(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-29
(45)【発行日】2024-12-09
(54)【発明の名称】変換に基づく映像コーディング方法及びその装置
(51)【国際特許分類】
H04N 19/12 20140101AFI20241202BHJP
H04N 19/176 20140101ALI20241202BHJP
H04N 19/136 20140101ALI20241202BHJP
【FI】
H04N19/12
H04N19/176
H04N19/136
(21)【出願番号】P 2023098497
(22)【出願日】2023-06-15
(62)【分割の表示】P 2022517974の分割
【原出願日】2020-09-21
【審査請求日】2023-07-11
(32)【優先日】2019-09-21
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-09-23
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502032105
【氏名又は名称】エルジー エレクトロニクス インコーポレイティド
【氏名又は名称原語表記】LG ELECTRONICS INC.
【住所又は居所原語表記】128, Yeoui-daero, Yeongdeungpo-gu, 07336 Seoul,Republic of Korea
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100165191
【氏名又は名称】河合 章
(74)【代理人】
【識別番号】100114018
【氏名又は名称】南山 知広
(74)【代理人】
【識別番号】100159259
【氏名又は名称】竹本 実
(72)【発明者】
【氏名】ク ムンモ
(72)【発明者】
【氏名】イム チェヒョン
(72)【発明者】
【氏名】キム スンファン
【審査官】山▲崎▼ 雄介
(56)【参考文献】
【文献】国際公開第2020/260313(WO,A1)
【文献】国際公開第2020/256442(WO,A1)
【文献】Jianle Chen et al.,Algorithm description for Versatile Video Coding and Test Model6(VTM6),[JVET-O2002-v2] (version 6),Joint Video Experts Team(JVET),2019年07月11日,pp.1,55-57
【文献】Santiago De-Luxan-Hernandez, et al.,Non-CE6: Combination of ISP and LFNST,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 16th Meeting: Geneva, CH, 1-11 Oct. 2019,JVET-P0392-v4.docx,ITU-T,2019年10月03日,URL:https://jvet-experts.org/doc_end_user/documents/16_Geneva/wg11/JVET-P0392-v4.zip
(58)【調査した分野】(Int.Cl.,DB名)
H04N 19/00-19/98
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
デコード装置により行われる映像デコード方法において、
ビットストリームから、イントラサブパーティション(ISP)モードが適用されるか否かに関連するフラグ及び変換係数に関する情報を含む映像情報を取得するステップと、
前記変換係数に関する情報に基づいて現在ブロックに対する量子化された変換係数を導出するステップと、
前記量子化された変換係数に逆量子化を行うことにより、前記現在ブロックに対する変換係数を導出するステップと、
LFNST(Low-Frequency Non-Separable Transform)マトリックスに基づいて、前記変換係数にLFNSTを適用して前記現在ブロックに対する修正された変換係数を導出するステップと、
前記修正された変換係数に逆1次変換を適用して前記現在ブロックに対するレジデュアルサンプルを導出するステップと、
前記現在ブロックに対する前記レジデュアルサンプル及び予測サンプルに基づいて復元ピクチャを生成するステップと、を含み、
前記ISPモードが前記現在ブロックに適用されることを示す前記フラグに基づいて、前記映像情報は、前記LFNSTマトリックスに関連するLFNSTインデックスを含み、
前記ISPモードが前記現在ブロックに適用されないことを前記フラグが示す場合、0でない変換係数が前記現在ブロックのDC位置以外の領域に存在することに基づいて、前記映像情報は、前記LFNSTインデックスを含む、映像デコード方法。
【請求項2】
エンコード装置により行われる映像エンコード方法において、
イントラサブパーティション(ISP)モードが現在ブロックに適用されるか否かを決定するステップと、
前記現在ブロックに対する予測サンプルに基づいて、前記現在ブロックに対するレジデュアルサンプルを導出するステップと、
前記レジデュアルサンプルに1次変換を適用して前記現在ブロックに対する変換係数を導出するステップと、
LFNST(Low-Frequency Non-Separable Transform)マトリックスに基づいて、前記変換係数にLFNSTを適用して前記現在ブロックに対する修正された変換係数を導出するステップと、
前記修正された変換係数に量子化を行うことにより、前記現在ブロックに対する量子化された変換係数を導出するステップと、
前記量子化された変換係数に関する情報及び前記ISPモードが適用されるか否かに関連するフラグを含む映像情報をエンコードするステップと、を含み、
前記ISPモードが前記現在ブロックに適用されることを示す前記フラグに基づいて、前記映像情報は、前記LFNSTマトリックスに関連するLFNSTインデックスを含み、
前記ISPモードが前記現在ブロックに適用されないことを前記フラグが示す場合、0でない変換係数が前記現在ブロックのDC位置以外の領域に存在することに基づいて、前記映像情報は、前記LFNSTインデックスを含む、映像エンコード方法。
【請求項3】
映像に対するデータの送信方法において、
前記映像に対するビットストリームを
生成するステップであって、前記ビットストリームは、イントラサブパーティション(ISP)モードが現在ブロックに適用されるか否かを決定し、前記現在ブロックに対する予測サンプルに基づいて、前記現在ブロックに対するレジデュアルサンプルを導出し、前記レジデュアルサンプルに1次変換を適用して前記現在ブロックに対する変換係数を導出し、LFNST(Low-Frequency Non-Separable Transform)マトリックスに基づいて、前記変換係数にLFNSTを適用して前記現在ブロックに対する修正された変換係数を導出し、前記修正された変換係数に量子化を行うことにより、前記現在ブロックに対する量子化された変換係数を導出し、前記量子化された変換係数に関する情報及び前記ISPモードが適用されるか否かに関連するフラグを含む映像情報をエンコードすることに基づいて生成される、ステップと、
前記
生成されたビットストリームを含む前記データを送信するステップと、を含み、
前記ISPモードが前記現在ブロックに適用されることを示す前記フラグに基づいて、前記映像情報は、前記LFNSTマトリックスに関連するLFNSTインデックスを含み、
前記ISPモードが前記現在ブロックに適用されないことを前記フラグが示す場合、0でない変換係数が前記現在ブロックのDC位置以外の領域に存在することに基づいて、前記映像情報は、前記LFNSTインデックスを含む、データ送信方法。
【発明の詳細な説明】
【技術分野】
【0001】
本文書は、映像コーディング技術に関し、より詳細には、映像コーディングシステムにおいて変換(transform)に基づく映像コーディング方法及びその装置に関する。
【背景技術】
【0002】
近年、4Kまたは8K以上のUHD(Ultra High Definition)映像/ビデオのような高解像度、高品質の映像/ビデオに対する需要が様々な分野で増加している。映像/ビデオデータが高解像度、高品質になるほど、既存の映像/ビデオデータに比べて相対的に送信される情報量またはビット量が増加するので、既存の有無線広帯域回線のような媒体を利用して映像データを送信するか、既存の保存媒体を利用して映像/ビデオデータを保存する場合、送信費用と保存費用が増加する。
【0003】
また、近年、VR(Virtual Reality)、AR(Artificial Realtiy)コンテンツやホログラムなどの実感メディア(Immersive Media)に対する関心及び需要が増加しており、ゲーム映像のように、現実映像と異なる映像特性を有する映像/ビデオに対する放送が増加している。
【0004】
これに伴って、前記のような様々な特性を有する高解像度高品質の映像/ビデオの情報を効果的に圧縮して送信するか保存し、再生するために高効率の映像/ビデオ圧縮技術が求められる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本文書の技術的課題は、映像のコーディング効率を高める方法及び装置を提供することにある。
【0006】
本文書の他の技術的課題は、変換インデックスコーディングの効率を高める方法及び装置を提供することにある。
【0007】
本文書のまた他の技術的課題は、LFNSTを活用した映像コーディング方法及び装置を提供することにある。
【0008】
本文書のまた他の技術的課題は、サブパーティションブロックにLFNSTを適用する映像コーディング方法及び装置を提供することにある。
【課題を解決するための手段】
【0009】
本文書の一実施形態によると、デコード装置により行われる映像デコード方法を提供する。前記方法は、修正された変換係数を導出するステップを含み、前記修正された変換係数を導出するステップは、前記現在ブロックのDC位置を除いた領域に前記変換係数が存在するか否かを示す第1変数を導出するステップと、前記導出結果に基づいてLFNSTインデックスをパーシングするステップと、前記LFNSTインデックス及びLFNSTマトリックスに基づいて前記修正された変換係数を導出するステップとを含み、前記現在ブロックが複数のサブパーティションブロックに分割されることに基づいて、前記第1変数の導出なしに前記LFNSTインデックスをパーシングすることができる。
【0010】
前記現在ブロックが前記複数のサブパーティションブロックに分割されない場合、前記第1変数が前記DC位置を除いた領域に前記変換係数が存在することを示すと、前記LFNSTインデックスをパーシングすることができる。
【0011】
前記修正された変換係数を導出するステップは、前記現在ブロックの左上側の第1領域を除いた第2領域に前記変換係数が存在するか否かを判断するステップをさらに含み、前記第2領域に前記変換係数が存在しないと、前記LFNSTインデックスをパーシングすることができる。
【0012】
前記複数のサブパーティションブロックに対する個別的な前記第2領域の全てに前記変換係数が存在しないと、前記LFNSTインデックスをパーシングすることができる。
【0013】
前記現在ブロックはコーディングブロックであり、個別的なサブパーティションブロックの幅及び高さが4以上であると、前記現在ブロックに対する前記LFNSTインデックスが前記複数のサブパーティションブロックに適用できる。
【0014】
分割されたサブパーティションブロックが4×4ブロック又は8×8ブロックであると、前記サブパーティションブロックの左上側からスキャン方向に8番目までの変換係数に前記LFNSTが適用できる。
【0015】
本文書の一実施形態によると、エンコード装置により行われる映像エンコード方法を提供する。前記方法は、現在ブロックのレジデュアルサンプルに対する1次変換に基づいて前記現在ブロックに対する変換係数を導出するステップと、LFNSTのためのLFNSTマトリックスに基づいて前記変換係数から修正された変換係数を導出するステップと、前記現在ブロックのDC位置を除いた領域に前記変換係数が存在することに基づいて前記LFNSTマトリックスを指示するLFNSTインデックスがシグナリングされるように映像情報を構成するステップと、量子化されたレジデュアル情報及び前記LFNSTインデックスをエンコードするステップとを含むものの、前記現在ブロックが複数のサブパーティションブロックに分割されることに基づいて、前記DC位置を除いた領域に前記変換係数が存在するか否かに関係なく、前記LFNSTインデックスがシグナリングされるように映像情報を構成することができる。
【0016】
本文書のまた別の一実施形態に係ると、エンコード装置によって実行された映像エンコード方法に従って生成されたエンコードされた映像情報、及びビットストリームが含まれた映像データの保存されたデジタル保存媒体が提供できる。
【0017】
本文書のまた別の一実施形態に係ると、デコード装置により前記映像デコード方法を行うように引き起こすエンコードされた映像情報、及びビットストリームが含まれた映像データの保存されたデジタル保存媒体が提供できる。
【発明の効果】
【0018】
本文書にかかると、全般的な映像/ビデオの圧縮効率を高めることができる。
【0019】
本文書にかかると、変換インデックスコーディングの効率を高めることができる。
【0020】
本文書のまた別の技術的課題は、LFNSTを活用した映像コーディング方法及び装置を提供する。
【0021】
本文書のまた他の技術的課題は、サブパーティションブロックにLFNSTを適用する映像コーディング方法及び装置を提供する。
【0022】
本明細書の具体的な一例を介して得られる効果は、以上で羅列された効果に制限されない。例えば、関連する技術分野における通常の知識を有する者(a person having ordinary skill in the related art)が、本明細書から理解または誘導できる多様な技術的効果が存在し得る。これによって、本明細書の具体的な効果は、本明細書に明示的に記載されているものに制限されず、本明細書の技術的特徴から理解または誘導できる多様な効果を含み得る。
【図面の簡単な説明】
【0023】
【
図1】本文書が適用できるビデオ/映像コーディングシステムの例を概略的に示す。
【0024】
【
図2】本文書が適用できるビデオ/映像エンコード装置の構成を概略的に説明する図である。
【0025】
【
図3】本文書が適用できるビデオ/映像デコード装置の構成を概略的に説明する図である。
【0026】
【
図4】本文書の一実施形態に係る多重変換技法を概略的に示す。
【0027】
【
図5】65個の予測方向のイントラ方向性モードを例示的に示す。
【0028】
【
図6】本文書の一実施形態に係るRSTを説明するための図である。
【0029】
【
図7】一例によって順方向1次変換の出力データを1次元ベクトルに配列する順序を示した図である。
【0030】
【
図8】一例によって順方向2次変換の出力データを2次元ブロックに配列する順序を示した図である。
【0031】
【
図9】本文書の一実施形態に係る広角イントラ予測モードを示した図である。
【0032】
【
図10】LFNSTが適用されるブロックの形状を示した図である。
【0033】
【
図11】一例によって順方向LFNSTの出力データの配置を示した図である。
【0034】
【
図12】一例によって順方向LFNSTに対する出力データの数を最大16個に限定したことを示した図である。
【0035】
【
図13】一例によって4×4のLFNSTが適用されるブロックにおけるゼロアウトを示す図である。
【0036】
【
図14】一例によって8×8のLFNSTが適用されるブロックにおけるゼロアウトを示す図である。
【0037】
【
図15】他の一例によって8×8のLFNSTが適用されるブロックにおけるゼロアウトを示す図である。
【0038】
【
図16】1つのコーディングブロックが分割されるサブブロックの一例を示す図である。
【0039】
【
図17】1つのコーディングブロックが分割されるサブブロックの他の例を示す図である。
【0040】
【
図18】一例によるM×2(M×1)ブロックと2×M(1×M)ブロックの対称性を示した図である。
【0041】
【
図19】一例によって2×Mブロックをトランスポーズした例示を示した図である。
【0042】
【
図20】一例による8×2又は2×8の領域に対するスキャン順序を示した図である。
【0043】
【
図21】一例による映像のデコード方法を説明するための図である。
【0044】
【
図22】一例による映像のエンコード方法を説明するための図である。
【0045】
【
図23】本文書が適用されるコンテンツのストリーミングシステム構造図を例示的に示す。
【発明を実施するための形態】
【0046】
本文書は、様々な変更を加えることができ、様々な実施形態を有することができるが、特定の実施形態を図面に例示し、詳細に説明しようとする。しかし、これは、本文書を特定の実施形態に限定しようとするわけではない。本明細書で常用する用語は、単に特定の実施形態を説明するために使用されたものであって、本文書における技術的思想を限定しようとする意図に使用されるわけではない。単数の表現は、文脈上明らかに異なる意味ではない限り、複数の表現を含む。本明細書において、「含む」又は「有する」等の用語は、明細書上に記載された特徴、数字、ステップ、動作、構成要素、部品又はこれらを組み合わせたものが存在することを指定しようとするものであり、1つ又はそれ以上の異なる特徴や、数字、ステップ、動作、構成要素、部品又はこれらを組み合わせたものの存在又は付加の可能性を予め排除しないものと理解されるべきである。
【0047】
一方、本文書で説明される図面上の各構成は、互いに異なる特徴的な機能に関する説明の便宜のために独立して示すものであって、各構成が互いに別個のハードウェアや別個のソフトウェアで具現されるということを意味するのではない。例えば、各構成のうち、2つ以上の構成が合わせられて1つの構成をなすこともあり、1つの構成が複数の構成に分けられることもある。各構成が統合及び/又は分離された実施形態も、本文書の本質から外れない限り、本文書の権利範囲に含まれる。
【0048】
以下、添付図を参照として、本文書の好ましい実施例をより詳細に説明しようとする。以下、図面上の同じ構成要素に対しては同じ参照符号を使用し、同じ構成要素に対して重複した説明は省略する。
【0049】
本文書は、ビデオ/映像コーディングに関する。例えば、本文書で開示された方法/実施例は、VVC(Versatile Video Coding)標準(ITU-T Rec. H.266)、VVC以降の次世代ビデオ/イメージのコーディング標準、又はそれ以外のビデオコーディング関連の標準(例えば、HEVC(High Efficiency Video Coding)標準(ITU-T Rec. H.265)、EVC(essential video coding)標準、AVS2標準等)と関連し得る。
【0050】
本文書では、ビデオ/映像コーディングに関する多様な実施形態を提示し、別の言及がない限り、前記実施形態は互いに組み合わせて実行することもある。
【0051】
本文書で、ビデオ(video)は、時間の流れによる一連の映像(image)の集合を意味することができる。ピクチャ(picture)は、一般的に特定の時間帯における1つの映像を示す単位を意味し、スライス(slice)/タイル(tile)は、コーディングにおいてピクチャの一部を構成する単位である。スライス/タイルは、1つ以上のCTU(coding tree unit)を含むことができる。1つのピクチャは、1つ以上のスライス/タイルで構成されることができる。1つのピクチャは、1つ以上のタイルグループで構成されることができる。1つのタイルグループは、1つ以上のタイルを含むことができる。
【0052】
ピクセル(pixel)又はペル(pel)は、1つのピクチャ(又は映像)を構成する最小の単位を意味することができる。また、ピクセルに対応する用語として「サンプル(sample)」が使用できる。サンプルは、一般的にピクセル又はピクセルの値を示すことがあり、ルマ(luma)成分のピクセル/ピクセル値のみを示すこともあり、クロマ(chroma)成分のピクセル/ピクセル値のみを示すこともある。或いは、サンプルは空間ドメインでのピクセル値を意味することもあり、このようなピクセル値が周波数ドメインに変換されると、周波数ドメインでの変換係数を意味することもある。
【0053】
ユニット(unit)は、映像処理の基本単位を示すことができる。ユニットは、ピクチャの特定領域及び当該領域に関する情報の少なくとも1つを含むことができる。1つのユニットは、1つのルマブロック及び2つのクロマ(例えば、cb、cr)ブロックを含むことができる。ユニットは、場合に応じて、ブロック(block)又は領域(area)等の用語と混用して使用されてもよい。一般的な場合、M×Nブロックは、M個の列とN個の行とからなるサンプル(又はサンプルアレイ)又は変換係数(transform coefficient)の集合(又はアレイ)を含むことができる。
【0054】
本文書において、「/」及び「、」は、「及び/又は」と解釈される。例えば、「A/B」は、「A及び/又はB」と解釈され、「A、B」は、「A及び/又はB」と解釈される。さらに、「A/B/C」は、「A、B及び/又はCの少なくとも1つ」を意味する。また、「A、B、C」も、「A、B及び/又はCの少なくとも1つ」を意味する。(In this document,the term “/” and ”,” should be interpreted to indicate “and/or.” For instance,the expression “A/B” may mean “A and/or B.” Further,“A, B” may mean “A and/or B.” Further, “A/B/C” may mean “at least one of A,B, and/or C.” Also,“A/B/C” may mean “at least one of A,B,and/or C.”)
【0055】
さらに、本文書において、「又は」は、「及び/又は」と解釈される。例えば、「A又はB」は、1)「A」のみを意味し、2)「B」のみを意味するか、3)「A及びB」を意味し得る。言い換えると、本文書の「又は」は、「さらに又は代案として(additionally or alternatively)」を意味し得る。(Further,in the document,the term “or” should be interpreted to indicate “and/or.” For instance,the expression “A or B” may comprise 1)only A,2)only B,and/or 3)both A and B. In other words,the term “or” in this document should be interpreted to indicate “additionally or alternatively.”)
【0056】
本明細書において、「少なくとも1つのA及びB(at least one of A and B)」は、「ただA」、「ただB」又は「A及びB両方」を意味し得る。また、本明細書において、「少なくとも1つのA又はB(at least one of A or B)」や「少なくとも1つのA及び/又はB(at least one of A and/or B)」という表現は、「少なくとも1つのA及びB(at least one of A and B)」と同様に解釈され得る。
【0057】
また、本明細書において、「少なくとも1つのA、B及びC(at least one of A, B and C)」は、「ただA」、「ただB」、「ただC」、又は「A、B及びCの任意の全ての組み合わせ(any combination of A, B and C)」を意味し得る。また、「少なくとも1つのA、B又はC(at least one of A, B or C)」や「少なくとも1つのA、B及び/又はC(at least one of A, B and/or C)」は、「少なくとも1つのA、B及びC(at least one of A, B and C)」を意味し得る。
【0058】
また、本明細書で使用される括弧は、「例えば(for example)」を意味し得る。具体的に、「予測(イントラ予測)」で表示された場合、「予測」の一例として「イントラ予測」が提案されたものであり得る。言い換えると、本明細書の「予測」は、「イントラ予測」に制限(limit)されず、「イントラ予測」が「予測」の一例として提案されたものであり得る。また、「予測(すなわち、イントラ予測)」で表示された場合にも、「予測」の一例として「イントラ予測」が提案されたものであり得る。
【0059】
本明細書において1つの図面内で個別的に説明される技術的特徴は、個別的に具現されてもよく、同時に具現されてもよい。
【0060】
図1は、本文書が適用できるビデオ/映像コーディングシステムの例を概略的に示す。
【0061】
図1を参照すると、ビデオ/映像コーディングシステムは、ソースデバイス及び受信デバイスを含むことができる。ソースデバイスは、エンコードされたビデオ(video)/映像(image)情報またはデータをファイルまたはストリーミングの形態でデジタル保存媒体またはネットワークを介して受信デバイスに伝達することができる。
【0062】
前記ソースデバイスは、ビデオソース、エンコード装置、送信部を含むことができる。前記受信デバイスは、受信部、デコード装置、及びレンダラーを含むことができる。前記エンコード装置は、ビデオ/映像エンコード装置と呼ばれ得、前記デコード装置は、ビデオ/映像デコード装置と呼ばれ得る。送信機は、エンコード装置に含まれることができる。受信機は、デコード装置に含まれることができる。レンダラーは、ディスプレイ部を含むこともでき、ディスプレイ部は、別個のデバイスまたは外部コンポーネントで構成されることもできる。
【0063】
ビデオソースは、ビデオ/映像のキャプチャ、合成、または生成過程などを介してビデオ/映像を獲得できる。ビデオソースは、ビデオ/映像のキャプチャデバイス及び/又はビデオ/映像の生成デバイスを含むことができる。ビデオ/映像のキャプチャデバイスは、例えば、1つ以上のカメラ、以前にキャプチャされたビデオ/映像を含むビデオ/映像アーカイブなどを含むことができる。ビデオ/映像の生成デバイスは、例えば、コンピュータ、タブレット、及びスマートフォンなどを含むことができ、(電子的に)ビデオ/映像を生成できる。例えば、コンピュータなどを介して仮想のビデオ/映像が生成され得るし、この場合、関連データが生成される過程にビデオ/映像のキャプチャ過程が代替されることができる。
【0064】
エンコード装置は、入力ビデオ/映像をエンコードすることができる。エンコード装置は、圧縮及びコーディング効率のために、予測、変換、量子化など、一連の手順を行うことができる。エンコードされたデータ(エンコードされたビデオ/映像情報)は、ビットストリーム(bitstream)の形態で出力されることができる。
【0065】
送信部は、ビットストリームの形態で出力されたエンコードされたビデオ/映像情報またはデータをファイルまたはストリーミングの形態でデジタル保存媒体またはネットワークを介して受信デバイスの受信部に伝達することができる。デジタル保存媒体は、USB、SD、CD、DVD、ブルーレイ、HDD、SSDなど、様々な保存媒体を含むことができる。送信部は、予め決められたファイルフォーマットを介してメディアファイルを生成するためのエレメントを含むことができ、放送/通信ネットワークを介した送信のためのエレメントを含むことができる。受信部は、前記ビットストリームを受信/抽出してデコード装置に伝達することができる。
【0066】
デコード装置は、エンコード装置の動作に対応する逆量子化、逆変換、予測など、一連の手順を行ってビデオ/映像をデコードすることができる。
【0067】
レンダラーは、デコードされたビデオ/映像をレンダリングすることができる。レンダリングされたビデオ/映像は、ディスプレイ部を介してディスプレイされることができる。
【0068】
図2は、本文書が適用できるビデオ/映像エンコード装置の構成を概略的に説明する図面である。以下、ビデオエンコード装置とは、映像エンコード装置を含むことができる。
【0069】
図2を参照すると、エンコード装置200は、映像分割部(image partitioner)210、予測部(predictor)220、レジデュアル処理部(residual processor)230、エントロピーエンコード部(entropy encoder)240、加算部(adder)250、フィルタリング部(filter)260、及びメモリ(memory)270を含めて構成されることができる。予測部220は、インター予測部221及びイントラ予測部222を含むことができる。レジデュアル処理部230は、変換部(transformer)232、量子化部(quantizer)233、逆量子化部(dequantizer)234、逆変換部(inverse transformer)235を含むことができる。レジデュアル処理部230は、減算部(subtractor)231をさらに含むことができる。加算部250は、復元部(reconstructor)又は復元ブロック生成部(recontructged block generator)と呼ばれ得る。前述した映像分割部210、予測部220、レジデュアル処理部230、エントロピーエンコード部240、加算部250、及びフィルタリング部260は、実施形態によって1つ以上のハードウェアコンポーネント(例えば、エンコーダチップセットまたはプロセッサ)によって構成されることができる。また、メモリ270は、DPB(decoded picture buffer)を含むことができ、デジタル保存媒体によって構成されることもできる。前記ハードウェアコンポーネントは、メモリ270を内/外部コンポーネントとしてさらに含むこともできる。
【0070】
映像分割部210は、エンコード装置200に入力された入力映像(または、ピクチャ、フレーム)を1つ以上の処理ユニット(processing unit)に分割することができる。一例として、前記処理ユニットは、コーディングユニット(coding unit、CU)と呼ばれ得る。この場合、コーディングユニットは、コーディングツリーユニット(coding tree unit、CTU)又は最大コーディングユニット(largest coding unit、LCU)からQTBTTT(Quad-tree binary-tree ternary-tree)構造によって再帰的に(recursively)分割されることができる。例えば、1つのコーディングユニットは、クアッドツリー構造、バイナリツリー構造、及び/又はターナリ構造に基づいて下位(deeper)デプスの複数のコーディングユニットに分割されることができる。この場合、例えば、クアッドツリー構造が先に適用され、バイナリツリー構造及び/又はターナリ構造がその後に適用されることができる。または、バイナリツリー構造が先に適用されることもできる。それ以上分割されない最終コーディングユニットに基づいて、本文書に係るコーディング手順が行われ得る。この場合、映像特性によるコーディング効率などに基づいて、最大コーディングユニットがすぐに最終コーディングユニットとして使用されることができ、または、必要に応じてコーディングユニットは、再帰的に(recursively)もっと下位デプスのコーディングユニットに分割されて、最適のサイズのコーディングユニットが最終コーディングユニットとして使用されることができる。ここで、コーディング手順とは、後述する予測、変換、及び復元などの手順を含むことができる。他の例として、前記処理ユニットは、予測ユニット(PU:Prediction Unit)又は変換ユニット(TU:Transform Unit)をさらに含むことができる。この場合、前記予測ユニット及び前記変換ユニットは、各々前述した最終コーディングユニットから分割またはパーティショニングされることができる。前記予測ユニットは、サンプル予測の単位であってもよく、前記変換ユニットは、変換係数を導く単位及び/又は変換係数からレジデュアル信号(residual signal)を導く単位であってもよい。
【0071】
ユニットは、場合に応じて、ブロック(block)又は領域(area)などの用語と混用して使用されることができる。一般的な場合、M×Nブロックは、M個の列とN個の行とからなるサンプルまたは変換係数(transform coefficient)の集合を示すことができる。サンプルは、一般的にピクセルまたはピクセルの値を示すことができ、輝度(luma)成分のピクセル/ピクセル値のみを示すこともでき、彩度(chroma)成分のピクセル/ピクセル値のみを示すこともできる。サンプルは、1つのピクチャ(または、映像)をピクセル(pixel)又はペル(pel)に対応する用語として使用できる。
【0072】
減算部231は、入力映像信号(原本ブロック、原本サンプル又は原本サンプルアレイ)で予測部220から出力された予測信号(予測されたブロック、予測サンプル又は予測サンプルアレイ)を減算してレジデュアル信号(レジデュアルブロック、レジデュアルサンプル又はレジデュアルサンプルアレイ)を生成でき、生成されたレジデュアル信号は、変換部232に送信される。予測部220は、処理対象ブロック(以下、現在ブロックという)に対する予測を行い、前記現在ブロックに対する予測サンプルを含む予測されたブロック(predicted block)を生成できる。予測部220は、現在ブロック又はCU単位でイントラ予測が適用されるか、またはインター予測が適用されるか決定することができる。予測部は、各予測モードについての説明で後述するように、予測モード情報など、予測に関する様々な情報を生成してエントロピーエンコード部240に伝達することができる。予測に関する情報は、エントロピーエンコード部240でエンコードされてビットストリームの形態で出力されることができる。
【0073】
イントラ予測部222は、現在ピクチャ内のサンプルを参照して現在ブロックを予測できる。前記参照されるサンプルは、予測モードによって前記現在ブロックの周辺(neighbor)に位置してもよく、または、離れて位置してもよい。イントラ予測における予測モードは、複数の非方向性モードと複数の方向性モードとを含むことができる。非方向性モードは、例えば、DCモード及びプラナーモード(Planarモード)を含むことができる。方向性モードは、予測方向の細かい程度によって、例えば、33個の方向性予測モードまたは65個の方向性予測モードを含むことができる。ただし、これは、例示であり、設定に応じてそれ以上またはそれ以下の個数の方向性予測モードが使用され得る。イントラ予測部222は、周辺ブロックに適用された予測モードを用いて、現在ブロックに適用される予測モードを決定することもできる。
【0074】
インター予測部221は、参照ピクチャ上で動きベクトルにより特定される参照ブロック(参照サンプルアレイ)に基づいて、現在ブロックに対する予測されたブロックを導くことができる。そのとき、インター予測モードで送信される動き情報の量を減らすために、周辺ブロックと現在ブロックとの間の動き情報の相関性に基づいて、動き情報をブロック、サブブロック、またはサンプル単位で予測することができる。前記動き情報は、動きベクトル及び参照ピクチャインデックスを含むことができる。前記動き情報は、インター予測方向(L0予測、L1予測、Bi予測等)情報をさらに含むことができる。インター予測の場合に、周辺ブロックは、現在ピクチャ内に存在する空間的周辺ブロック(spatial neighboring block)と参照ピクチャに存在する時間的周辺ブロック(temporal neighboring block)とを含むことができる。前記参照ブロックを含む参照ピクチャと前記時間的周辺ブロックを含む参照ピクチャとは同じであってもよく、異なってもよい。前記時間的周辺ブロックは、同一位置参照ブロック(collocated reference block)、同一位置CU(col CU)などの名前で呼ばれ得、前記時間的周辺ブロックを含む参照ピクチャは、同一位置ピクチャ(collocated picture、colPic)とも呼ばれ得る。例えば、インター予測部221は、周辺ブロックに基づいて動き情報候補リストを構成し、前記現在ブロックの動きベクトル及び/又は参照ピクチャインデックスを導出するために、どの候補が使用されるかを指示する情報を生成できる。様々な予測モードに基づいてインター予測が実行されることができ、例えば、スキップモードとマージモードの場合に、インター予測部221は、周辺ブロックの動き情報を現在ブロックの動き情報として用いることができる。スキップモードの場合、マージモードと異なり、レジデュアル信号が送信されないことがある。動き情報予測(motion vector prediction、MVP)モードの場合、周辺ブロックの動きベクトルを動きベクトル予測子(motion vector predictor)として用い、動きベクトル差分(motion vector difference)をシグナリングすることにより、現在ブロックの動きベクトルを指示することができる。
【0075】
予測部220は、後述する様々な予測方法に基づいて予測信号を生成できる。例えば、予測部は、1つのブロックに対する予測のために、イントラ予測またはインター予測を適用できるだけでなく、イントラ予測とインター予測とを同時に適用することができる。これは、combined inter and intra prediction(CIIP)と呼ばれ得る。また、予測部は、ブロックに対する予測のために、イントラブロックコピー(intra block copy、IBC)を実行することもできる。前記イントラブロックコピーは、例えば、SCC(screen content coding)などのように、ゲームなどのコンテンツ映像/動画のコーディングのために使用されることができる。IBCは、基本的に現在ピクチャ内で予測を実行するが、現在ピクチャ内で参照ブロックを導出する点においてインター予測と同様に実行されることができる。すなわち、IBCは、本文書において説明されるインター予測技法の少なくとも1つを用いることができる。
【0076】
インター予測部221及び/又はイントラ予測部222を介して生成された予測信号は、復元信号を生成するために用いられるか、レジデュアル信号を生成するために用いられることができる。変換部232は、レジデュアル信号に変換技法を適用して、変換係数(transform coefficients)を生成することができる。例えば、変換技法は、DCT(Discrete Cosine Transform)、DST(Discrete Sine Transform)、GBT(Graph-Based Transform)、又はCNT(Conditionally Non-linear Transform)等を含むことができる。ここで、GBTは、ピクセル間の関係情報をグラフで表現するという際に、このグラフから得られた変換を意味する。CNTは、以前に復元された全てのピクセル(all previously reconstructed pixel)を用いて予測信号を生成し、それに基づいて獲得される変換を意味する。また、変換過程は正方形の同じサイズを有するピクセルブロックに適用されてもよく、正方形ではない可変サイズのブロックに適用されてもよい。
【0077】
量子化部233は、変換係数を量子化してエントロピーエンコード部240に送信され、エントロピーエンコード部240は、量子化された信号(量子化された変換係数に関する情報)をエンコードしてビットストリームに出力することができる。前記量子化された変換係数に関する情報は、レジデュアル情報と呼ばれ得る。量子化部233は、係数のスキャン順序(scan order)に基づいて、ブロック形態の量子化された変換係数を1次元ベクトルの形態で再整列することができ、前記1次元ベクトルの形態の量子化された変換係数に基づいて、前記量子化された変換係数に関する情報を生成することもできる。エントロピーエンコード部240は、例えば、指数ゴロム(exponential Golomb)、CAVLC(context-adaptive variable length coding)、CABAC(context-adaptive binary arithmetic coding)などのような様々なエンコード方法を行うことができる。エントロピーエンコード部240は、量子化された変換係数の他に、ビデオ/イメージの復元に必要な情報(例えば、シンタックス要素(syntax elements)の値等)を共にまたは別にエンコードすることもできる。エンコードされた情報(例えば、エンコードされたビデオ/映像情報)は、ビットストリームの形態でNAL(network abstraction layer)ユニット単位で送信または保存されることができる。前記ビデオ/映像情報は、アダプテーションパラメータセット(APS)、ピクチャパラメータセット(PPS)、シーケンスパラメータセット(SPS)、またはビデオパラメータセット(VPS)等、様々なパラメータセットに関する情報をさらに含むことができる。また、前記ビデオ/映像情報は、一般制限情報(general constraint information)をさらに含むことができる。本文書において、後述されるシグナリング/送信される情報及び/又はシンタックス要素は、前述したエンコード手順を介してエンコードされて、前記ビットストリームに含まれ得る。前記ビットストリームは、ネットワークを介して送信され得、またはデジタル保存媒体に保存され得る。ここで、ネットワークは、放送網及び/又は通信網などを含み得、デジタル保存媒体は、USB、SD、CD、DVD、ブルーレイ、HDD、SSDなど、様々な保存媒体を含み得る。エントロピーエンコード部240から出力された信号は、送信する送信部(図示せず)及び/又は保存する保存部(図示せず)がエンコード装置200の内/外部エレメントとして構成されてもよく、または送信部は、エントロピーエンコード部240に含まれてもよい。
【0078】
量子化部233から出力された量子化された変換係数は、予測信号を生成するために用いられることができる。例えば、量子化された変換係数に逆量子化部234及び逆変換部235を介して逆量子化及び逆変換を適用することにより、レジデュアル信号(レジデュアルブロック又はレジデュアルサンプル)を復元できる。加算部250は、復元されたレジデュアル信号を予測部220から出力された予測信号に加えることにより、復元(reconstructed)信号(復元ピクチャ、復元ブロック、復元サンプル又は復元サンプルアレイ)が生成できる。スキップモードが適用された場合のように、処理対象ブロックに対するレジデュアルがない場合、予測されたブロックが復元ブロックとして使用できる。生成された復元信号は、現在ピクチャ内の次の処理対象ブロックのイントラ予測のために使用されることができ、後述するように、フィルタリングを経て次のピクチャのインター予測のために使用されることもできる。
【0079】
一方、ピクチャエンコード及び/又は復元過程でLMCS(luma mapping with chroma scaling)が適用されることもできる。
【0080】
フィルタリング部260は、復元信号にフィルタリングを適用して主観的/客観的画質を向上させることができる。例えば、フィルタリング部260は、復元ピクチャに様々なフィルタリング方法を適用して修正された(modified)復元ピクチャを生成することができ、前記修正された復元ピクチャをメモリ270、具体的に、メモリ270のDPBに保存することができる。前記様々なフィルタリング方法は、例えば、デブロッキングフィルタリング、サンプル適応的オフセット(sample adaptive offset、SAO)、適応的ループフィルタ(adaptive loop filter)、両方向フィルタ(bilateral filter)などを含むことができる。フィルタリング部260は、各フィルタリング方法についての説明で後述するように、フィルタリングに関する様々な情報を生成してエントロピーエンコード部290に伝達することができる。フィルタリング関する情報は、エントロピーエンコード部290でエンコードされてビットストリームの形態で出力されることができる。
【0081】
メモリ270に送信された修正された復元ピクチャは、インター予測部280で参照ピクチャとして使用されることができる。エンコード装置は、これを介してインター予測が適用される場合、エンコード装置200とデコード装置における予測のミスマッチを避けることができ、符号化効率も向上させることができる。
【0082】
メモリ270のDPBは、修正された復元ピクチャをインター予測部221における参照ピクチャとして使用するために保存することができる。メモリ270は、現在ピクチャ内の動き情報が導出された(または、エンコードされた)ブロックの動き情報及び/又は既に復元されたピクチャ内のブロックの動き情報を保存することができる。前記保存された動き情報は、空間的周辺ブロックの動き情報または時間的周辺ブロックの動き情報として活用するために、インター予測部221に伝達することができる。メモリ270は、現在ピクチャ内の復元されたブロックの復元サンプルを保存することができ、イントラ予測部222に伝達することができる。
【0083】
図3は、本文書が適用できるビデオ/映像デコード装置の構成を概略的に説明する図面である。
【0084】
図3を参照すると、デコード装置300は、エントロピーデコード部(entropy decoder)310、レジデュアル処理部(residual processor)320、予測部(predictor)330、加算部(adder)340、フィルタリング部(filter)350、及びメモリ(memoery)360を含めて構成されることができる。予測部330は、インター予測部331及びイントラ予測部332を含むことができる。レジデュアル処理部320は、逆量子化部(dequantizer)321及び逆変換部(inverse transformer)321を含むことができる。前述したエントロピーデコード部310、レジデュアル処理部320、予測部330、加算部340、及びフィルタリング部350は、実施形態によって1つのハードウェアコンポーネント(例えば、デコーダチップセットまたはプロセッサ)により構成されることができる。また、メモリ360は、DPB(decoded picture buffer)を含むことができ、デジタル保存媒体により構成されることもできる。前記ハードウェアコンポーネントは、メモリ360を内/外部コンポーネントとしてさらに含むこともできる。
【0085】
ビデオ/映像情報を含むビットストリームが入力されると、デコード装置300は、
図2のエンコード装置でビデオ/映像情報が処理されたプロセスに対応して映像を復元できる。例えば、デコード装置300は、前記ビットストリームから獲得したブロック分割に関する情報に基づいてユニット/ブロックを導出できる。デコード装置300は、エンコード装置で適用された処理ユニットを用いてデコードを実行することができる。したがって、デコードの処理ユニットは、例えば、コーディングユニットであってもよく、コーディングユニットは、コーディングツリーユニットまたは最大コーディングユニットからクアッドツリー構造、バイナリツリー構造、及び/又はターナリツリー構造にしたがって分割されることができる。コーディングユニットから1つ以上の変換ユニットが導出できる。そして、デコード装置300を介してデコード及び出力された復元映像信号は、再生装置を介して再生されることができる。
【0086】
デコード装置300は、
図2のエンコード装置から出力された信号をビットストリームの形態で受信することができ、受信された信号は、エントロピーデコード部310を介してデコードされることができる。例えば、エントロピーデコード部310は、前記ビットストリームをパーシングして映像復元(または、ピクチャ復元)に必要な情報(例えば、ビデオ/映像情報)を導出できる。前記ビデオ/映像情報は、アダプテーションパラメータセット(APS)、ピクチャパラメータセット(PPS)、シーケンスパラメータセット(SPS)、またはビデオパラメータセット(VPS)など、様々なパラメータセットに関する情報をさらに含むことができる。また、前記ビデオ/映像情報は、一般制限情報(general constraint information)をさらに含むことができる。デコード装置は、前記パラメータセットに関する情報及び/又は前記一般制限情報に基づいてさらにピクチャをデコードすることができる。本文書において後述されるシグナリング/受信される情報及び/又はシンタックス要素は、前記デコード手順を介してデコードされて、前記ビットストリームから獲得されることができる。例えば、エントロピーデコード部310は、指数ゴロム符号化、CAVLC、またはCABACなどのコーディング方法を基にビットストリーム内の情報をデコードし、映像の復元に必要なシンタックスエレメントの値、レジデュアルに関する変換係数の量子化された値を出力できる。より詳細に、CABACエントロピーデコード方法は、ビットストリームで各シンタックス要素に当該するビンを受信し、デコード対象のシンタックス要素情報、周辺及びデコード対象ブロックのデコード情報、あるいは以前ステップでデコードされたシンボル/ビンの情報を利用して文脈(context)モデルを決定し、決定された文脈モデルによってビン(bin)の発生確率を予測してビンの算術デコード(arithmetic decoding)を実行し、各シンタックス要素の値に当該するシンボルを生成できる。そのとき、CABACエントロピーデコード方法は、文脈モデルの決定後、次のシンボル/ビンの文脈モデルのためにデコードされたシンボル/ビンの情報を利用して文脈モデルをアップデートすることができる。エントロピーデコード部310でデコードされた情報のうち、予測に関する情報は、予測部330に提供され、エントロピーデコード部310でエントロピーデコードが実行されたレジデュアルに関する情報、すなわち、量子化された変換係数及び関連のパラメータ情報は、逆量子化部321に入力されることができる。また、エントロピーデコード310でデコードされた情報のうち、フィルタリングに関する情報は、フィルタリング部350に提供されることができる。一方、エンコード装置から出力された信号を受信する受信部(図示せず)がデコード装置300の内/外部エレメントとしてさらに構成され得、または受信部は、エントロピーデコード部310の構成要素であり得る。一方、本文書に係るデコード装置は、ビデオ/映像/ピクチャデコード装置と呼ばれ得、前記デコード装置は、情報デコーダ(ビデオ/映像/ピクチャ情報デコーダ)及びサンプルデコーダ(ビデオ/映像/ピクチャサンプルデコーダ)に区分することもできる。前記情報デコーダは、前記エントロピーデコード部310を含むことができ、前記サンプルデコーダは、前記逆量子化部321、逆変換部322、予測部330、加算部340、フィルタリング部350、及びメモリ360の少なくとも1つを含むことができる。
【0087】
逆量子化部321では、量子化された変換係数を逆量子化して変換係数を出力できる。逆量子化部321は、量子化された変換係数を2次元のブロック形態で再整列することができる。この場合、前記再整列は、エンコード装置で行われた係数のスキャン順序に基づいて再整列を行うことができる。逆量子化部321は、量子化パラメータ(例えば、量子化ステップサイズ情報)を用いて量子化された変換係数に対する逆量子化を実行し、変換係数(transform coefficient)を獲得できる。
【0088】
逆変換部322では、変換係数を逆変換してレジデュアル信号(レジデュアルブロック、レジデュアルサンプルアレイ)を獲得することになる。
【0089】
予測部は、現在ブロックに対する予測を行い、前記現在ブロックに対する予測サンプルを含む予測されたブロック(predicted block)を生成できる。予測部は、エントロピーデコード部310から出力された前記予測に関する情報に基づいて、前記現在ブロックにイントラ予測が適用されるか、またはインター予測が適用されるか決定することができ、具体的なイントラ/インター予測モードを決定できる。
【0090】
予測部は、後述する様々な予測方法に基づいて予測信号を生成できる。例えば、予測部は、1つのブロックに対する予測のために、イントラ予測またはインター予測を適用できるだけでなく、イントラ予測とインター予測とを同時に適用することができる。これは、combined inter and intra prediction(CIIP)と呼ばれ得る。また、予測部は、ブロックに対する予測のために、イントラブロックコピー(intra block copy、IBC)を行うこともある。前記イントラブロックコピーは、例えば、SCC(screen content coding)などのように、ゲームなどのコンテンツ映像/動画コーディングのために使用されることができる。IBCは、基本的に現在ピクチャ内で予測を実行するが、現在ピクチャ内で参照ブロックを導出する点においてインター予測と同様に実行されることができる。すなわち、IBCは、本文書において説明されるインター予測技法の少なくとも1つを利用することができる。
【0091】
イントラ予測部332は、現在ピクチャ内のサンプルを参照して現在ブロックを予測できる。前記参照されるサンプルは、予測モードによって前記現在ブロックの周辺(neighbor)に位置してもよく、または離れて位置してもよい。イントラ予測における予測モードは、複数の非方向性モードと複数の方向性モードとを含むことができる。イントラ予測部332は、周辺ブロックに適用された予測モードを用いて、現在ブロックに適用される予測モードを決定することもできる。
【0092】
インター予測部331は、参照ピクチャ上で動きベクトルにより特定される参照ブロック(参照サンプルアレイ)に基づいて、現在ブロックに対する予測されたブロックを導くことができる。そのとき、インター予測モードで送信される動き情報の量を減らすために、周辺ブロックと現在ブロックとの間の動き情報の相関性に基づいて動き情報をブロック、サブブロック、またはサンプル単位で予測することができる。前記動き情報は、動きベクトル及び参照ピクチャインデックスを含むことができる。前記動き情報は、インター予測方向(L0予測、L1予測、Bi予測等)情報をさらに含むことができる。インター予測の場合に、周辺ブロックは、現在ピクチャ内に存在する空間的周辺ブロック(spatial neighboring block)と参照ピクチャに存在する時間的周辺ブロック(temporal neighboring block)とを含むことができる。例えば、インター予測部331は、周辺ブロックに基づいて動き情報候補リストを構成し、受信した候補選択情報に基づいて前記現在ブロックの動きベクトル及び/又は参照ピクチャインデックスを導出できる。様々な予測モードに基づいてインター予測が実行されることができ、前記予測に関する情報は、前記現在ブロックに対するインター予測のモードを指示する情報を含むことができる。
【0093】
加算部340は、獲得されたレジデュアル信号を予測部330から出力された予測信号(予測されたブロック、予測サンプルアレイ)に加えることにより、復元信号(復元ピクチャ、復元ブロック、復元サンプルアレイ)を生成できる。スキップモードが適用された場合のように、処理対象ブロックに対するレジデュアルがない場合、予測されたブロックが復元ブロックとして使用されることができる。
【0094】
加算部340は、復元部または復元ブロック生成部と呼ばれ得る。生成された復元信号は、現在ピクチャ内の次の処理対象ブロックのイントラ予測のために使用されることができ、後述するように、フィルタリングを経て出力されてもよく、または次のピクチャのインター予測のために使用されてもよい。
【0095】
一方、ピクチャデコード過程でLMCS(luma mapping with chroma scaling)が適用されることもできる。
【0096】
フィルタリング部350は、復元信号にフィルタリングを適用して、主観的/客観的画質を向上させることができる。例えば、フィルタリング部350は、復元ピクチャに様々なフィルタリング方法を適用して修正された(modified)復元ピクチャを生成でき、前記修正された復元ピクチャをメモリ360、具体的に、メモリ360のDPBに送信することができる。前記様々なフィルタリング方法は、例えば、デブロッキングフィルタリング、サンプル適応的オフセット(sample adaptive offset)、適応的ループフィルタ(adaptive loop filter)、両方向フィルタ(bilateral filter)などを含むことができる。
【0097】
メモリ360のDPBに保存された(修正された)復元ピクチャは、インター予測部331で参照ピクチャとして使用されることができる。メモリ360は、現在ピクチャ内の動き情報が導出された(または、デコードされた)ブロックの動き情報及び/又は既に復元されたピクチャ内のブロックの動き情報を保存できる。前記保存された動き情報は、空間的周辺ブロックの動き情報または時間的周辺ブロックの動き情報として活用するために、インター予測部331に伝達することができる。メモリ360は、現在ピクチャ内の復元されたブロックの復元サンプルを保存でき、イントラ予測部332に伝達することができる。
【0098】
本明細書において、デコード装置300の予測部330、逆量子化部321、逆変換部322、及びフィルタリング部350等で説明された実施形態は、各々デコード装置200の予測部220、逆量子化部234、逆変換部235及びフィルタリング部260等にも同一または対応するように適用されることができる。
【0099】
前述したように、ビデオコーディングを実行するにあたって、圧縮効率を高めるために予測を実行する。これを通じて、コーディングの対象ブロックである現在ブロックに対する予測サンプルを含む予測されたブロックを生成することができる。ここで、前記予測されたブロックは、空間ドメイン(又はピクセルドメイン)での予測サンプルを含む。前記予測されたブロックは、エンコード装置及びデコード装置で同様に導出され、前記エンコード装置は、原本ブロックの原本サンプル値そのものではなく、前記原本ブロックと前記予測されたブロックとの間のレジデュアルに関する情報(レジデュアル情報)をデコード装置にシグナリングすることによって映像コーディングの効率を高めることができる。デコード装置は、前記レジデュアル情報に基づいてレジデュアルサンプルを含むレジデュアルブロックを導出し、前記レジデュアルブロックと前記予測されたブロックとを合わせて、復元サンプルを含む復元ブロックを生成することができ、復元ブロックを含む復元ピクチャを生成することができる。
【0100】
前記レジデュアル情報は、変換及び量子化手順を通じて生成されることができる。例えば、エンコード装置は、前記原本ブロックと前記予測されたブロックとの間のレジデュアルブロックを導出し、前記レジデュアルブロックに含まれたレジデュアルサンプル(レジデュアルサンプルアレイ)に変換手順を行って変換係数を導出し、前記変換係数に量子化手順を行って量子化された変換係数を導出し、関連したレジデュアル情報を(ビットストリームを介して)デコード装置にシグナリングできる。ここで、前記レジデュアル情報は、前記量子化された変換係数の値情報、位置情報、変換技法、変換カーネル、量子化パラメータ等の情報を含むことができる。デコード装置は、前記レジデュアル情報に基づいて逆量子化/逆変換手順を行い、レジデュアルサンプル(又はレジデュアルブロック)を導出することができる。デコード装置は、予測されたブロックと前記レジデュアルブロックとに基づいて復元ピクチャを生成することができる。また、エンコード装置は、以降のピクチャのインター予測のための参照のために量子化された変換係数を逆量子化/逆変換してレジデュアルブロックを導出し、これに基づいて復元ピクチャを生成することができる。
【0101】
図4は、本文書にかかる多重変換技法を概略的に示す。
【0102】
図4を参照すると、変換部は、前述した
図2のエンコード装置内の変換部に対応し得、逆変換部は、前述した
図2のエンコード装置内の逆変換部又は
図3のデコード装置内の逆変換部に対応し得る。
【0103】
変換部は、レジデュアルブロック内のレジデュアルサンプル(レジデュアルサンプルアレイ)に基づいて1次変換を行って、(1次)変換係数を導出することができる(S410)。このような1次変換(primary transform)は、核心変換(core transform)と指称され得る。ここで、前記1次変換は、多重変換選択(Multiple Transform Selection、MTS)に基づき得、1次変換として多重変換が適用される場合、多重核心変換と指称され得る。
【0104】
多重核心変換は、DCT(Discrete Cosine Transform)タイプ2、DST(Discrete Sine Transform)タイプ7、DCTタイプ8、及び/又はDSTタイプ1をさらに使用して変換する方式を示すことができる。すなわち、前記多重核心変換は、前記DCTタイプ2、前記DSTタイプ7、前記DCTタイプ8、及び前記DSTタイプ1のうち選択された複数の変換カーネルに基づいて、空間ドメインのレジデュアル信号(又はレジデュアルブロック)を周波数ドメインの変換係数(又は1次変換係数)に変換する変換方法を示すことができる。ここで、前記1次変換係数は、変換部の立場で仮の変換係数と呼ばれ得る。
【0105】
言い換えると、既存の変換方法が適用される場合、DCTタイプ2に基づいて、レジデュアル信号(又はレジデュアルブロック)に対する空間ドメインから周波数ドメインへの変換が適用されて、変換係数が生成できた。これと異なり、前記多重核心変換が適用される場合、DCTタイプ2、DSTタイプ7、DCTタイプ8、及び/又はDSTタイプ1等に基づいて、レジデュアル信号(又はレジデュアルブロック)に対する空間ドメインから周波数ドメインへの変換が適用されて、変換係数(又は1次変換係数)が生成できる。ここで、DCTタイプ2、DSTタイプ7、DCTタイプ8、及びDSTタイプ1等は、変換タイプ、変換カーネル(kernel)又は変換コア(core)と呼ばれ得る。このようなDCT/DST変換タイプは、基底関数に基づいて定義されることができる。
【0106】
前記多重核心変換が実行される場合、前記変換カーネルのうち、対象ブロックに対する垂直変換カーネル及び水平変換カーネルが選択でき、前記垂直変換カーネルに基づいて前記対象ブロックに対する垂直変換が実行され、前記水平変換カーネルに基づいて前記対象ブロックに対する水平変換が実行されることができる。ここで、前記水平変換は、前記対象ブロックの水平成分に対する変換を示すことができ、前記垂直変換は、前記対象ブロックの垂直成分に対する変換を示すことができる。前記垂直変換カーネル/水平変換カーネルは、レジデュアルブロックを含む対象ブロック(CU又はサブブロック)の予測モード及び/又は変換インデックスに基づいて、適応的に決定されることができる。
【0107】
また、一例によると、MTSを適用して1次変換を実行する場合、特定の基底関数を所定の値に設定し、垂直変換又は水平変換であるとき、どの基底関数が適用されるか否かを組み合わせて、変換カーネルに対するマッピング関係を設定することができる。例えば、水平方向の変換カーネルをtrTypeHorで示し、垂直方向の変換カーネルをtrTypeVerで示す場合、trTypeHor又はtrTypeVerの値0はDCT2に設定され、trTypeHor又はtrTypeVerの値1はDST7に設定され、trTypeHor又はtrTypeVerの値2はDCT8に設定されることができる。
【0108】
この場合、多数の変換カーネルセットのいずれかを指示するために、MTSインデックス情報がエンコードされ、デコード装置にシグナリングされることができる。例えば、MTSインデックスが0であると、trTypeHor及びtrTypeVerの値が全て0であることを指示し、MTSインデックスが1であると、trTypeHor及びtrTypeVerの値が全て1であることを指示し、MTSインデックスが2であると、trTypeHorの値は2であり、trTypeVerの値は1であることを指示し、MTSインデックスが3であると、trTypeHorの値は1であり、trTypeVerの値は2であることを指示し、MTSインデックスが4であると、trTypeHor及びtrTypeVerの値が全て2であることを指示することができる。
【0109】
一例によって、MTSのインデックス情報による変換カーネルセットを表で示すと、次の通りである。
【0110】
【0111】
変換部は、前記(1次)変換係数に基づいて2次変換を行って修正された(2次)変換係数を導出する(S420)。前記1次変換は空間ドメインから周波数ドメインへの変換であり、前記2次変換は(1次)変換係数間に存在する相関関係(correlation)を利用してより圧縮的な表現に変換することを意味する。前記2次変換は非分離変換(non-separable transform)を含む。この場合、前記2次変換は非分離2次変換(non-separable secondary transform、NSST)又はMDNSST(mode-dependent non-separable secondary transform)と呼ばれてもよい。前記非分離2次変換は、前記1次変換により導出された(1次)変換係数を非分離変換マトリックス(non-separable transform matrix)に基づいて2次変換してレジデュアル信号に対する修正された変換係数(又は、2次変換係数)を生成する変換を示す。ここで、前記非分離変換マトリックスに基づいて前記(1次)変換係数に対して垂直変換及び水平変換を分離して(又は、水平垂直変換を独立的に)適用せずに一度に変換を適用することができる。言い換えると、前記非分離2次変換は、前記(1次)変換係数に対して垂直方向と水平方向に別に適用されずに、例えば、2次元信号(変換係数)を特定の決まった方向(例えば、行優先(row-first)方向又は列優先(column-first)方向)により1次元信号に再整列した後、前記非分離変換マトリックスに基づいて修正された変換係数(又は、2次変換係数)を生成する変換方法を示す。例えば、行優先順序はM×Nブロックに対して1番目の行、2番目の行、...、N番目の行の順に一列に配置することであり、列優先順序はM×Nブロックに対して1番目の列、2番目の列、... 、M番目の列の順に一列に配置することである。前記非分離2次変換は、(1次)変換係数で構成されたブロック(以下、変換係数ブロックという)の左上側(top-left)領域に対して適用できる。例えば、前記変換係数ブロックの幅(W)及び高さ(H)が両方とも8以上である場合、8×8非分離2次変換が前記変換係数ブロックの左上側8×8の領域に対して適用できる。また、前記変換係数ブロックの幅(W)及び高さ(H)が両方とも4以上でありながら、前記変換係数ブロックの幅(W)又は高さ(H)が8より小さい場合、4×4非分離2次変換が前記変換係数ブロックの左上側min(8,W)×min(8,H)領域に対して適用できる。ただ、実施形態はこれに限定されず、例えば、前記変換係数ブロックの幅(W)又は高さ(H)が両方とも4以上である条件のみを満足しても、4×4非分離2次変換が前記変換係数ブロックの左上側min(8,W)×min(8,H)領域に対して適用されることもできる。
【0112】
具体的に、例えば、4×4の入力ブロックが使用される場合、非分離2次変換は次のように実行されることができる。
【0113】
前記4×4の入力ブロックXは、次のように示されることができる。
【0114】
【0115】
前記Xをベクトルの形態で示す場合、ベクトル
は、次のように示されることができる。
【0116】
【0117】
数式2のように、ベクトル
は、行優先(row-first)の順序によって、数式1におけるXの2次元ブロックを1次元ベクトルに再配列する。
【0118】
この場合、前記2次非分離変換は、次のように計算されることができる。
【0119】
【0120】
ここで、
は、変換係数ベクトルを示し、Tは、16×16の(非分離)変換マトリックスを示す。
【0121】
前記数式3を介して、16×1の変換係数ベクトル
が導出でき、前記
は、スキャン順序(水平、垂直、対角(diagonal)等)を介して、4×4ブロックで再構成(re-organized)できる。但し、前述した計算は例示であって、非分離2次変換の計算複雑度を減らすために、HyGT(Hypercube-Givens Transform)等が非分離2次変換の計算のために使用されることもできる。
【0122】
一方、前記非分離2次変換は、モードベース(mode dependent)として変換カーネル(又は変換コア、変換タイプ)が選択できる。ここで、モードは、イントラ予測モード及び/又はインター予測モードを含むことができる。
【0123】
前述したように、前記非分離2次変換は、前記変換係数ブロックの幅(W)及び高さ(H)に基づいて決定された8×8変換又は4×4変換に基づいて実行されることができる。8×8変換は、WとHが全て8よりも等しいか大きいとき、当該変換係数ブロックの内部に含まれた8×8領域に適用されることができる変換を指し、当該8×8領域は、当該変換係数ブロックの内部の左上側の8×8領域であり得る。同様に、4×4変換は、WとHが全て4よりも等しいか大きいとき、当該変換係数ブロックの内部に含まれた4×4領域に適用されることができる変換を指し、当該4×4領域は、当該変換係数ブロックの内部の左上側の4×4領域であり得る。例えば、8×8変換カーネルマトリックスは、64×64/16×64行列、4×4変換カーネルマトリックスは、16×16/8×16行列になり得る。
【0124】
そのとき、モードベースの変換カーネルの選択のために、8×8変換及び4×4変換の両方に対して、非分離2次変換のための変換セット当たり2個ずつの非分離2次変換カーネルが構成され得、変換セットは4個であり得る。すなわち、8×8変換に対して4個の変換セットが構成され、4×4変換に対して4個の変換セットが構成され得る。この場合、8×8変換に対する4個の変換セットには、それぞれ2個ずつの8×8変換カーネルが含まれ得、この場合、4×4変換に対する4個の変換セットには、それぞれ2個ずつの4×4変換カーネルが含まれ得る。
【0125】
但し、前記変換のサイズ、すなわち、変換が適用される領域のサイズは例示として8×8又は4×4以外のサイズが使用され得、前記セットの数はn個、各セット内の変換カーネルの数はk個であり得る。
【0126】
前記変換セットは、NSSTセット又はLFNSTセットと呼ばれ得る。前記変換セットのうちの特定セットの選択は、例えば、現在ブロック(CU又はサブブロック)のイントラ予測モードに基づいて実行されることができる。LFNST(Low-Frequency Non-Separable Transform)は、後述される減少した非分離変換の一例であり得、低周波成分に対する非分離変換を示す。
【0127】
参考までに、例えば、イントラ予測モードは、2個の非方向性(non-directinoal、又は非角度性(non-angular))イントラ予測モードと65個の方向性(directional、又は角度性(angular))イントラ予測モードとを含むことができる。前記非方向性イントラ予測モードは、0番であるプラナー(planar)イントラ予測モード及び1番であるDCイントラ予測モードを含むことができ、前記方向性イントラ予測モードは、2番乃至66番の65個のイントラ予測モードを含むことができる。但し、これは例示であって、本文書は、イントラ予測モードの数が異なる場合にも適用できる。一方、場合に応じて、67番のイントラ予測モードがさらに使用でき、前記67番のイントラ予測モードは、LM(linear model)モードを示すことができる。
【0128】
図5は、65個の予測方向のイントラ方向性モードを例示的に示す。
【0129】
図5を参照すると、右下側対角の予測方向を有する34番のイントラ予測モードを中心に水平方向性(horizontal directionality)を有するイントラ予測モードと、垂直方向性(vertical directionality)を有するイントラ予測モードとを区分することができる。
図5のHとVは、それぞれ水平方向性と垂直方向性を意味し、-32~32の数字は、サンプルグリッドポジション(sample grid position)上で1/32単位の変位を示す。これは、モードインデックス値に対するオフセットを示すことができる。 2番乃至33番のイントラ予測モードは水平方向性、34番乃至66番のイントラ予測モードは垂直方向性を有する。一方、34番のイントラ予測モードは、厳密に言えば、水平方向性でも垂直方向性でもないと見ることができるが、2次変換の変換セットを決定する観点から、水平方向性に属すると分類できる。これは、34番のイントラ予測モードを中心に対称となる垂直方向モードに対しては、入力データをトランスポーズ(transpose)して使用し、34番のイントラ予測モードに対しては、水平方向モードに対する入力データの整列方式を使用するためである。入力データをトランスポーズすることは、2次元ブロックのデータMxNに対して、行が列となり、列が行となり、NxMのデータを構成することを意味する。18番のイントラ予測モードと50番のイントラ予測モードとは、それぞれ水平イントラ予測モード(horizontal intra prediction mode)、垂直イントラ予測モード(vertical intra prediction mode)を示し、2番のイントラ予測モードは、左側の参照ピクセルをもって右上側方向と予測するので、右上側対角のイントラ予測モードと呼ばれ得、同じ脈絡で34番のイントラ予測モードは、右下側対角のイントラ予測モード、66番のイントラ予測モードは、左下側対角のイントラ予測モードと呼ばれ得る。
【0130】
一例によって、イントラ予測モードによって、4個の変換セットのマッピング(mapping)は、例えば、次の表のように示され得る。
【0131】
【0132】
表2のように、イントラ予測モードによって4個の変換セットのいずれか、すなわち、lfnstTrSetIdxが0から3、すなわち、4個のいずれかにマッピングされることができる。
【0133】
一方、非分離変換に特定セットが使用されるものと決定されると、非分離2次変換インデックスを介して、前記特定セット内のk個の変換カーネルのうち1つが選択できる。エンコード装置は、RD(rate-distortion)チェックに基づいて特定の変換カーネルを指す非分離2次変換インデックスを導出することができ、前記非分離2次変換インデックスをデコード装置にシグナリングできる。デコード装置は、前記非分離2次変換インデックスに基づいて、特定セット内のk個の変換カーネルのうち1つを選択することができる。例えば、lfnstのインデックス値0は、1番目の非分離2次変換カーネルを指すことができ、lfnstのインデックス値1は、2番目の非分離2次変換カーネルを指すことができ、lfnstのインデックス値2は、3番目の非分離2次変換カーネルを指すことができる。或いは、lfnstのインデックス値0は、対象ブロックに対して、1番目の非分離2次変換が適用されないことを指すことができ、lfnstのインデックス値1乃至3は、前記3個の変換カーネルを指すことができる。
【0134】
変換部は、選択された変換カーネルに基づいて前記非分離2次変換を実行し、修正された(2次)変換係数を獲得することができる。前記修正された変換係数は、前述したように量子化部を介して量子化された変換係数で導出されることができ、エンコードされて、デコード装置にシグナリング及びエンコード装置内の逆量子化/逆変換部に伝達されることができる。
【0135】
一方、前述したように2次変換が省略される場合、前記1次(分離)変換の出力である(1次)変換係数が、前述したように量子化部を介して量子化された変換係数で導出されることができ、エンコードされて、デコード装置にシグナリング及びエンコード装置内の逆量子化/逆変換部に伝達されることができる。
【0136】
逆変換部は、前述した変換部で実行された手順の逆順で一連の手順を実行することができる。逆変換部は、(逆量子化された)変換係数を受信し、2次(逆)変換を実行して(1次)変換係数を導出し(S450)、前記(1次)変換係数に対して1次(逆)変換を実行し、レジデュアルブロック(レジデュアルサンプル)を獲得することができる(S460)。ここで、前記1次変換係数は、逆変換部の立場で、修正された(modified)変換係数と呼ばれ得る。エンコード装置及びデコード装置は、前記レジデュアルブロックと予測されたブロックとに基づいて復元ブロックを生成し、これに基づいて復元ピクチャを生成できることは前述した通りである。
【0137】
一方、デコード装置は、2次逆変換適用可否決定部(又は2次逆変換の適用可否を決定する要素)と、2次逆変換決定部(又は2次逆変換を決定する要素)をさらに含むことができる。2次逆変換適用可否決定部は、2次逆変換の適用可否を決定することができる。例えば、2次逆変換は、NSST、RST又はLFNSTであり得、2次逆変換適用可否決定部は、ビットストリームからパーシングした2次変換フラグに基づいて、2次逆変換の適用可否を決定することができる。別の一例として、2次逆変換適用可否決定部は、レジデュアルブロックの変換係数に基づいて、2次逆変換の適用可否を決定することもできる。
【0138】
2次逆変換決定部は、2次逆変換を決定することができる。そのとき、2次逆変換決定部は、イントラ予測モードによって指定されたLFNST(NSST又はRST)変換セットに基づいて、現在ブロックに適用される2次逆変換を決定することができる。また、一実施例として、1次変換決定方法に依存的に(depend on)2次変換決定方法が決定できる。イントラ予測モードによって1次変換と2次変換の多様な組み合わせが決定できる。また、一例として、2次逆変換決定部は、現在ブロックのサイズに基づいて、2次逆変換が適用される領域を決定することもできる。
【0139】
一方、前述したように、2次(逆)変換が省略される場合、(逆量子化された)変換係数を受信し、前記1次(分離)逆変換を実行してレジデュアルブロック(レジデュアルサンプル)を獲得することができる。エンコード装置及びデコード装置は、前記レジデュアルブロックと予測されたブロックに基づいて復元ブロックを生成し、これに基づいて復元ピクチャを生成できることは前述した通りである。
【0140】
一方、本文書においては、非分離2次変換に伴われる計算量とメモリ要求量の低減のために、NSSTの概念で変換マトリックス(カーネル)のサイズが減少したRST(reduced secondary transform)を適用することができる。
【0141】
一方、本文書で説明された変換カーネル、変換マトリックス、変換カーネルマトリックスを構成する係数、すなわち、カーネル係数又はマトリックス係数は、8ビットで表現され得る。これは、デコード装置及びエンコード装置で具現するための1つの条件であり得、既存の9ビット又は10ビットと比較し、合理的に受け入れられる性能低下を伴いながら、変換カーネルを保存するためのメモリ要求量を減らすことができる。また、カーネルマトリックスを8ビットで表現することによって、小さい掛け算器を使用でき、最適のソフトウェアの具現のために使用されるSIMD(Single Instruction Multiple Data)命令により好適であり得る。
【0142】
本明細書において、RSTは簡素化ファクター(factor)によってサイズが減少した変換マトリックス(transform matrix)に基づいて、対象ブロックに対するレジデュアルサンプルに対して実行される変換を意味することができる。簡素化変換を実行する場合、変換マトリックスのサイズの減少により、変換時に要求される演算量が減少し得る。すなわち、RSTは、サイズが大きいブロックの変換又は非分離変換時に発生する演算の複雑度(complexity)のイシューを解消するために利用できる。
【0143】
RSTは、減少した変換、減少変換、reduced transform、reduced secondary transform、reduction transform、simplified transform、simple transform等の多様な用語で指称され得、RSTが指称され得る名称は、挙げられた例示に限定されない。或いは、RSTは、主に変換ブロックで0ではない係数を含む低周波領域で行われるので、LFNST(Low-Frequency Non-Separable Transform)と指称されることもある。前記変換インデックスは、LFNSTインデックスと名付けられ得る。
【0144】
一方、2次逆変換がRSTに基づいて行われる場合、エンコード装置200の逆変換部235とデコード装置300の逆変換部322とは、変換係数に対する逆RSTに基づいて修正された変換係数を導出する逆RST部と、修正された変換係数に対する逆1次変換に基づいて、前記対象ブロックに対するレジデュアルサンプルを導出する逆1次変換部とを含むことができる。逆1次変換は、レジデュアルに適用された1次変換の逆変換を意味する。本文書において、変換に基づいて変換係数を導出することは、当該変換を適用して変換係数を導出することを意味することができる。
【0145】
図6は、本文書の一実施例に係るRSTを説明するための図である。
【0146】
本明細書において、「対象ブロック」は、コーディングが実行される現在ブロック又はレジデュアルブロック又は変換ブロックを意味することができる。
【0147】
一実施例に係るRSTで、N次元ベクトル(N dimensional vector)が異なる空間に位置したR次元ベクトル(R dimensional vector)にマッピングされ、減少した変換マトリックスが決定でき、ここで、RはNよりも小さい。Nは、変換が適用されるブロックの一辺の長さ(length)の二乗、又は変換が適用されるブロックと対応する変換係数の総個数を意味することができ、簡素化ファクターは、R/N値を意味することができる。簡素化ファクターは、減少したファクター、減少ファクター、reduced factor、reduction factor、simplified factor、simple factor等の多様な用語で指称され得る。一方、Rは、簡素化係数(reduced coefficient)と指称され得るが、場合に応じては、簡素化ファクターがRを意味することもある。また、場合に応じて、簡素化ファクターは、N/R値を意味することもある。
【0148】
一実施例において、簡素化ファクター又は簡素化係数は、ビットストリームを介してシグナリングできるが、実施例がこれに限定されるわけではない。例えば、簡素化ファクター又は簡素化係数に対する既に定義された値が各エンコード装置200及びデコード装置300に保存されていることがあり、この場合、簡素化ファクター又は簡素化係数は、別にシグナリングされないことがある。
【0149】
一実施例にかかる簡素化変換マトリックスのサイズは、通常の変換マトリックスのサイズNxNよりも小さいRxNであり、下記の数式4のように定義されることができる。
【0150】
【0151】
図6の(a)に示すReduced Transformブロック内のマトリックスTは、数式4のマトリックスT
RxNを意味することができる。
図6の(a)のように、対象ブロックに対するレジデュアルサンプルに対して簡素化変換マトリックスT
RxNが掛けられる場合、対象ブロックに対する変換係数が導出できる。
【0152】
一実施例において、変換が適用されるブロックのサイズが8×8であり、R=16(すなわち、R/N=16/64=1/4である)である場合、
図6の(a)によるRSTは、下記の数式5のような行列演算で表現され得る。この場合、メモリと掛け算演算が簡素化ファクターにより略1/4と減少し得る。
【0153】
本文書において行列演算とは、行列を列ベクトルの左側に置いて、行列と列ベクトルを掛けて列ベクトルを得る演算で理解できる。
【0154】
【0155】
数式5において、r1乃至r64は、対象ブロックに対するレジデュアルサンプルを示すことができ、より具体的に、1次変換を適用して生成された変換係数であり得る。数式5の演算結果、対象ブロックに対する変換係数ciが導出でき、ciの導出過程は数式6の通りである。
【0156】
【0157】
数式6の演算結果、対象ブロックに対する変換係数c1乃至cRが導出できる。すなわち、R=16である場合、対象ブロックに対する変換係数c1乃至c16が導出できる。もし、RSTではなく、通常の(regular)変換が適用されて、サイズが64×64(NxN)である変換マトリックスが、サイズが64x1(Nx1)であるレジデュアルサンプルに掛けられたら、対象ブロックに対する変換係数が64個(N個)が導出されるかもしれないが、RSTが適用されたため、対象ブロックに対する変換係数が16個(R個)のみ導出される。対象ブロックに対する変換係数の総個数がN個からR個に減少し、エンコード装置200がデコード装置300に送信するデータの量が減少するので、エンコード装置200-デコード装置300の間の送信効率が増加し得る。
【0158】
変換マトリックスのサイズの観点から検討すると、通常の変換マトリックスのサイズは64×64(NxN)であるが、簡素化変換マトリックスのサイズは16×64(RxN)と減少するので、通常の変換を実行する時と比較すると、RSTを実行する時にメモリの使用をR/Nの割合で減少させることができる。また、通常の変換マトリックスを用いる時の掛け算演算の数NxNと比較すると、簡素化変換マトリックスを用いると、掛け算演算の数をR/Nの割合で減少(RxN)させることができる。
【0159】
一実施例において、エンコード装置200の変換部232は、対象ブロックに対するレジデュアルサンプルを1次変換及びRSTベースの2次変換を実行することによって、対象ブロックに対する変換係数を導出することができる。このような変換係数は、デコード装置300の逆変換部に伝達されることができ、デコード装置300の逆変換部322は、変換係数に対する逆RST(reduced secondary transform)に基づいて修正された変換係数を導出し、修正された変換係数に対する逆1次変換に基づいて、対象ブロックに対するレジデュアルサンプルを導出することができる。
【0160】
一実施例にかかる逆RSTマトリックスTNxRのサイズは、通常の逆変換マトリックスのサイズNxNよりも小さいNxRであり、数式4に示した簡素化変換マトリックスTRxNとトランスポーズ(transpose)の関係にある。
【0161】
図6の(b)に示したReduced Inv. Transformブロック内のマトリックスT
tは、逆RSTマトリックスT
RxN
Tを意味することができる(上付き文字Tはトランスポーズを意味する)。
図6の(b)のように、対象ブロックに対する変換係数に対して逆RSTマトリックスT
RxN
Tが掛けられる場合、対象ブロックに対する修正された変換係数又は対象ブロックに対するレジデュアルサンプルが導出できる。逆RSTマトリックスT
RxN
Tは、(T
RxN)
T
NxRと表現することもある。
【0162】
より具体的に、2次逆変換に逆RSTが適用される場合には、対象ブロックに対する変換係数に対して逆RSTマトリックスTRxN
Tが掛けられると、対象ブロックに対する修正された変換係数が導出できる。一方、逆1次変換に逆RSTが適用でき、この場合、対象ブロックに対する変換係数に対して逆RSTマトリックスTRxN
Tが掛けられると、対象ブロックに対するレジデュアルサンプルが導出できる。
【0163】
一実施例において、逆変換が適用されるブロックのサイズが8×8であり、R=16(すなわち、R/N=16/64=1/4である場合)である場合、
図6の(b)によるRSTは、下記の数式7のような行列演算で表現されることができる。
【0164】
【0165】
数式7において、c1乃至c16は、対象ブロックに対する変換係数を示すことができる。数式7の演算結果、対象ブロックに対する修正された変換係数又は対象ブロックに対するレジデュアルサンプルを示すrjが導出でき、rjの導出過程は、数式8の通りである。
【0166】
【0167】
数式8の演算結果、対象ブロックに対する修正された変換係数又は対象ブロックに対するレジデュアルサンプルを示すr1乃至rNが導出できる。逆変換マトリックスのサイズの観点から検討すると、通常の逆変換マトリックスのサイズは64×64(NxN)であるが、簡素化逆変換マトリックスのサイズは、64x16(NxR)と減少するので、通常の逆変換を実行する時と比較すると、逆RSTを実行する時にメモリの使用をR/Nの割合で減少させることができる。また、通常の逆変換マトリックスを用いる時の掛け算演算の数NxNと比較すると、簡素化逆変換マトリックスを用いると、掛け算演算の数をR/Nの割合で減少(NxR)させることができる。
【0168】
一方、8×8のRSTに対しても、表2のような変換セットの構成を適用することができる。すなわち、表2での変換セットによって当該8×8のRSTが適用できる。1つの変換セットは、画面内の予測モードによって2個又は3個の変換(カーネル)で構成されているので、2次変換を適用しない場合まで含めて、最大4個の変換のうち1つを選択するように構成されることができる。2次変換を適用しないときの変換は、恒等行列が適用されたものとみなされ得る。4個の変換に対してそれぞれ0、1、2、3のインデックスを付与するとしたとき(例えば、0番のインデックスを恒等行列、すなわち、2次変換を適用しない場合に割り当てることができる)、変換インデックス又はlfnstのインデックスというシンタックス要素(syntax element)を変換係数のブロック毎にシグナリングし、適用される変換を指定することができる。すなわち、変換インデックスを介して8×8左上側のブロックに対して、RSTの構成では8×8のRSTを指定することができ、又はLFNSTが適用される場合、8×8のlfnstを指定することができる。8×8のlfnst及び8×8のRSTは、変換の対象になる対象ブロックのWとHが全て8よりも等しいか大きいとき、当該変換係数のブロック内部に含まれた8×8領域に適用されることができる変換を指し、当該8×8領域は、当該変換係数のブロック内部の左上側の8×8領域であり得る。同様に、4×4のlfnst及び4×4のRSTは、対象ブロックのWとHが全て4よりも等しいか大きいとき、当該変換係数のブロック内部に含まれた4×4領域に適用されることができる変換を指し、当該4×4領域は、当該変換係数のブロック内部の左上側の4×4領域であり得る。
【0169】
一方、本文書の一実施例にかかり、エンコード過程の変換で、8×8領域を構成する64個のデータに対して、16×64の変換カーネルマトリックスではなく、48個のデータのみを選択し、最大16x48の変換カーネルマトリックスを適用することができる。ここで、「最大」とは、m個の係数を生成することができるmx48の変換カーネルマトリックスに対して、mの最大値が16ということを意味する。すなわち、8×8の領域にmx48の変換カーネルマトリックス(m≦16)を適用してRSTを実行する場合、48個のデータの入力を受けて、m個の係数を生成できる。mが16である場合、48個のデータの入力を受けて、16個の係数を生成する。すなわち、48個のデータが48×1ベクトルをなすとしたとき、16x48行列と48×1ベクトルを順序通りに掛けて、16×1ベクトルが生成できる。そのとき、8×8領域をなす48個のデータを適切に配列し、48×1ベクトルを構成することができる。そのとき、最大16x48の変換カーネルマトリックスを適用して行列演算を行うと、16個の修正された変換係数が生成されるが、16個の修正された変換係数は、スキャン順序に従って左上側の4×4領域に配置されることができ、右上側の4×4領域と左下側の4×4領域は0で充填され得る。
【0170】
デコード過程の逆変換には、前記述べられた変換カーネルマトリックスのトランスポーズされたマトリックスが使用できる。すなわち、デコード装置で実行される逆変換過程で逆RST又はLFNSTが実行される場合、逆RSTを適用する入力係数データは、所定の配列順序に従って1次元ベクトルで構成され、1次元ベクトルに当該逆RSTの行列を左側で掛けて得られた修正された係数ベクトルを所定の配列順序に従って2次元ブロックに配列されることができる。
【0171】
整理すると、変換過程で、8×8領域にRST又はLFNSTが適用される場合、8×8領域の変換係数のうち、8×8領域の右下側領域を除いた左上側、右上側、左下側領域の48個の変換係数と、16x48の変換カーネルマトリックスとの行列演算が実行される。行列演算のために、48個の変換係数は1次元の配列に入力される。このような行列演算が行われると、16個の修正された変換係数が導出され、修正された変換係数は、8×8領域の左上側領域に配列されることができる。
【0172】
逆に、逆変換過程で、8×8領域に逆RST又はLFNSTが適用される場合、8×8領域の変換係数のうち、8×8領域の左上側に対応する16個の変換係数は、スキャン順序に従って、1次元の配列形態で入力されて、48×16の変換カーネルマトリックスと行列演算されることができる。すなわち、このような場合の行列演算は、(48×16行列)*(16×1変換係数ベクトル)=(48×1修正された変換係数ベクトル)で示すことができる。ここで、nx1ベクトルは、nx1行列のような意味で解釈され得るので、nx1列ベクトルで表記されることもある。また、*は、行列の掛け算演算を意味する。このような行列演算が行われると、48個の修正された変換係数が導出でき、48個の修正された変換係数は、8×8領域の右下側領域を除いた左上側、右上側、左下側領域に配列されることができる。
【0173】
一方、2次逆変換がRSTに基づいて実行される場合、エンコード装置200の逆変換部235とデコード装置300の逆変換部322は、変換係数に対する逆RSTに基づいて修正された変換係数を導出する逆RST部と、修正された変換係数に対する逆1次変換に基づいて、前記対象ブロックに対するレジデュアルサンプルを導出する逆1次変換部とを含むことができる。逆1次変換は、レジデュアルに適用された1次変換の逆変換を意味する。本文書において変換に基づいて変換係数を導出することは、当該変換を適用して変換係数を導出することを意味することができる。
【0174】
前述された非分離変換、LFNSTについて具体的にみると、次の通りである。LFNSTは、エンコード装置による順方向(forward)変換と、デコード装置による逆方向(inverse)変換を含むことができる。
【0175】
エンコード装置は、順方向1次変換(primary (core) transform)を適用した後、導出された結果(又は結果の一部)を入力として、順方向2次変換(secondary transform)を適用する。
【0176】
【0177】
前記数式9で、xとyは、それぞれ2次変換の入力と出力であり、Gは、2次変換を示す行列であって、変換基底ベクトル(transform basis vector)は列ベクトルで構成される。逆方向LFNSTの場合、変換行列Gの次元(dimension)を[row数×column数]で表記したとき、順方向LFNSTの場合、行列GのトランスポーズをとったことがGTの次元になる。
【0178】
逆方向LFNSTの場合、行列Gの次元は、[48×16]、[48×8]、[16×16]、[16×8]となり、[48×8]行列と[16×8]行列は、それぞれ[48×16]行列と[16×16]行列の左側から8個の変換基底ベクトルをサンプリングした部分行列である。
【0179】
反面、順方向LFNSTの場合、行列GTの次元は、[16x48]、[8×48]、[16×16]、[8×16]となり、[8×48]行列と[8×16]行列は、それぞれ[16x48]行列と[16×16]行列の上方から8個の変換基底ベクトルをサンプリングした部分行列である。
【0180】
従って、順方向LFNSTの場合、入力xとしては[48×1]ベクトル又は[16×1]ベクトルが可能であり、出力yとしては、[16×1]ベクトル又は[8×1]ベクトルが可能である。ビデオコーディング及びデコードにおける順方向1次変換の出力は、2次元(2D)データであるので、入力xとして[48×1]ベクトル又は[16×1]ベクトルを構成するために、順方向変換の出力である2Dデータを適切に配列して1次元ベクトルを構成しなければならない。
【0181】
図7は、一例によって、順方向1次変換の出力データを1次元ベクトルに配列する順序を示した図である。
図7の(a)及び(b)の左側図は、[48×1]ベクトルを作るための順序を示し、
図7の(a)及び(b)の右側図は、[16×1]ベクトルを作るための順序を示す。LFNSTの場合、
図7の(a)及び(b)のような順序で2Dデータを順次に配列し、1次元ベクトルxが得られる。
【0182】
このような順方向1次変換の出力データの配列方向は、現在ブロックのイントラ予測モードによって決定されることができる。例えば、現在ブロックのイントラ予測モードが対角線方向を基準に水平方向であると、順方向1次変換の出力データは、
図7の(a)の順に配列されることができ、現在ブロックのイントラ予測モードが対角線方向を基準に垂直方向であると、順方向1次変換の出力データは、
図7の(b)の順に配列されることができる。
【0183】
一例によって、
図7の(a)及び(b)の配列順序(ordering)と異なる配列順序を適用することができ、
図7の(a)及び(b)の配列順序を適用したときと同じ結果(yベクトル)を導出するためには、行列Gの列ベクトルを当該配列順序に合わせて再配列すればよい。すなわち、xベクトルを構成する各要素に対して、常時同じ変換基底ベクトルと掛けられるようにGの列ベクトルを再配置することができる。
【0184】
数式9を介して導出される出力yは、1次元ベクトルであるので、もし順方向2次変換の結果を入力として処理する構成、例えば、量子化又はレジデュアルコーディングを実行する構成が、入力データとして2次元データが必要であれば、数式9の出力yベクトルは再度2Dデータに適切に配置されなければならない。
【0185】
図8は、一例によって順方向2次変換の出力データを2次元ブロックに配列する順序を示した図である。
【0186】
LFNSTの場合、決められたスキャン順序に従って2Dブロックに配置されることができる。
図8の(a)は、出力yが[16×1]ベクトルである場合、2次元ブロックの16個の位置に対角スキャン(diagonal scan)順序に従って出力値が配置されることを示す。
図8の(b)は、出力yが[8×1]ベクトルである場合、2次元ブロックの8個の位置に対角スキャン順序に従って出力値が配置され、残りの8個の位置には0で充填されることを示す。
図8の(b)のXは、0と満たされることを示す。
【0187】
別の例によって、量子化又はレジデュアルコーディング実行する構成により、出力ベクトルyが処理される順序は、既設定された順序に従って実行されることができるため、
図8のように、出力ベクトルyが2Dブロックに配置されないことがある。但し、レジデュアルコーディングの場合、CG(Coefficient Group)のような2Dブロック(例えば、4×4)単位でデータコーディングが実行でき、この場合、
図8の対角スキャン順序のように特定の順序に従ってデータが配列できる。
【0188】
一方、デコード装置は、逆方向の変換のために逆量子化過程等を通じて出力された2次元データを既設定されたスキャン順序に従って羅列し、1次元入力ベクトルであるyを構成することができる。入力ベクトルyは、下記数式により入力ベクトルxに出力されることができる。
【0189】
【0190】
逆方向LFNSTの場合、[16×1]ベクトル又は[8×1]ベクトルである入力ベクトルyにG行列を掛けることによって、出力ベクトルxを導出することができる。逆方向LFNSTの場合、出力ベクトルxは[48×1]ベクトル又は[16×1]ベクトルであり得る。
【0191】
出力ベクトルxは、
図7に示した順序に従って、2次元ブロックに配置されて2次元データに配列され、このような2次元データは、逆方向1次変換の入力データ(又は入力データの一部)になる。
【0192】
従って、逆方向2次変換は、全体的に順方向2次変換の過程と反対であり、逆変換の場合、順方向と異なり、逆方向2次変換を先に適用した後、逆方向1次変換を適用することになる。
【0193】
逆方向LFNSTでは、変換行列Gとして[48×16]行列8個と[16×16]行列8個のうち1つが選択できる。[48×16]行列と[16×16]行列のうち、どの行列を適用するか否かは、ブロックのサイズと形状によって決定される。
【0194】
また、8個の行列は、前述した表2のように4個の変換セットから導出されることができ、各変換セットは、2個の行列で構成されることができる。4個の変換セットのうち、どの変換セットを使用するかはイントラ予測モードによって決定され、より具体的に広角イントラ予測モード(Wide Angle Intra Prediction、WAIP)まで考慮して、拡張されたイントラ予測モード値に基づいて変換セットが決定される。選択された変換セットを構成する2個の行列のうち、どの行列を選択するかはインデックスシグナリング(index signaling)を介して導出される。より具体的に、送信されるインデックス値としては、0、1、2が可能であり、0はLFNSTを適用しないことを指示し、1と2はイントラ予測モード値に基づいて選択された変換セットを構成する2個の変換行列の何れかを指示することができる。
【0195】
図9は、本文書の一実施例に係る広角イントラ予測モードを示した図である。
【0196】
一般的なイントラ予測モード値は、0~66と81~83までの値を有することができ、示したように、WAIPにより拡張されたイントラ予測モード値は、-14~83までの値を有することができる。81~83までの値は、CCLM(Cross Compoonent Linear Model)モードを指し、-14~-1までの値と67~80までの値は、WAIPの適用により拡張されたイントラ予測モード値を指す。
【0197】
予測現在ブロックの幅が高さよりも大きい場合、大体上方の参照ピクセルが予測しようとするブロック内部の位置とさらに近い。従って、右上側(top-right)方向に予測するよりも、左下側(bottom-left)方向に予測することがより正確であり得る。反対に、ブロックの高さが幅よりも大きい場合は、左側の参照ピクセルが予測しようとするブロック内部の位置と大体近い。従って、左下側(bottom-left)方向に予測するよりも、右上側(top-right)方向に予測することがより正確であり得る。従って、広角イントラ予測モードのインデックスでリマッピング、すなわち、モードインデックスの変換を適用することが有利なことがある。
【0198】
広角イントラ予測が適用される場合、既存のイントラ予測に関する情報がシグナリングでき、前記情報がパーシングされた後、前記情報が前記広角イントラ予測モードのインデックスでリマッピングされることができる。従って、特定のブロック(例えば、特定のサイズの非正方形ブロック)に対する総イントラ予測モードの数は、変更されなくてもよく、すなわち、総イントラ予測モードの数は67個であり、前記特定のブロックに対するイントラ予測モードのコーディングは変更されなくてもよい。
【0199】
下記の表3は、イントラ予測モードを広角イントラ予測モードでリマッピングして修正されたイントラモードを導出する過程を示している。
【0200】
【0201】
表3で最終的にpredModeIntra変数に拡張されたイントラ予測モード値が保存され、ISP_NO_SPLITは、現在のVVC標準に採択されたIntra Sub Partitions(ISP)技術によりCUブロックがサブパーティションに分割されないことを示し、cIdxの変数値が0、1、2であるのは、各々ルマ、Cb、Crコンポーネントの場合を指す。表3で登場するLog2の関数は、ベース(base)が2であるログ値をリターンし、Absの関数は絶対値をリターンする。
【0202】
広角イントラ予測モードのマッピング過程(Wide angle intra prediction mode mapping process)の入力値としてイントラ予測モードを指示する変数predModeIntra、変換ブロックの高さ及び幅等が使用され、出力値は修正されたイントラ予測モード(the modified intra prediction mode predModeIntra)になる。変換ブロック又はコーディングブロックの高さ及び幅がイントラ予測モードのリマッピングのための現在ブロックの高さ及び幅になる。そのとき、 高さと幅の比率を反映する変数whRatioは、Abs(Log2(nW/nH))に設定されることができる。
【0203】
正方形ではないブロックに対して、イントラ予測モードは2つの場合に区分されて修正されることができる。
【0204】
まず、(1)現在ブロックの幅が高さよりも大きく、(2)修正前のイントラ予測モードが2と等しいか大きく、(3)イントラ予測モードが、変数whRatioが1よりも大きいと(8+2*whRatio)であって、変数whRatioが1よりも等しいか小さいと8で導出される値よりも小さい[predModeIntra is less than(whRatio>1)?(8+2*whRatio):8]という全ての条件を満たすと、イントラ予測モードはイントラ予測モードよりも65大きい値に設定される[predModeIntra is set equal to(predModeIntra+65)]。
【0205】
前記と異なる場合、(1)現在ブロックの高さが幅よりも大きく、(2)修正前のイントラ予測モードが66と等しいか小さく、(3)イントラ予測モードが、変数whRatioが1よりも大きいと(60-2*whRatio)であって、変数whRatioが1よりも等しいか小さいと60で導出される値よりも大きい[predModeIntra is greater than(whRatio>1)?(60-2*whRatio):60]という全ての条件を満たすと、イントラ予測モードはイントラ予測モードよりも67小さい値に設定される[predModeIntra is set equal to (predModeIntra-67)]。
【0206】
前述した表2は、LFNSTでWAIPにより拡張されたイントラ予測モード値に基づいて、変換セットがどのように選択されるかを示している。
図9のように、14~33までのモードと、35~80までのモードは、モード34を中心に予測方向の観点から互いに対称である。例えば、モード14とモード54は、モード34に当該する方向を中心に対称である。従って、互いに対称となる方向に位置するモード同士は、同じ変換セットを適用することになり、表2でも、このような対称性が反映されている。
【0207】
但し、モード54に対する順方向LFNSTの入力データは、モード14に対する順方向LFNSTの入力データと対称をなすことを仮定する。例えば、モード14とモード54については、各々
図7の(a)と
図7の(b)に示した配列順序に従って、2次元データを1次元データに再配列することになり、
図7の(a)と
図7の(b)に示した順序のパターンは、モード34の指す方向(対角線方向)を中心に対称であることが分かる。
【0208】
一方、前述したように、[48×16]行列と[16×16]行列のうち、どの変換行列をLFNSTに適用するか否かは、変換対象ブロックのサイズと形状により決定される。
【0209】
図10は、LFNSTが適用されるブロックの形状を示した図である。
図10の(a)は4×4ブロックを、(b)は4x8及び8×4ブロックを、(c)はNが16以上である4xN又はNx4ブロックを、(d)は8×8ブロックを、(e)はM≧8、N≧8であり、N>8又はM>8であるMxNブロックを示している。
【0210】
図10で、太い枠を有するブロックが、LFNSTが適用される領域を指す。
図10の(a)及び(b)のブロックについては、左上側(top-left)の4×4領域に対してLFNSTが適用され、
図10の(c)のブロックに対しては、連続して配置された2個の左上側の4×4領域に対して、それぞれLFNSTが適用される。
図10の(a)、(b)、(c)では、4×4領域の単位でLFNSTが適用されるので、このようなLFNSTを以下「4×4のLFNST」と名づけることとし、当該変換行列としては、数式9及び数式10のGに対する行列次元を基準[16×16]又は[16×8]行列が適用できる。
【0211】
より具体的に、
図10の(a)の4×4ブロック(4×4TU又は4×4CU)に対しては[16×8]行列が適用され、
図10の(b)及び(c)におけるブロックに対しては[16×16]行列が適用される。これは、最悪の場合(worst case)に対する計算複雑度をサンプル当たり8掛け算(8 multiplications per sample)に合わせるためである。
【0212】
図10の(d)及び(e)については、左上側の8×8領域に対してLFNSTが適用され、このようなLFNSTを以下「8×8のLFNST」と名付けることとする。当該変換行列としては、[48×16]又は[48×8]行列が適用できる。順方向LFNSTの場合、入力データとして[48×1]ベクトル(数式9のxベクトル)が入力されるので、左上側の8×8領域の全てのサンプル値が順方向LFNSTの入力値として使用されない。すなわち、
図7の(a)の左側順序又は
図7の(b)の左側順序で見るように、右下側(bottom-right)の4×4ブロックはそのまま置いて、残りの3個の4×4ブロックに属したサンプルに基づいて、[48×1]ベクトルを構成することができる。
【0213】
図10の(d)における8×8ブロック(8×8TU又は8×8CU)に[48×8]行列が適用され、
図10の(e)における8×8ブロックに[48×16]行列が適用できる。これもやはり、最悪の場合(worst case)に対する計算複雑度をサンプル当たり8掛け算(8 multiplications per sample)に合わせるためである。
【0214】
ブロックの形状に応じて、これに対応する順方向LFNST(4×4LFNST又は8×8LFNST)が適用されると、8個又は16個の出力データ(数式9におけるyベクトル、[8×1]又は[16×1]ベクトル)が生成され、順方向LFNSTでは、行列GTの特性上、出力データの数が入力データの数よりも等しいか少なくなる。
【0215】
図11は、一例によって順方向LFNSTの出力データの配置を示した図面であり、ブロック形状に沿って順方向LFNSTの出力データが配置されるブロックを示す。
【0216】
図11に示したブロックの左上側に陰影で処理された領域が順方向LFNSTの出力データが位置する領域に当該し、0で表記された位置は0値で満たされるサンプルを示し、残りの領域は、順方向LFNSTにより変更されない領域を示す。LFNSTにより変更されない領域には、順方向1次変換の出力データが変更されずにそのまま存在する。
【0217】
前述したように、ブロックの形状に応じて適用される変換行列の次元が変わるので、出力データの数も変わる。
図11のように、順方向LFNSTの出力データが左上側4×4ブロックを全て満たさないこともある。
図11の(a)及び(d)の場合、太い線で表示されたブロック又はブロック内部の一部領域には、それぞれ[16×8]行列と[48×8]行列が適用されて、順方向LFNSTの出力で[8×1]ベクトルが生成される。すなわち、
図8の(b)に示したスキャン順序に従って、8個の出力データのみ
図11の(a)及び(d)のように満たされ、残りの8個の位置に対しては0が満たされることができる。
図10の(d)のLFNSTの適用ブロックの場合、
図11の(d)のように左上側の4×4ブロックに隣接した右上側及び左下側の2個の4×4ブロックも0値で満たされる。
【0218】
前記のように、基本的にLFNSTインデックスをシグナリングし、LFNSTの適用可否、及び適用する変換行列を指定することになる。
図11に示したように、LFNSTが適用される場合、順方向LFNSTの出力データの数が入力データの数よりも等しいか少ないことがあるため、0値で満たされる領域が次のように発生する。
【0219】
1)
図11の(a)のように、左上側の4×4ブロック内にスキャン順序上8番目以降の位置、すなわち、9番目から16番目までのサンプル
【0220】
2)
図11の(d)及び(e)のように、[16×48]行列又は[8×48]行列が適用されて左上側の4×4ブロックに隣接した2つの4×4ブロック又はスキャン順序上の2番目と3番目の4×4ブロック
【0221】
従って、前記1)と2)の領域をチェックし、0ではない(non-zero)データが存在することになると、LFNSTが適用されていないことが確実であるため、当該LFNSTインデックスのシグナリングを省略することができるようになる。
【0222】
一例によって、例えば、VVC標準に採択されたLFNSTの場合、LFNSTインデックスのシグナリングは、レジデュアルコーディングの後に実行されるので、エンコード装置は、レジデュアルコーディングを介してTU又はCUブロック内部の全ての位置に対する0ではないデータ(有効係数)の存在可否が分かるようになる。従って、エンコード装置は、0ではないデータの存在可否を通じて、LFNSTインデックスに対するシグナリングを実行するか否かを判断することができ、デコード装置は、LFNSTインデックスのパーシング可否を判断することができる。もし、前記1)と2)で指定された領域に0ではないデータが存在しない場合、LFNSTインデックスのシグナリングを実行するようになる。
【0223】
LFNSTインデックスに対する2進化方法でトランケーテッドユーナリコード(truncated unary code)を適用するので、LFNSTインデックスは、最大2個のビンで構成され、可能なLFNSTインデックス値である0、1、2に対する2進化コード(binary code)としては、各々0、10、11が割り当てられる。現在のVVCに採択されたLFNSTの場合、1番目のビンに対しては、コンテキストに基づくCABACコーディングが適用され(regular coding)、2番目のビンに対しては、バイパスコーディング(bypass coding)が適用される。1番目のビンに対する総コンテキストの数は2個であり、水平方向と垂直方向に対する1次変換ペア(primary transform pair)として(DCT-2、DCT-2)が適用され、ルマ成分とクロマ成分がデュアルツリータイプでコーディングされる場合、1つのコンテキストが割り当てられ、残りの場合に対してもう1つのコンテキストが適用される。このようなLFNSTインデックスのコーディングを表で示すと次の通りである。
【0224】
【0225】
一方、採択されたLFNSTに対して、次のような単純化方法が適用できる。
【0226】
(i)一例によって、順方向LFNSTに対する出力データの数を最大16個に限定することができる。
【0227】
図10の(c)の場合、左上側に隣接した2個の4×4領域にそれぞれ4×4LFNSTが適用でき、そのとき、最大32個のLFNST出力データが生成できる。もし、順方向LFNSTに対する出力データの数を最大16に限定すると、4xN/Nx4(N≧16)ブロック(TU又はCU)に対しても、左上側に存在する1個の4×4領域に対してのみ4×4LFNSTを適用し、
図10の全てのブロックに対して、LFNSTを一度だけ適用できる。これを通じて、映像コーディングに対する具現が単純になる。
【0228】
図12は、一例によって、順方向LFNSTに対する出力データの数を最大16個に限定したことを示す。
図12のように、Nが16以上である4xN又はNx4ブロックで最左上側の4×4領域に対してLFNSTが適用されると、順方向LFNSTの出力データは16個になる。
【0229】
(ii)一例によって、LFNSTが適用されない領域に対して、さらにゼロアウト(zero-out)を適用することができる。本文書におけるゼロアウトは、特定の領域に属した全ての位置の値を0で充填されることを意味することができる。すなわち、LFNSTにより変更されずに順方向1次変換の結果を維持している領域に対しても、ゼロアウトを適用することができる。前述したように、LFNSTは4×4LFNSTと8×8LFNSTとに区分されるので、次のように2種類((ii)-(A)及び(ii)-(B))にゼロアウトを区分することができる。
【0230】
(ii)-(A)4×4のLFNSTが適用されるとき、4×4のLFNSTが適用されない領域をゼロアウトすることができる。
図13は、一例によって、4×4のLFNSTが適用されるブロックでのゼロアウトを示す図である。
【0231】
図13のように、4×4のLFNSTが適用されるブロックに対して、すなわち、
図11の(a)、(b)及び(c)のブロックに対してLFNSTが適用されない領域まで全て0で充填されることができる。
【0232】
一方、
図13の(d)は、
図12のように順方向LFNSTの出力データ個数の最大値を16に限定した場合、4×4LFNSTが適用されない残りのブロックに対してゼロアウトを行ったことを示す。
【0233】
(ii)-(B)8x8のLFNSTが適用されるとき、8x8のLFNSTが適用されない領域をゼロアウトすることができる。
図14は、一例によって、8x8LFNSTが適用されるブロックでのゼロアウトを示す図である。
【0234】
図14のように、8x8のLFNSTが適用されるブロックに対して、すなわち、
図11の(d)及び(e)のブロックに対して、LFNSTが適用されない領域まで全て0で充填されることができる。
【0235】
(iii)前記(ii)で提示したゼロアウトにより、LFNSTが適用されるとき、0で充填される領域が変わり得る。従って、前記(ii)で提案されたゼロアウトによって0ではないデータが存在するか否かを
図11のLFNSTの場合よりも広い領域に対してチェックすることができる。
【0236】
例えば、(ii)-(B)を適用する場合、
図11の(d)及び(e)で0値で満たされる領域に加えて、
図14でさらに0で充填された領域まで0ではないデータが存在するか否かをチェックした後、0ではないデータが存在しない場合にのみ、LFNSTインデックスに対するシグナリングを実行することができる。
【0237】
もちろん、前記(ii)で提案されたゼロアウトを適用しても、既存のLFNSTインデックスのシグナリングと同じように、0ではないデータが存在するか否かをチェックすることができる。すなわち、
図11に0で充填されたブロックに対して、0ではないデータが存在するか否かをチェックし、LFNSTインデックスのシグナリングを適用することができる。このような場合、エンコード装置にのみゼロアウトを実行し、デコード装置では当該ゼロアウトを仮定せず、すなわち、
図11で明示的に0で表記された領域に対してのみ0ではないデータが存在するか否かのみチェックし、LFNSTインデックスのパーシングを実行することができる。
【0238】
或いは、別の例により、
図15のようにゼロアウトを実行することもできる。
図15は、別の一例により、8x8のLFNSTが適用されるブロックにおけるゼロアウトを示す図である。
【0239】
図13及び
図14のように、LFNSTが適用される領域以外の領域に対して全てゼロアウトを適用することもでき、
図15のように部分的な領域に対してのみゼロアウトを適用することも可能である。
図15の左上側の8x8領域以外の領域に対してのみゼロアウトを適用し、左上側の8x8領域内部の右下側の4x4ブロックに対してはゼロアウトを適用しなくてもよい。
【0240】
前記LFNSTに対する単純化方法((i),(ii)-(A),(ii)-(B),(iii))の組み合わせを適用した様々な実施形態が導出される。もちろん、前記単純化方法に対する組み合わせは下記の実施形態に限定されず、任意の組み合わせをLFNSTに適用することができる。
【0241】
実施形態
【0242】
-順方向LFNSTに対する出力データの数を最大16個に限定→(i)
【0243】
-4x4のLFNSTが適用されるとき、4x4のLFNSTが適用されない領域を全てゼロアウト→(ii)-(A)
【0244】
-8x8のLFNSTが適用されるとき、8x8のLFNSTが適用されない領域を全てゼロアウト→(ii)-(B)
【0245】
-既存の0値で満たされる領域と追加的なゼロアウト((ii)-(A)、(ii)-(B))により0で充填される領域に対しても0ではないデータが存在するか否かをチェックした後、0ではないデータが存在しない場合にのみLFNSTインデクシングのシグナリング→(iii)
【0246】
前記実施形態の場合、LFNSTが適用されるとき、0ではない出力データが存在できる領域が左上側4×4領域の内部に制限される。より詳しく、
図13の(a)と
図14の(a)の場合、スキャン順序上に8番目の位置が0ではないデータが存在できる最後の位置になり、
図13の(b)及び(d)と
図14の(b)の場合、スキャン順序上に16番目の位置(すなわち、左上側4×4ブロックの右下側の位置)が0ではないデータが存在できる最後の位置になる。
【0247】
従って、LFNSTが適用されたとき、レジデュアルコーディング過程が許容されない位置(最も最後の位置を越えた位置で)で0ではないデータが存在するか否かをチェックした後、LFNSTインデックスのシグナリング可否が決定できる。
【0248】
(ii)で提案されたゼロアウト方式の場合、1次変換とLFNSTの両方ともを適用したときに最終的に発生するデータの数が減少するため、全体変換過程を行うときに要求される計算量を減らすことができる。すなわち、LFNSTが適用される場合、LFNSTが適用されない領域に存在する順方向1次変換出力データに対してもゼロアウトを適用するため、順方向1次変換を行うときからゼロアウトとなる領域に対するデータを生成する必要がない。従って、当該データ生成に要求される演算量を節約することができる。(ii)で提案されたゼロアウト方式の追加的な効果をまとめると、以下のようである。
【0249】
第1に、前記のように全体変換過程の実行に必要な計算量が低減する。
【0250】
特に、(ii)-(B)を適用する場合、最悪の場合に対する計算量が減少して変換の過程を軽量化することができる。敷衍すると、一般的に大きなサイズの1次変換実行に大量の演算が要求されるが、(ii)-(B)を適用すると、順方向LFNST実行結果として導出されるデータの数を16個以下に減らすことができ、全体ブロック(TUまたはCU)サイズが大きくなるほど、変換演算量低減効果はさらに増加する。
【0251】
第2に、変換過程全体に必要な演算量が減少して変換実行に必要な電力消費を削減することができる。
【0252】
第3に、変換過程に伴う遅延時間(latency)を減少させる。
【0253】
LFNSTのような2次変換は既存の1次変換に計算量を追加することになるので、変換実行に伴う全体遅延時間を増加させる。特に、イントラ予測の場合、予測過程で隣接ブロックの復元データが使用されるので、エンコード時に2次変換による遅延時間の増加が復元(reconstruction)までの遅延時間の増加につながり、イントラ予測エンコードの全体的な遅延時間の増加につながる可能性がある。
【0254】
しかしながら、(ii)で提示したゼロアウトを適用すると、LFNST適用時に1次変換実行の遅延時間を大幅に減らすことができるため、変換実行全体に対する遅延時間はそのまま維持されるか低減することになり、エンコード装置をより簡単に実現することができる。
【0255】
一方、従来のイントラ予測は、現在符号化しようとするブロックを1つの符号化単位とみなして分割なしに符号化を行っていた。しかしながら、ISP(Intra Sub-Paritions)コーディングは、現在符号化しようとするブロックを水平方向又は垂直方向に分割してイントラ予測符号化を行うことを意味する。このとき、分割されたブロック単位で符号化/復号化を行って復元されたブロックを生成し、復元されたブロックは次の分割されたブロックの参照ブロックとして使用される。一例によって、ISPコーディング時に1つのコーディングブロックが2つ又は4つのサブブロックに分割されてコーディングされてもよく、ISPにおいて1つのサブブロックは隣接する左側又は隣接する上側に位置するサブブロックの復元されたピクセル値を参照してイントラ予測が行われる。以下、使用される「コーディング」は、エンコード装置において行われるエンコードとデコード装置で行われるデコードを全て含む概念として使用される。
【0256】
表5は、ISP適用時にはブロックのサイズに応じて分割されるサブブロックの数を示し、ISPによって分割されたサブパーティションは変換ブロック(TUs)と呼ばれてもよい。
【0257】
【0258】
ISPは、ブロックのサイズに応じてルマイントラで予測されたブロックを垂直方向又は水平方向に2つ又は4つのサブパーティショニングに分割することである。例えば、ISPが適用できる最小ブロックサイズは4×8又は8×4である。ブロックサイズが4×8又は8×4より大きい場合、ブロックは4つのサブパーティショニングに分割される。
【0259】
図16及び
図17は、1つのコーディングブロックが分割されるサブブロックの一例を示し、より具体的に、
図16は、コーディングブロック(幅(W)×の高さ(H))が4×8ブロック又は8×4ブロックである場合に関する分割の例示であり、
図17は、コーディングブロックが4×8ブロック、8×4ブロック、4×4ブロックではない場合に関する分割の例示を示している。
【0260】
ISP適用の時、サブブロックは分割の形態に応じて、例えば、水平(Horizontal)又は垂直(Verticial)、左側から右側又は上側から下側に順次コーディングされ、1つのサブブロックに対する逆変換とイントラ予測を経て復元過程まで行われた後、次のサブブロックに対するコーディングが行われる。最左側又は最上側のサブブロックに対しては通常のイントラ予測方式のように既にコーディングされたコーディングブロックの復元ピクセルを参照する。また、後続の内部のサブブロックの各辺に対して以前のサブブロックと隣接していない場合は、当該辺に隣接した参照ピクセルを導出するために、通常のイントラ予測方式のように既にコーディングされた隣接したコーディングブロックの復元ピクセルを参照する。
【0261】
ISPコーディングモードにおいては全てのサブブロックが同一のイントラ予測モードでコーディングされてもよく、ISPコーディングを使用するか否かを示すフラグとどの方向に(水平又は垂直)分割するかを示すフラグがシグナリングされる。
図16及び
図17に示すように、ブロック形状に応じてサブブロックの個数を2つ又は4つに調節することができ、1つのサブブロックのサイズ(幅×高さ)が16未満である場合、該当サブブロックへの分割を許容しないか、ISPコーディングそのものを適用しないように制限することができる。
【0262】
一方、ISP予測モードである場合、1つのコーディングユニットが2つ又は4つのパーティションブロック、すなわち、サブブロックに分割されて予測され、当該分割された2つ又は4つのパーティションブロックには同一の画面内予測モードが適用される。
【0263】
前述したように、分割方向は、水平方向(横長さと縦長さがそれぞれM、NであるM×Nコーディングユニットが水平方向に分割されると、2つに分割される場合はM×(N/2)ブロックに分割され、4つに分割される場合はM×(N/4)ブロックに分割される)と、垂直方向(M×Nコーディングユニットが垂直方向に分割されると、2つに分割される場合は(M/2)×Nブロックに分割され、4つに分割される場合は(M/4)×Nブロックに分割される)が全て可能である。水平方向に分割される場合、上側から下側の方向順にパーティションブロックがコーディングされ、垂直方向に分割される場合、左側から右側の方向順にパーティションブロックがコーディングされる。現在コーディングされるパーティションブロックは水平(垂直)方向分割である場合、上側(左側)パーティションブロックの復元されたピクセル値を参照して予測されることができる。
【0264】
ISP予測方法で生成されたレジデュアル信号にパーティションブロック単位で変換が適用されることができる。順方向(forward)を基準に1次変換(core transform又はprimary transform)に既存のDCT-2だけでなくDST-7/DCT-8組み合わせベースのMTS(Multiple Transform Selection)技術が適用され、1次変換により生成された変換係数に順方向LFNST(Low Frequency Non-Separable Transform)が適用されて最終的な修正された変換係数が生成されることができる。
【0265】
すなわち、ISP予測モードが適用されて分割されたパーティションブロックにもLFNSTが適用でき、前述のように、分割されたパーティションブロックには同一のイントラ予測モードが適用される。従って、イントラ予測モードに基づいて導出されるLFNSTセットを選択する時、全てのパーティションブロックに導出されたLFNSTセットを適用することができる。すなわち、全てのパーティションブロックに同一のイントラ予測モードが適用されるので、これにより全てのパーティションブロックには同一のLFNSTセットが適用されることができる。
【0266】
一方、一例によって、LFNSTは横長と縦長が全て4以上である変換ブロックに対してのみ適用できる。従って、ISP予測方式に従って分割されたパーティションブロックの縦長又は横長が4未満である場合、LFNSTが適用されずLFNSTインデックスもシグナリングされない。また、各パーティションブロックにLFNSTを適用する場合、当該パーティションブロックを1つの変換ブロックとみなすことができる。もちろん、ISP予測方式が適用されない場合、コーディングブロックにLFNSTが適用される。
【0267】
各パーティションブロックにLFNSTを適用することを具体的に説明すると、以下のようである。
【0268】
一例によって、個別的なパーティションブロックに対して順方向LFNSTを適用した後、左上側4×4領域に変換係数スキャン順序に従って最大16個(8個又は16個)の係数のみを残した後、残りの位置及び領域は全て0値で充填するゼロアウトが適用される。
【0269】
または、一例によって、パーティションブロックの一辺の長さが4である場合、左上側4×4領域に対してのみLFNSTを適用し、パーティションブロックの全ての辺、すなわち、幅及び高さの長さが8以上である場合、左上側8×8領域内部の右下側4×4領域を除いた残りの48個の係数に対してLFNSTを適用することができる。
【0270】
または、一例によって、最悪の場合の計算複雑度を8掛け算/サンプル(multiplications per sample)に合わせるために、各パーティションブロックが4×4又は8×8である場合は、順方向LFNST適用後に8つの変換係数のみを出力することができる。すなわち、パーティションブロックが4×4であると、変換マトリックスとして8×16行列が適用され、パーティションブロックが8×8であると、変換マトリックスとして8×48行列が適用される。
【0271】
一方、現在VVC標準において、LFNSTインデックスシグナリングはコーディングユニット単位で行われる。従って、ISP予測モードであり、全てのパーティションブロックに対してLFNSTを適用する場合、当該パーティションブロックに対して同一のLFNSTインデックス値が適用できる。すなわち、コーディングユニットレベルにおいてLFNSTインデックス値が一度送信されると、コーディングユニット内部の全てのパーティションブロックに対しては該当LFNSTインデックスが適用できる。前述のように、LFNSTインデックス値は0、1、2値を有し、0はLFNSTが適用されない場合を示し、1と2はLFNSTが適用されるときに1つのLFNSTセット内に存在する2つの変換マトリックスを示す。
【0272】
前記のように、LFNSTセットはイントラ予測モードにより決定され、ISP予測モードである場合、コーディングユニット内の全てのパーティションブロックが同一のイントラ予測モードで予測されるので、パーティションブロックは同一のLFNSTセットを参照することができる。
【0273】
また他の一例として、LFNSTインデックスシグナリングは依然としてコーディングユニット単位で行われるが、ISP予測モードの場合、全てのパーティションブロックに対して一律にLFNST適用の可否を決定せず、別途の条件に従ってそれぞれのパーティションブロックに対してコーディングユニットレベルにおいてシグナリングされたLFNSTインデックス値を適用するか、それともLFNSTを適用しないかを決定する。ここで、別途の条件は、ビットストリームを介して各パーティションブロック別にフラグ形態でシグナリングされ、フラグ値が1であると、コーディングユニットレベルにおいてシグナリングされたLFNSTインデックス値を適用し、フラグ値が0であると、LFNSTを適用しない。
【0274】
一方、ISPモードが適用されるコーディングユニットにおいて、パーティションブロックの一辺の長さが4未満である場合、LFNSTを適用する例について説明すると、以下のようである。
【0275】
第1に、パーティションブロックのサイズがN×2(2×N)である場合、左上側M×2(2×M)領域にLFNSTを適用できる(ここで、M≦N)。例えば、M=8である場合、当該左上側領域は8×2(2×8)となるので、16個のレジデュアル信号が存在する領域が順方向LFNSTの入力となり、R×16(R≦16)順方向変換行列が適用できる。
【0276】
ここで、順方向LFNST行列は、現在VVC標準に含まれている行列ではなく別途の追加的な行列であり得る。また、最悪の場合の複雑度調節のために、16×16行列の上側8つの行ベクトル(row vector)のみをサンプリングした8×16行列を変換に使用する。複雑度の調節方法については詳細に後述する。
【0277】
第2に、パーティションブロックのサイズがN×1(1×N)である場合、左上側M×1(1×M)領域にLFNSTを適用できる(ここで、M≦N)。例えば、M=16である場合、当該左上側の領域は16×1(1×16)となるので、16個のレジデュアル信号が存在する領域が順方向LFNSTの入力となり、R×16(R≦16) 順方向変換行列が適用できる。
【0278】
ここで、当該順方向LFNST行列は、現在VVC標準に含まれている行列ではない別途の追加的な行列であり得る。また、最悪の場合の複雑度調節のために、16×16行列の上側8つの行ベクトル(row vector)のみをサンプリングした8×16行列を変換に使用することができる。複雑度調節方法については、詳細に後述する。
【0279】
第1の実施形態と第2の実施形態は同時に適用されてもよく、2つの実施形態のいずれか1つのみを適用してもよい。特に、第2の実施形態の場合、LFNSTに1次元的な変換が考慮されることにより、既存のLFNSTにおいて得られた圧縮性能の向上がLFNSTインデックスシグナリングコスト(signaling cost)に比べて比較的大きくないことが実験により観察された。しかしながら、第1の実施形態の場合、既存のLFNSTにおいて得られた圧縮性能の向上と類似した圧縮性能の向上が観測された、すなわち、ISPの場合、2×NとN×2のためのLFNST適用が実際の圧縮性能に寄与することが実験により確認される。
【0280】
現在VVCにおけるLFNSTにおいてはイントラ予測モード間の対称性が適用される。34番モード(右下側45度対角線方向に予測)を中心に配置された2方向性モードには同じLFNSTセットが適用されており、例えば、18番モード(水平方向予測モード)と50番モード(垂直方向予測モード)には同一のLFNSTセットが適用される。ただし、35番モードから66番モードは順方向LFNSTを適用する時、入力データをトランスポーズ(transpose)した後、LFNSTを適用する。
【0281】
一方、VVCにおいては広角イントラ予測(Wide Angle Intra Prediction、WAIP)モードをサポートするが、WAIPモードを考慮して修正されたイントラ予測モードに基づいてLFNSTセットが導出される。WAIPにより拡張されるモードに対しても、一般のイントラ予測方向モードと同様に対称性を活用してLFNSTセットを決定する。例えば、-1番モードは67番モードと対称となるため、同一のLFNSTセットを適用し、-14番モードは80番モードと対称となるため、同一のLFNSTセットを適用する。67番モードから80番モードは順方向LFNSTを適用する前に入力データをトランスポーズした後、LFNST変換を適用する。
【0282】
左上側M×2(M×1)ブロックに適用されるLFNSTの場合は、前述のLFNSTに対する対称性を適用できないが、LFNSTを適用するブロックが非正方形であるためである。従って、表2のLFNSTのようにイントラ予測モードを基準とする対称性を適用するのではなく、M×2(M×1)ブロックと2×M(1×M)ブロックの間の対称性を適用できる。
【0283】
図18は、一例によるM×2(M×1)ブロックと2×M(1×M)ブロックの対称性を示した図である。
【0284】
図18のように、M×2(M×1)ブロックにおいての2番モードは2×M(1×M)ブロックにおいての66番モードと対称であるため、2×M(1×M)ブロックとM×2(M×1)ブロックに同一のLFNSTのセットが適用できる。
【0285】
このとき、2×M(1×M)ブロックに、M×2(M×1)ブロックに適用されていたLFNSTセットを適用するために、66番モードの代わりに2番モードを基準にLFNSTセットを選択する。すなわち、順方向LFNSTを適用する前に、2×M(1×M)ブロックの入力データをトラントポーズした後、LFNSTを適用できる。
【0286】
図19は、一例によって2×Mブロックをトランスポーズした例を示した図面である。
【0287】
図19の(a)は、2×Mブロックに対して列優先(column-first)順に入力データを読み込んでLFNSTを適用できることを説明する図であり、
図19の(b)は、M×2(M×1)ブロックに対して行優先(row-first)順に入力データを読み込んでLFNSTを適用することを説明する図である。左上側M×2(M×1)又は2×M(M×1)ブロックに対してLFNSTを適用する方式を整理してみると、次のようである。
【0288】
1.まず、
図19の(a)及び(b)のように、入力データを配列して順方向LFNSTの入力ベクトルを構成する。例えば、
図18を参照すると、2番モードで予測されるM×2ブロックに対しては
図19の(b)での順序を従い、66番モードで予測される2×Mブロックに対しては
図19の(a)の順序に従って入力データを配列した後、2番モードに対するLFNSTセットを適用することができる。
【0289】
2.M×2(M×1)ブロックに対しては、WAIPを考慮した修正されたイントラ予測モードに基づいてLFNSTセットを決定する。前述のように、イントラ予測モードとLFNSTセットの間には既設定のマッピング関係が成立し、これは、表2のようにマッピングテーブルとして示すことができる。
【0290】
2×M(1×M)ブロックに対しては、WAIPを考慮して修正されたイントラ予測モードから、右下向45度対角線方向の予測モード(VVC標準の場合、34番モード)を中心に対称であるモードを求めた後、当該対称モード及びマッピングテーブルに基づいてLFNSTセットを決定する。34番モードを中心に対称のモード(y)は次の数により導出される。マッピングテーブルに関するものは、以下、より具体的に説明される。
【0291】
〔数11〕
if 2 ≦ x ≦ 66, y = 68 - x,
otherwise (x≦-1 or x≧67), y = 66 - x
【0292】
3.順方向LFNSTを適用するときは、1番過程で準備した入力データをLFNSTカーネルに掛け算して変換係数を導出する。LFNSTカーネルは、2番過程で決定されたLFNSTセットと予め指定されたLFNSTインデックスから選択される。
【0293】
例えば、M=8であり、LFNSTカーネルとして16×16行列が適用される場合、当該行列を16個の入力データと掛け算して16個の変換係数が生成される。生成される変換係数は、左上側8×2又は2×8領域にVVC標準において使用するスキャン順序に従って配置される。
【0294】
図20は、一例による8×2又は2×8の領域に対するスキャン順序を示した図である。
【0295】
左上側8×2又は2×8領域以外の領域に対しては、全て0値で充填するか(zero-out)、1次変換を適用した既存の変換係数をそのまま維持してもよい。前記予め指定されたLFNSTインデックスは、エンコード過程でLFNSTインデックス値を変更しながらRDコストを計算する時に試されるLFNSTインデックス値(0、1、2)のいずれか1つであり得る。
【0296】
最悪の場合に対する計算複雑度を一定のレベル以下に合わせる構成の場合(例えば、8掛け算/サンプル)、例えば、前記16×16行列の上側8つの行のみをとった8×16行列を掛け算して8つの変換係数のみを生成した後、
図20のようなスキャン順序に従って8つの変換係数を配置し、残りの係数領域に対してはゼロアウトを適用してもよい。最悪の場合の複雑度の調節は後述する。
【0297】
4.逆方向のLFNSTを適用する時には、既設定の個数(例えば、16個)の変換係数を入力ベクトルとして置き、2番過程から求めたLFNSTセットとパーシングされたLFNSTインデックスから導出されたLFNST カーネル(例えば、16×16行列)を選択した後、LFNSTカーネルと当該入力ベクトルを掛け算して出力ベクトルを導出する。
【0298】
M×2(M×1)ブロックの場合は、
図19の(b)のような行優先順序に従って出力ベクトルを配置し、2×M(1×M)ブロックの場合は、
図19の(a)のように列優先順序に従って出力ベクトルを配置する。
【0299】
左上側のM×2(M×1)又は2×M(M×2)領域内部に当該出力ベクトルが配置される領域を除いた残りの領域と、パーティションブロック内の左上側M×2(M×1)又は2×M(M×2)領域以外の領域に対しては、全て0値で充填するか(zero-out)、レジデュアルコーディングと逆量子化過程で復元された変換係数をそのまま維持するように構成される。
【0300】
3番と同様に、入力ベクトルを構成する時は
図20のスキャン順序に従って入力データを配列し、最悪の場合に対する計算複雑度を一定のレベル以下に合わせるために入力データの数を減らして(例えば、16個の代わりに8個)入力ベクトルを構成することもできる。
【0301】
例えば、M=8であるとき、8つの入力データを使用する場合、当該16×16行列から左側16×8行列のみをとって掛け算した後、16個の出力データを得ることができる。最悪の場合に対する複雑度の調節は後述する。
【0302】
前記実施形態においては、LFNST適用の時、M×2(M×1)ブロックと2×M(1×M)ブロックの間に対称性を適用する場合を提示しているが、他の例によって2つのブロックの形状に対してそれぞれ異なるLFNSTセットを適用することもできる。
【0303】
以下では、ISPモードに対するLFNSTセット構成及びイントラ予測モードを用いたマッピング方式に関する様々な例を記述する。
【0304】
ISPモードである場合、LFNSTセット構成は既存のLFNSTセットと異なる。言い換えれば、既存のLFNSTカーネルと異なるカーネルが適用されてもよく、現在VVC標準に適用されるイントラ予測モードインデックスとLFNSTセット間のマッピングテーブルと異なるマッピングテーブルを適用してもよい。現在VVC標準に適用されるマッピングテーブルは表2のようである。
【0305】
表2において、preModeIntra値はWAIPを考慮して変更されたイントラ予測モード値を意味し、lfnstTrSetIdx値は特定のLFNSTセットを示すインデックス値である。各LFNSTセットは2つのLFNSTカーネルで構成されている。
【0306】
ISP予測モードが適用される場合、各パーティションブロックの横長と縦長が両方とも4より大きいか等しい場合には、現在VVC標準において適用されるLFNSTカーネルと同一のカーネルを適用してもよく、前記マッピングテーブルもそのまま適用してもよい。勿論、現在VVC標準と異なるLFNSTカーネルと異なるマッピングテーブルを適用してもよい。
【0307】
ISP予測モードが適用される場合、各パーティションブロックの横長又は縦長が4未満である場合には、現在VVC標準においてとは異なるLFNST カーネルと異なるマッピングテーブルを適用してもよい。以下の表6ないし表6は、M×2(M×1)ブロック又は2×M(1×M)ブロックに対して適用できる、イントラ予測モード値(WAIPを考慮して変更されたイントラ予測モード値)とLFNSTセット間のマッピングテーブルを示す。
【0308】
【0309】
【0310】
【0311】
表6の最初のマッピングテーブルは7つのLFNSTセットで構成され、表7のマッピングテーブルは4つのLFNSTセットで構成され、表8のマッピングテーブルは2つのLFNSTセットで構成される。また他の例として、1つのLFNSTセットで構成される場合、preModeIntra値に対してlfnstTrSetIdx値は0に固定される。
【0312】
以下では、ISPモードにLFNST適用時、最悪の場合に関する計算複雑度を維持する方法について説明する。
【0313】
ISPモードである場合、LFNST適用時にサンプル当たり(又は、係数当たり、位置当たり)掛け算数を一定値以下に維持するためにLFNST適用を制限することができる。パーティションブロックのサイズに応じて、以下のようにLFNSTを適用してサンプル当たり(又は、係数当たり、位置当たり)掛け算数を8個以下に維持することができる。
【0314】
1.パーティションブロックの横長と縦長が両方とも4以上である場合は、現在VVC標準におけるLFNSTに対する最悪の場合に対する計算複雑度調節方式と同一の方式を適用できる。
【0315】
すなわち、パーティションブロックが4×4ブロックである場合には16×16行列の代わりに、順方向では16×16行列から上位8個の行をサンプリングした8×16行列を適用し、逆方向では16×16行列から左側8個の列をサンプリングした16×8行列を適用することができる。また、パーティションブロックが8×8ブロックであるときは、順方向の場合は16×48行列の代わりに、16×48行列から上位8個の行をサンプリングした8×48行列を適用し、逆方向の場合は48×16行列の代わりに48×16から左側の8個の列をサンプリングした48×8行列を適用できる。
【0316】
4×N又はN×4(N>4)ブロックの場合、順方向変換を行う時、左上側4×4ブロックに対してのみ16×16行列を適用した後、生成された16個の係数は左上側4×4領域に配置され、それ以外の領域は0値で充填される。また、逆方向変換を行う時には左上4×4ブロックに位置した16個の係数をスキャン順序に従って配置して入力ベクトルを構成した後、16×16行列を掛け算して16個の出力データを生成することができる。生成された出力データは左上側4×4領域に配置され、左上側4×4領域を除いた残りの領域は0で充填される。
【0317】
8×N又はN×8(N>8)ブロックの場合、順方向変換を行う時に左上側8×8ブロック内部のROI領域(左上側8×8ブロックから右下側4×4ブロックを除いた残りの領域)に対してのみ16×48行列を適用した後、生成された16個の係数は左上側4×4領域に配置され、それ以外の領域は全て0値で充填される。また、逆方向変換を行う時には左上側4×4ブロックに位置した16個の係数をスキャン順序に従って配置して入力ベクトルを構成した後、48×16行列を掛け算して48個の出力データを生成する。生成された出力データは、前記ROI領域に充填され、残りの領域は全て0値で充填される。
【0318】
2.パーティションブロックのサイズがN×2又は2×Nであり、左上側M×2又は2×M領域に対して(M≦N)LFNSTを適用する場合、N値に応じてサンプリングした行列を適用することができる。
【0319】
M=8である場合、N=8であるパーティションブロック、すなわち、8×2又は2×8ブロックに対しては、順方向変換の場合は16×16行列の代わりに16×16行列から上位8つの行をサンプリングした8×16行列を適用し、逆方向変換の場合は16×16行列の代わりに16×16行列から左側8つの列をサンプリングした16×8行列を適用する。
【0320】
Nが8より大きい場合、順方向変換の場合は、左上側8×2又は2×8ブロックに対して16×16行列を適用した後、生成された16個の出力データは左上側8×2又は2×8ブロックに配置され、残りの領域に対しては0値で充填される。逆方向変換の場合は、左上側8×2又は2×8ブロックに位置した16個の係数をスキャン順序に従って配置して入力ベクトルを構成した後、該当16×16行列を掛け算して16個の出力データを生成する。生成された出力データは左上側8×2又は2×8ブロックに配置され、残りの領域は全て0値で充填される。
【0321】
3.パーティションブロックのサイズがN×1又は1×Nであり、左上側M×1又は1×M領域に対して(M≦N)LFNSTを適用する場合、N値に応じてサンプリングした行列を適用する。
【0322】
M=16の場合、N=16であるパーティションブロック、すなわち、16×1又は1×16ブロックに対しては、順方向変換の場合は16×16行列の代わりに16×16行列から上位8つの行をサンプリングした8×16行列を適用し、逆方向変換の場合は16×16行列の代わりに16×16行列から左側8つの列をサンプリングした16×8行列を適用する。
【0323】
Nが16より大きい場合、順方向変換の場合は、左上側16×1又は1×16ブロックに対して16×16行列を適用した後、生成された16個の出力データは左上側16×1又は1×16ブロックに配置され、残りの領域に対しては0値で充填される。逆方向変換の場合は、左上側16×1又は1×16ブロックに位置した16個の係数をスキャン順序に従って配置して入力ベクトルを構成した後、該当16×16行列を掛け算して16個の出力データを生成する。生成された出力データは左上側16×1又は1×16ブロックに配置され、残りの領域は全て0値で充填される。
【0324】
また他の一例として、サンプル当たり(又は、係数当たり、位置当たり)掛け算数を一定値以下に維持するためにISPパーティションブロックのサイズではないISPコーディングユニットのサイズを基準にサンプル当たり(又は、係数当たり、位置当たり)掛け算数を8個以下に維持する。もし、ISPパーティションブロックのうちLFNSTが適用される条件を満たすブロックが1つだけ存在する場合、パーティションブロックのサイズではない当該コーディングユニットのサイズに基づいてLFNST最悪の場合に対する複雑度演算が適用される。例えば、あるコーディングユニットに対するルマコーディングブロックが4×4サイズの4つのパーティションブロックに分割されてISPでコーディングされ、そのうち2つのパーティションブロックに対しては0ではない変換係数が存在しない場合、他の2つのパーティションブロックには(エンコーダ基準で)それぞれ8つではない16個の変換係数が生成されるように設定することができる。
【0325】
以下では、ISPモードである場合、LFNSTインデックスをシグナリングする方法について説明する。
【0326】
前述のように、LFNSTインデックスは0、1、2値を有し、0はLFNSTを適用しないことを示し、1と2は選択されたLFNSTのセットに含まれる2つのLFNSTカーネルマトリックスのいずれか1つずつを示す。LFNSTインデックスにより選択されたLFNSTカーネルマトリックスに基づいてLFNSTが適用される。現在VVC標準においてLFNSTインデックスの送信方式を説明すると、以下のようである。
【0327】
1.コーディングユニット(CU)ごとに1回ずつLFNSTインデックスを送信することができ、デュアルツリー(dual-tree)の場合は、ルマブロックとクロマブロックに対してそれぞれ個別のLFNSTインデックスがシグナリングされる。
【0328】
2.LFNSTインデックスがシグナリングされない場合は、LFNSTインデックス値はデフォルト値である0と決定される(infer)。LFNSTインデックス値が0に類推される場合は次のようである。
【0329】
A.変換が適用されないモードである場合(例えば、変換スキップ(transform skip)、BDPCM、無損失(lossless)コーディングなど)
【0330】
B.1次変換がDCT-2でない場合(DST7やDCT8)、すなわち、水平方向の変換又は垂直方向の変換がDCT-2でない場合
【0331】
C.コーディングユニットのルマブロックに対する横長又は縦長が変換可能な最大ルマ変換のサイズを超過する場合、例えば、変換可能な最大ルマ変換のサイズが64である場合、コーディングブロックのルマブロックに対するサイズが128×16と同様である場合はLFNSTが適用できない。
【0332】
デュアルツリーの場合、ルマ成分に対するコーディングユニットとクロマ成分に対するコーディングユニットのそれぞれに対して、最大ルマ変換のサイズを超過するか否かが判断される。すなわち、ルマブロックに対して変換が可能な最大ルマ変換のサイズを超過するか否かがチェックされ、クロマブロックに対してカラーフォーマットに対する対応ルマブロックの縦/横の長さと最大変換が可能な最大ルマ変換のサイズを超過するか否かがチェックされる。例えば、カラーフォーマットが4:2:0である場合には、対応ルマブロックの横/縦の長さはそれぞれ当該クロマブロックの2倍となり、対応ルマブロック変換のサイズは当該クロマブロックの2倍となる。また他の例として、カラーフォーマットが4:4:4である場合には、対応ルマブロックの横/縦の長さと変換のサイズは、対応するクロマブロックと同じである。
【0333】
64長さ変換又は32長さ変換がそれぞれ64又は32長さを有する横又は縦に適用される変換を意味し、「変換サイズ」は当該長さである64又は32を意味する。
【0334】
シングルツリーである場合、ルマブロックに対して横長又は縦長が変換可能な最大ルマ変換ブロックのサイズを超過しているか否かをチェックした後、超過する場合はLFNSTインデックスシグナリングを省略してもよい。
【0335】
D.コーディングユニットの横長と縦長の両方とも4以上である場合にのみLFNSTインデックスを送信できる。
【0336】
デュアルツリーである場合、該当成分(すなわち、ルマ又はクロマ成分)に対する横長と縦長が両方とも4以上である場合にのみLFNSTインデックスをシグナリングすることができる。
【0337】
シングルツリーである場合は、ルマ成分に対する横長さ縦長が両方とも4以上である場合に対してLFNSTインデックスをシグナリングすることができる。
【0338】
E.最後の0ではない係数の位置(last non-zero coefficient position)がDC位置(ブロックの左上側位置)ではない場合、デュアルツリータイプのルマブロックであると、最終0ではない係数の位置がDC位置でない場合はLFNSTインデックスを送信する。デュアルツリータイプのクロマブロックであると、Cbに対する最後の0ではない係数の位置とCrに対する最後の0ではない係数の位置のうち1つでもDC位置でない場合は、該当LNFSTインデックスを送信する。
【0339】
シングルツリータイプであると、ルマ成分、Cb成分、Cr成分のうち1つでも当該最後の0ではない係数の位置がDC位置でない場合は、LFNSTインデックスを送信する。
【0340】
ここで、1つの変換ブロックに対する変換係数の存在の可否を示すCBF(coded block flag)値が0であると、LFNSTインデックスシグナリングを行うか否かを判断するために、当該変換ブロックに対する最後の0ではない係数の位置をチェックしない。すなわち、当該CBF値が0である場合、当該ブロックに変換が適用されないので、LFNSTインデックスシグナリングに対する条件をチェックする時、最後の0ではない係数の位置を考慮しなくてもよい。
【0341】
例えば、1)デュアルツリータイプで、ルマ成分である場合、当該CBF値が0であると、LFNSTインデックスをシグナリングせず、2)デュアルツリータイプで、クロマ成分である場合、Cbに対するCBF値が0であり、Crに対するCBF値が1であると、Crに対する最後の0ではない係数の位置のみをチェックして該当LFNSTインデックスを送信し、3)シングルツリータイプである場合は、ルマ、Cb、Crの全てに対して各CBF値が1である成分に対してのみ最後の0ではない係数の位置をチェックする。
【0342】
F.LFNST変換係数が存在できる場所ではない位置に変換係数が存在することが確認された場合、LFNSTインデックスシグナリングを省略することができる。4×4変換ブロックと8×8変換ブロックの場合は、VVC標準においての変換係数スキャン順序に従ってDC位置から8つの位置にLFNST変換係数が存在し、残りの位置は全て0で充填される。また、4×4変換ブロックと8×8変換ブロックではない場合は、VVC標準での変換係数スキャン順序に従ってDC位置から16個の位置にLFNST変換係数が存在し、残りの位置は全て0で充填される。
【0343】
従って、レジデュアルコーディング(residual coding)を行った後、前記0値が充填されなければならない領域に0ではない変換係数が存在すると、LFNSTインデックスシグナリングを省略することができる。
【0344】
一方、ISPモードは、ルマブロックである場合にのみ適用されるか、ルマブロックとクロマブロックの両方ともに適用されることもある。前述したように、ISP予測が適用される場合、該当コーディングユニットは2つ又は4つのパーティションブロックに分割されて予測され、変換も該当パーティションブロックにそれぞれ適用される。従って、コーディングユニット単位でLFNSTインデックスをシグナリングする条件を決定する時にも該当パーティションブロックにそれぞれLFNSTが適用できるという事実を考慮しなければならない。また、ISP予測モードが特定成分(例えば、ルマブロック)に対してのみ適用される場合は、当該成分に対してのみパーティションブロックに分割されるという事実を考慮してLFNSTインデックスをシグナリングしなければならない。ISPモードである場合、可能なLFNSTインデックスシグナリング方式を整理すると、以下のようである。
【0345】
1.コーディングユニット(CU)ごとに1回ずつLFNSTインデックスを送信することができ、デュアルツリー(dual-tree)である場合はルマブロックとクロマブロックに対してそれぞれ個別的なLFNSTインデックスがシグナリングされることができる。
【0346】
2.LFNSTインデックスがシグナリングされない場合は、LFNSTインデックス値はデフォルト値である0に決定される(infer)。LFNSTインデックス値が0に類推される場合は次のようである。
【0347】
A.変換が適用されないモードである場合(例えば、変換スキップ(transform skip)、BDPCM、無損失(lossless)コーディングなど)
【0348】
B.コーディングユニットのルマブロックに対する横長又は縦長が変換可能な最大ルマ変換のサイズを超過する場合、例えば、変換可能な最大ルマ変換のサイズが64である場合、コーディングブロックのルマブロックに対するサイズが128×16と同一である場合はLFNSTが適用できない。
【0349】
コーディングユニットの代わりにパーティションブロックのサイズを基準にLFNSTインデックスのシグナリングを行うか否かを決定することもできる。すなわち、当該ルマブロックに対するパーティションブロックの横長又は縦長が変換可能な最大ルマ変換のサイズを超過する場合、LFNSTインデックスシグナリングを省略し、LFNSTインデックス値を0と類推できる。
【0350】
デュアルツリーの場合、ルマ成分に対するコーディングユニット又はパーティションブロックとクロマ成分に対するコーディングユニット又はパーティションブロックのそれぞれに対して最大変換ブロックサイズを超過するか否かが判断される。すなわち、ルマに対するコーディングユニット又はパーティションブロックの縦長と横長をそれぞれ最大ルマ変換サイズと比較して1つでも最大ルマ変換サイズより大きい場合はLFNSTを適用せず、クロマに対するコーディングユニット又はパーティションブロックの場合は、カラーフォーマットに対する対応ルマブロックの横/縦の長さと最大変換可能な最大ルマ変換のサイズが比較される。例えば、カラーフォーマットが4:2:0である場合には、対応ルマブロックの横/縦の長さはそれぞれ当該クロマブロックの2倍となり、対応ルマブロックの変換サイズは当該クロマブロックの2倍となる。また他の例として、カラーフォーマットが4:4:4である場合には、対応ルマブロックの横/縦の長さと変換サイズは対応するクロマブロックと同じである。
【0351】
シングルツリーである場合、ルマブロック(コーディングユニット又はパーティションブロック)に対して横長又は縦長が変換可能な最大ルマ変換ブロックサイズを超過しているか否かをチェックした後、超過する場合はLFNSTインデックスシグナリングを省略してもよい。
【0352】
C.もし、現在のVVC標準に含まれているLFNSTを適用すると、パーティションブロックの横長と縦長が両方とも4以上である場合にのみLFNSTインデックスを送信することができる。
【0353】
もし、現在VVC標準に含まれているLFNST以外に、2×M(1×M)又はM×2(M×1)ブロックに対するLFNSTまで適用すると、パーティションブロックのサイズが2×M(1×M)又はM×2(M×1)ブロックより大きいか等しい場合にのみLFNSTインデックスを送信することができる。ここで、P×QブロックがR×Sブロックより大きいか等しいという意味は、P≧Rであり、Q≧Sであることを意味する。
【0354】
整理すると、パーティションブロックがLFNSTが適用可能な最小限のサイズより大きいか等しい場合にのみLFNSTインデックスを送信することができる。デュアルツリーの場合、ルマ又はクロマ成分に対するパーティションブロックがLFNSTが適用可能な最小限のサイズより大きい等しい場合にのみLFNSTインデックスをシグナリングすることができる。シングルツリーの場合、ルマ成分に対するパーティションブロックがLFNSTが適用可能な最小限のサイズより大きいか等しい場合にのみLFNSTインデックスをシグナリングすることができる。
【0355】
本文書において、M×NブロックがK×Lブロックより大きいか等しいことは、MがKより大きいか等しく、NがLより大きいか等しいことを意味する。M×NブロックがK×Lブロックより大きいということは、MがKより大きいか等しく、NがLより大きいか等しいながら、MがKより大きいか、NがLより大きいということを意味する。M×NブロックがK×Lブロックより小さいか等しいということは、MがKより小さいか等しく、NがLより小さいか等しいということを意味し、M×NブロックがK×Lブロックより小さいということはMがKより小さいか等しく、NがLより小さかいか等しいながら、MがKより小さいか、NがLより小さいことを意味する。
【0356】
D.最後の0ではない係数の位置(last non-zero coefficient position)がDC位置(ブロックの左上側位置)ではない場合、デュアルツリータイプのルマブロックであると、全てのパーティションブロックのうち1つでも当該最後の0ではない係数の位置がDC位置でない場合は、LFNSTインデックスを送信することができる。デュアルツリータイプであり、クロマブロックであると、Cbに対する全てのパーティションブロックの(ISPモードがクロマ成分に適用されない場合にはパーティションブロックの数は1つであるとみなす)最後の0ではない係数の位置とCrに対する全てのパーティションブロックの(ISPモードがクロマ成分に適用されない場合にはパーティションブロックの数が1つであるとみなす)最後の0ではない係数の位置のうち1つでもDC位置でない場合は、該当LNFSTインデックスを送信することができる。
【0357】
シングルツリータイプの場合、ルマ成分、Cbの成分、Cr成分に対する全てのパーティションブロックのうち1つでも最後の0ではない係数の位置がDC位置でないと、該当LFNSTインデックスを送信することができる。
【0358】
ここで、各パーティションブロックに対して変換係数が存在するか否かを示すCBF(coded block flag)値が0であると、LFNSTインデックスシグナリングを行うか否かを判断するために、当該パーティションブロックに対する最後の0ではない係数の位置をチェックしない。すなわち、当該CBF値が0であると、当該ブロックに変換が適用されないので、LFNSTインデックスシグナリングに関する条件をチェックする時、当該パーティションブロックに対する最後の0ではない係数の位置を考慮しない。
【0359】
例えば、1)デュアルツリータイプで、ルマ成分である場合、各パーティションブロックに対して該当CBF値が0であると、LFNSTインデックスシグナリングを行うか否かを決定する時に該当パーティションブロックを除外し、2)デュアルツリータイプで、クロマ成分である場合、各パーティションブロックに対してCbに対するCBF値が0で、Crに対するCBF値が1であると、Crに対する最後の0ではない係数の位置のみをチェックして該当LFNSTインデックスシグナリングを行うか否かを決定し、3)シングルツリータイプである場合、ルマ成分、Cb成分、Cr成分の全てのパーティションブロックに対してCBF値が1であるブロックに対してのみ最後の0ではない係数の位置をチェックしてLFNSTインデックスシグナリングを行うか否かを決定することができる。
【0360】
ISPモードである場合は、最後の0ではない係数の位置をチェックしないように映像情報を構成してもよく、これに関する実施形態は次のようである。
【0361】
i.ISPモードである場合は、ルマブロックとクロマブロックの両方ともに対して最後の0ではない係数の位置に関するチェックを省略し、LFNSTインデックスシグナリングを許容する。すなわち、全てのパーティションブロックに対して最後の0ではない係数の位置がDC位置であるか、該当CBF値が0であっても、当該LFNSTインデックスシグナリングを許容する。
【0362】
ii.ISPモードである場合は、ルマブロックに対してのみ最後の0ではない係数の位置に関するチェックを省略し、クロマブロックである場合は、前述の方式の最後の0ではない係数の位置に関するチェックを行う。例えば、デュアルツリータイプであり、ルマブロックである場合は、最後の0ではない係数の位置に関するチェックを行わずにLFNSTインデックスシグナリングを許容し、デュアルツリータイプであり、クロマブロックである場合は、前述の方式で最後の0ではない係数の位置に対するDC位置の存在可否をチェックして該当LFNSTインデックスのシグナリングを行うか否かを決定する。
【0363】
iii.ISPモードであり、シングルツリータイプである場合は、前記i番又はii番の方式を適用する。すなわち、ISPモードでありシングルツリータイプにi番を適用する場合、ルマブロックとクロマブロックの両方ともに対して最後の0ではない係数の位置に関するチェックを省略し、LFNSTインデックスシグナリングを許容する。または、ii番を適用してルマ成分に対するパーティションブロックに対しては最後の0ではない係数の位置に関するチェックを省略し、クロマ成分に対するパーティションブロック(クロマ成分に対してISPを適用しない場合はパーティションブロックの数が1であると見なす)に対しては前述の方式で最後の0ではない係数の位置に関するチェックを行って該当LFNSTインデックスシグナリングを行うか否かを決定することができる。
【0364】
E.全てのパーティションブロックのうち1つのパーティションブロックに対してでもLFNST変換係数が存在できる位置ではない位置に変換係数が存在することが確認されると、LFNSTインデックスシグナリングを省略することができる。
【0365】
例えば、4×4パーティションブロックと8×8パーティションブロックの場合は、VVC標準での変換係数スキャン順序に従ってDC位置から8つの位置にLFNST変換係数が存在し、残りの位置は全て0で充填される。また、4×4より大きいか等しいながら4×4パーティションブロック及び8×8パーティションブロックではない場合は、VVC標準での変換係数スキャン順序に従ってDC位置から16個の位置にLFNST変換係数が存在し、残りの位置は全て0で充填される。
【0366】
従って、レジデュアルコーディング(residual coding)を行った後、前記0値が充填されなければならない領域に0ではない変換係数が存在すると、LFNSTインデックスシグナリングを省略することができる。
【0367】
もし、パーティションブロックが2×M(1×M)又はM×2(M×1)である場合に対してもLFNSTを適用できる場合、次のようにLFNST変換係数が位置できる領域を指定することができる。変換係数が位置できる領域外の領域は0で充填され、LFNSTが適用されたと仮定した時に0で充填されなければならない領域に0ではない変換係数が存在すると、LFNSTインデックスシグナリングを省略することができる。
【0368】
i.2×M又はM×2ブロックにLFNSTが適用されることができ、M=8である場合、2×8又は8×2パーティションブロックに対しては8つのLFNST変換係数のみが生成される。
図20のようなスキャン順序で変換係数が配置される場合、DC位置からスキャン順序で8つの変換係数が配置され、残りの8つの位置に対しては0で充填される。
【0369】
2×N又はN×2(N>8)パーティションブロックに対しては16個のLFNST変換係数が生成され、
図20のようなスキャン順序で変換係数が配置される場合、DC位置からスキャン順序で16個の変換係数が配置され、残りの領域に対しては0で充填される。すなわち、2×N又はN×2(N>8)パーティションブロックにおいて左上側2×8又は8×2ブロック以外の領域は0で充填される。2×8又は8×2パーティションブロックに対しても8つのLFNST変換係数の代わりに16個の変換係数が生成され、この場合は、0で充填されなければならない領域が発生しない。前述したように、LFNSTが適用される場合、1つのパーティションブロックにおいてでも0で充填されように定められた領域に0ではない変換係数が存在すると検知された場合、LFNSTインデックスシグナリングを省略し、LFNSTインデックスを0と類推することができる。
【0370】
ii.1×M又はM×1ブロックにLFNSTが適用されることができ、M=16である場合、1×16又は16×1パーティションブロックに対しては8つのLFNST変換係数のみが生成される。左側から右側又は上側から下側のスキャン順序で変換係数が配置される場合、DC位置から該当スキャン順序で8つの変換係数が配置され、残りの8つの位置に対しては0で充填される。
【0371】
1×N又はN×1(N>16)パーティションブロックに対しては16個のLFNST変換係数が生成され、左側から右側又は上側から下側のスキャン順序で変換係数が配置される場合、DC位置から該当スキャン順序で16個の変換係数が配置され、残りの領域に対しては0で充填される。すなわち、1×N又はN×1(N>16)パーティションブロックにおいて左上側1×16又は16×1ブロック以外の領域は0で充填される。
【0372】
1×16又は16×1パーティションブロックに対しても8個のLFNST 変換係数の代わりに16個の変換係数が生成され、この場合には0で充填されなければならない領域が発生しない。前述のように、LFNSTが適用される場合、1つのパーティションブロックにおいてでも0で充填されるように定められた領域に0ではない変換係数が存在すると検知された場合、LFNSTインデックスシグナリングを省略し、LFNSTインデックスを0と類推することができる。
【0373】
一方、ISPモードである場合、現在VVC標準においては水平方向と垂直方向に対してそれぞれ独立的に長さ条件を見てMTSインデックスに対するシグナリングなしにDCT-2の代わりにDST-7を適用する。縦長又は横長が4より大きいか等しく16より小さいか等しい否かが判断され、判断結果に応じて1次変換カーネルが決定される。従って、ISPモードでありながらLFNSTが適用できる場合に対しては次のような変換組み合わせ構成が可能である。
【0374】
1.LFNSTインデックスが0である場合(LFNSTインデックスが0と類推される場合も含む)については、現在VVC標準に含まれたISPであるときの1次変換の決定条件に従う。すなわち、水平方向と垂直方向に対してそれぞれ独立的に長さ条件(4より大きいか等しく16より小さいか等しい条件)を満足するか否かをチェックして、満足する場合は1次変換のためにDCT-2の代わりにDST-7を適用し、満足しない場合はDCT-2を適用する。
【0375】
2.LFNSTインデックスが0より大きい場合については、1次変換で次のような2つの構成が可能である。
【0376】
A.水平方向と垂直方向の両方ともに対してDCT-2が適用できる。
【0377】
B.現在VVC標準に含まれたISPであるときの1次変換の決定条件に従うことができる。すなわち、水平方向と垂直方向に対してそれぞれ独立的に長さの条件(4より大きいか等しく16より小さいか等しい条件)を満足するか否かをチェックして、満足する場合はDCT-2の代わりにDST-7を適用し、満足しない場合はDCT-2を適用する。
【0378】
ISPモードである場合、LFNSTインデックスはコーディングユニットごとに送信されるのではなく、パーティションブロックごとに送信するように映像情報を構成することができる。このような場合、前述のLFNSTインデックスシグナリング方式においてLFNSTインデックスが送信される単位内にパーティションブロックが1つだけ存在すると見なし、LFNSTインデックスシグナリングを行うか否かを決定することができる。
【0379】
一方、一例によって、表9のようにISPモードの場合に3つのセットで構成されたLFNSTカーネルを適用することができる。
【0380】
ISPモードではない場合について、次の表のようなマッピングテーブルを適用でき、表9のLFNSTセットをISPモードでLFNSTを適用する場合にも適用することができる。
【0381】
【0382】
表9のpreModeIntra値はWAIPを考慮して変更されたイントラ予測モード値を示し、lfnstTrSetIdx値は特定LFNSTセットを示すインデックス値であり、各LFNSTセットは2つのLFNSTカーネルで構成される。各インデックス(lfnstTrSetIdx)はVVC標準文書(JVET-O2001-vE.docx)に含まれた当該LFNSTセットを(当該文書のLow frequency non-separable transformation matrix derivation process節においてlfnstTrSetIdxの変数に指定されるLFNSTセットを意味する)指定することができる。
【0383】
ISPモードでありLFNSTを適用する場合、ISPパーティションブロックの横長と縦長が両方とも4より大きい場合にのみ表9のマッピングのテーブルを適用することができる。
【0384】
前述されたISPモードにおいてLFNSTが適用される実施形態をまとめると、次のようである。
【0385】
(1)ISPモードにおいてLFNSTが適用される場合、分割される変換ユニットは少なくとも4×4以上のサイズを持たなければならない。
【0386】
(2)ISPモードが適用されないコーディングユニットに適用された既存のLFNSTカーネルと同一のLFNSTカーネルが使用できる。
【0387】
(3)全ての変換ユニットは最大最後の位置値条件(最後0ではない有効係数の位置条件)を満足しなければならない。1つ以上の変換ユニットが最大最後の位置値条件を満たさないと、LFNSTは使用されず、LFNSTインデックスはパーシングされない。
【0388】
(4)ISPモードが適用される場合、有効係数がDC位置以外に存在しないとLFNSTが適用できないという設定は無視してもよい。
【0389】
(5)LFNSTが適用されると、ISPが適用される変換ユニットの1次変換はDCT-2が使用される。
【0390】
下記の表10は前記の内容を含むシンタックス要素を示す。
【0391】
【0392】
表10には、ツリータイプによるLFNSTが適用される領域の幅及び高さを設定しており、LFNSTインデックスが送信されるための条件が示されている。表10のシンタックス要素はコーディングユニット(CU)レベルにおいてシグナリングされる。デュアルツリー(dual-tree)の場合はルマブロックとクロマブロックに対してそれぞれ個別的なLFNSTインデックスがシグナリングされる。
【0393】
まず、LFNSTが適用される領域の幅(lfnstWidth)は、コーディングユニットのツリータイプがデュアルツリークロマであると、コーディングユニットの幅からカラーフォーマットが反映された幅に設定されることができる((treeType==DUAL_TREE_CHROMA)?cbWidth/SubWidthC)。
【0394】
反面、コーディングユニットのツリータイプがデュアルツリークロマでないと、すなわち、デュアルツリールマ又はシングルツリーであると、LFNSTが適用される領域の幅(lfnstWidth)はコーディングユニットがISPにより分割されているか否かによってコーディングユニットをサブパーティションの数で割った値又はコーディングユニットの幅に設定される((IntraSubPartitionsSplitType==ISP_VER_SPLIT)?cbWidth/NumIntraSubPartitions:cbWidth)。すなわち、コーディングユニットがISPにより垂直方向に分割された場合(IntraSubPartitionsSplitType==ISP_VER_SPLIT)、LFNSTが適用される領域の幅はコーディングユニットをサブパーティションの数で割った値(cbWidth/NumIntraSubPartitions)に設定され、分割されていない場合は、コーディングユニットの幅(cbWidth)に設定される。
【0395】
同様に、LFNSTが適用される領域の高さ(lfnstHeight)は、コーディングユニットのツリータイプがデュアルツリークロマであると、コーディングユニットの高さからカラーフォーマットが反映された高さに設定される((treeType==DUAL_TREE_CHROMA)?cbHeight/SubHeightC)。
【0396】
反面、コーディングユニットのツリータイプがデュアルツリークロマでないと、すなわち、デュアルツリールマ又はシングルツリーであると、LFNSTが適用される領域の高さ(lfnstHeight)はコーディングユニットがISPにより分割されているか否かによってコーディングユニットをサブパーティションの数で割った値又はコーディングユニットの高さに設定される((IntraSubPartitionsSplitType==ISP_HOR_SPLIT)?cbHeight/NumIntraSubPartitions:cbHeight)。すなわち、コーディングユニットがISPにより水平方向に分割された場合(IntraSubPartitionsSplitType==ISP_HOR_SPLIT)、LFNSTが適用される領域の高さはコーディングユニットをサブパーティションの数で割った値(cbHeight/NumIntraSubPartitions)に設定され、分割されていない場合は、コーディングユニットの高さ(cbHeight)に設定される。
【0397】
このようにLFNSTが適用されるために、前記LFNSTが適用される領域の幅及び高さは4以上でなければならない(Min(lfnstWidth,lfnstHeight)>=4)。すなわち、コーディングデュアルツリーである場合、当該成分(すなわち、ルマ又はクロマ成分)に対する横長と縦長が両方とも4以上である場合に対してのみLFNSTインデックスがシグナリングされ、シングルツリーである場合はルマ成分に対する横長と縦長が両方とも4以上である場合に対してLFNSTインデックスがシグナリングされる。
【0398】
コーディングユニットにISPが適用される場合、パーティションブロックの横長と縦長が両方とも4以上である場合に対してのみLFNSTインデックスが送信される。
【0399】
また、コーディングユニットのルマブロックに対する横長又は縦長が変換可能な最大ルマ変換ブロックのサイズを超過する場合(Max(cbWidth,cbHeight)<=MaxTbSizeYの条件を満足しない場合)、LFNSTが適用できなく、LFNSTインデックスは送信されない。
【0400】
また、最後の0ではない係数の位置(last non-zero coefficient position)がDC位置(ブロックの左上側位置)でない場合にのみLFNSTインデックスがシグナリングされる。
【0401】
デュアルツリータイプのルマブロックである場合、最後の0ではない係数の位置がDCの位置でないと、LFNSTインデックスが送信される。デュアルツリータイプのクロマブロックである場合は、Cbに対する最後の0ではない係数の位置とCrに対する最後の0ではない係数の位置のうち1つでもDC位置でないと、当該LFNSTインデックスが送信される。シングルツリータイプの場合、ルマ成分、Cb成分、Cr成分のうちいずれか1つでも当該最後の0ではない係数の位置がDC位置でないと、LFNSTインデックスが送信される。
【0402】
一方、コーディングユニットにISPが適用される場合、最後の0ではない係数の位置をチェックせずに、LFNSTインデックスがシグナリングされることができる(IntraSubPartitionsSplitType!=ISP_NO_SPLIT||LfnstDcOnly==0)。すなわち、全てのパーティションブロックに対する最後の0ではない係数の位置がDC位置に位置してもLFNSTインデックスシグナリングを許容することができる。DC位置は当該ブロックの左上側の位置を示す。
【0403】
最後に、LFNST変換係数が存在できる位置ではない位置に変換係数が存在することが確認された場合、LFNSTインデックスシグナリングを省略することができる(LfnstZeroOutSigCoeffFlag==1)。
【0404】
コーディングユニットにISPが適用される場合、全てのパーティションブロックの1つのパーティションブロックに対してでもLFNST変換係数が存在できる位置ではない位置に変換係数が存在することが確認されると、LFNSTインデックスシグナリングを省略することができる。
【0405】
以下の図面は、本明細書の具体的な一例を説明するために作成された。図面に記載された具体的な装置の名称や具体的な信号/メッセージ/フィールドの名称は例示的に提示されたものであるため、本明細書の技術的特徴が、以下の図面に使用された具体的な名称に制限されない。
【0406】
図21は、本文書の一実施例にかかるビデオデコード装置の動作を示すフローチャートである。
【0407】
図21に開示された各ステップは、
図4ないし
図20において前述された内容の一部に基づいている。従って、
図3ないし
図20において前述された内容と重複される具体的な内容は説明を省略するか簡単にする。
【0408】
一実施形態によるデコード装置300は、ビットストリームからレジデュアル情報を受信する(S2110)。
【0409】
より具体的に、デコード装置300は、ビットストリームから現在ブロックに対する量子化された変換係数に関する情報をデコードすることができ、現在ブロックに対する量子化された変換係数に関する情報に基づいて、対象ブロックに対する量子化された変換係数を導出することができる。対象ブロックに対する量子化された変換係数に関する情報は、SPS(Sequence Parameter Set)又はスライスヘッダ(slice header)に含まれ得、簡素化変換(RST)が適用されるか否かに関する情報、簡素化ファクターに関する情報、簡素化変換を適用する最小の変換サイズに関する情報、簡素化変換を適用する最大の変換サイズに関する情報、簡素化逆変換サイズ、変換セットに含まれた変換カーネルマトリックスのいずれかを指示する変換インデックスに関する情報の少なくとも1つを含み得る。
【0410】
また、デコード装置は、現在ブロックに対するイントラ予測モードに関する情報及び現在ブロックにISPが適用されるか否かに関する情報をさらに受信する。デコード装置は、ISPコーディング又はISPモードを適用するか否かを指示するフラグ情報を受信及びパーシングすることにより、現在ブロックが所定数のサブパーティションブロックに分割されるか否かを導出する。ここで、現在ブロックはコーディングブロックであり得る。また、デコード装置は、現在ブロックがどの方向に分割されるかを指示するフラグ情報から分割されるサブパーティションブロックのサイズ及び個数を導出することができる。
【0411】
例えば、
図16のように現在ブロックのサイズ(幅×高さ)が8×4であると、現在ブロックは垂直方向に分割されて2つのサブブロックに分けられ、現在ブロックのサイズ(幅×高さ)が4×8であると、現在ブロックは水平方向に分割されて2つのサブブロックに分けられる。または、
図17に示されているように、現在ブロックのサイズ(幅×高さ)が4×8又は8×4より大きい場合、すなわち、現在ブロックのサイズが、1)4×N又はN×4(N≧16)であるか、2)M×N(M≧8、N≧8)である場合、現在ブロックは水平又は垂直方向に4つのサブブロックに分割される。
【0412】
現在ブロックにおいて分割されたサブパーティションブロックには同一のイントラ予測モードが適用され、デコード装置はサブパーティションブロック別に予測サンプルを導出する。すなわち、デコード装置は、サブパーティションブロックの分割形態に応じて、例えば、水平(Horizontal)又は垂直(Verticial)、左側から右側又は上側から下側に順次イントラ予測を行う。最左側又は最上側のサブブロックに対しては通常のイントラ予測方式のように既にコーディングされたコーディングブロックの復元ピクセルを参照する。また、後続の内部のサブパーティションブロックの各辺に対して以前のサブパーティションブロックと隣接していない場合には、当該辺に隣接した参照ピクセルを導出するために、通常のイントラ予測方式のように既にコーディングされた隣接するコーディングブロックの復元ピクセルを参照する。
【0413】
デコード装置300は、現在ブロックに対するレジデュアル情報、すなわち、量子化された変換係数に対して逆量子化を行って変換係数を導出する(S2120)。
【0414】
導出された変換係数は4×4ブロック単位で逆方向対角スキャン順序に従って配列され、4×4ブロック内の変換係数も逆方向対角スキャン順序に従って配列される。すなわち、逆量子化が行われた変換係数は、VVCやHEVCにおいてのようなビデオコーデックにおいて適用されている逆方向スキャン順序に従って配置される。
【0415】
このようなレジデュアル情報に基づいて導出された変換係数は、前記のように逆量子化された変換係数であり、量子化された変換係数でもあり得る。すなわち、変換係数は、量子化を行うか否かに関係なく、現在ブロックにおいて0ではないデータであるか否かをチェックできるデータであればよい。
【0416】
デコード装置は、LFNSTを適用して修正された変換係数を導出すために、現在ブロックのDC位置を除いた領域に前記変換係数、すなわち、有効な係数が存在するか否かを示す第1変数を導出する(S2130)。
【0417】
第1変数は、レジデュアルコーディング過程で導出できる変数LfnstDcOnlyであり得る。第1変数は、現在ブロック内の最後の有効係数を含むサブブロックのインデックスが0であり、サブブロック内の前記最後の有効係数の位置が0より大きい場合、0として導出され、第1変数が0である場合、LFNSTインデックスがパーシングされる。サブブロックとは、レジデュアルコーディングにおいてコーディング単位として使用される単位ブロックを意味し、現在ブロックが4×4より大きいか等しい場合、該当単位ブロックは4×4ブロックとなり、CG(Coefficient Group)と命名されてもよい。サブブロックのインデックスが0であるということは、現在ブロックが4×4より大きいか等しい場合、左上側4×4サブブロックを指す。
【0418】
第1変数は、最初は1に設定され、DC位置を除いた領域に有効係数が存在するか否かに応じて1が維持されることも、0に変更されることもある。
【0419】
変数LfnstDcOnlyは、1つのコーディングユニット内の少なくとも1つの変換ブロックに対してDC成分ではない位置に0ではない係数が存在するか否かを示し、1つのコーディングユニット内の少なくとも1つの変換ブロックに対してDC成分ではない位置に0ではない係数が存在する場合は0となり、1つのコーディングユニット内の全ての変換ブロックに対してDC成分ではない位置に0ではない係数が存在しない場合は1となる。
【0420】
デコード装置は、導出結果に基づいてLFNSTインデックスをパーシングし、現在ブロックが複数のサブパーティションブロックに分割されることに基づいて、第1変数の導出なしにLFNSTインデックスをパーシングする(S2140)。
【0421】
一例によって、デコード装置は、現在ブロックが複数のサブパーティションブロックに分割されず、第1変数がDC位置を除いた領域に変換係数が存在することを示すと、LFNSTインデックスをパーシングし、現在ブロックが複数のサブパーティションブロックに分割される場合は、第1変数をチェックせずに又は第1変数値を無視してLFNSTインデックスをパーシングすることができる。
【0422】
すなわち、現在ブロックにISPが適用される場合、全てのサブパーティションブロックに対する最後の0ではない係数の位置がDC位置に位置しても、LFNSTインデックスシグナリングを許容することができる。
【0423】
また、一例によって、デコード装置は、現在ブロックの左上側の第1領域を除いた第2領域に前記変換係数が存在するか否かをさらに判断し、第2領域に変換係数が存在しないと、LFNSTインデックスをパーシングすることができる。
【0424】
現在ブロックの左上側の第1領域を除いた第2領域に有効係数が存在するか否かを示す第2変数を導出することにより、第2領域に対するゼロアウトが行われているか否かをチェックすることができる。
【0425】
第2変数は、LFNST適用時にゼロアウトが行われたことを示す変数LfnstZeroOutSigCoeffFlagであり得る。第2変数は最初に1に設定され、第2領域に有効係数が存在すると、前記第2変数は0に変更される。
【0426】
変数LfnstZeroOutSigCoeffFlagは、最後の0ではない係数が存在するサブブロックのインデックスが0より大きく、変換ブロックの幅及び高さが両方とも4と同一か又は大きいか、0ではない最後の係数が存在するサブブロック内部における0ではない係数の最後の位置が7より大きく、変換ブロックのサイズが4×4又は8×8である場合、0として導出される。
【0427】
すなわち、変換ブロックにおいてLFNST変換係数が存在できる左上側領域以外の領域において0ではない係数が導出されるか、4×4ブロック及び8×8ブロックに対してスキャン手順上8番目の位置を外れて0ではない係数が存在すると、変数LfnstZeroOutSigCoffFlagは0に設定される。
【0428】
一例によって、コーディングユニットにISPが適用される場合、全てのサブパーティションブロックのうち1つのサブパーティションブロックに対してでもLFNST変換係数が存在できる位置ではない位置に変換係数が存在することが確認されると、LFNSTインデックスシグナリングを省略することができる。すなわち、1つのサブパーティションブロックにおいてゼロアウトが行われずに第2領域に有効係数が存在する場合、LFNSTインデックスシグナリングされない。
【0429】
一方、第1領域は現在ブロックのサイズに基づいて導出される。
【0430】
例えば、現在ブロックのサイズが4×4又は8×8であると、第1領域は現在ブロックの左上側からスキャン方向に8番目のサンプル位置までである。現在ブロックが分割されると、サブパーティションブロックのサイズが4×4又は8×8であるとき、第1領域はサブパーティションブロックの左上側からスキャン方向に8番目のサンプル位置までである。
【0431】
現在ブロックの大きさが4x4又は8x8であると、順方向LFNSTを介して8個のデータが出力されるので、デコード装置に受信される8個の変換係数は、
図13の(a)及び
図14の(a)のように、現在ブロックの左上側からスキャン方向に8番目のサンプル位置まで配列されることができる。
【0432】
また、現在ブロックの大きさが4x4又は8x8ではない残りの場合には、第1領域は現在ブロックの左上側の4x4領域であり得る。現在ブロックの大きさが4x4又は8x8でないと、順方向LFNSTを介して16個のデータが出力されるので、デコード装置に受信される16個の変換係数は、
図13の(b)乃至(d)、及び
図14の(b)のように、現在ブロックの左上側の4x4領域に配列されることができる。
【0433】
一方、第1領域に配列されることができる変換係数は、
図8のように対角のスキャン方向に沿って配列されることができる。
【0434】
前述のように、デコード装置は、現在ブロックがサブパーティションブロックに分割される場合、複数のサブパーティションブロックに対する個別的な第2領域の全てに変換係数が存在しないと、LFNSTインデックスをパーシングする。いずれか1つのサブパーティションブロックに対する第2領域に変換係数が存在する場合、LFNSTインデックスはパーシングされない。
【0435】
前述のように、幅及び高さが4以上であるサブパーティションブロックにLFNSTが適用され、コーディングブロックである現在ブロックに対するLFNSTインデックスが複数のサブパーティションブロックに適用されることができる。
【0436】
一方、LFNSTが反映されたゼロアウト(LFNST適用に伴う全てのゼロアウトを含む)はサブパーティションブロックにもそのまま適用されるので、第1領域もサブパーティションブロックにも同一に適用される。すなわち、分割されたサブパーティションブロックが4×4ブロック又は8×8ブロックであると、サブパーティションブロックの左上側からスキャン方向に8番目までの変換係数にLFNSTが適用され、サブパーティションブロックが4×4ブロック又は8×8ブロックではないと、サブパーティションブロックの左上側4×4領域の変換係数にLFNSTが適用される。
【0437】
その後、デコード装置は、LFNSTインデックス及びLFNSTのためのLFNSTマトリックスに基づいて変換係数から修正された変換係数を導出する(S2150)。
【0438】
デコード装置は、イントラ予測モード情報から導出されたイントラ予測モードに基づいてLFNSTマトリックスを含むLFNSTセットを決定し、LFNSTセット及びLFNSTインデックスに基づいて複数のLFNSTマトリックスのうちいずれか1つを選択することができる。
【0439】
この時、現在ブロックにおいて分割されたサブパーティション変換ブロックには同一のLFNSTセットと同一のLFNSTインデックスが適用される。すなわち、サブパーティション変換ブロックには同一のイントラ予測モードが適用されるので、イントラ予測モードに基づいて決定されるLFNSTセットも全てのサブパーティション変換ブロックに同一に適用される。また、LFNSTインデックスは、コーディングユニットレベルにおいてシグナリングされるので、現在ブロックにおいて分割されたサブパーティション変換ブロックには同一のLFNSTマトリックスが適用される。
【0440】
一方、前述したように、変換の対象となる変換ブロックのイントラ予測モードに応じて変換セットが決定され、逆LFNSTはLFNSTインデックスにより指示される変換セットに含まれている変換カーネルマトリックス、すなわち、LFNSTの行列のうちいずれか1つに基づいて行われる。逆LFNSTに適用される行列は逆LFNSTの行列又はLFNST行列と命名され、このような行列は順方向LFNSTに使用される行列とトランスポーズの関係にあれば、その名称は何でも関係ない。
【0441】
一例示において、逆LFNSTの行列は列の個数が行の数より少ない非正方形マトリックスであり得る。
【0442】
一方、LFNSTの出力データである変換係数は現在ブロック又はサブパーティション変換ブロックのサイズに基づいて所定の個数として導出される。例えば、現在ブロック又はサブパーティション変換ブロックの高さ及び幅が8以上であると、
図7の左側のような48個の変換係数が導出され、サブパーティション変換ブロックの幅及び高さが8以上でないと、すなわち、サブパーティション変換ブロックの幅及び高さが4以上でありながらサブパーティション変換ブロックの幅又は高さが8未満であると、
図7の右側のような16個の変換係数が導出される。
【0443】
図7のように、48個の変換係数は、サブパーティション変換ブロックの左上側8×8の領域中の左上側、右上側及び左下側の4×4領域に配列され、16個の変換係数は、サブパーティション変換ブロックの左上側4×4領域に配列される。
【0444】
48個の変換係数及び16個の変換係数は、サブパーティション変換ブロックのイントラ予測モードによって垂直又は水平方向に配列される。例えば、イントラ予測モードが対角線方向(
図9において34番モード)を基準に水平方向(
図9において2番ないし34番モード)であると、変換係数は
図7の(a)のように水平方向、すなわち、行優先方向順に配列され、イントラ予測モードが対角線方向を基準に垂直方向(
図9において35番ないし66番モード)であると、変換係数は
図7の(b)のように水平方向、すなわち、列優先方向順に配列される。
【0445】
デコード装置は、修正された変換係数に対する1次逆変換に基づいて現在ブロックに対するレジデュアルサンプルを導出する(S2160)。
【0446】
この時、逆1次変換は、簡素化逆変換が適用されてもよく、通常の分離変換が使用されてもよい。または、逆1次変換としてMTSが使用されてもよい。
【0447】
後続に、デコード装置300は、現在ブロックに対するレジデュアルサンプル及び現在ブロックに対する予測サンプルに基づいて復元サンプルを生成することができる。
【0448】
以下の図面は、本明細書の具体的な一例を説明するために作成された。図面に記載された具体的な装置の名称や具体的な信号/メッセージ/フィールドの名称は例示的に提示されたものであるため、本明細書の技術的特徴が、以下の図面に使用された具体的な名称に制限されない。
【0449】
図22は、本文書の一実施形態にかかるビデオエンコード装置の動作を示すフローチャートである。
【0450】
図22に開示された各ステップは、
図4ないし
図20において前述された内容の一部に基づいている。従って、
図2及び
図4ないし
図20において前述された内容と重複する具体的な内容は、説明を省略するか簡単にする。
【0451】
一実施形態によるエンコード装置200は、現在ブロックに適用されるイントラ予測モードに基づいて現在ブロックに対する予測サンプルを導出する(S2210)。
【0452】
エンコード装置は、現在ブロックにISPが適用される場合、サブパーティション変換ブロック別に予測を行う。
【0453】
エンコード装置は、現在ブロック、すなわち、コーディングブロックにISPコーディング又はISPモードを適用するか否かを判断し、判断結果によって現在ブロックがどの方向に分割されるかを決定し、分割されるサブブロックのサイズ及び個数を導出する。
【0454】
例えば、
図16のように、現在ブロックのサイズ(幅×高さ)が8×4であると、現在ブロックは垂直方向に分割されて2つのサブブロックに分けられ、現在ブロックのサイズ(幅×高さ)が4×8であると、現在ブロックは水平方向に分割されて2つのサブブロックに分けられる。または、
図17に示されているように、現在ブロックのサイズ(幅×高さ)が4×8又は8×4より大きい場合、すなわち、現在ブロックのサイズが、1)4×N又はN×4(N≧16)であるか、2)M×N(M≧8、N≧8)である場合、現在ブロックは水平又は垂直方向に4つのサブブロックに分割される。
【0455】
現在ブロックにおいて分割されたサブパーティション変換ブロックには同一のイントラ予測モードが適用され、エンコード装置はサブパーティション変換ブロック別に予測サンプルを導出する。すなわち、エンコード装置は、サブパーティション変換ブロックの分割形態に応じて、例えば、水平(Horizontal)又は垂直(Verticial)、左側から右側又は上側から下側に順次イントラ予測を行う。最左側又は最上側のサブブロックに対しては通常のイントラ予測方式のように既にコーディングされたコーディングブロックの復元ピクセルを参照する。また、後続の内部のサブパーティション変換ブロックの各辺に対して以前のサブパーティション変換ブロックと隣接していない場合は、当該辺に隣接した参照ピクセルを導出するために、通常のイントラ予測方式のように既にコーディングされた隣接するコーディングブロックの復元ピクセルを参照する。
【0456】
エンコード装置200は、予測サンプルに基づいて現在ブロックに対するレジデュアルサンプルを導出する(S2220)。
【0457】
また、エンコード装置200は、レジデュアルサンプルに対する1次変換に基づいて現在ブロックに対する変換係数を導出する(S2230)。
【0458】
1次変換は複数の変換カーネルにより行われ、この場合、イントラ予測モードに基づいて変換カーネルが選択される。
【0459】
エンコード装置200は、現在ブロックに対する変換係数に対して2次変換、又は非分離変換、具体的にLFNSTを行うか否かを決定し、変換係数にLFNSTを適用して修正された変換係数を導出することができる。
【0460】
LFNSTは、変換対象となる係数を垂直又は水平方向に分離して変換する1次変換とは異なり、係数を特定方向に分離せずに変換を適用する非分離変換である。このような非分離変換は、変換対象となる対象ブロック全体ではなく、低周波領域にのみ変換を適用する低周波非分離変換であり得る。
【0461】
一例によって、エンコード装置は、現在ブロックのツリータイプ及びカラーフォーマットに基づいて現在ブロックの高さ及び幅にLFNSTを適用できるか否かを判断する。
【0462】
一例によって、現在ブロックのツリータイプがデュアルツリークロマであると、エンコード装置は、現在ブロックのクロマ成分ブロックに対応する高さ及び幅が4以上であるとき、LFNSTを適用できると判断する。
【0463】
また、一例によって、エンコード装置は、現在ブロックのツリータイプがシングルツリー又はデュアルツリールマであると、現在ブロックのルマ成分ブロックに対応する高さ及び幅が4以上であるとき、LFNSTを適用できると判断する。
【0464】
一方、現在ブロックにISPが適用される場合、すなわち、現在ブロックがサブパーティション変換ブロックに分割される場合、エンコード装置は、分割されたサブパーティションブロックの高さ及び幅にLFNSTが適用できるか否かを判断する。この場合、エンコード装置は、サブパーティションブロックの高さ及び幅が4以上であるとき、LFNSTが適用できると判断する。
【0465】
例えば、現在ブロックのツリータイプがデュアルツリークロマであると、ISPが適用されず、この場合、エンコード装置は、現在ブロックのクロマ成分ブロックに対応する高さ及び幅が4以上であるとき、LFNSTを適用できると判断する。
【0466】
反面、現在ブロックのツリータイプがデュアルツリークロマ又はシングルツリーであると、エンコード装置は、現在ブロックにISPが適用されるか否かによって現在ブロックのルマ成分ブロックに対するサブパーティションブロックの高さ及び幅又は現在ブロックの高さ及び幅が4以上であるとき、LFNSTが適用できると判断する。
【0467】
また、一例によっては、現在ブロックはコーディングユニットであり、コーディングユニットの幅及び高さが変換可能な最大ルマ変換のサイズより小さいか等しいとき、エンコード装置はLFNSTを適用できると判断する。
【0468】
LFNSTを行うと決定されると、エンコード装置200は、イントラ予測モードにマッピングされるLFNSTセットとLFNSTセットに含まれるLFNSTマトリックスに基づいて現在ブロック又はサブパーティション変換ブロックに対する修正された変換係数を導出する(S2240)。
【0469】
エンコード装置200は、現在ブロックに適用されるイントラ予測モードによるマッピング関係に基づいてLFNSTセットを決定し、LFNSTセットに含まれている2つのうちいずれか1つのLFNST行列に基づいてLFNST、すなわち、非分離変換を行うことができる。
【0470】
このとき、現在ブロックにおいて分割されたサブパーティション変換ブロックには同一のLFNSTセット及び同一のLFNSTインデックスが適用される。すなわち、サブパーティション変換ブロックには同一のイントラ予測モードが適用されるので、イントラ予測モードに基づいて決定されるLFNSTセットも全てのサブパーティション変換ブロックに同一に適用される。また、LFNSTインデックスはコーディングユニット単位でエンコードされるので、現在ブロックにおいて分割されたサブパーティション変換ブロックには同一のLFNST行列が適用される。
【0471】
前述のように、変換の対象となる変換ブロックのイントラ予測モードによって変換セットが決定される。LFNSTに適用される行列は、逆方向のLFNSTに使用される行列とトランスポーズの関係にある。
【0472】
一例において、LFNST行列は行の個数が列の個数より少ない非正方形マトリックスであり得る。
【0473】
LFNSTの入力データとして使用される変換係数が位置する領域は、サブパーティション変換ブロックのサイズに基づいて導出される。例えば、サブパーティション変換ブロックの高さ及び幅が8以上であると、前記領域は
図7の左側のようにサブパーティション変換ブロック左上側8×8領域のうち左上側、右上側及び左下側の4×4 領域であり、サブパーティション変換ブロックの高さ及び幅が8以上でない残りの場合であると、前記領域は
図7の右側のように現在ブロック左上側4×4領域であり得る。
【0474】
前記領域の変換係数は、LFNST行列との掛け算演算のためにサブパーティション変換ブロックのイントラ予測モードによって垂直又は水平方向に読み込んで1次元ベクトルを構成する。
【0475】
48個の修正された変換係数又は16個の修正された変換係数は、サブパーティション変換ブロックのイントラ予測モードによって垂直又は水平方向に読み込まれて1次元に配列される。例えば、イントラ予測モードが対角線方向(
図9において34番度モード)を基準に水平方向(
図9において2番ないし34番モード)であると、変換係数は
図7の(a)のように水平方向、すなわち、行優先方向順に配列され、イントラ予測モードが対角線方向を基準に垂直方向(
図9において35番ないし66番モード)であると、変換係数は
図7の(b)のように水平方向、すなわち、列優先方向順に配列される。
【0476】
一実施形態において、エンコード装置は、LFNSTを適用する条件に該当するか否かを判断し、前記判断に基づいてLFNSTインデックスを生成及びエンコードするステップ、変換カーネルマトリックスを選択するステップ及びLFNSTを適用する条件に該当する場合、選択された変換カーネルマトリックス及び/又は簡素化ファクターに基づいてレジデュアルサンプルに対してLFNSTを適用するステップを含む。この時、簡素化変換カーネルマトリックスのサイズは簡素化ファクターに基づいて決定される。
【0477】
一方、一例によって、エンコード装置は、修正された変換係数が存在していない現在ブロックの第2領域をゼロアウトすることができる。
【0478】
図13及び
図14のように、修正された変換係数が存在しない現在ブロックの残りの領域は、全て0と処理されることができる。このようなゼロアウトにより、全体変換過程の実行に必要な計算量が減少し、変換過程の全体に必要な演算量が減少して、変換の実行に必要な電力消費を減らすことができる。また、変換過程に伴われる遅延時間(latency)を減少し、映像コーディングの効率が増加し得る。
【0479】
一例によって、エンコード装置は、現在ブロックのDC位置を除いた領域に変換係数が存在することに基づいて、LFNSTマトリックスを指示するLFNSTインデックスがシグナリングされるように映像情報を構成し、現在ブロックが複数のサブパーティションブロックに分割されることに基づいて、DC位置を除いた領域に変換係数が存在するか否かと関係なく、LFNSTインデックスがシグナリングされるように映像情報を構成する(S2250)。
【0480】
エンコード装置は、表10に示す映像情報がデコード装置においてパーシングできるように映像情報を構成する。
【0481】
すなわち、エンコード装置は、現在ブロックが複数のサブパーティションブロックに分割されず、現在ブロックのDC位置を除いた領域に変換係数が存在することを示すと、LFNSTインデックスがパーシングされるように映像情報を構成し、もし、現在ブロックが複数のサブパーティションブロックに分割される場合、DC位置を除いた領域に変換係数が存在するか否かをチェックすることなく、LFNSTインデックスがパーシングされるように映像情報を構成する。
【0482】
すなわち、エンコード装置は、現在ブロックにISPが適用される場合、全てのサブパーティションブロックに対する最後の0ではない係数の位置がDC位置に位置していてもLFNSTインデックスがシグナリングされるように映像情報を構成する。
【0483】
一例によって、エンコード装置は、現在ブロック(又は、サブパーティションブロック)内の最後の有効係数を含むサブブロックのインデックスが0であり、サブブロック内の前記最後の有効係数の位置が0より大きいと、DC位置を除いた領域に前記有効係数が存在すると判断し、LFNSTインデックスがシグナリングされるように映像情報を構成する。本文書においては、スキャン順序上の1番目の位置が0であり得る。
【0484】
また、一例によって、エンコード装置は、現在ブロック(又は、サブパーティションブロック)内の最後の有効係数を含むサブブロックのインデックスが0より大きく、現在ブロックの幅及び高さが4以上であると、LFNSTが適用されないことが確実であると判断し、LFNSTインデックスがシグナリングされないように映像情報を構成する。
【0485】
また、一例によって、エンコード装置は、現在ブロック(又は、サブパーティションブロック)のサイズが4×4又は8×8であり、スキャン順序上の位置の開始が0からである場合、最後の有効係数の位置が7より大きいと、LFNSTが適用されないことが確実であると判断し、LFNSTインデックスがシグナリングされないように映像情報を構成する。
【0486】
すなわち、エンコード装置は、デコード装置において変数LfnstDcOnlyと変数LfnstZeroOutSigCoeffFlagが導出された後、導出された変数の値に応じてLFNSTインデックスがパーシングされるように映像情報を構成する。
【0487】
エンコード装置は、現在ブロックに対する修正された変換係数に基づいて量子化を行って量子化された変換係数を導出し、量子化された変換係数に関する情報及びLFNSTマトリックスを適用できる場合、LFNSTインデックスをエンコードする(S2260)。
【0488】
エンコード装置は、量子化された変換係数に対する情報を含むレジデュアル情報を生成することができる。レジデュアル情報は、前述した変換関連情報/シンタックス要素を含むことができる。エンコード装置は、レジデュアル情報を含む映像/ビデオ情報をエンコードしてビットストリームの形態で出力することができる。
【0489】
より具体的に、エンコード装置200は、量子化された変換係数に関する情報を生成し、生成された量子化された変換係数に関する情報をエンコードすることができる。
【0490】
本実施形態によるLFNSTインデックスのシンタックス要素は、(逆)LFNSTが適用されるか否か及びLFNSTセットに含まれたLFNSTマトリックスのいずれか1つを指示することができ、LFNSTセットが2つの変換カーネルマトリックスを含む場合、LFNSTインデックスのシンタックス要素の値は3つであり得る。
【0491】
一例によって、現在ブロックに対する分割ツリー構造がデュアルツリータイプであると、ルマブロック及びクロマブロックのそれぞれに対してLFNSTインデックスがエンコードされる。
【0492】
一実施形態によって、変換インデックスに対するシンタックス要素値は、現在ブロックに(逆)LFNSTが適用されない場合を指示する0、LFNST マトリックスのうち1番目のLFNST マトリックスを指示する1、LFNSTマトリックスのうち2番目のLFNST マトリックスを指示する2として導出される。
【0493】
本文書において、量子化/逆量子化及び/又は変換/逆変換の少なくとも1つは省略され得る。前記量子化/逆量子化が省略される場合、前記量子化された変換係数は、変換係数と呼ばれ得る。前記変換/逆変換が省略される場合、前記変換係数は、係数又はレジデュアル係数と呼ばれることもあり、又は表現の統一性のために変換係数と依然として呼ばれることもある。
【0494】
また、本文書において、量子化された変換係数及び変換係数は、それぞれ変換係数及びスケーリングされた(scaled)変換係数と指称され得る。この場合、レジデュアル情報は、変換係数に関する情報を含むことができ、前記変換係数に関する情報は、レジデュアルコーディングシンタックスを介してシグナリングされることができる。前記レジデュアル情報(又は前記変換係数に関する情報)に基づいて変換係数が導出でき、前記変換係数に対する逆変換(スケーリング)を介してスケーリングされた変換係数が導出できる。前記スケーリングされた変換係数に対する逆変換(変換)に基づいて、レジデュアルサンプルが導出できる。これは、本文書の別の部分でも同様に適用/表現できる。
【0495】
前述した実施例において、方法は、一連のステップ又はブロックとしてフローチャートに基づいて説明されているが、本文書は、ステップの順序に限定されるわけではなく、あるステップは、前述したところと異なるステップと異なる順序で、又は同時に発生し得る。また、当業者であれば、フローチャートに示されているステップが排他的ではなく、別のステップが含まれるか、フローチャートの1つ又はそれ以上のステップが本文書の範囲に影響を与えずに削除され得ることを理解することができる。
【0496】
前述した本文書に係る方法は、ソフトウェアの形態で具現されることができ、本文書に係るエンコード装置及び/又はデコード装置は、例えば、TV、コンピュータ、スマートフォン、セットトップボックス、ディスプレイ装置等の映像処理を行う装置に含まれ得る。
【0497】
本文書において、実施例がソフトウェアで具現されるとき、前述した方法は、前述した機能を行うモジュール(過程、機能等)で具現されることができる。モジュールはメモリに保存され、プロセッサにより実行されることができる。メモリは、プロセッサの内部又は外部にあってもよく、よく知られている様々な手段でプロセッサと連結されてもよい。プロセッサは、ASIC(application-specific integrated circuit)、他のチップセット、論理回路及び/又はデータ処理装置を含むことができる。メモリは、ROM(read-only memory)、RAM(random access memory)、フラッシュメモリ、メモリカード、保存媒体及び/又は他の保存装置を含むことができる。即ち、本文書で説明した実施例は、プロセッサ、マイクロプロセッサ、コントローラ又はチップ上で具現されて実行されることができる。例えば、各図面で示している機能ユニットは、コンピュータ、プロセッサ、マイクロプロセッサ、コントローラ又はチップ上で具現されて実行されることができる。
【0498】
また、本文書が適用されるデコード装置及びエンコード装置は、マルチメディア放送送受信装置、モバイル通信端末、ホームシネマビデオ装置、デジタルシネマビデオ装置、監視用カメラ、ビデオ対話装置、ビデオ通信のようなリアルタイム通信装置、モバイルストリーミング装置、保存媒体、カムコーダ、オーダーメイド型ビデオ(VoD)サービス提供装置、OTTビデオ(Over the top video)装置、インターネットストリーミングサービス提供装置、3次元(3D)ビデオ装置、画像電話ビデオ装置、及び医療用ビデオ装置等に含まれ得て、ビデオ信号又はデータ信号を処理するために使用され得る。例えば、OTTビデオ(Over the top video)装置としては、ゲームコンソール、ブルーレイプレーヤー、インターネットアクセスTV、ホームシアターシステム、スマートフォン、タブレットPC、DVR(Digital Video Recoder)等を含み得る。
【0499】
また、本文書が適用される処理方法は、コンピュータで実行されるプログラムの形態で生産されることができ、コンピュータが読み取ることができる記録媒体に保存されることができる。本文書に係るデータ構造を有するマルチメディアデータもまた、コンピュータが読み取ることができる記録媒体に保存されることができる。前記コンピュータが読み取ることができる記録媒体は、コンピュータで読み取ることができるデータが保存される全ての種類の保存装置及び分散保存装置を含む。前記コンピュータが読み取ることができる記録媒体は、例えば、ブルーレイディスク(BD)、汎用直列バス(USB)、ROM、PROM、EPROM、EEPROM、RAM、CD-ROM、磁気テープ、フロッピディスク、及び光学的データ保存装置を含み得る。また、前記コンピュータが読み取ることができる記録媒体は、搬送波(例えば、インターネットを介した送信)の形態で具現されたメディアを含む。また、エンコード方法で生成されたビットストリームが、コンピュータが読み取ることができる記録媒体に保存されるか、有無線通信ネットワークを介して送信されることができる。また、本文書の実施形態は、プログラムコードによるコンピュータプログラム製品で具現されることができ、前記プログラムコードは、本文書の実施形態によってコンピュータで実行されることができる。前記プログラムコードは、コンピュータによって読み取り可能なキャリア上に保存されることができる。
【0500】
図23は、本文書が適用されるコンテンツストリーミングシステムの構造図を例示的に示す。
【0501】
また、本文書が適用されるコンテンツストリーミングシステムは、大きくエンコードサーバ、ストリーミングサーバ、ウェブサーバ、メディアストレージ、ユーザ装置、及びマルチメディア入力装置を含むことができる。
【0502】
前記エンコードサーバは、スマートフォン、カメラ、カムコーダ等のようなマルチメディア入力装置から入力されたコンテンツをデジタルデータに圧縮してビットストリームを生成し、これを前記ストリーミングサーバに送信する役割をする。別の例として、スマートフォン、カメラ、カムコーダなどのようなマルチメディア入力装置がビットストリームを直接生成する場合、前記エンコードサーバは省略され得る。前記ビットストリームは、本文書が適用されるエンコード方法又はビットストリームの生成方法により生成されることができ、前記ストリーミングサーバは、前記ビットストリームを送信又は受信する過程で、一時的に前記ビットストリームを保存することができる。
【0503】
前記ストリーミングサーバは、ウェブサーバを介したユーザの要請に基づいてマルチメディアデータをユーザ装置に送信し、前記ウェブサーバは、ユーザにどのようなサービスがあるかを知らせる媒介体の役割をする。ユーザが前記ウェブサーバに所望のサービスを要請すると、前記ウェブサーバは、これをストリーミングサーバに伝達し、前記ストリーミングサーバは、ユーザにマルチメディアデータを送信する。そのとき、前記コンテンツストリーミングシステムは、別の制御サーバを含むことができ、この場合、前記制御サーバは、前記コンテンツストリーミングシステム内の各装置間の命令/応答を制御する役割をする。
【0504】
前記ストリーミングサーバは、メディアストレージ及び/又はエンコードサーバからコンテンツを受信することができる。例えば、前記エンコードサーバからコンテンツを受信することになる場合、前記コンテンツをリアルタイムで受信することができる。この場合、円滑なストリーミングサービスを提供するために、前記ストリーミングサーバは、前記ビットストリームを一定時間保存することができる。
【0505】
前記ユーザ装置の例としては、携帯電話、スマートフォン(smart phone)、ラップトップコンピュータ(laptop computer)、デジタル放送用端末機、PDA(personal digital assistants)、PMP(portable multimedia player)、ナビゲーション、スレートPC(slate PC)、タブレットPC(tablet PC)、ウルトラブック(ultrabook)、ウェアラブルデバイス(wearable device、例えば、ウォッチ型端末機(smartwatch)、グラス型端末機(smart glass)、HMD(head mounted display))、デジタルTV、デスクトップコンピュータ、デジタルサイニジなどがあり得る。前記コンテンツストリーミングシステム内の各サーバは、分散サーバとして運営されることができ、この場合、各サーバで受信するデータは、分散処理されることができる。
【0506】
本明細書に記載された請求項は、多様な方式で組み合わせることができる。例えば、本明細書の方法請求項の技術的特徴が組み合わせられて装置として具現されることができ、本明細書の装置請求項の技術的特徴が組み合わせられて方法として具現されることができる。また、本明細書の方法請求項の技術的特徴と装置請求項の技術的特徴とが組み合わせられて装置として具現されることができ、本明細書の方法請求項の技術的特徴と装置請求項の技術的特徴とが組み合わせられて方法として具現されることができる。