光活性化する光活性化光を提供するように構成された光源、
前記光活性化光を受け取るように且つ前記光活性化光のスポットを規定するビームを生成するように構成された1以上の光学素子であって、
架橋活性を生成するために前記角膜上に複数の治療ゾーンによって規定される走査パターンを形成するように構成され、前記複数の治療ゾーンが少なくとも第1の治療ゾーンと第2の治療ゾーンとを含み、前記第1の治療ゾーンでは光活性化光の第1の線量が提供され、前記第2の治療ゾーンでは光活性化光の第2の線量が提供され、前記第1の線量は前記第2の線量よりも多い、1以上の光学素子、
前記光活性化光の前記ビームを受け取り且つ第1の軸及び第2の軸に沿って前記光活性化光のスポットを走査するように構成された走査システム、及び
前記走査システムから走査パターンを受信し、前記走査パターンを角膜に送信するように構成された可動の光ファイバ束であって、空間バッファを提供するように構成された調整領域を有する円形領域内に含まれてある光ファイバ束、
を備えた、
上記システム。
【請求項2】
前記走査システムは、検流計対を含み、前記検流計対は、前記第1の軸に沿って前記光活性化光の前記スポットを走査するように構成された第1ミラーと、前記第2の軸に沿って前記光活性化光の前記スポットを走査するように構成された第2ミラーとを含む、
請求項1に記載のシステム。
【請求項3】
前記光源又は前記走査システムの少なくとも1つは、前記走査パターンのそれぞれの部分に送達される前記光活性化光の線量を空間的に調整するように動作可能である、
請求項1に記載のシステム。
【請求項4】
前記走査システムは、前記光活性化光の前記スポットを前記第1の軸に沿って第1の調整可能な速度に従って走査するように且つ前記光活性化光の前記スポットを前記第2の軸に沿って第2の調整可能な速度に従って走査するように構成され、前記第1の調整可能な速度及び前記第2の調整可能な速度は、前記光活性化光の前記スポットが前記走査パターンの一部分上に在る滞留時間を決定し、且つ前記走査パターンの前記一部分における架橋活性のために送達される前記光活性化光の線量を決定する、
請求項1に記載のシステム。
【請求項5】
前記光源は、前記走査システムが前記走査パターンの部分上を前記光活性化光の前記スポットを走査するとき、前記ビームに関連する出力を調整するように動作可能であり、前記走査パターンの前記部分は、前記ビームに関連する前記出力に基づいて、前記光活性化光の線量を受け取る、
請求項1に記載のシステム。
【請求項6】
前記光源は、前記ビームに関連する出力を調整するように動作可能であり、1以上の光学素子は、前記ビームによって生成される前記光活性化光のスポットのサイズを調整するように動作可能であり、前記走査システムは、前記走査パターンの部分上の前記光活性化光の前記スポットの速度を調整するように動作可能であり、
前記ビームに関連する前記出力、前記光活性化光の前記スポットのサイズ、及び前記光活性化光の前記スポットの速度の内の少なくとも1つが、架橋活性のために前記角膜内の好気性条件に調整される、
請求項1に記載のシステム。
【請求項7】
前記光活性化光の前記ビームの出力を監視するために、前記光活性化光の前記ビームの一部分を受信するように構成されたフォトダイオードを更に備えている、
請求項1に記載のシステム。
【請求項8】
前記架橋活性を監視するために前記角膜から蛍光を受け取るように構成されたフォトダイオードを更に備え、
前記フォトダイオードは、前記第1の軸及び前記第2の軸に沿った前記光活性化光の前記スポットの位置に対応する前記走査パターンの一部分から蛍光を受け取る、
請求項1に記載のシステム。
【請求項9】
前記架橋活性を監視するために前記角膜から蛍光を受け取るように構成されたフォトダイオードを更に備え、
前記蛍光は、角膜組織からの自家蛍光及び架橋剤の分解から生じる外因性蛍光を含み、
前記システムは、
前記フォトダイオードから、前記自家蛍光に対応する第1の信号及び前記外因性蛍光に対応する第2の信号を受け取るように、及び
光活性化光の前記スポットが前記走査パターン上を走査されるときに、前記フォトダイオードによって提供される前記第1の信号及び前記第2の信号の変化に基づいて、前記角膜における架橋消費と架橋活性との相対速度の空間的変動を決定するように、
構成されたコントローラーを更に含み、
前記空間的変動に応答して、前記光源は、前記ビームに関連する出力を調整するように動作可能であり、1以上の光学素子は、前記ビームによって生成された前記光活性化光の前記スポットのサイズを調整するように動作可能であり、及び/又は、前記走査システムは、前記走査パターンの部分上の前記光活性化光の前記スポットの速度を調整するように動作可能である、
請求項1に記載のシステム。
【請求項10】
前記光活性化光の前記ビームの出力を監視するために、光活性化光の前記ビームの一部分を第1のフォトダイオードに向けるように、且つ架橋活性を監視するために前記角膜からの蛍光を第2のフォトダイオードに向けるように、構成された1以上のビームスプリッタを更に備え、
前記1以上のビームスプリッタは、前記光活性化光の前記ビームの一部分を前記第1のフォトダイオードに向けるように構成された第1のビームスプリッタと、前記角膜からの前記蛍光を前記第2のフォトダイオードに向けるように構成された第2のビームスプリッタとを含む、
請求項1に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、米国仮特許出願第62/743,338号(2018年10月9日出願)、及び米国仮特許出願第62/810,497号(2019年2月26日出願)の内容の利益及び優先権を主張する。これらの出願は、参照により完全に本明細書に組み込まれる。
【0002】
本開示は、眼の治療のためのシステム及び方法、より具体的には、角膜架橋治療(/クロスリンキング治療)における架橋剤を光活性化するためのシステム及び方法に関する。
【背景技術】
【0003】
角膜拡張障害、即ち角膜拡張症は、角膜の中央部、中心傍部、又は周辺部の両側性の薄化を特徴とする、まれな非炎症性の眼の障害のグループである。
【0004】
例えば、円錐角膜は、角膜内の構造変化によって角膜が弱くなり、異常な円錐形に変形する眼球の変性疾患である。クロスリンキング治療(/架橋治療)は、円錐角膜によって弱められた領域を強化し且つ安定化させ、望ましくない形状変化を防ぐことができる。
【0005】
例えば、レーシック後拡張症として知られる合併症は、レーシック(LASIK:Laser-Assisted in site Keratomileusis(レーザ支援その場円錐角膜矯正))手術によって引き起こされる角膜の薄化と弱化が原因で発生する可能性がある。レーシック後拡張症では、角膜に進行性の急勾配(膨らみ)が生じる。したがって、クロスリンキング治療は、レーシック手術後の角膜の構造を強化且つ安定化し、レーシック後拡張症を防ぐことができる。
【発明の概要】
【課題を解決するための手段】
【0006】
実施形態は、角膜架橋治療における架橋剤を光活性化するためのシステム及び方法を含む。
【0007】
1の例示的な実施形態によれば、眼を治療するためのシステムは、角膜に施与された架橋剤を光活性化する光活性化光を提供するように構成された光源を含む。本システムは、上記光活性化光を受け取り、上記光活性化光のスポットを規定するビームを生成するように構成された1以上の光学素子を含む。本システムは、上記光活性化光の上記ビームを受け取り、第1の軸及び第2の軸に沿って上記光活性化光の上記スポットを走査して上記角膜上に走査パターンを形成し、架橋活性を生成するように構成された走査システムを含む。
【0008】
別の例示的な実施形態によれば、眼を治療するためのシステムは、角膜に施与された架橋剤を光活性化する光活性化光を提供するように構成された光源を含む。本システムは、上記光活性化光を受け取り、上記光活性化光のパターンを生成するように構成された1以上の光学素子を含む。本システムは、上記1以上の光学素子から上記光活性化光の上記パターンを受け取り、上記光活性化光の上記パターンを上記角膜に送信して架橋活性を生成するように構成された光ファイバ素子を含む。
【図面の簡単な説明】
【0009】
図1】本開示の態様による、角膜コラーゲンの架橋を生成するために、架橋剤と光活性化光とを眼の角膜に施与する1の例示的システムを示す図である。
図2A】1の例示的な治療システムを示す図であり、ここでは、紫外(UV)光が、発光ダイオード(LED)で生成され、自由空間光学系の第1の集合を用いてデジタル微小ミラーデバイス(DMD)に照射され、自由空間光学系の第2の集合を用いて標的の組織へ投射される。
図2B図2Aに示された治療システムの1の例示的な実装を示す図である。
図3A】本開示の態様による、1の例示的な治療システムを示す図であり、ここでは、UV光がLEDで生成され、一組の自由空間光学系を用いてDMDに照射され、可撓性コヒーレントファイバ束を用いて標的組織に照射される。
図3B】本開示の態様による、図3Aに示された治療システムの1の例示的な実装を示す図である。
図4A】本開示の態様による、別の例示的な治療システムを示す図であり、ここでは、UV光は、単一の光ファイバにファイバ結合されているLEDで生成され、且つレンズを通してDMDに照射され、そして結果として生じるUV光パターンは、可撓性コヒーレントファイバ束を用いて標的組織に照射される。
図4B】本開示の態様による、図4Aに示された治療システムの1の例示的な実装を示す。
図5A】本開示の態様による、さらに別の例示的な治療システムを示しており、ここでは、UV光は、単一の光ファイバにファイバ結合されてレーザー光源で生成され、且つXY走査システムに照射され、そして結果として生じるUV光走査パターンが、可撓性コヒーレントファイバ束を用いて標的組織に照射される。
図5B】本開示の態様による、図5AのXY走査システムが、標的組織上に円形の治療パターンを生成するように、コヒーレントファイバ束の近位面上を走査することができる1の例示的なパターンを示している。
図5C】本開示の態様による、図5AのXY走査システムが、標的組織上に環状の治療パターンを生成するように、コヒーレントファイバ束の近位面上を走査することができる1の例示的なパターンを示している。
図6】本開示の態様による、UV光パターンを標的組織に照射するためのコヒーレントファイバ束におけるファイバの数を最適化するための例示的なアプローチを示す。
図7】本開示の態様による、光ファイバ素子を備えていない代替の治療システムを示しており、ここでは、UV光はレーザー源によって生成され、XY走査システム上に照射され、そして結果として生じるUV光走査パターンは標的組織上に照射される。
図8】本開示の態様による、標的組織に照射されるUV光の線量を空間的に調整するために、UVレーザー光のスポットを時間的に変調するための例示的なアプローチを示す。
図9】本開示の態様による、別の例示的な治療システムを示す。ここでは、UV光が、レーザー源で生成され、且つXY走査システムに照射され、その結果として生じるUV光走査パターンが標的組織に照射される。
図10】本開示の態様による、診断機能を組み込むために図9の治療システムを変更する別の例示的な治療システムを示す。
図11】本開示の態様による、診断機能を用いる更に別の治療システムを示す。
図12A】本開示の態様による、架橋治療におけるリボフラビンの投与前に検出される蛍光信号の例示的なグラフを示す。
図12B】本開示の態様による、架橋治療におけるリボフラビンの投与後に検出される蛍光信号の例示的なグラフを示す。
図12C】本開示の態様による、架橋治療におけるUV光の照射中に検出される蛍光信号の例示的なグラフを示す。
図13】本開示の態様による、架橋治療における異なる期間中の自家蛍光及び外因性蛍光に関連する信号レベルの例示的なグラフを示す。
図14A】本開示の態様による、XY走査システムによって実現されうる1の例示的な走査パターンを示す。
図14B】本開示の態様による、図14Aの例示的な走査パターンに関連する例示的な合成蛍光画像を示す。
【発明を実施するための形態】
【0010】
本開示は、様々な修正及び代替の形態が可能であるが、その特定の実施形態が、例として図面に示されており、そして本明細書で詳細に説明されよう。しかし、本開示を、開示された特定の形態に限定することを意図するものではなく、逆に、本開示の趣旨に含まれる全ての修正、均等物、及び代替物を網羅することを意図するものであることを理解されたい。
【0011】
図1は、眼1の角膜2においてコラーゲンの架橋(cross-linking:クロスリンキング)を生成するための1の例示的治療システム100を示す。本治療システム100は、架橋剤130を角膜2に施与するためのアプリケータ132を含んでいる。例示的実施態様において、アプリケータ132は、光増感剤130を液滴として角膜2に施与する点眼器、注射器などでありうる。架橋剤を施与するための例示的システム及び方法は、「Systems and Methods for Delivering Drugs to an Eye(薬剤を眼に施与するためのシステム及び方法)」と題された米国特許出願第10,342,697号(2017年4月13日出願)に記載されている。その内容は、参照により全体として本明細書に組み込まれる。
【0012】
架橋剤130は、架橋剤130を角膜上皮2aを通して角膜基質2b内の下部領域へと通過させることを可能にする製剤で提供されうる。代わりに、架橋剤130を下部組織に対してより直接的に施与することを可能にするために、角膜上皮2aは除去されるか、さもなければ切開されてもよい。
【0013】
本治療システム100は、光源110及び光を角膜2に向けるための光学素子112を備える照射システムを含んでいる。この光は、架橋剤130の光活性化を引き起こして、角膜2において架橋活性を生み出す。例えば、架橋剤はリボフラビンを含むことができ、光活性化用の光(以下、光活性化光と呼ぶ)は紫外A(UVA)(例えば、約365nm)光を含むことができる。代わりに、光活性化光は、別の波長、例えば可視波長(例えば、約452nm)を含んでもよい。以下でさらに説明するように、角膜架橋は、光化学動的反応の機構に従って、角膜組織内に化学結合を生成することによって角膜強度を改善する。例えば、リボフラビン及び光活性化光は、角膜拡張障害(例えば、円錐角膜、又はレーシック後拡張症)に対処するために、角膜組織を安定化、及び/又は、強化するように施与されうる。更に、リボフラビン及び光活性化光の施与は、様々な程度の屈折矯正を可能にする場合があり、これには、例えば、近視、遠視、乱視、不規則な乱視、老眼、及び角膜拡張障害による複雑な角膜屈折面矯正の組み合わせ、並びに角膜の生体力学的変化/変性などの他の状態なども含まれる場合がある。
【0014】
本治療システム100は、本システム100(光源110、及び/又は、光学素子112を含んでいる)の態様を制御する1又は複数のコントローラ120を含んでいる。1実施形態において、角膜2は、架橋剤130で(例えば、点眼器、注射器などを用いて)より幅広く治療され得、且つ光源110からの光活性化光は、特定のパターンに従って治療される角膜2の領域に選択的に向けられうる。
【0015】
光学素子112は、光源110によって放射された光活性化光を、角膜2上の特定のパターンに向け且つ集束するための、1以上の鏡又はレンズを含みうる。光学素子112は更に、光源110によって放射された光の波長を部分的に遮断するために、且つ架橋剤130を光活性化するために角膜2に向けられた光の特定の波長を選択するために、フィルタを含みうる。更に、光学素子112は、光源110によって放射された光のビームを分割するための1又は複数のビームスプリッタを含んでもよく、且つ光源110によって放射された光を吸収するための1又は複数のヒートシンクを含んでもよい。光学素子112はまた、光活性化光を角膜2内の特定の焦点面に(例えば、架橋活性が望まれる下部領域2b内の特定の深さで)正確かつ精密に集束させうる。
【0016】
更に、角膜2の選択された領域において所望の程度の架橋を達成するために、光活性化光の固有の特性が変更されうる。1又は複数のコントローラ120は、波長、帯域幅、強度、出力、位置、浸透の深さ、及び/又は、治療期間(露光サイクルの期間、暗サイクルの期間、及び露出サイクルと暗サイクルの継続時間の比率)の任意の組み合わせに従って、光活性化光を正確に施与するように、光源110、及び/又は、光学素子112の動作を制御することができる。
【0017】
架橋剤130の光活性化に関するパラメータは、例えば、所望の架橋を達成するために必要とされる時間を短縮するように調整されうる。1実装例において、時間は分から秒に減らすことができる。いくつかの構成は、5mW/cmの放射照度で光活性化光を照射できるが、必要な架橋を達成するのに必要な時間を短縮するために、光活性化光は、より大きな照度(例えば、5mW/cmの倍数)で照射されうる。角膜2に吸収されるエネルギーの総線量は、実効線量として記載され得、それは角膜上皮2aの領域を通過して吸収されたエネルギーの量である。例えば、角膜表面2aの領域に対する実効線量は、例えば、5J/cm、又は20J/cm、又は30J/cmの大きさでありうる。記載された実効線量は、エネルギーの1回の施与から、又はエネルギーの繰り返しの施与から与えられうる。
【0018】
本治療システム100の光学素子112は、光活性化光の照射を空間的及び時間的に変調するために、微小電気機械システム(MEMS: microelectromechanical system)装置、例えばデジタル微小ミラーデバイス(DMD: digital micro-mirror device)を含みうる。DMD技術を用いて、光源110からの光活性化光は、半導体チップ上のアレイ状に配置された極めて微小なミラー(鏡)によって作成される精確な空間パターンで投射される。各鏡は、投射された光のパターンの1又は複数のピクセルを表す。DMDを用いると、トポグラフィー(topograph)に導かれた架橋を実行できる。トポグラフィーによるDMDの制御は、いくつかの異なる空間的及び時間的な照度及び線量プロファイルを用いうる。これらの空間的及び時間的な線量プロファイルは、連続波照射を用いて作成できるが、周波数及びデューティサイクルを変化させる形の下で、照射源をパルス化することによるパルス化照射を介して調整されうる。代わりに、DMDは、連続波照射を用いて究極の柔軟性を提供するように、ピクセル毎にピクセルの周波数とデューティサイクルが異なるように調整しうる。あるいは、パルス化照射と、調整されたDMD周波数及びデューティサイクルの組み合わせとの両方が組み合わされてもよい。この空間的に決定される架橋は、治療前の計画、及び/又は、治療中の角膜架橋の実時間の監視及び調整のために、線量測定法、干渉法、光干渉断層法(OCT)、角膜トポグラフィーなどと組み合わされうる。線量測定システムの態様については、以下でさらに詳しく説明する。さらに、臨床前の患者情報を有限要素生体力学的コンピューターモデリングと組み合わせて、患者固有の治療前計画を作成することもできる。DMDを用いる治療システムの形態は、以下でさらに図2A及び2Bを参照して記載される。
【0019】
光活性化光の投射の態様を制御するために、実施形態はまた、多光子励起顕微鏡法の態様を採用しうる。具体的には、特定波長の単一光子を角膜2へ照射するというよりも、本治療システム100は、架橋を開始するように結合するところの、より長い波長(即ち、より低いエネルギー)の複数の光子を照射しうる。有利には、より長い波長は、より短い波長よりも角膜2内で散乱される程度が少なく、このことは、より長い波長の光が、より短い波長の光よりもより効率的に角膜2に浸透することを可能にする。角膜内のより深い所での入射照射の遮蔽効果はまた、従来の短波長照射よりも低減される。何故なら、光増感剤による光の吸収は、より長い波長ではるかに少ないからである。このことは、深さに固有の架橋に対する制御を強化可能にする。例えば、いくつかの実施形態において、2つの光子が用いられうる。ここで、各光子は、さらに以下で説明される光化学的反応を生成するように、架橋剤130内の分子を励起するのに必要なエネルギーの約半分を運ぶ。架橋剤分子が同時に両方の光子を吸収する場合、それは角膜組織において反応性ラジカルを放出するのに十分なエネルギーを吸収する。実施形態はまた、架橋剤分子が反応性ラジカルを放出するためには、例えば、3、4、又は5個の光子を同時に吸収しなければならないような、より低いエネルギーの光子を利用してもよい。複数の光子がほぼ同時に吸収される可能性は低く、したがって高フラックスの励起光子が必要になり、高フラックスはフェムト秒レーザーを介して与えられうる。
【0020】
多数の条件及びパラメータが、架橋剤130による角膜コラーゲンの架橋に影響を与える。例えば、光活性化光の照度及び線量は、架橋の量及び速度に影響を与える。
【0021】
架橋剤130が具体的にはリボフラビンである場合、UVA光は連続的(連続波(CW))に又はパルス光として照射されてもよく、この選択は、架橋の量、速度、及び程度に影響を与える。UVA光がパルス光として照射される場合、露光サイクル、暗サイクルの期間、及び露出サイクルの暗サイクル期間に対する比率は、結果として角膜硬化に影響を与える。パルス光照射は、同じ量又は線量のエネルギーを施与する連続波照射で達成できるよりも、角膜組織の硬化をより強めたり弱めたりするために用いられうる。適切な長さと周波数との光パルスは、より最適な化学増幅を達成するために用いられうる。パルス光治療について、オン/オフのデューティサイクルは、約1000/1から約1/1000の間でありうる。照度は平均照度が約1mW/cmから約1000mW/cmの間であり得、パルスレートは約0.01Hzから約1000Hzの間、又は約1000Hzから約100,000Hzの間でありうる。
【0022】
本治療システム100は、DMD(光源110を電子的にオン及びオフする)を採用することにより、及び/又は、機械的若しくは光電子的(例えば、ポッケルスセル)シャッター又は機械的チョッパー又は回転開口部を用いることにより、パルス光を生成しうる。DMDのピクセルに固有の変調機能、及び変調された周波数、デューティサイクル、照度、及び角膜に照射される線量に基づく後続の剛性付与の故に、複雑な生体力学的剛性パターンが角膜に付与されうる。DMDのシステム及び方法の具体的な利点は、それが、ランダムな非同期パルストポグラフィーパターン化のために、非周期的で均一に見える照明(この照明は2Hz~84Hzの間のパルス周波数に対する感光性てんかん発作又はフリッカーめまいを引き起こす可能性を除去する)を作成することを可能にすることである。
【0023】
例示的な実施形態は階段状のオン/オフパルス光機能を用いうるけれども、同様の効果を得るために、角膜へ光を照射する別の機能が用いられうることが理解される。例えば、正弦波関数、鋸歯状波関数、又は他の複雑な関数又は曲線、あるいは関数又は曲線の任意の組み合わせに従って、光が角膜に照射されうる。実際、関数は、オン/オフ値の間でのより緩やかな遷移でありうる場合にも、実質的に階段状でありうることが理解されよう。さらに、照度は、オフサイクル中にゼロの値まで減少する必要はなく、オフサイクル中にゼロより上でありうる場合があることが理解されよう。所望の効果は、2以上の値の間で照度を変化させる曲線に従って、角膜に光を当てることによって達成されうる。
【0024】
光活性化光を送達するためのシステム及び方法の例は、例えば、「Systems and Methods for Applying and Monitoring Eye Therapy(眼科治療を施し及び監視するためのシステム及び方法)」と題された米国特許出願公開第2011/0237999号(2011年3月18日出願)、「Systems and Methods for Applying and Monitoring Eye Therapy(眼科治療を施し及び監視するためのシステム及び方法)」と題された米国特許出願公開第2012/0215155号(2012年4月3日出願)、及び「Systems and Methods for Corneal Cross-Linking with Pulsed Light(パルス光による角膜架橋のためのシステムと方法)」と題された米国特許出願公開第2013/0245536号(2013年3月15日出願)に記載されている。これらの出願の内容は、参照により全体として本明細書に組み込まれる。実施形態は、光活性化光の照射(例えば、上記のDMDを介する)によって規定される円形、及び/又は、環状パターンに従って、角膜内に架橋活性を生成しうる。追加的又は代替的に、実施形態は、光活性化光の照射(例えば、DMDを介する)によって規定された非円形パターン、及び/又は、非環状パターンに従って、角膜内に架橋活性を生成しうる。
【0025】
光活性化光のパターンは、別々の治療ゾーンにおける眼に対して、順次に又は連続的に照射される異なる線量により、(例えば、DMDを介して)照射されうる。例えば、1つの治療ゾーンは「オフにされる」(即ち、対応する光活性化光の照射は停止される)ことができる一方で、他方の治療ゾーンは「オンのままにされる」(即ち、対応する光活性化光の照射は継続される)ことができる。治療ゾーンは、例えば、眼の中心点の周りに環状に形作られうる。光活性化光が照射されない不連続ゾーンもありうる(例えば、光の環状治療ゾーンに囲まれた光のない環に囲まれた中央治療ゾーンなど)。環状ゾーンの幅は異なる寸法(例えば、1つの環状ゾーンは1mmの幅を有し、別のゾーンは2mmの幅を有する)でありうる。中央治療ゾーンのない眼の周辺上の環状治療ゾーンに光活性化光を照射することは、例えば、周辺が強化されている間に眼の中央領域の曲率が増加することにより、遠視矯正をもたらしうる。いくつかの場合において、中央及び周囲の治療ゾーンは、例えば、乱視を矯正するために角膜の領域において優先的に架橋活性を生成することによって、乱視に対処するために形状が楕円形でありうる。そのような楕円形の環状治療ゾーンは、乱視の配向に従って位置合わせをされた環状治療ゾーンの軸に優先的に配向される。楕円形の治療ゾーンはまた、不規則に非対称(即ち、互いに垂直ではなく且つ別個の中心点(重心)を有して配置されうる長軸及び短軸を有する)でありうる。
【0026】
架橋治療は、眼の1つ又は複数の生体力学的特性、例えば、角膜トポグラフィー(即ち、形状)、角膜強度(即ち、剛性)、及び/又は、角膜の厚さ、に従って調整されうる。角膜の光学的矯正、及び/又は強化は、架橋剤、及び/又は、光活性化光を1又は複数回の反復(各反復に対して調整可能な特性を有する)で施与することによって実現されうる。一般に、開発された治療計画には、架橋剤の多数の用途、各用途に対する架橋剤の配量及び濃度、光活性化光の照射の回数、及びタイミング、持続時間、出力、エネルギー投与量、及び各用途に対する光活性化光のパターンが含まれうる。さらに、架橋治療は、治療中又は治療の中断中に、リアルタイムで収集された生体力学的特性に関するフィードバック情報に基づいて順応させることができる。
【0027】
酸素の添加はまた、角膜の架橋の程度に影響を与える。人の組織において、O含有量は大気と比較して極めて低い。しかし、角膜における架橋の速度は、光活性化光が照射されるときのOの濃度に関連している。したがって、所望の程度の架橋が達成されるまで、架橋速度を制御するために、照射中に能動的にOの濃度を増加又は減少させることが有利でありうる。酸素は、いくつかの異なる方法でクロスリンキング治療中に施与されてもよい。1つのアプローチは、リボフラビンをOで過飽和にすることである。このようにして、リボフラビンが眼に施与されるとき、高濃度のOがリボフラビンと一緒に角膜内に直接施与され、リボフラビンが光活性化光に曝されるときにOを含む反応に影響を与える。別のアプローチによれば、(選択された濃度での)Oの定常状態が角膜の表面で維持され、角膜は選択された量のOに曝され、Oを角膜に入らせることができる。図1に示されたように、例えば、治療システム100はまた、酸素源140と、酸素を任意選択的に選択された濃度で角膜2に随意に供給される酸素供給デバイス142とを含む。クロスリンキング治療中に酸素を施与するための例示的なシステム及び方法は、例えば、「Eye Therapy(眼科治療)」という標題の米国特許第8,574,277号(2010年10月21日出願)、「Systems and Methods for Corneal Cross-Linking with Pulsed Light(パルス光による角膜架橋のためのシステム及び方法)」という標題の米国特許第9,707,126号(2012年10月31日出願)に記載されている。これらの出願の内容は、参照により全体として本明細書に組み込まれる。さらに、眼の治療において酸素濃度と光活性化光を施与するための例示的なマスク器具が、「Systems and Methods for Treating an Eye with a Mask Device(マスク器具を用いる眼を治療するためのシステム及び方法)」と題する米国特許出願公開第2017/0156926号(2016年12月3日出願)に記載されている。その内容は、参照により全体として本明細書に組み込まれる。例えば、マスクは、眼の表面上に一貫した既知の酸素濃度を与えるために眼を覆って配置されうる。
【0028】
リボフラビンは、照射エネルギー(特に光)を吸収すると、光活性化を受ける。リボフラビンの光活性化に関して、タイプI及びタイプIIの2つの光化学的動的経路がある。タイプI及びタイプIIの両方の機構に含まれる反応と、架橋活性を生成する光化学動的反応の別の側面とは、「Systems and Methods for Cross-Linking Treatments of an Eye(眼のクロスリンキング治療のためのシステムと方法)」と題する米国特許第10,350,111号(2016年4月27日出願)に記載されている。その内容は、参照により全体として本明細書に組み込まれる。
【0029】
上述されたように、治療システム100は、角膜2に施与された架橋剤130(例えば、リボフラビン)を光活性化し、ひいては架橋活性を生成するために、光源110からの光(例えば、UV光)を導く光学素子112を含む。特に、光活性化光は、特定の空間治療パターンに従って、角膜2の領域に選択的に向けられうる。いくつかの実施形態において、治療システムは、異なる眼の状態がその同じ治療システムで治療されうるように、調整可能な治療パターンを提供することができる。
【0030】
図2Aは、眼の異なる状態を異なる治療パターンを提供することによって治療することができる例示的な治療システム200を示している。本治療システム200は、発光ダイオード(LED)210a及びUV光を生成する均質化ロッド210bを含む。本治療システム200はまた、DMD212bにUV光を照射する自由空間光学素子212aの第1集合を含む。DMD212bは、ピクセルごとにUV光を自由空間光学素子212cの第2集合に選択的に向けることによって、所望の治療パターンに従ってUV光を空間的に変調することができる。次に、自由空間光学素子212cの第2集合は、DMD212bからのUV光のパターンを角膜2への出力として投影する(即ち、焦点を合わせる)。
【0031】
図において一般的にラベル付けされているように、「UV生成器」は、UV光を生成する1つ又は複数の素子を指す。「UV空間変調器」は、UV光を空間的に変調してUV光パターンを規定する1つ又は複数の素子を指す。「UV照写器」は、UV生成器からのUV光でUV空間変調器を照写する1つ又は複数の素子を指す。「UV投射器」は、UV空間変調器からのUV光パターンを標的組織に投射する1つ又は複数の素子を指す。さらに、図に示されているように、角膜の深さはz軸に沿って測定され、光活性化光のパターンが横方向のx-y平面に投影されうる。
【0032】
本治療システム200において、UV光は、自由空間光学素子212aの第1集合及び自由空間光学素子212cの第2集合などの自由空間(即ち、バルク)光学素子で操作され且つ伝達される。不利なことに、所望の治療パターンの歪み及びUV光のパワーの損失を防ぐために、厳密な三次元位置合わせが、各自由空間光学素子の間で維持されなければならない。このような位置合わせは、振動、及び/又は、温度、及び/又は、湿度の変動に対して長期間にわたり維持されなければならない。このような位置合わせは、自由空間光学素子間の部品間のばらつきに関しても対処する必要がある。位置合わせを維持する必要性は、システムの複雑さ、及び/又はコストをより高くし、信頼性に悪影響を与えうる。
【0033】
さらに、角膜2の所望の領域にUV光パターンを位置合わせするために、本治療システム200は、出力UV光の3次元調整を可能にしなければならない。例えば、図2Bは、治療システム200の例示的な実装を示しており、そこでは、素子210a~b、212a~cはカート250と組み合わせて組み立てられ、角膜2を備えた対象がベッド260上に置かれている。素子210a~b、212a~cの間の全ての光学的インタフェースは自由空間(図2Bでは破線として示されている)である。自由空間光学素子212cの第2集合によって投影されたUV光パターンは、ベッド260及び角膜2に対してx、y、及びz方向に移動させられうる。出力UV光の移動を可能にするために、素子210a~b、212a~cの集合は、素子210a~b、212a~cの間の必要な位置合わせを維持しながら、それに対応して、x、y、及びz方向に移動する。特に、素子210a~b、212a~cは、カート250に移動可能に結合され、且つベッド260に対して集合全体を移動させることができるXYZ動作台252上に組み立てるられうる。しかし、XYZ動作台252の使用は、以下に説明する他の治療システムと比較して、より大きな設置面積を必要とし、治療システム200に対して一層の複雑性を伴う可能性がある。
【0034】
本開示の態様によれば、治療システムの光学素子は、治療システム200のいくつかの不利な点を回避するために光ファイバ素子を用いるることができる。光ファイバ素子の使用によって、治療システムにおける自由空間光学素子及び光機械式取付け台の必要性を無くすることができる。有利なことに、光ファイバの使用により、治療システムのサイズ及び設置面積が削減でき、設計と製造の複雑さとコストとが削減でき、信頼性を高めることができる。
【0035】
図3Aは、光ファイバ素子を使用する例示的な治療システム300を示す。上記の治療システム200と同様に、治療システム300は、UV光を生成するためのLED310a及び均質化ロッド310bを含む。治療システム300はまた、UV光をDMD312bに照射する自由空間光学素子312aの第1のセットを含み、これは、所望のUV光パターンを生成する。しかし、治療システム200とは対照的に、DMD312bからのUV光パターンは、自由空間光学部品の第2のセットに向けられていない。代わりに、UV光パターンは、柔軟でコヒーレントなファイバ束312cに向けられる。次に、コヒーレントファイバ束312cは、UV光パターンを角膜2上に投影できる位置まで延びるように柔軟に経路を指定されうる。コヒーレントファイバ束312cは、数千の個々のファイバからアセンブルされ、そこでは、1:1の相対的空間配向がコヒーレントファイバ束312cの近位端と遠位端との間で維持されている。(本明細書で使用される場合、「近位」は一般に光源に近い上流位置を指し、「遠位」は一般に標的の組織に近い下流位置を指す。)例えば、コヒーレントファイバ束312cは、10,000から100,000の間又はそれ以上の個々のファイバを有する可能性があり、それはピクセルと呼ばれることがよくある。
【0036】
コヒーレントファイバ束312cは、UV光パターンの受信及び送信を支援するように、コヒーレントファイバ束312cの近位端、及び/又は、遠位端に結合された光学素子(例えばレンズ)とともに用いられうる。図3Aに示されたように、第1のレンズ312dは、DMD312bからUV光パターンを受け取るように、コヒーレントファイバ束312cの近位端に結合されうる。一方、第2のレンズ312eは、治療システム300からの所望の作業距離(ここに角膜2が置かれる)にUV光パターンの所望のサイズを提供するように、コヒーレントファイバ束312cの遠位端に結合されうる。
【0037】
図3Bは、治療システム300の例示的な実装を示す。そこでは、素子310a~b、312a~cはカート350と組み合わせてアセンブルされ、角膜2を有する対象者はベッド360上に置かれる。図2Bと比較すると、図3Bは、コヒーレントファイバ束312cの使用が治療システムの実装をどのように改善することができるかを示している。素子310a~b、312a~c間の光学的インタフェースは、自由空間である(図3Bにおいて破線として示されている)。XYZ動作台352は、カート350に移動可能に結合され、治療システム300から投射されたUV光パターンが、ベッド360及び角膜2に対してx、y、及びz方向に移動されることを可能にする。コヒーレントファイバ束312cは可撓性があるので、遠位端はXYZ動作台352に結合され得、且つx、y、及びz方向に移動することができ、一方、近位端は、DMD312bに対して固定された位置に留まり続ける。XYZ動作台352は、コヒーレントファイバ束312cの遠位端を角膜2と位置合わせし、UV光パターンを角膜2の所望の領域に送達するように操作されうる。一方、コヒーレントファイバ束312cの近位端は勿論、素子310a~b、312a~cもカート350上に配置されうる。XYZ動作台352とは異なり、カート350は、x、y、及びz方向の移動しない。したがって、可撓性のあるコヒーレントファイバ束312cの使用は、図2Bに示されたXYZ動作台252とは対照的に、XYZ動作台352のサイズ、重量、及び複雑さを低減することを可能にする。さらに、素子310a~b、312a~cの取り付け及び位置合わせに関連する光機械的な課題を大幅に減らすことができる。
【0038】
図4Aは、光ファイバ素子を用いる別の例示的な治療システム400を示す。上記の治療システム300と同様に、治療システム400は、所望のUV光パターンを発生するDMD412bを含む。さらに、可撓性のコヒーレントファイバ束412cは、DMD412bからUV光パターンを受け取り、UV光パターンを角膜2に投射する。レンズ412d、412eは、UV光パターンの送受信を支援するために、コヒーレントファイバ束412cの近位端及び遠位端にそれぞれ結合されうる。しかし、治療システム300とは対照的に、治療システム400は、光源によってUV光を生成するために均質化ロッドを使用しない。治療システム400はまた、DMD412b上にUV光を照射するために自由空間光学素子の第1の集合を用いない。代わりに、治療システム400は、単一の可撓性光ファイバ412aの近位端にファイバ結合された光源410を用いる。光源は、UV LED又はUVレーザー光源(例えば、シングルモード又はマルチモード)でありうる。光ファイバ412aは、DMD412bに近い場所まで柔軟に経路をとられうる。レンズ412f(例えば、コリメートレンズ、集束レンズ、又は同様の光学素子)は、UV光をDMD412bに照射するように、光ファイバ412aの遠位端と光通信するように置かれうる。レンズ412fは、ファイバ終端のセラミックフェルールに対して所定の位置に保持され得て、単純で信頼性の高い取付け具で固有のセンタリングを提供する。あるいは、レンズ412fは、光ファイバ412aの遠位端から一定距離離れた位置に保持され得て、レンズ412fに入る前に、UV光のための制御された量のビーム拡張を可能にする。これにより、UV光を適切なレンズ412f及び距離を選択することによって制御されうるサイズのスポットとして、DMD412bに照射することができる。
【0039】
光ファイバ412aは、特に光源410がLED又はマルチモードレーザー光源である場合に、光ファイバ412aを通過するUV光の空間的均質化を提供するためのマルチモードファイバでありうる。約100μm、1000μm、又は2000μmのより大きなコアサイズは、光劣化のリスクを低減するために光ファイバ412a内のUV強度を低減しつつ、より多くの量の均質化を提供することができる。追加の均質化が必要な場合、部分的に透過性のマスクを光ファイバ412aの出力に適用することができる。あるいは、DMD 412bを使用して、均一なUV光パターンを達成するために、UV光の一部分を部分的に減衰させることができる。光源410はまた、システム統合を簡単化するために統合光パワー制御を有しうる。光源410が、UV LED又はマルチモードレーザー源ではなく、シングルモードレーザー源である場合、空間的均質化は必要とされず、ファイバ412aは、シングルモードファイバでありうる。レンズファイバの提供又は光ファイバ412aのレーザーエミッタへの直接突合せ結合など、光源410を光ファイバ412aに結合するために様々な代替戦略を使用することができる。
【0040】
図4Bは、治療システム400の1の例示的な実装を示す。ここで、素子410、412a~dは、カート450と組み合わせてアセンブルされ、角膜2を有する対象がベッド460上に置かれる、図4Bは、ファイバ結合光源410の使用が治療システムの実装をどのように改善できるかを示している。素子410、412a~cの間の光学的インタフェースは、自由空間(図4Bにおいて破線として示されている)である。XYZ動作台452は、カート450に移動可能に結合され、治療システム400から投射されたUV光パターンが、ベッド460及び角膜2に対してx、y、及びz方向に移動されることを可能にする。XYZ動作台452は、コヒーレントファイバ束412cの遠位端を角膜2と位置合わせし、UV光パターンを角膜2の所望の領域に送達するように操作することができる。光ファイバ412aは可撓性があるので、光ファイバ412aの遠位端はXYZ動作台452に結合されることができる一方、近位端は光源410に対して固定された位置に留まる。対応して、DMD412b及びコヒーレントファイバ束412cは、XYZ動作台452上に配置され、一方、光源410はカート450上に配置されている。
【0041】
代わりに、コヒーレントファイバ束412cは可撓性があるので、コヒーレントファイバ束412cの遠位端は、XYZ動作台452に結合され得、一方、素子410、412a~b及びコヒーレントファイバ束412cの近位端は、カート450上に配置されうる。この代替の実装形態は、図3Bに示された実装形態と同様である。
【0042】
治療システム400は、可撓性光ファイバ412a及び可撓性コヒーレントファイバ束412cの両方を含むので、より大きな設計の自由度を提供する。光ファイバ412a及びコヒーレントファイバ束412cは、異なる構成に従って、素子410、412a~dをカート250及びXYZ動作台452上に配置することを可能にする。この構成は、XYZ動作台452のサイズ、重量、及び複雑さを低減することができる。さらに、素子410、412a~cの取り付け及び位置合わせに関連する光機械的課題が大幅に低減されうる。
【0043】
本開示のさらなる態様によれば、光学素子は、UV光パターンを形成するためのXY走査ミラー対を含みうる。XY走査ミラーの使用は、DMD又は同様な空間フィルターの必要性を無くすることができる。有利なことに、XY走査ミラーを使用することにより、実施形態は、治療システムのサイズをさらに縮小し、設計及び製造の複雑さ及びコストを低減し、信頼性を高めることができる。
【0044】
例えば図5Aは、DMDの代わりにXY走査システムを使用する例示的な治療システム500を示している。本治療システム500は、単一の光ファイバ512a(例えば、マルチモードの又はシングルモードの光ファイバ)にファイバ結合されたUVレーザー源510を含む。本治療システム500はまた、光ファイバ512aの遠位端に又はその近くに配置されたレンズ512f(例えば、コリメートレンズ、集束レンズ、又は同様の光学素子)を含む。さらに、本治療システム500は、XY走査システムとして機能する検流計対512bを含む。UVレーザーは光ファイバ512aを通って移動し、レンズ512fは、検流計対512b上に小さな高品質のスポットを有するUV光ビームを生成する。検流計対512bは、UV光ビームをx方向に走査することができる第1ミラーと、UV光ビームをy方向に走査することができる第2ミラーとを含む。本治療システム500はまた、コヒーレントファイバ束512cを含む。検流計対512bは、所望のパターンに従って、コヒーレントファイバ束512cの近位端での面上でUV光ビームを走査する。次に、コヒーレントファイバ束512cは、所望の治療パターンに従って、UV光走査パターンを角膜2に投射する。レンズ512d、512eは、UV光走査パターンの受信及び送信を支援するために、コヒーレントファイバ束512cの近位端及び遠位端にそれぞれ結合されうる。
【0045】
施術者は、所望の治療パターンを決定することができ、このパターンは、第1及び第2のミラーにUV光ビームをそれぞれx方向及びy方向の走査させるところの、独立したミラー駆動波形に変換される。図5Bは、検流計対512bがコヒーレントファイバ束512cの近位面を走査して角膜2上に円形の治療パターンを生成することができる例示的なパターン514aを示す。図5Cは、検流計対512bが、角膜2上に環状治療パターンを生成するために、コヒーレントファイバ束512cの近位面を走査することができる例示的なパターン514bを示している。他の走査パターンも可能である。検流計対512bの第1、及び/又は、第2のミラーの速度は、走査パターンの一部分上の滞留時間を増加又は減少させるために、走査の間、調整されることができ、それにより、走査パターンの部分に照射される対応するUV光の線量を調整することができる。さらに、全体の走査パターンは、眼の動きに応答して、ファイバ束の遠位先端上でx方向及びy方向に連続的に変位されうる。このようにして、例え眼が動いている場合でも、治療中、UV光パターンは角膜2の所望の部分の中心に保たれうる。(この連続的変位はまた、上記の治療システムにおけるDMDによって提供されうる)。
【0046】
コヒーレントファイバ束がDMD又はXY走査システムによって形成されたUV光パターンを投影するために採用される場合、UV光パターンは、コヒーレントファイバ束を規定する個々のファイバによって効果的に標本化される。不十分な数のファイバがコヒーレントファイバ束を作成するのに使用された場合、角膜上に投影されたUV光パターンはアンダーサンプリングされ、望ましくない量子化として表れる。多すぎるファイバがコヒーレントファイバ束を作成するために用いられる場合、コヒーレントファイバ束のコストが不必要に高くなる。したがって、コヒーレントファイバ束内のファイバの数を最適化して、角膜に投影されるUV光パターンに必要なサイズと解像度を実現することが望ましい。
【0047】
図6は、コヒーレントファイバ束612c内のファイバの数を最適化するための例示的なアプローチ600を示している。図6に示されるように、角膜に対する例示的な治療パターンは、直径DUVを有する円形領域616aと長さLadjによって規定された調整領域616bとで生成される。調整領域616bは、UV光パターンが何らかの眼の動に適応するようにその中で変位することができる空間バッファを提供する。上述のように、この変位は、DMD又はXY走査システムによって実現されうる。例示的な実装形態において、DUVは約10mmであり得、Ladjは約15mmであり得。その結果、角膜上に約40mmの直径を有する全体領域がもたらされる。この40mmの領域は、コヒーレントファイバ束612cの遠位端からのUV光の送達に対応する。ファイバ束は、通常、ファイバの総数の中心的なサブセットである。使用可能なファイバ613(「アクティブピクセル」としても知られる)の数は、Nactと示される。理想的には、UV光パターン全体がアクティブピクセル全体を満たし、その結果、コヒーレントファイバ束612c内の各ファイバ613(即ち、ピクセル)は、全UV光パターンの1 / Nactをサンプリングする。したがって、各ピクセルによって中継されるサンプルの直径Dsampは、次のようになる。
【数1】

17,700個又は87,000個のアクティブピクセルを有し、10mmに固定されたDUVと15mmに固定されたLadjとを有する2つの例示的ファイバ束を用いるとき、各ピクセルによって中継されるサンプルの直径Dsampは、それぞれ150.3μm又は67.8μmと計算される。米国仮特許出願第62/638,621号(2018年3月5日に出願、その内容は参照により本明細書に完全に組み込まれる)における開示に関連する発明者による研究によると、これらの有効ピクセルサイズが角膜架橋治療に関して条件をみたしていることが知られている。一方、2,000個のアクティブピクセルを有する低解像度バンドルは、447.2μmのDsampを提供するが、これは、場合によっては効果的な角膜架橋には大きすぎる可能性がある。
【0048】
図7は、光ファイバ素子を有さないUVレーザー及びXY走査システムを用いる代替の治療システム700を示している。治療システム700は、UVレーザー源710と、UVレーザーを所望の幅のビームに基準合わせをするレンズ712aとを含む。治療システム700はまた、XY走査システム712bを含む。レンズ712aからのビームは、XY走査システム712bを照射し、XY走査システム712bは、所望の治療パターンに従って角膜2上でビームを直接に走査する。
【0049】
場合によっては、ビームのレイリー長(Rayleigh range)が十分に長く、レンズ712aのみが必要とされる。例えば、365nmの波長及び150μmのビームウエストにおいて、レイリー長は19.4cmであり、これは、治療システム700と角膜2との間に十分な作動距離を提供する。
【0050】
他の場合には、より小さな治療パターンが望まれるかもしれない。例えば、25μm又は100μmのスポットサイズが、治療パターンのために望ましい場合がある。このような場合、レイリー長は、それぞれわずか0.5cm又は8.61cmであり、機器からの十分な動作距離を提供しない。したがって、レンズ712aの代わりの代替レンズは、角膜2上に所望のスポットサイズを生成するように、レーザー源710からのビームを集束させるように構成されることができ、その結果、ビームは、レーザー源710からXY走査システム712b及び角膜2まで絶えず収束を続ける。レーザー源710がその設計の性質によりレーザービームを事前コリメートする場合、最初にビームを拡大し次にビームを所望の動作距離で集束させるように、一対のレンズがレンズ712aの代わりに使用されうる。追加的又は代替的に、走査レンズは、XY走査システム712bと角膜2との間で用いられてもよい。そのような走査レンズの使用は、高開口数のレーザー顕微鏡応用において一般的に行われているように、走査パターンの角度広がりを平坦な走査パターンに変換することを可能にする。
【0051】
図8は、角膜に印加されるUV光の線量を空間的に調整するためにUVレーザースポットを時間的に変調するための例示的なアプローチ800を示している。UVレーザースポットは、上述されたようなレーザー源及びXY走査システムを備える実施形態(例えば、治療システム500又は700)を用いて、角膜上に生成及び照射されうる。レーザー出力パワーは、角膜上のUVレーザースポットのx位置とy位置に同期して調整されうる。例えば、XY走査システムがレーザースポットを角膜上の第1の位置に投射するように構成されている場合、レーザーへの駆動電流は、第1の出力電力を生成するように第1のレベルで構成されうる。次に、XY走査システムがレーザースポットを角膜上の第2の位置に移動させる場合、レーザーへの駆動電流は、第2の出力電力を生成するように、第2のレベルに調整されうる。したがって、XY走査波形(例えば、検流計対のミラー駆動波形)に同期させられた変調レーザー駆動電流を印加することは、角膜に供給されるUV線量のピクセルごとの調整を可能にする。図8に示されるように、各スポット位置(1~9)に照射されるUVレーザー出力の量は、前のスポット位置よりも徐々に高くなる。x位置とy位置は、上述されたように、対応する駆動波形をXY走査システムに印加することによって調整される。レーザー出力は、対応する電流駆動波形をUVレーザー光源に印加することによって調整される。
【0052】
例えば図8に示されたような、UVレーザースポットを走査することはまた、改善された酸素動力学により、光化学的速度論的利点をも提供しうる。上述されたように、酸素の存在は角膜架橋の量にも影響を及ぼす。UVレーザースポットが角膜上の所与の位置(x、y)で10μsから100μs又は数ミリ秒間だけ静止又はほぼ静止し且つ数ミリ秒又は数百ミリ秒又は数秒の間、同じ位置(x、y)に戻らない可能性があるので、位置(x、y)での組織の柱状構造における酸素は補充される時間を有する。このことは、架橋治療中の組織内の酸素の平均的利用度を増加させ、架橋形成の全体的な速度及び密度を増加させうる。
【0053】
好気性条件が任意の時点でUVレーザースポットによって照射される組織の体積内に常に存在するように、スポットサイズ、レーザー出力、及び走査速度の組み合わせを構成することは、有利な場合がある。例えば、走査速度は、UVレーザースポットと同じサイズを有する角膜上の領域が或る時間T中にレーザーによって通過されるように、選択されうる。次に、レーザー出力は、酸素が時間Tでの組織の照射された体積において完全には枯渇しないように、入射レーザー出力の関数としての角膜架橋中の既知の酸素消費速度に基づいて構成されうる。最後に、全体的な走査周波数Fは、十分な量の酸素が組織の対応する体積内に再拡散するまで、角膜上の同じ領域が再度UVレーザースポットによって照射されないように構成されうる。このように、好気性架橋反応は、手順全体を支配し、架橋形成の効率と密度を高める。有利なことに、これにより、追加の酸素を気体又は液体の形態を介して角膜に補給する必要性なしに、高速での好気性架橋が可能になる。実際、本発明者らは、このレーザーベースの架橋アプローチが、既存のLEDベースのアプローチと同じかそれ以上の硬化を生み出しうることを示す実験を最近実施した。
【0054】
角膜組織に光切除効果をもたらすために高強度パルスレジームに従う波長193nmのエキシマレーザーを用いるアプローチとは対照的に、上記の実施形態で使用されるUVレーザースポットは、光切除効果を回避するように構成されている。例えば、レーザーは、約365nmの波長を有し、連続波モード又は振幅変調モードで提供されうるが、パルスモードでは提供されず、入射パワーは、光切除閾値を十分に下回りうる。
【0055】
図9は、UVレーザー及びXY走査システムを用いる別の例示的な治療システム900を示す。本治療システム900は、UVレーザー源910a及びレンズ912aを含む。上記の治療システム700とは対照的に、本治療システムは、UVレーザー源910aによって生成されたUV光をレンズ912aへ送るシングルモード又はマルチモードの光ファイバ910bを含む。光ファイバ910bは、UVレーザー源910aを本システム内の任意の場所に配置することを可能にするという追加の利点を提供し、例えば、上述されたように、XYZ動作台の複雑さ、サイズ、重量、及びコストをさらに低減する。光ファイバ910bの遠位端から発散する光は、レンズ912aを用いて集束される。特に、レンズ912aは、レンズ912aから所望の距離にある角膜2の上に所望の焦点スポットサイズを生成するビームを提供するように構成される。図9に示されたように、単一レンズ912aのみが用いられているが、他の実施形態は、追加のレンズを用いてもよい。レンズ912aからのビームは、それがレンズ912aから角膜2まで移動するにつれて常に収束しうる。治療システム900はまたXY走査システム912bを含み、それはレンズ912aと角膜2との間に配置される。レンズ912aからのビームは、XY走査システム912bを照明し、このXY走査システム912bは、上記のような所望の治療パターンに従って、角膜2上でビームを直接的に走査する。
【0056】
図10は、診断機能を組み込むために上記の治療システム900を修正する別の例示的な治療システム1000を示す。治療システム900と同様に、本治療システム1000は、UVレーザー源1010a及び第1のレンズ1012aを含む。本治療システム1000はまた、UVレーザー源1010aによって生成されたUV光を第1のレンズ1012aまで送達するシングルモード又はマルチモードの光ファイバ1010bを含む。図10が示すように、本治療システム1000はまた、ビームスプリッタ1014aを含み、それはダイクロイック(dichroic)ビームスプリッタでありうる。ビームスプリッタ1014aは、第1のレンズ1012aによって透過されたUV光のビームを受け取るように配置されている。ビームスプリッタ1014aは、UVレーザーの波長(例えば、390nm未満)に近い或る選択された波長未満の光の大部分(例えば、90%を超える)を透過し、その選択された波長を超える光の大部分を反射するように構成されている。本治療システム1000は、ビームスプリッタ1014aからの第1の出力(即ち、反射されたUV光)を受け取るように配置されうる第1のフォトダイオード1014bを含む。特に、第1のフォトダイオード1014bは、組織2に送達されるUV電力の一部分(例えば、約10%)を監視するために用いられうる。本治療システム1000はまた、XY走査システム1012bを含み、それは、ビームスプリッタ1014aと角膜2との間に配置される。ビームスプリッタ1014aによって透過された光は、XY走査システム1012bを照射し、このXY走査システム1012bは、所望の治療パターンに従って角膜2上でビームを直接に走査する。
【0057】
以下でさらに説明するように、角膜2は、架橋治療の点とは異なる点で蛍光信号を放出しうる。蛍光信号は、架橋治療の側面を査定するために評価されうる。蛍光は、XY走査システム1012b及びビームスプリッタ1014aへ伝わる(図10に点線として示されている)。蛍光は、上記選択された波長よりも長い或る波長を有するので、ビームスプリッタ1014aはまた、(蛍光を透過するのではなく)蛍光を反射する。したがって、本治療システム1000は、ビームスプリッタ1014aからの第2の出力(即ち、蛍光)を受信するように配置しうる第2のフォトダイオード1014c(又は代わりにに、分光計、若しくはカメラ)を含む。第2のフォトダイオード1014cは、角膜2において架橋活性が生成される前、最中、及び/又は後に、角膜2によって放出される蛍光を監視するために使用されうる。本治療システム1000は、蛍光の第2のフォトダイオード1014cへの結合効率を改善するために第2のレンズ1014dを含みうる。
【0058】
図11は、診断機能も組み込んだ更に別の治療システム1100を示している。治療システム1000と同様に、本治療システム1100は、UVレーザー源1110a及び第1のレンズ1112aを含む。本治療システム1100はまた、UVレーザー光源1110aによって生成されたUV光を第1のレンズ1112aへ導くシングルモード又はマルチモードの光ファイバ1110bを含む。本治療システム1100は、第1のビームスプリッタ1114a(例えば、ダイクロイックビームスプリッタ)及び第1のフォトダイオード1114bを含む。第1のビームスプリッタ1114aは、第1のレンズ1112aによって透過されたUV光のビームを受信するように配置されている。第1のビームスプリッタ1114aは、UVレーザーの波長に近い或る選択された波長より下の光の大部分を透過し、その選択された波長より上の光の大部分を反射するように構成されている。第1のフォトダイオード1114bは、第1のビームスプリッタ1114aから反射されたUV光を受け取り、組織2に供給されるUV電力の一部分を監視するために用いうる。本治療システム1100はまた、XY走査システム1112bを含む。第1のビームスプリッタ1114aによって透過された光は、XY走査システム1112bを照射し、XY走査システムは、所望の治療パターンに従って角膜2上でビームを直接走査する。
【0059】
治療システム1000とは対照的に、本治療システム1100はまた、第2のビームスプリッター1116aを含み、それはダイクロイックビームスプリッターでありうる。第2のビームスプリッタ1116aは、XY走査システム1112bと角膜2との間に配置される。第2のビームスプリッタ1116aは、XY走査システム1112bから角膜2にビームを送信し、所望されるように角膜2上でビームを走査することを可能なように構成される。角膜2は、蛍光を発する可能性があり、蛍光は、架橋治療の側面を査定するために評価されうる。この蛍光は、第2のビームスプリッタ1116aに伝わる(図11において点線として示されている)。第2のビームスプリッタ1116aは、(蛍光をXY走査システム1112bに送信するのではなく)蛍光を反射するように構成されている。本治療システム1100は、第2のビームスプリッタ1116aからの蛍光を受信するように配置されうる第2のフォトダイオード1116b(又は代わりに、分光計、若しくはカメラ)を含む。第2のフォトダイオード1116bは、角膜2において架橋活性が生成される前、最中、及び/又は後に、角膜2によって放出される蛍光を監視するために使用されうる。本治療システム1100は、蛍光の第2のフォトダイオード1116bへの結合効率を改善するために第2のレンズ1116cを含みうる。
【0060】
有利には、組織2に近い第2のビームスプリッタ1116aの位置(即ち、XY走査システム1112bと組織2との間)は、第2のフォトダイオード1116bによる蛍光収集の効率を改善する。この配置はまた、蛍光が最初にXY走査システム1112bを通過しないので、蛍光を収集するためにより大きな光学的開口部を用いることを可能にする。上述された治療システム1000において、XY走査システム1012bのミラーのサイズは、直径がわずか数mmである可能性があり、そのため、ビームスプリッタ1014aでの蛍光の引き続く収集を制約することができる。
【0061】
上記の実施形態はまた、位置合わせ及び追跡の目的のための眼の視覚化を支援しうる追加の素子(例えば、カメラ及び固定光源)を含みうる。このような素子は、追加のビームスプリッターを用いることによって、治療ビームと同軸に配置されうる。代わりに、これらの素子は、UVレーザービームの経路の外側にそれらを取り付けることによって、軸外しの仕方で配置することもできる。代替的に、ダイクロイックビームスプリッターは、組織からの蛍光の複数の波長帯を空間的に分離し、且つ複数のフォトダイオードによって捕捉することを可能にする別の光学素子(例えば、トリクロイックビームスプリッター、プリズム、又は回折格子)によって置き換えられてもよい。これは、例えば、架橋剤からの蛍光信号に加えて、コラーゲン、ニコチンアミドアデニンジヌクレオチド(NADH)、又はそれ以外の生物学的材料からの蛍光信号などの複数の蛍光信号を架橋前、架橋中、又は架橋後に同時に評価することを可能にするという追加の利点を有する。
【0062】
図12A~Cの例示のグラフとして示すように、検出された蛍光信号は、架橋治療中に時間とともに変化する可能性がある。図12Aのグラフ1200aに示されるように、リボフラビンを投与する前、角膜組織の自家蛍光(例えば、NADH、又はコラーゲンからの)は、第1の波長帯域λ1~λ2において低レベルで存在しうる。図12Bのグラフ1200bに示されるように、リボフラビンを投与した後、外因性蛍光は、第2の波長帯域λ2~λ3において高レベルで出現しうるが、一方で第1の波長帯域λ1~λ2における自家蛍光は安定したままである。図12Cのグラフ1200cに示されるようにUV光の印加中、第1の波長帯域λ1~λ2の自家蛍光が増加しうるが、一方でリボフラビンからの第2の波長帯域λ2~λ3の外因性蛍光は減少しうる。同時に、リボフラビンの分解に起因する生成物からの外因性蛍光(例えば、ルミクロムやルミフラビン)が増加しうる。蛍光を収集することにより、実施形態(例えば、治療システム1000、1100)は、架橋前のリボフラビンの組織取り込み、及びUV光への曝露中の架橋の進行を監視することができる。蛍光信号は、分光計を用いてスペクトル的に分解されうるか、又は適切な光学フィルター及びフォトダイオードを用いて離散波長帯域(図12A~Cにおいて信号レベルP1及びP2として示されている)にわたって統合されうる。
【0063】
図13は、架橋治療における異なる期間の間の、第1の波長帯域λ1~λ2(P1として識別される)における自家蛍光、及び第2の波長帯域λ2~λ3(P2として識別される)における外因性蛍光に関連する信号レベルの例示的なグラフ1300を示す。信号レベルP1及びP2のリアルタイムの監視は、架橋治療をガイドするために使用されうる。リボフラビン浸漬期間中(図13でT1~T2として示される)、信号レベルP2は、十分なリボフラビンがUV光による光活性化の前に存在することを確認するために監視されうる。例えば、信号レベルP2が所定の閾値に達していない場合、施術者はリボフラビン浸漬期間を延長するように促されうる。最初の光活性化期間(図13でT2~T3として示される)の間、リボフラビンの光活性化は信号レベルP2を減少させる可能性がある一方、架橋形成は信号レベルP1を増加させる。信号レベルP1及び信号レベルP2のこの期間にわたる直接の測定又は比率の測定のいずれかによって、リボフラビンの消費速度及び架橋部位の生成速度が評価されうる。リボフラビンの消費速度、架橋部位の生成速度、及び/又は、これら2つの速度の相対比の上記ような評価は、架橋治療の効率を評価するために用いられうる。必要に応じて、光活性化パラメータ(即ち、UV光の照射の局面)は、治療が終了する前に十分な密度の架橋が形成されるようにするために、リアルタイムで調整されうる。例えば、照度が効率を向上させるために減らされたり、総線量がリアルタイムで増やされたりしうる。第2の光活性化期間(図13でT3~T4として示される)の間、信号レベルP1及びP2は、所望の蛍光信号が終点に到達することを確実にするために、さらに監視されうる。
【0064】
いくつかの実施形態において、XY走査システムの使用は、リボフラビン消費と架橋生成との相対速度における任意の空間的変動の測定を可能にする。更に、XY走査システムは、より最適な治療を実現するための光活性化パラメータのリアルタイムでの空間的な調整をも可能にする。場合によっては、コラーゲン中のリボフラビンが信号レベルP1に関連する自家蛍光の一部分を吸収しうるという事実に対処するために、信号レベルP1とP2との相対比は、較正される必要がありうる。そのような較正は、信号レベルP1の測定された大きさを拡大縮小すること(scaling)を含みうる。この拡大縮小は、信号レベルP1の大きさに依存する可能性があり、リアルタイムで発生しうる。
【0065】
架橋治療の開始前の自家蛍光を基準線として測定すること(リボフラビンの施与及び光活性化の前に)、及び架橋治療中にリアルタイムで信号レベルP1及びP2を監視することによって、施術者は、実質的に全てのリボフラビンが消費された時、及び/又は、より最適な架橋密度が達成され時を決定することができる。従って、リアルタイムの監視は、架橋治療をいつ停止すべきか、例えば、所望の治療結果が達成されたときか、又は架橋治療を一時停止すべきとき(例えば、リボフラビンが所望の治療結果が達成される以前に使い果たされたとき)を決定するために用いることができる。後者の場合、架橋治療は、更にリボフラビンを投与した後に再開されうる。
【0066】
更に、自家蛍光(信号レベルP1)のピーク強度の変化、及び/又は、架橋生成の速度は、角膜の剛性の局所的な変化を査定するために評価されうる。角膜の剛性の変化のそのような評価は、角膜形状の変化を評価するための角膜生体力学的モデルと、及び/又は、患者の視力の変化を評価するための視力モデルと組み合わせて考慮されうる。
【0067】
従って、信号レベルP1及びP2を監視することは、リボフラビン消費及び架橋形成の各々の局所的な変化速度を決定するのに用いられうる。これらの速度は、眼が違えば異なる場合もあれば、1の角膜において局所的に変化する場合もある。治療中のこれらの速度のリアルタイム監視は、治療結果を最適化するように治療パラメータを調整することを可能にする。リアルタイム監視は、施術者が、リボフラビンの濃度が使い果たされたか否か、又は架橋治療はいつ停止されるべきか、を決定することを可能にする。一般的に、治療パラメータは、以下の事項:(i)所定のレベルに従う架橋生成の速度;(ii)所定のレベルに従う角膜剛性の変化(これは、架橋形成の速度と角膜剛性の増加との間の相関を伴いうる);(iii)所定の治療結果に従う角膜形状の変化(これは、架橋密度の体積変化によって誘発される角膜の形状変化を計算するための角膜生体力学的モデルの使用を伴いうる);又は(iv)所定の治療結果に従う視力の変化(これは、角膜生体力学的モデル及び架橋密度の体積変化によって誘発された患者の視力の変化を計算するための視力モデルの使用を伴いうる);を制御するために調整されうる。
【0068】
更に、治療前信号レベルP1(自家蛍光)は、架橋生成の速度(架橋効率)と相関しうる。従って、治療パラメータは、コラーゲンの自家蛍光の治療前の測定に基づいて、架橋治療の開始前に滴定されうる。
【0069】
図14Aは、上述されたXY走査システムによって達成されうる例示的な走査パターン1400aを示す。角膜上のUV光のスポットの(x、y)座標が各時点で知られているので、図14Bに示されるような合成蛍光画像1400bが生成され、施術者に提示されうる。合成画像1400bの各(x、y)座標におけるグレースケール又はカラー値は、信号レベルP1及びP2、又は信号レベルP1の信号レベルP2に対する比に対応しうる。例えば、信号レベルP1は、座標(x2、y2)での信号レベルP2よりも座標(x1、y1)で高くなりうる。リボフラビン浸漬期間中に合成蛍光画像1400bを提示することにより、施術者は、UV光活性化の前に薬物の空間分布を理解することができる。UV光活性化中に合成蛍光画像1400bを提示することにより、施術者は、患者の治療に関する引き続く決定(例えば、追加治療の必要性を特定すること)を行うために、架橋形成の空間分布を理解することができる。
【0070】
上述のように、本開示のいくつかの態様によれば、上述及び図示された手順の一部分又は全てのステップは、コントローラ(例えば、コントローラ120)の制御下で自動化又は誘導されうる。一般に、コントローラは、ハードウェア要素とソフトウェア要素の組み合わせとして実装されうる。ハードウェアの態様は、マイクロプロセッサ、論理回路、通信/ネットワークポート、デジタルフィルタ、メモリ、又は論理回路を含んでいる動作可能に結合されたハードウェア構成要素の組み合わせを含みうる。このコントローラは、コンピュータ実行可能コード(これはコンピュータ可読媒体に格納されうる)によって指定された動作を実行するように適合されうる。
【0071】
上述されたように、コントローラは、ソフトウェア又は記憶された命令を実行するプログラム可能な処理デバイス(例えば、外部の従来型コンピュータ、又はオンボードのフィールドプログラマブルゲートアレイ(FPGA)、又はデジタル信号プロセッサ(DSP))でありうる。一般に、何らかの処理又は評価のために本開示の実施形態によって用いられる物理プロセッサ、及び/又は、機械は、コンピュータ及びソフトウェア技術の当業者には理解されるように、本開示の例示的な実施形態の教示に従ってプログラムされた1つ又は複数のネットワーク接続又はネットワーク非接続の汎用コンピュータシステム、マイクロプロセッサ、フィールドプログラマブルゲートアレイ(FPGA))、デジタル信号プロセッサ(DSP)、マイクロコントローラなどを含みうる。物理的プロセッサ、及び/又は、機械は、画像キャプチャ装置と外部でネットワーク化されてもよく、又は画像キャプチャ装置内に常駐するように統合されてもよい。ソフトウェア技術の当業者には理解されるように、適切なソフトウェアは、例示的な実施形態の教示に基づいて、通常の技能のプログラマによって容易に準備されうる。さらに、例示的な実施形態のデバイス及びサブシステムは、電気技術の当業者によって理解されるように、特定用途向け集積回路の準備によって、又は複数の従来のコンポーネント回路を適切なネットワークで相互接続することによって実装されうる。このようにして、本例示的実施形態は、ハードウェア回路、及び/又は、ソフトウェアの特定の組み合わせに限定されない。
【0072】
本開示の例示的な実施形態は、コンピュータ可読媒体の任意の1つ又は組み合わせに記憶され、例示的な実施形態のデバイス及びサブシステムを制御するための、例示的な実施形態のデバイス及びサブシステムを駆動するための、例示的な実施形態のデバイス及びサブシステムを人間のユーザなどと対話を可能にするための、ソフトウェアを含みうる。このようなソフトウェアには、デバイスドライバー、ファームウェア、オペレーティングシステム、開発ツール、アプリケーションソフトウェアなどが含まれるが、これらに限定されるものではない。そのようなコンピュータ可読媒体は、実装で実行される処理のすべて又は一部(処理が分散されている場合)を実行するための、本開示の実施形態のコンピュータプログラム製品をさらに含みうる。本開示の例示的な実施形態のコンピュータコードデバイスは、スクリプト、解釈可能なプログラム、ダイナミックリンクライブラリ(DLL)、Javaクラス及びアプレット、完全な実行可能プログラムなどを含むが、これらに限定はされない任意の適切な解釈可能又は実行可能なコードメカニズムを含みうる。さらに、本開示の例示的な実施形態の処理の一部分は、より良い性能、信頼性、コストなどのために分散させることができる。
【0073】
コンピュータ可読媒体の一般的な形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、その他の適切な磁気媒体、CD‐ROM、CDRW、DVD、その他の適切な光学媒体、パンチカード、紙テープ、光学式マークシート、穴のパターン若しくは他の光学的に認識可能な印を備えたその他の適切な物理媒体、RAM、PROM、EPROM、フラッシュEPROM、その他の適切なメモリチップ若しくはカートリッジ、コンピュータが読み取りうる搬送波又はその他の適切な媒体を含みうる。
【0074】
本開示は1以上の特定の実施形態を参照して説明されたが、当業者は、本開示の趣旨及び範囲から逸脱することなく、多くの変更がそれに加えられうることを認識するであろう。これらの実施形態及びそれらの自明の変形のそれぞれは、本開示の趣旨及び範囲内に含まれると考えられる。本開示の態様による追加の実施形態は、本明細書で説明された実施形態のいずれかの特徴を任意の数だけ組み合わせることができることも想定されている。
図1
図2A
図2B
図3A
図3B
図4A
図4B
図5A
図5B
図5C
図6
図7
図8
図9
図10
図11
図12A
図12B
図12C
図13
図14A
図14B