IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゼネラル・エレクトリック・カンパニイの特許一覧

特許7596387神経調節のための非侵襲的な組織の移動の制御およびモニタリング
<>
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図1
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図2
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図3
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図4
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図5
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図6
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図7
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図8
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図9
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図10
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図11
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図12
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図13
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図14
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図15
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図16
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図17
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図18
  • 特許-神経調節のための非侵襲的な組織の移動の制御およびモニタリング 図19
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-29
(45)【発行日】2024-12-09
(54)【発明の名称】神経調節のための非侵襲的な組織の移動の制御およびモニタリング
(51)【国際特許分類】
   A61N 7/00 20060101AFI20241202BHJP
【FI】
A61N7/00
【請求項の数】 22
(21)【出願番号】P 2022542634
(86)(22)【出願日】2021-01-15
(65)【公表番号】
(43)【公表日】2023-04-20
(86)【国際出願番号】 US2021013699
(87)【国際公開番号】W WO2021150446
(87)【国際公開日】2021-07-29
【審査請求日】2023-09-07
(31)【優先権主張番号】16/750,932
(32)【優先日】2020-01-23
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390041542
【氏名又は名称】ゼネラル・エレクトリック・カンパニイ
(74)【代理人】
【識別番号】100105588
【弁理士】
【氏名又は名称】小倉 博
(74)【代理人】
【識別番号】100133503
【弁理士】
【氏名又は名称】関口 一哉
(72)【発明者】
【氏名】アシェ, ジェフリー マイケル
(72)【発明者】
【氏名】プレオ, クリストファー マイケル
(72)【発明者】
【氏名】コテロ, ヴィクトリア ユージニア
(72)【発明者】
【氏名】ファン, イン
(72)【発明者】
【氏名】ウォーレス, カーク デニス
(72)【発明者】
【氏名】グラフ, ジョン フレデリック
【審査官】近藤 裕之
(56)【参考文献】
【文献】特表2019-534090(JP,A)
【文献】特開2010-259806(JP,A)
【文献】特表2019-513447(JP,A)
【文献】米国特許出願公開第2007/0043401(US,A1)
【文献】国際公開第2018/081826(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 7/00
(57)【特許請求の範囲】
【請求項1】
神経調節送達システムであって、
対象の内部組織の関心領域に神経調節エネルギーを送達するように構成されたエネルギー適用装置、および
コントローラであって、
前記神経調節エネルギーの線量を前記関心領域に送達するために、前記エネルギー適用装置を介した前記神経調節エネルギーの前記関心領域への適用を制御することであって、前記エネルギー適用装置は、制御パラメータの下で制御される、制御すること、
前記神経調節エネルギーの前記適用の間前記関心領域の画像データを受け取ること、
前記画像データを使用して前記関心領域の組織の移動をリアルタイムで追跡すること、
前記線量の一部を投与する際のリアルタイムの組織の移動の変化率を計算すること、
前記変化率が組織の移動のプラトーを示す閾値を下回っていることを特定すること、
前記変化率が前記閾値を下回っていると特定された場合に、前記エネルギー適用装置を介して印加される神経調節エネルギーを減らすように前記制御パラメータを修正すること、
修正された前記制御パラメータを使用して残りの投与量を適用することに対して構成される、コントローラを含む、神経調節送達システム。
【請求項2】
前記エネルギー適用装置が超音波治療トランスデューサを備える、請求項1に記載のシステム。
【請求項3】
前記エネルギー適用装置が、前記画像データを取得するように構成された撮像トランスデューサを備える、請求項2に記載のシステム。
【請求項4】
前記コントローラは、前記関心領域のベースライン画像を取得し、前記ベースライン画像および前記画像データに基づいて前記組織の移動を判定するように構成される、請求項1に記載のシステム。
【請求項5】
前記コントローラは、前記リアルタイムの組織の移動に基づいて前記線量に関連する指示を与えるように構成される、請求項1に記載のシステム。
【請求項6】
前記制御パラメータは、駆動電圧、パルスの長さ、およびパルス繰り返し間隔を含む、請求項1に記載のシステム。
【請求項7】
前記コントローラが、閾値から逸脱する的の分子の濃度の変化に基づいて前記パルスの長さを増減するように構成される、請求項6に記載のシステム。
【請求項8】
前記コントローラは、閾値から逸脱する的の分子の濃度の変化に基づいて前記駆動電圧を増減するように構成される、請求項6に記載のシステム。
【請求項9】
前記コントローラが、閾値から逸脱する的の分子の濃度の変化に基づいて前記パルス繰り返し間隔を増減するように構成される、請求項6に記載のシステム。
【請求項10】
前記コントローラは、複数の関心領域間で前記線量を分配するように構成される、請求項1に記載のシステム。
【請求項11】
神経調節送達システムであって、
治療トランスデューサを介して対象の内部組織の関心領域に神経調節エネルギーを送達し、撮像トランスデューサを介して前記関心領域の画像データを取得するように構成された超音波プローブ、および
コントローラであって、
前記超音波プローブの前記治療トランスデューサを介した前記神経調節エネルギーの前記関心領域への適用を制御して、前記神経調節エネルギーの線量をそれに送達する、制御することであって、前記治療トランスデューサは、制御パラメータの下で制御される、制御すること、
前記神経調節エネルギーの前記適用中に前記超音波プローブの前記撮像トランスデューサによって取得された前記関心領域の前記画像データを受信すること、
前記画像データに基づいて、前記神経調節エネルギーの前記適用中の前記関心領域の組織の移動をリアルタイムで追跡すること
前記線量の一部を投与する際のリアルタイムの組織の移動の変化率を計算することと、
前記変化率を組織の移動のプラトーを示す閾値と比較すること、
前記比較に基づいて、前記治療トランスデューサを介して適用される前記神経調節エネルギーを減らすために制御パラメータを変更すること、
修正された前記制御パラメータを使用して残りの投与量を送達することに対して構成される、コントローラ、を含む、神経調節送達システム。
【請求項12】
前記制御パラメータは、駆動電圧、パルスの長さ、およびパルス繰り返し間隔を含む、請求項1に記載のシステム。
【請求項13】
前記コントローラが、前記リアルタイムで追跡された組織の移動から最大または閾値の組織の移動が識別されるまで、選択された駆動電圧、パルスの長さ、およびパルス繰り返し間隔で前記制御パラメータに従って神経調節エネルギーの適用を制御し、前記最大または閾値の組織の移動の識別に応答して前記治療トランスデューサの駆動電圧を修正するように構成される、請求項1に記載のシステム。
【請求項14】
前記関心領域が、前記内部組織に分布する複数の部位を含む、請求項10に記載のシステム。
【請求項15】
神経調節送達システム作動方法であって、前記神経調節送達システムは、エネルギー適用装置とコントローラとを備え、
前記エネルギー適用装置は、作動されることにより、対象の内部組織の関心領域に神経調節エネルギーを送達するステップを実行し
前記コントローラは、作動されることにより、
記エネルギー適用装置を介して前記関心領域への神経調節エネルギーの適用を制御し、前記神経調節エネルギーの投与量を前記関心領域にを送達するステップであって、前記エネルギー適用装置は制御パラメータに従って制御される、前記ステップと、
前記神経調節エネルギーの適用中に前記関心領域の画像データを受信するステップと、
前記画像データを使用して前記関心領域の組織の移動をリアルタイムで追跡するステップと、
前記線量の一部を投与する際のリアルタイムの組織の移動の変化率を計算するステップと、
前記変化率が組織の移動のプラトーを示す閾値を下回っていることを特定するステップと、
前記変化率が前記閾値を下回っていると特定された場合に、前記エネルギー適用装置を介して印加される神経調節エネルギーを減らすように前記制御パラメータを修正するステップと、
修正された前記制御パラメータを使用して残りの投与量を適用するステップと、
前記エネルギー適用装置を介して前記対象の前記関心領域に基準パルスを送達するステップと、
前記基準パルスを送達した後、前記エネルギー適用装置を介して前記関心領域に治療パルスを送達するステップと、
前記治療パルスを送達した後に、前記エネルギー適用装置を介して前記関心領域に追跡パルスを送達するステップと、
前記基準パルスと前記追跡パルスとの間の位相変化を識別するステップ
前記位相変化に基づいて前記関心領域またはその近傍の組織の移動を判定するステップと、を実行する、方法。
【請求項16】
前記基準パルスおよび前記追跡パルスが撮像トランスデューサによって送達され、前記治療パルスが治療トランスデューサによって送達される、請求項1に記載の方法。
【請求項17】
前記基準パルスおよび前記追跡パルスは、第1の制御パラメータセットに従って送達され、前記治療パルスは、前記第1の制御パラメータセットとは異なる第2の制御パラメータセットに従って送達される、請求項1に記載の方法。
【請求項18】
前記組織の移動が、前記識別された相変化の曲線下面積に基づいて判定される、請求項1に記載の方法。
【請求項19】
前記判定された組織の移動に基づいて前記治療パルスの制御パラメータを調整するステップを実行するように前記コントローラが作動することを含む、請求項1に記載の方法。
【請求項20】
前記組織の移動が選択された閾値を上回っていると判定するステップと、前記対象の新しい関心領域を選択するステップとを実行するように前記コントローラが作動することとを含む、請求項1に記載の方法。
【請求項21】
前記組織の移動が目的の分子の濃度の変化に関連すると判定する、請求項1に記載の方法。
【請求項22】
神経調節送達システム作動方法であって、前記神経調節送達システムは、エネルギー適用装置とコントローラとを備え、
前記エネルギー適用装置は、作動されることにより、対象の内部組織の関心領域に神経調節エネルギーを送達するステップを実行し
前記コントローラは、作動されることにより、
記エネルギー適用装置を介して前記関心領域への神経調節エネルギーの適用を制御し、前記神経調節エネルギーの投与量を前記関心領域にを送達するステップであって、前記エネルギー適用装置は制御パラメータに従って制御される、前記ステップと、
前記神経調節エネルギーの適用中に前記関心領域の画像データを受信するステップと、
前記画像データを使用して前記関心領域の組織の移動をリアルタイムで追跡するステップと、
前記線量の一部を投与する際のリアルタイムの組織の移動の変化率を計算するステップと、
前記変化率が組織の移動のプラトーを示す閾値を下回っていることを特定するステップと、
前記変化率が前記閾値を下回っていると特定された場合に、前記エネルギー適用装置を介して印加される神経調節エネルギーを減らすように前記制御パラメータを修正するステップと、
修正された前記制御パラメータを使用して残りの投与量を適用するステップと、
前記エネルギー適用装置を介して前記対象の前記関心領域に基準パルスを送達するステップと、
前記基準パルスを送達した後、前記エネルギー適用装置を介して前記関心領域に治療パルスを送達するステップと、
前記基準パルスの送達に続いて、前記エネルギー適用装置を介して前記関心領域に治療パルスを送達するステップと、
前記治療パルスを送達した後に、前記エネルギー適用装置を介して前記関心領域に追跡パルスを送達するステップと、
ベースラインに対し、また前記治療パルスを送達した結果として、目的の分子の濃度の変化を識別するステップと、
前記基準パルスと前記追跡パルスとの間の位相変化に基づいて、前記濃度の変化に関連する前記関心領域またはその近傍の組織の移動を判定するステップと、を実行する、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に開示される主題は、標的化された生理学的転帰を引き起こすために神経調節エネルギーの適用を介して対象の関心領域を標的化および/またはそれに投与する技術に関する。特に、開示されている技術は、神経調節治療の結果としての超音波誘発性の組織の移動を監視および/または制御することができる。
【背景技術】
【0002】
神経調節は、様々な臨床状態を治療するために使用されてきた。例えば、脊髄に沿った様々な位置での電気刺激は、慢性背部痛を治療するために使用されてきた。しかし、標的神経またはその近くに電極を配置することは困難である。例えば、そのような技術は、エネルギーを送達する電極の外科的配置を含み得る。さらに、神経調節を介した特定の組織標的化は困難である。特定の標的神経またはその近くに配置された電極は、神経線維の活動電位を誘発することによって神経調節を媒介し、その結果、順次神経シナプスでの神経伝達物質の放出および次の神経とのシナプス伝達をもたらす。そのような伝播は、植込まれた電極の電流の実装が多くの神経または軸索を一度に刺激するので、所望よりも比較的大きなまたはより拡散した生理学的作用をもたらし得る。神経経路は複雑で相互接続されているので、より選択的で標的化された変調作用は、より臨床的に有用であり得る。しかし、所望の関心領域にエネルギーを送達し、所望の生理学的結果を引き起こす有効なエネルギー適用パラメータの識別は、患者の解剖学的構造および臨床応答における個々の変動性を考えると複雑である。
【発明の概要】
【0003】
開示された実施形態は、特許請求される主題の範囲を限定することを意図するものではなく、むしろ、これらの実施形態は、可能な実施形態の簡単な概要を提供することのみを意図している。実際、本開示は、以下に記載される実施形態と同様であっても異なっていてもよい様々な形態を包含し得る。
【0004】
一実施形態では、対象の内部組織の関心領域に神経調節エネルギーを送達するように構成されたエネルギー適用装置を含む神経調節送達システムが提供される。システムはまた、コントローラであって、神経調節エネルギーの線量を関心領域に送達するために、エネルギー適用装置を介した神経調節エネルギーの関心領域への適用を制御すること、神経調節エネルギーの適用の間および/または後に関心領域の画像データを受け取ること、神経調節エネルギーの適用の結果として、神経調節エネルギーの適用の時または前に取得されたベースラインに対する、対象における目的の分子の変化を識別すること、および目的の分子の変化に関連する関心領域の組織の移動を判定することであって、組織の移動は、画像データに基づいて判定される、判定することに対して構成される、コントローラを含む。
【0005】
一実施形態では、治療トランスデューサを介して対象の内部組織の関心領域に神経調節エネルギーを送達し、撮像トランスデューサを介して関心領域の画像データを取得するように構成された超音波プローブを含む神経調節送達システムが提供される。システムはまた、コントローラであって、超音波プローブの治療トランスデューサを介した神経調節エネルギーの関心領域への適用を制御して、神経調節エネルギーの線量をそれに送達する、制御することであって、治療トランスデューサは、制御パラメータの下で制御される、制御すること、神経調節エネルギーの適用中に超音波プローブの撮像トランスデューサによって取得された関心領域の画像データを受信すること、画像データに基づいて、神経調節エネルギーの適用中の関心領域の組織の移動を判定すること、および判定された組織の移動に基づいて、または神経調節エネルギーの適用の時もしくは前に取得されたベースライン濃度に対する対象における目的の分子の濃度の変化に基づいて、治療変換器の1つ以上の制御パラメータを修正すること、に対して構成される、コントローラ、を含む。
【0006】
別の実施形態では、エネルギー適用装置を介して対象の関心領域に基準パルスを送達すること、基準パルスの送達に続いて、エネルギー適用装置を介して関心領域に治療パルスを送達すること、治療パルスを送達した後に、エネルギー適用装置を介して関心領域に追跡パルスを送達すること、基準パルスと追跡パルスとの間の位相変化を識別すること、および位相変化に基づいて関心領域またはその近傍の組織の移動を判定すること、というステップを含む方法が提供される。
【0007】
別の実施形態では、エネルギー適用装置を介して対象の関心領域に基準パルスを送達すること、基準パルスの送達に続いて、エネルギー適用装置を介して関心領域に治療パルスを送達すること、治療パルスを送達した後に、エネルギー適用装置を介して関心領域に追跡パルスを送達すること、ベースラインに対し、また治療パルスを送達した結果として、目的の分子の濃度の変化を識別すること、および位相変化に基づいて、濃度の変化に関連する関心領域またはその近傍の組織の移動を判定すること、というステップを含む方法が提供される。
【図面の簡単な説明】
【0008】
本開示のこれらおよび他の特徴、態様、および利点は、添付の図面を参照して以下の詳細な説明を読めば、よりよく理解されよう。添付の図面では、図面全体を通して、同様の符号は同様の部分を表す。
【0009】
図1】本開示の実施形態による、組織に対する超音波パラメータおよび超音波放射力の概略図である。
【0010】
図2】本開示の実施形態による、組織に対する超音波放射力の結果としての組織の移動モデルの概略図である。
【0011】
図3】超音波誘発性の組織の移動を示す、組織から得られた画像を示す。
【0012】
図4】本開示の実施形態による、組織に対する超音波放射力の移動距離とパルス時間との間の関係を示す。
【0013】
図5】本開示の実施形態による、組織に対する超音波放射力の移動距離とパルス時間との間の関係を示す。
【0014】
図6】LPS曝露動物モデルにおける脾臓への超音波の異なる適用圧力に対する全血腫瘍壊死因子(TNF)レベルへの作用を示す。
【0015】
図7】LPS曝露動物モデルにおける脾臓に適用した超音波の異なるパルスの長さに対するグルコースレベルへの影響を示す。
【0016】
図8】本開示の実施形態による、組織の移動を判定するために使用される基準および追跡パルスの位相変化の概略図である。
【0017】
図9】本開示の実施形態による組織の移動を判定するための技術の流れ図である。
【0018】
図10図13図16のヒト対象への超音波エネルギーの適用の実験のタイムラインを示す。
【0019】
図11図13図16のヒト対象への超音波エネルギーの適用の実験の制御パラメータを示す。
【0020】
図12図13図16のヒト対象への超音波エネルギー適用のための集中的および分散的な関心領域を示す。
【0021】
図13】超音波エネルギーの適用に関連する組織の移動の程度に対するTNF応答の比較を示す。
【0022】
図14】超音波エネルギーの集中的および分散的な適用に関連する移動に対するTNF応答の比較を示す。
【0023】
図15】超音波エネルギーの集中的および分散的な適用に関連する移動に対するTNF応答の比較を示す。
【0024】
図16】異なる時点におけるTNF応答および移動の概要を示す。
【0025】
図17】本開示の実施形態による超音波神経変調システムの概略図である。
【0026】
図18】本開示の実施形態による超音波神経変調システムのブロック図である。
【0027】
図19】本開示の実施形態による組織の移動を調整するための技術の流れ図である。
【発明を実施するための形態】
【0028】
1つ以上の具体的な実施形態を以下に説明する。これらの実施形態の簡潔な説明を提示するべく、実際の実施態様の全特徴を本明細書に記載させてはいない。エンジニアリングまたは設計プロジェクトにおけるような、何らかのこうした実際の実施態様の開発で、開発者の特定の目標を達成するために、例えばシステム関連や事業関連の制約条件への対応など、実施態様に特有の数多くの決定をしなければならず、これらの制約条件が実施態様ごとに異なる場合があるということを理解されたい。さらに、そのような開発努力は複雑で時間がかかるかもしれないが、それにもかかわらず、本開示の利益を有する当業者にとっては設計、製作、および製造の日常的な業務であることを理解されたい。
【0029】
本明細書で与えられる任意の例または例示は、それらが使用される任意の1つ以上の用語に対する制限、限定、または定義を表すものと決して見なされるべきではない。代わりに、これらの例または例示は、様々な特定の実施形態に関して説明されていると見なされるべきであり、例示としてのみ見なされるべきである。当業者であれば、これらの例または例示が利用される任意の1つ以上の用語は、それと共にまたは本明細書の他の場所で与えられる場合も与えられていない場合もある他の実施形態を包含し、すべてのそのような実施形態は、その1つ以上の用語の範囲に含まれることが意図されることを理解するであろう。そのような非限定的な例および例示を称する文言は、「例えば(for example)」、「例えば(for instance)」、「など(such as)」、「例えば(e.g.)」、「含む(including)」、「特定の実施形態では(in certain embodiments)」、「いくつかの実施形態では(in some embodiments)」、および「一実施形態では(in one(an)embodiment)」を含むが、これらに限定されない。
【0030】
組織内の神経調節は、組織を伸張または移動させ、それに応じて異なる細胞内および細胞間プロセスを活性化する局所的な機械的ストレス/歪みによって達成され得る。本明細書では、神経調節エネルギー、例えば非侵襲性の超音波の適用によって引き起こされる伸張および/または移動の量を制御および/または監視するための技術が提供される。神経調節エネルギーを標的とする特定の組織内の伸張および/または移動の量を制御および監視することによって、神経調節エネルギー線量の制御パラメータを調整して、異なるレベルの効果および/または異なるタイプの効果を生成することができる。例では、伸張の量および/または移動の量という線量の制御は、ヒトの特定の神経調節プロトコルにおける抗炎症効果のレベルを変化させる。さらに、超音波エネルギーによって誘発される伸張および/または移動の量は、超音波(例えば、プローブの組み合わせの使用)を使用しても非侵襲的に測定され、送達される線量のリアルタイムでの定量化および正確な制御のためのフィードバックを与えることができる。
【0031】
特定の実施形態では、集束超音波の放射力に応じた組織の移動は、せん断波(エラストグラフィ)撮像を使用して評価することができる。本開示は、閾値効果が生物において観察されることを実証し、それによって少量の移動(閾値以下の移動)は神経調節効果をもたらさず、大量の移動(閾値を超えるもの)は神経調節効果をもたらす。第2の閾値効果が生物において認められ、それにおいて大量の移動(過剰曝露)が望ましくない作用をもたらし、意図された神経調節効果が存在しないか減少する。すなわち、線量の制御パラメータは、所望の組織の移動を達成するために各患者に対して調整することができる。特定の制御パラメータに関連するプラトーまたは最大移動レベルを特定することに加えて、移動が適用される組織領域、および時間により変化する移動の性質は、開示された実施形態で認められ、異なる神経調節効果をもたらす。この空間-時間的関係および適用される線量の総持続時間は、本開示で提示されている場合、生物において異なるレベルの神経調節をもたらすことが示されている。
【0032】
異なる個体において適切な量の伸張および/または移動を生成することは、個々の解剖学的構造の差異および個々の組織特性の差異のために困難である。すなわち、肝臓は膵臓とは異なる応答をし得る。神経調節エネルギー投与の間に伸張および/または移動の量を測定および監視することを使用して、個々の患者の最適な線量からの逸脱を最小限に抑えることができる。リアルタイムでの測定および監視は、適用される伸張および/または移動の時間的側面のより正確な制御を可能にする。サイズ変動性の組織領域にわたって測定および監視することにより、適用される伸張および/または移動の空間的側面のより正確な制御が可能になる。例えば、エネルギー適用のための特定の関心領域を、所望の組織の移動について選択または監視することができる。特定の実施形態では、本技術は、特定の個人(個人向け)の時空間での伸縮および/または移動の適切な量または標的量を判定することを容易にし、複数の時間スケールにわたるその判定された量の時空間的な伸縮および/または移動を、より確実に生起する。したがって、神経調節エネルギーの適用中および適用後の組織の移動を評価することにより、エネルギーパラメータの微調整を可能にして、標的化された生理学的な結果を生成するだけでなく、応答性の患者間の変動および応答性の組織変動(組織間および/または組織内)を担うことができる。
【0033】
伸張および/または移動は、複数の方法で組織内に誘導され得る。開示された実施形態は、非侵襲的超音波との関連で説明されており、これにより、関心領域に加えられるエネルギーの焦点および形状を制御しながら、同時に組織に深く侵入することが可能になる。図1は、焦点を示す超音波ビームの概略図であり、適用された超音波エネルギーの詳細な図であり、振幅および周波数12、パルス高時間またはパルスの長さ14、ならびにパルス繰り返し間隔16の特性を示す。本技術は、超音波を生成する駆動電圧(加えられた圧力)、ならびにパルスの長さおよびパルス繰り返し間隔に対する変更が、組織の移動に相関する測定可能な生理学的作用を生成することを実証する。特定の開示された実施形態では、全振幅および半振幅の駆動電圧の効果が比較される。さらに、パルスの長さおよびパルス繰り返し間隔の変化を評価する。
【0034】
図2は、超音波の焦点がz方向に均一に分布した移動を伴う単純な線源であると仮定して、移動を示す、単純化された組織の移動のモデルである。このモデルはまた、組織が減衰する均質な弾性媒体であると仮定する。このモデルは、2D組織F(x,y,t)の任意の観測点における移動Fの計算を可能にする。各矢印は適用されるパルスを表す。図3は、直径10mmの長さおよび3ミリ秒にわたる総プッシュパルスに関する線源の仮定を使用して、20mm×20mmの領域にわたる移動を示す、時点0から4ミリ秒にわたって取られた時系列の超音波画像である。個々の画像は、0.5ミリ秒にわたる移動を表す。0.5ミリ秒ごとに、追加の500マイクロ秒パルス(図2に黄色の矢印として示されている)が組織に適用される。示されている移動は、30dBの表示範囲で対数スケーリングされている。超音波画像は、3ミリ秒の総パルスが適用された時間にわたる数マイクロメートルの組織の移動を示す。
【0035】
図4は、図3の画像における、移動とパルスの長さとの間の観察された関係を示す。経時的に、各500マイクロ秒のパルスの長さのプッシュにつき総パルスが増加(複数のパルスの線量送達の合計)していき、線源からの寄与するすべての移動がコヒーレントに加算できなくなるまで、より大きな移動が観察される。したがって、移動の振幅(任意の単位として示されている)は平坦になる。図示の例では、パルスプッシュは、緩和期間のない付加的な500マイクロ秒パルスである。したがって、本明細書で提示される場合、投与期間の経過にわたるパルスの長さおよび/または総パルス高時間は、プラトーのパルスの長さの値の低い方の範囲で特定の駆動電圧(および特定の関心領域)に対する最大および/またはプラトーの値の潜在的な組織の移動を達成するように選択することができ、したがって、適用された線量の経過にわたる関心領域での超音波エネルギー曝露を最小限に抑えることができ、これはより標的化された効果をもたらし得る。したがって、実施形態では、本技術は、線量の送達にわたってリアルタイムで移動を追跡し、組織の移動の変化率を計算することができる。変化率が減少しており(例えば、選択された閾値を下回る)、プラトーに近づいていることを示すと判断すると、超音波プローブのコントローラは、エネルギー送達を自動的に変更することができる。例えば、コントローラは、エネルギー送出を停止してもよく、または曲線のプラトー部分から出るように制御パラメータを変更してもよい。このような追跡は、超音波エネルギーの曝露を最小限に抑えることにより、組織内の機構の補償を防止または遅れさせ、関心領域を適切な治療部位としてより長期間維持することができるため、望ましい場合がある。さらに、図4の曲線のプラトー部分を回避することによって、治療の望ましくない追加の生理学的作用が活性化されない可能性がある。
【0036】
しかし、本明細書で提示されているように、超音波線量送達の他の制御パラメータは、特徴的な組織の移動および/または弛緩に関連する所望の生理学的結果を達成するように変更することができる。例えば、図5に示すように、500マイクロ秒(2KHzのPRFで)のパルス繰り返し間隔、または5ミリ秒のパルス繰り返し間隔(500HzのPRF)は、パルスの長さ「オン」またはパルス高時間で変動し得、結果として生じる組織の移動の変動を伴う。例えば、同じPRFでのパルス高時間の量が増加すると、より高い(2kHz)およびより低い(500Hz)周波数設定の両方で、10ミリ秒の間に全体的により大きな移動が生じる。すなわち、150マイクロ秒のパルス高時間は、350マイクロ秒のオン時間よりも組織の移動を少なくする。したがって、超音波治療トランスデューサは、組織の移動のプロファイルを変更するために、パルス繰り返し間隔内のパルス高時間を、変化するように調整することができる。さらに、パルス繰り返し間隔を増加させることにより、パルス間の緩和も可能になり、これにより、順次、投与にわたる配合の移動の効果が変化する。150、250、および350マイクロ秒のパルスに対する5ミリ秒のパルス繰り返し間隔は、ほぼ完全な緩和を時に可能にするが、より短い500マイクロ秒のパルス繰り返し間隔は、完全には至らない緩和を可能にする。このようにすると、500マイクロ秒のパルス繰り返し間隔のパルスは、投与が停止されると消える複合移動効果を、経時的に示す。本明細書で提示されるように、本技術は、駆動電圧、周波数、パルスの長さ、およびパルス繰り返し間隔、ならびに/または全体的な線量送達時間を調整する、エネルギー送達のための制御パラメータでの超音波線量療法プロトコルを、可能にする。例えば、上側のパネルの条件(2KHzのPRFで500マイクロ秒のPRI)で観察された関心領域に送達される全体的なエネルギーは、下側のパネルの条件(500HzのPRFで5ミリ秒のPRI)よりも大きいものであった。推定される移動は、線量送達期間にわたる曲線下面積として評価または推定することができ、制御パラメータは、特定の関心領域に対する組織の移動の曲線下面積の所望の範囲内に入るようにプログラムすることができる。
【0037】
本技術は、標的化された生理学的結果に関連する神経調節によって引き起こされる組織の移動を標的化する。図6は、LPS曝露動物モデルの全血TNFに対する脾臓に加えられる超音波圧力(mPa)の様々な影響を示す。超音波によって引き起こされる移動の分量は、組織の弾性の特性および適用されるエネルギーの特性、例えば、どれだけ長くプッシュするか(パルスの長さ、パルス繰り返し間隔)および/またはどれだけ激しくプッシュするか(時間平均強度mW/cmおよび/またはピーク圧力mPa)の関数である。移動は、最大値に達し、それにおいて、超音波によって加えられる力が、組織によって押し戻される力に等しくなる。この最大値に達すると、さらに長くプッシュしてもそれ以上移動しない。より強くプッシュする(例えば、より多くの圧力)ことは、より多くの移動を得る(新しい最大値に達する)方法である。結果として生じる炎症および関連するTNFのベースライン増加を伴うLPS曝露動物モデルについて図6に示している事例において、プッシュする時間は同じままであったが、圧力の量は変化した。2つの閾値効果が観察され、一方は生理学的作用がほとんどなく(0.03mPaで低すぎる圧力)、生理学的作用がなくなる第2の閾値(1.72mPaバールで高すぎる圧力)であった。しかし、閾値間のデータは、LPS曝露に関連する全血TNFの増加が特定の超音波圧力に対しては逆転したが、高すぎる圧力または低すぎる圧力では影響を受けなかったことを示している。したがって、本明細書で提示されているように、本技術は、生理学的作用に関連しない閾値の間にある超音波圧力を識別すること、および/またはこれらの識別された圧力の範囲内で超音波エネルギーを適用することを可能にすることができる。本明細書で提示されているように、超音波エネルギーによって引き起こされる組織の移動は、所望の生理学的作用のマーカーとして使用することができる。一実施形態では、1.27mPaバールと1.72mPAバールとの間の作用の変化は、伸張性の移動から、より高い圧力での熱/キャビテーションに至る、適用された超音波エネルギーに対する組織の反応の物理的変化に関連する。所望の作用は、伸張性の移動に関連する圧力で観察され得る。したがって、超音波線量の制御パラメータは、伸張性の移動を引き起こすように選択することができ、移動を引き起こすには低すぎるピーク圧力、または関心領域内またはその近くの主要な組織の作用が熱/キャビテーションであるには高いピーク圧力を、回避することができる。
【0038】
図7は、ベースラインに対するグルコースの変化の、対照に対して同じ(200ミリ秒)に保たれたプッシュ(パルス)の圧力の持続時間を変化させた結果を示す。結果は、2つの閾値効果を示し、一方は生理学的作用がほとんどなく(持続時間が短すぎる)、第2の閾値は生理学的作用がなくなる(持続時間が長すぎる)。したがって、制御パラメータは、グルコースの割合の所望の変化に関連する組織の移動と整列するように選択することができる。
【0039】
その目的のために、本技術は、組織の移動を監視および/または評価するためのシステムおよび方法を提供する。実施形態では、組織の移動は、超音波によって評価することができる。一実施形態では、超音波プローブは、治療トランスデューサおよび評価(撮像)を含むプローブの組み合わせであってもよい。撮像トランスデューサは、関心領域を識別および選択するために、ならびに神経調節エネルギーの適用によって引き起こされる組織の移動を追跡するために使用され得る。図8は、治療を送達し、関連する組織効果を追跡するために超音波プローブを制御するために使用され得る組織の移動を識別するための例示的な制御または駆動信号を示す。実施形態では、短い基準撮像パルスおよび追跡パルスが治療パルスを支持する。超音波画像データに基づく基準信号と追跡信号との間の位相の変化が、組織の移動を計算するために使用される。図示のように、移動は軸に沿った正または負の方向であってもよく、総合的な移動、または曲線下面積が、移動メトリックとして使用され得る。
【0040】
図9は、標的内部組織の関心領域へ超音波エネルギーを適用した結果として組織の移動を評価するための方法100の流れ図である。方法100では、超音波プローブのトランスデューサが、関心領域に基準撮像パルスを送達し、組織からの反射超音波を収集して、超音波プローブのコントローラ(例えば、超音波システム)によって受信されるベースラインまたは基準データを生成する(ブロック102)。超音波プローブの同じ超音波トランスデューサまたは異なる超音波トランスデューサ(例えば、専用の治療トランスデューサ)が、超音波治療パルスを適用するように制御される(ブロック104)。超音波治療の適用は、関心領域内またはその近くの組織の移動を引き起こし、これは、超音波エネルギーを適用した後に送達される追跡パルスを使用して識別される(ブロック106)。追跡パルスからの反射波は、追跡データを生成する。追跡データおよび基準データは、超音波エネルギーパルスによって引き起こされる組織の移動を決定するために使用される(ブロック108)。
【0041】
特定の実施形態では、基準パルスおよび追跡パルスの制御パラメータは、それらが組織の移動を最小限にするかまたはまったく引き起こさないように短く十分に低いエネルギーであるように選択される。すなわち、識別される移動は、基準/追跡パルスによってではなく、治療パルスによって引き起こされる。特定の実施形態では、移動がすべての適用されるパルスに対して追跡されるように、追跡パルスがパルスの間隔の間に放射される。このようにして、プラトー値に達するまで複合する移動を追跡することができる。さらに、移動をリアルタイムで判定して、治療パルスの制御パラメータの調整または修正を可能にすることができる。
【0042】
神経調節超音波療法の結果としての組織の移動と生理学的作用との間の関係を、60人のヒト対象について調べた。対象を6つの群のいずれかに無作為に割り当てた(各群n=10)。本明細書に開示されるように、超音波を使用して、標的内部組織の関心領域での組織の移動による振動を生じさせた。ヒト対象の群は、偽対照超音波線量、115W/cmの半振幅線量(Isppa空間ピークパルス平均強度)、または362W/cmの全振幅線量(Isppa)を受けた。50%の振幅(368mW/cm)の時間平均電力(Ispta)は、より頻繁にプッシュされるため、100%振幅(290mW/cm)よりも高い。超音波エネルギーを受けている対象の超音波線量は、単一部位に適用されるか(群1~3)、または多部位に分散された(群4~6)。
【0043】
図10は、各対象に対する実験プロトコルを示す。超音波を受けているヒト対象については、TNF、サイトカイン(IL-1、IL-6、IL-8、IL-10)、グルコース、およびノルエピネフリンなどの様々な血液分子のベースラインでのレベルに対して、絶食採血後に治療線量を送達した。LPSに対する血液細胞のTNF応答を、静脈採血からの血液に対してLPSアッセイを行うことによって評価した。血液を0、0.1、1、10および100ng/mlの濃度のLPSに曝露し、続いてヒトTNF ELISAで各試料を分析した。5つのLPS濃度にわたるTNF応答濃度についての曲線下面積(AUC)を計算し、血液細胞のTNF応答を特徴付けるために使用した。各対象の脾臓組織の関心領域に、超音波エネルギーを適用した。絶食採血を治療線量の1時間後、2時間後および24時間後に行った。図11は、対照パラメータ、および様々な群が至った結果として生じる対象の組織の移動をまとめたものである。図12は、脾臓の単一部位送達対多数部位送達の概略図である。
【0044】
図13は、関心領域の集中的な(単一部位)領域内での、脾臓の超音波刺激の結果を示す。より大きな移動は、刺激後2時間でのLPSに対する血球のTNF応答におけるより大きな減少と相関している。上の区分は、単一または集中的な治療関心領域内の小移動と大移動を比較したP値(ウィルコクソン検定)を示す。示されているデータは、群1の8人の対象(小移動)、群2の10人の対象(中移動)、および群3の8人の対象(大移動)からのものである。
【0045】
図14は、中移動群に対する集中的な(単一部位)超音波エネルギー適用と分散的な(多部位)超音波エネルギー適用との間の組織の移動の比較を示す。集中領域内での中移動の場合、脾臓超音波刺激は、刺激の2時間後にLPSに対する血球のTNF応答のより大きな減少を引き起こす傾向がある。上の区分は、集中領域および分散領域内の中移動を比較するP値(ウィルコクソン検定)を示す。示されているデータは、群2の10人の対象(中移動)および群5の9人の対象(中移動)からのものである。
【0046】
図15は、大移動群に対する集中的な(単一部位)超音波エネルギー適用と分散的な(多部位)超音波エネルギー適用との間の組織の移動の比較を示す。集中領域内での大移動の場合、脾臓超音波刺激は、刺激の2時間後にLPSに対する血球のTNF応答のより大きな減少を引き起こす傾向がある。上の区分は、集中領域および分散領域内の大移動を比較するP値(ウィルコクソン検定)を示す。示されているデータは、群3の8名の対象(大移動)および群6の9名の対象(大移動)からのものである。
【0047】
図16は、6つの対象群におけるTNF応答の概要である。上側のパネルは、単一部位エネルギー適用のTNF変化を示し、下側のパネルは、分散型のエネルギー適用のTNF変化を示す。結果は、群2と群3との間の適用圧力または出力に対する変化が、ベースラインと比較して、TNF応答の有意な変化に関連したことを示している。試験群はまた、24時間でベースラインTNFレベルに戻ることを示している。
【0048】
示されるように、超音波エネルギー適用制御パラメータおよび関心領域選択の変化は、組織の移動の程度に関連する方法で生理学的結果に影響を及ぼす。実験結果は、超音波エネルギーの適用(例えば、超音波治療)の結果としてベースラインに対しTNFが変化したことを示したが、これらの結果は例として提示されていることを理解されたい。本技術は、治療前のベースラインレベルに対する目的の分子の濃度の変化など、所望の生理学的結果に関連する関心領域における組織の移動の存在またはレベルを誘導および評価することができる。分子の濃度の変化を追跡するのではなく、またはそれに加えて、本技術は、組織の移動を評価して、神経調節超音波療法が有効であることを判定することができる。
【0049】
図17は、エネルギーの適用に応答した神経伝達物質の放出および/またはシナプスの成分(例えば、シナプス前細胞、シナプス後細胞)の活性化に関連する標的組織204の1つ以上の関心領域202における組織の移動などの、神経調節効果を達成するための神経調節のためのシステム200、例えば神経調節送達システムを示す。図示のシステムは、エネルギー適用装置206に結合されたパルス発生器214を含む。エネルギー適用装置206は、例えばリード線または無線接続を介して、使用中に対象の1つ以上の内部組織または器官の複数の関心領域20に向けられるエネルギーパルスを受けるように構成され、これにより、標的化された生理学的結果がもたらされる。
【0050】
特定の実施形態では、エネルギー適用装置206および/またはパルス発生器214は、例えばコントローラ216と無線で通信することができ、コントローラ216は次にパルス発生器214に命令を与えることができる。他の実施形態では、エネルギー適用装置206は、体外装置であってもよく、例えば、対象の体外の位置から経皮的または非侵襲的にエネルギーを適用するように動作させてもよく、特定の実施形態では、パルス発生器214および/またはコントローラ16と一体化させてもよい。エネルギー適用装置206が体外である実施形態では、エネルギー適用装置206は、介護者によって操作され、エネルギーパルスが所望の内部組織に経皮的に送達されるように、対象の皮膚上またはその上方の地点に配置されてもよい。エネルギーパルスを所望の関心領域202に適用するように配置されると、システム200は、標的化された生理学的結果または臨床効果を達成するために、1つ以上の神経経路の神経調節を開始することができる。他の実施形態では、パルス発生器14および/またはエネルギー適用装置206は、生体適合性部位(例えば、腹部)に植込まれてもよく、例えば、1つ以上のリード線を介して内部に結合されてもよい。いくつかの実施形態では、システム200は、要素の一部またはすべてが互いに有線または無線方式で通信することができるように実装することができる。
【0051】
特定の実施形態では、システム200は、コントローラ216に結合され、調節の標的化された生理学的結果が達成されたかどうかを示す特性を評価する評価装置220を含むことができる。一実施形態では、標的化された生理学的結果は局所的であり得る。例えば、1つ以上の神経経路の調節は、組織構造の変化、特定の分子の濃度の局所的な変化、組織の移動、体液の動きの増加などの局所的な組織または機能の変化をもたらし得る。標的化された生理学的結果は、治療プロトコルの目標であり得る。
【0052】
標的化された生理学的結果を達成するための1つ以上の神経経路の調節は、全身的または非局所的変化をもたらし得、標的化された生理学的結果は、循環分子の濃度の変化またはエネルギーが直接適用された関心領域を含まない組織の特性の変化に関連し得る。一例では、移動は所望の変調の代理測定であってもよく、移動の測定値が予想移動値を下回ると、予想移動値が誘導されるまで変調パラメータが修正され得る。したがって、評価装置220は、いくつかの実施形態では濃度の変化を評価するように構成されてもよい。いくつかの実施形態では、評価装置220は、組織の移動を評価するように構成されてもよい。例えば、評価装置は、エラストグラフィ技術を使用するように構成されてもよい。エラストグラフィを使用して組織の物質特性を調べることができる。本技術では、エラストグラフィを使用して、超音波治療パルスまたは投与プロトコルによって誘発される組織の変化を評価することができる。システム200の図示された要素は別々に示されているが、要素の一部またはすべてが互いに組み合わされてもよいことを理解されたい。
【0053】
評価に基づいて、コントローラ216の変調パラメータは、有効量のエネルギーが送達されるように変更することができる。例えば、所望の変調が、定義された時間枠(例えば、エネルギー適用の手順を開始してから5分後、30分後)内の、または処置の開始時のベースラインに対する濃度(1つ以上の分子の循環濃度または組織濃度)の変化に関連する場合、パルス周波数または他のパラメータなどの変調パラメータの変化が所望され得、これは次に、変調パラメータが、適用された有効量のエネルギーになるまで、パルス発生器214のエネルギー適用パラメータまたは変調パラメータを定めるまたは調整するために、操作者によってまたは自動フィードバックループを介して、コントローラ216に与えることができる。一実施形態では、治療プロトコルの過程にわたる神経調節エネルギーの有効性に関する評価装置からのフィードバックに基づいて、最初に定められた関心領域202を改良して、更新された関心領域202を得ることができる。フィードバックは、例えば、神経調節エネルギーの適用の結果としての組織の移動であり得る。関心領域に対するこれらの改良または更新は、患者固有のネットワークの一部として使用することができ、ネットワークは、所望の臨床結果に基づいてその特定の個人の関心のある生理学的パラメータに最も影響を与える特定の関心領域を識別するように更新される。
【0054】
本明細書で提示されるシステム200は、治療プロトコルの一部としての様々な変調制御パラメータに従ってエネルギーパルスを供給して、有効量のエネルギーを適用することができる。例えば、調節制御パラメータは、連続的なものから断続的なものに及ぶ様々な刺激時間のパターンを含むことができる。断続的な刺激では、信号オンの時間に一定の周波数で一定期間エネルギーが送達される。信号オンの時間の後に、信号オフの時間と呼ばれる、エネルギー供給がない期間が続く。制御パラメータはまた、刺激適用の周波数および持続時間を含むことができる。適用頻度は、連続的であってもよく、または様々な期間、例えば1日または1週間以内に送達されてもよい。さらに、治療プロトコルは、エネルギーを適用するための時刻、または食事または他の活動に対する時刻を指定することができる。標的化された生理学的結果を引き起こすための治療期間は、限定されないが、数分から数時間を含む様々な期間続くことができる。特定の実施形態では、指定された刺激パターンによる治療期間は、例えば72時間間隔で繰り返されて、1時間続くことができる。特定の実施形態では、エネルギーは、より短い持続時間、例えば30分間、より高い頻度で、例えば3時間ごとに送達され得る。治療期間、周波数、および振幅などの変調パラメータに従って、エネルギーの適用は、所望の結果を達成するように調整可能に制御することができる。
【0055】
図18は、システム200の特定の構成要素のブロック図である。本明細書で提示されているように、神経調節のためのシステム200は、対象の組織に適用するための複数のエネルギーパルスを生成するように適合されたパルス発生器214を含み得る。パルス発生器214は、別個であってもよく、またはコントローラ216などの外部装置に統合されてもよい。コントローラ216は、装置を制御するためのプロセッサ230を含む。ソフトウェアコードまたは命令は、装置の様々な構成要素を制御するために、プロセッサ230によって実行されるためにコントローラ216のメモリ232に記憶される。コントローラ216および/またはパルス発生器214は、1つ以上のリード線を介してまたは無線でエネルギー適用装置206に接続することができる。
【0056】
コントローラ216は、臨床医が変調プログラムに選択入力(例えば、関心領域20または所望の関心領域20に関連する標的組織の画像上の特定のセグメントを選択すること)または制御パラメータを伝えることを可能にするように適合された入出力回路234およびディスプレイ236を有するユーザインターフェースを含むことができる。プロセッサ230は、エネルギー適用装置を制御し、本明細書で提示される治療トランスデューサ208および/または撮像トランスデューサ210を駆動するように構成されてもよい。さらに、プロセッサ230は、撮像トランスデューサ210から受信したデータに基づいて組織の移動を判定するように構成されてもよい。
【0057】
システムは、治療を施すためにエネルギー適用装置206の操向および/または集束の一方または両方を制御することによって、エネルギー適用装置206のトランスデューサ14のエネルギービームの集束位置を制御することができるビームコントローラ237を含むことができる。ビームコントローラ237はまた、エネルギー適用装置206の1つ以上の関節部分を制御して、トランスデューサを再配置することができる。ビームコントローラは、プロセッサ230から命令を受信して、エネルギービームの集束および/または操向を変更することができる。システム200は、エネルギー適用装置206にフィードバックを与える位置センサ238および/または接触センサ239に応答することができる。ビームコントローラ237は、エネルギー適用装置206の1つ以上の関節部分の操向を容易にするモータを含んでもよい。システム200は、本明細書に開示された技術を容易にするために、位置、操向、および/または焦点の調整を可能にする特徴を含むことができると考えられる。
【0058】
メモリ232に記憶された各変調プログラムは、パルス振幅、パルス持続時間、パルス周波数、パルス繰り返し率などを含む変調パラメータの1つ以上のセットを含むことができる。パルス発生器214は、制御装置216からの制御信号に応答してその内部パラメータを変更して、エネルギー適用装置206が適用される対象にリード線233を介して伝達されるエネルギーパルスの刺激特性を変化させる。限定はしないが、定電流、定電圧、複数の独立した電流または電圧源などを含む任意の適切なタイプのパルス生成回路を使用することができる。適用されるエネルギーは、電流振幅およびパルス持続時間の関数である。コントローラ216は、変調パラメータを変更すること、および/または特定の時間にエネルギー適用を開始すること、または特定の時間にエネルギー適用を抑制することによって、エネルギーを調整可能に制御することを可能にする。一実施形態では、エネルギーを適用するためのエネルギー適用装置206の調整可能な制御は、決定された組織の移動に関する情報に基づく。
【0059】
情報が評価装置220からのものである場合、フィードバックループが調整可能な制御を駆動することができる。例えば、診断は、神経調節に応答して、評価装置220によって測定された組織の移動に基づいて行うことができる。移動が選択された閾値または範囲を超えると、コントローラ216は、関心領域(例えば、脾臓)へのエネルギー適用の治療プロトコルを、循環グルコースの減少などの標的化された生理学的結果に関連する変調パラメータで開始することができる。治療プロトコルは、診断プロトコルで使用されるものとは異なる変調パラメータ(例えば、より高いエネルギーレベル、より頻繁な適用)を使用することができる。
【0060】
一実施形態では、メモリ232は、操作者によって選択可能な異なる動作モードを記憶する。例えば、記憶された動作モードは、特定の関心領域を識別し、肝臓、膵臓、消化管、脾臓の関心領域などの特定の治療部位に関連する変調パラメータのセットを実行するための別個のアルゴリズムを含むことができる。各器官または部位は、関連する器官の深さ、関心領域のサイズ、所望の生理学的結果などに基づいて、異なる関連する変調パラメータを有し得る。操作者に手でモードを入力させるのではなく、コントローラ216は、特定の器官の選択に基づいて適切な命令を実行するように構成されてもよい。別の実施形態では、メモリ232は、異なるタイプの処置のための動作モードを記憶する。例えば、活性化は、組織機能の抑制または遮断に関連するものとは異なる刺激の圧力または周波数の範囲に関連し得る。
【0061】
特定の例では、エネルギー適用装置が超音波トランスデューサである場合、エネルギーの有効量は、関心領域に適用される選択された時間平均強度を含み得る。例えば、有効エネルギー量は、1mW/cm~30,000mW/cm(時間平均強度)および0.1MPa~7MPa(ピーク圧力)の範囲の時間平均出力(時間平均強度)およびピーク正圧を含むことができる。一例では、時間平均強度は、関心領域において35mW/cm未満、500mW/cm未満、または720mW/cm未満である。例では、時間平均強度は、熱損傷およびアブレーション/キャビテーションに関連するレベルよりも低いレベルに関連する。コントローラ216は、選択された治療位置を取得するために検証モードで動作することが可能であってもよく、選択された治療位置は、エネルギー適用装置206が選択された治療位置に配置された時に治療プロトコルを実行するように構成された治療動作モードの一部として実装されてもよい。
【0062】
システムはまた、エネルギー適用装置206の集束を容易にする撮像装置を含むことができる。一実施形態では、撮像装置は、エネルギー適用装置206と一体化されてもよく、または同じ装置であってもよく、それにより、異なる超音波パラメータ(周波数、アパーチャ、またはエネルギー)が、標的化およびその後の神経調節のために、関心領域を選択し(例えば、空間的に選択する)、選択された関心領域にエネルギーを集束させるために適用される。別の実施形態では、メモリ232は、器官または組織構造内の関心領域を空間的に選択するために使用される1つ以上の標的化モードまたは集束モードを記憶する。空間的選択は、関心領域に対応する器官の体積を識別するために器官の部分領域を選択することを含むことができる。空間選択は、本明細書で得られる画像データに依存し得る。空間選択に基づいて、エネルギー適用装置206は、関心領域に対応する選択された体積部の焦点位置に(例えば、ビームコントローラ237を使用して)集束され得る。焦点位置を誘導するために使用される画像データは、立体または平面であってもよいことを理解されたい。例えば、エネルギー適用装置206は、最初に有効化モードで動作して、関心領域の捕捉に関連する選択された治療位置を識別するために使用される画像データを捕捉することによって、選択された治療位置を取得するように構成されてもよい。検証モードエネルギーは、神経調節治療に適した変調パラメータのレベルおよび/または適用されない。しかし、関心領域が識別されると、コントローラ216は、標的化された生理学的結果の達成に関連する変調パラメータに従って治療モードで動作することができる。
【0063】
標的組織は、軸索終末および非神経細胞のシナプスを含む内部組織または器官であり得る。シナプスは、シナプス空間への分子の放出を引き起こすために、標的組織の関心領域20に集束された超音波トランスデューサの焦点領域内の軸索終末に超音波エネルギーを直接適用することによって刺激され得る。関心領域は、特定のタイプの軸索終末、例えば特定のニューロンタイプの軸索終末、および/または特定のタイプの非ニューロン細胞とシナプスを形成するものを含むように選択され得る。したがって、関心領域20は、所望の軸索終末(および関連する非神経細胞)を有する標的組織の一部に対応するように選択され得る。エネルギー適用は、シナプス内の神経からの神経伝達物質などの1つ以上の分子の放出を優先的に誘発するか、または直接エネルギー変換を介して非神経細胞自体を直接活性化するか、または所望の生理学的作用を誘発する神経細胞と非神経細胞の両方の中で活性化を引き起こすように選択され得る。
【0064】
コントローラ216はまた、変調パラメータの選択に対する入力として、標的化された生理学的結果に関連する入力を受信するように構成され得る。例えば、撮像モダリティが組織の移動を評価するために使用される場合、コントローラ216は、特性の計算された指標またはパラメータ(例えば、総移動、移動の変化率)を受信するように構成され得る。指標またはパラメータが所定の閾値を上回るか下回るかに基づいて、診断の指示または到達している治療目標に関連する指示を提供することができる(例えば、ディスプレイを介して)。一実施形態では、パラメータは、患部組織の組織の移動の尺度または患部組織の深さの尺度であり得る。他のパラメータは、1つ以上の目的の分子の濃度を評価すること(例えば、閾値またはベースライン/対照に対する濃度の変化、変化率の1つ以上を評価すること、濃度が所望の範囲内にあるかどうかを判定すること)を含み得る。さらに、エネルギー適用装置206(例えば、超音波トランスデューサ)は、コントローラ216の制御下で動作して、a)標的組織内の関心領域を空間的に選択するために使用され得る組織の画像データを取得し、b)関心領域に変調エネルギーを適用し、c)標的化された生理学的結果が生じたと判定する(例えば、移動測定を介して)ために画像データを取得することができる。そのような実施形態では、撮像装置、評価装置220、およびエネルギー適用装置206は、同じ装置であってもよい。
【0065】
実施形態では、システム200は、特定のプロファイル、目的の分子の変化、または特徴的な組織の移動を達成するために、治療トランスデューサ208の制御パラメータを設定するように構成され得る。例えば、神経調節エネルギーに対する対象の反応は様々であり得、対象間で同様の移動を達成するために異なる制御パラメータが関与し得る。制御パラメータは、特徴的な組織の移動が達成されるまで調整することができる。特徴的な組織の移動または標的組織の移動は、総合的な移動メトリックであってもよく、またはメトリックに基づく閾値または範囲であってもよく、それによって標的範囲内での移動の値を達成することは、治療の成功を示す。実施形態では、特徴的な組織の移動は、低閾値および高閾値の2つの閾値の存在であり、標的範囲は、2つの閾値の間の移動である。閾値に関連する制御パラメータは、対象によって異なり得、システム200は、対象に適用される試験または較正プロトコルに基づいて閾値を識別するように調整され得る。各対象について特定されると、閾値間および有効な治療範囲内の移動を達成する関連するパラメータが、治療プロトコルの過程にわたって使用され得る。組織の移動、または特徴的な組織の移動または標的移動を達成しないことも、新しい関心領域202を選択するために使用することができる。一例では、関心領域202は、経時的に治療効果が低くなり得る。治療有効性のこの減少は、治療プロトコルの経過にわたる組織の移動の変化または減少によって、特定され得る。別の例では、より応答性の高い関心領域202を、組織の移動に基づいて識別またはマッピングすることができる。一実施形態では、治療の開始時に、所望の制御パラメータを使用して標的組織200をマッピングして、制御パラメータで超音波エネルギーを適用することによって引き起こされる組織の移動の程度に基づいて、より応答性の高い器官または組織の部分領域を識別することができる。一旦マッピングされると、関心領域202は、刺激されると所望の生理学的応答を引き起こす1つ以上の軸索終末を含む領域にも物理的に位置する、応答性が上位の領域(すなわち、組織の移動)から選択され得る。これは、経時的に対象ごとに、また対象内で、異なり得る。
【0066】
本明細書で論じられる神経調節技術は、目的の分子の濃度の変化(例えば、増加、減少)、および/または目的の分子の特性の変化を引き起こすために使用され得る。すなわち、治療は、1つ以上の目的の分子(例えば、第1の目的の分子、第2の目的の分子など)の組織産生または放出の変化を引き起こし得、1つ以上の組織(例えば、第1の組織、第2の組織など)の1つ以上の目的の領域(例えば、第1の関心領域、第2の関心領域など)へのエネルギー適用の結果としての分子の濃度(循環、組織)または特性(共有結合修飾)の変化を指し得る。目的の分子の変化は、発現、分泌、タンパク質の移行および直接的な活性変化などの分子の特性の変化を含み得る。変化は、イオンチャネルへの適用されたエネルギーの作用に基づいて駆動され得、神経活性および機能自体を駆動するか、または神経活性に由来する分子もしくは非神経細胞内の直接的な活性化の結果としての、隣接する非神経細胞の調節を駆動する。目的の分子の変化はまた、予想される変化または濃度の変動(例えば、食事の結果として)が神経調節の結果として生じないように、分子の所望の濃度を維持することを指し得る。目的の分子の変化は、酵素媒介共有結合修飾(リン酸化、アシル化、リボシル化などの変化)などの分子特性の変化を引き起こすことを指し得る。すなわち、目的の分子の変化は、分子濃度および/または分子特性を指し得ることを理解されたい。目的の分子は、炭水化物(単糖類、多糖類)、脂質、核酸(DNA、RNA)、またはタンパク質の1つ以上などの生物学的分子であり得る。特定の実施形態では、目的の分子は、ホルモン(アミンホルモン、ペプチドホルモン、またはステロイドホルモン)などのシグナル伝達分子であり得る。
【0067】
対象間の生理学的差異は、目的の分子の濃度の標的の増加もしくは減少、または目的の分子の他のタイプの変化(例えば、分子の活性化状態の変化)の達成に関連する組織の移動のレベルの変動をもたらし得る。図19は、治療開始時または治療開始前に取得されたベースライン測定値に対する、目的の分子の所望の組織の移動および/または特性もしくは閾値の変化の一方または両方を達成するために、治療パルスの制御パラメータを調整する方法300の流れ図である。方法300では、超音波プローブのトランスデューサが、関心領域に基準撮像パルスを送達し、組織からの反射超音波を収集して、超音波プローブのコントローラ(例えば、超音波システム)によって受信されるベースラインまたは基準データを生成する(ブロック302)。超音波プローブの同じ超音波トランスデューサまたは異なる超音波トランスデューサ(例えば、専用の治療トランスデューサ)が、超音波治療パルスを適用するように制御される(ブロック304)。超音波エネルギーを適用した後に追跡パルスが送達され(ブロック306)、基準パルスと追跡パルスとの間の位相変化に基づいて組織の移動が判定される(ブロック308)。特定の実施形態では、目的の分子の変化が識別され(ブロック310)、治療パルスの有効性を評価するために使用される。特定の実施形態では、組織の移動は、治療パルスの有効性を評価するために使用される。目的の分子の変化および/または組織の移動に基づいて、治療パルスの制御パラメータを調整して(ブロック312)、患者の治療パルスを較正し、より効果的な神経調節治療を容易にすることができる。
【0068】
例えば、駆動電圧、パルス繰り返し間隔、およびパルスの長さのうちの1つ以上を調整して、治療パルスの制御パラメータを調整することができる。一実施形態では、治療パルスの制御パラメータが適用され、様々な設定で目的の分子の濃度が様々な設定で追跡されながら、様々な設定を通してサイクルされる、対象特異的な較正が実行され得る。所望の効果(例えば、ベースラインからの閾値変化率)が観察されるパラメータの有効な範囲が特定される。例えば、図7に示すように、200msパルスのサイクル数を増加させると、治療パルスがベースラインと比較してグルコース濃度の有意な変化率を引き起こしたサイクルの範囲が特定された(150~250サイクル)。目的の分子の観察された所望の変化に関連する範囲の制御パラメータの設定を使用して、将来の治療パルスを適用することができる。別の実施形態では、制御パラメータの調整中に組織の移動を追跡することができる。較正中の目的の分子の観察された所望の変化に関連する組織の移動を引き起こすために、将来の治療パルスを適用することができる(例えば、ベースラインに対する目的の分子の特定の変化率での特定の移動)。これは、対象の組織が対象の代謝の状態または臨床的な状態に基づいて治療プロトコルの過程にわたって異なる応答をし得るため、異なる線量について異なる設定に制御パラメータを動的に調整することをもたらし得る。制御パラメータの調整は、1つ以上の制御パラメータの調整であり得、所望の生理学的結果に関連する制御パラメータの組み合わせを含み得ることを理解されたい。さらに、調整は、治療パルスのIsppaまたはIsptaに対する調整であってもよい。実施形態では、調整は、複数の関心領域間で治療パルスを分配すること、または目的の分子の変化の評価に基づいて単一の関心領域に分配された線量を統合することを含み得る。例えば、治療プロトコルは、単一の関心領域への線量の適用によって開始し得る。時間が経つにつれて、補償または他の効果は、初期制御パラメータを使用して治療パルスの有効性を低下させる可能性がある。治療プロトコルは、そのような補償を回避するために多部位の間に分配される特定の線量を含み得る。
【0069】
目的の分子の変化は、閾値濃度からの逸脱または特定の範囲外の濃度であり得る。目的の分子の変化は、ベースラインからの割合の変化であり得、これは閾値の割合の変化を上回っているか下回っている場合がある。例えば、治療プロトコルは、目的の分子の濃度を少なくとも50%変化させる(増加または減少させる)という治療目標閾値を有し得る。治療目標の閾値に達していない場合、制御パラメータは、治療目標に関連する閾値に達するまで調整され、方法300は、閾値を超えるまでブロック304に反復して戻ることができる。実施形態では、閾値は、目的の分子の濃度の少なくとも100%の増加であり得る。実施形態では、治療目標は、特定の範囲内の目的の分子の濃度を達成することであり得る。
【0070】
本開示の技術的効果は、所望の生理学的転帰に関連する組織の移動を引き起こすための神経調節エネルギー(例えば、超音波エネルギー)の制御された適用を含む。治療有効性のマーカーとして組織の移動を追跡することによって、神経調節送達システムは、より低い全体エネルギーレベルで所望の移動を達成することによって、より効率的に動作することができる。さらに、神経調節エネルギーは、効果的でないより低い適用エネルギーならびに組織内の熱および/またはキャビテーション効果に関連し得るより高い適用エネルギーを回避する、標的組織の移動と相関する治療有効性の領域内で、送達され得る。
【0071】
記載されている本明細書は、最良の形態を含む例を使用し、また、任意の装置またはシステムを作製および使用し、任意の組み込まれた方法を実行することを含む開示されている技術を、当業者が実施できるようにする。特許可能な範囲は、特許請求の範囲によって定められ、当業者が想到する他の例を含むことができる。そのような他の例は、それらが特許請求の範囲の文言と異ならない構造要素を有する場合、またはそれらが特許請求の範囲の文言と実質的に異ならない同等の構造要素を含む場合、特許請求の範囲にあることが意図される。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19