(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-11-29
(45)【発行日】2024-12-09
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 29/786 20060101AFI20241202BHJP
G02F 1/1368 20060101ALI20241202BHJP
G09F 9/30 20060101ALI20241202BHJP
【FI】
H01L29/78 618B
G02F1/1368
G09F9/30 338
G09F9/30 348A
(21)【出願番号】P 2024038921
(22)【出願日】2024-03-13
(62)【分割の表示】P 2023051436の分割
【原出願日】2010-08-26
【審査請求日】2024-03-26
(31)【優先権主張番号】P 2009196618
(32)【優先日】2009-08-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】山崎 舜平
(72)【発明者】
【氏名】坂田 淳一郎
(72)【発明者】
【氏名】津吹 将志
(72)【発明者】
【氏名】秋元 健吾
(72)【発明者】
【氏名】細羽 みゆき
(72)【発明者】
【氏名】坂倉 真之
(72)【発明者】
【氏名】及川 欣聡
【審査官】市川 武宜
(56)【参考文献】
【文献】特開2009-21612(JP,A)
【文献】特開2008-135731(JP,A)
【文献】特開2008-89915(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/786
G02F 1/1368
G09F 9/30
(57)【特許請求の範囲】
【請求項1】
第1のトランジスタと、第2のトランジスタと、を有する半導体装置であって、
前記第1のトランジスタのチャネル形成領域として機能する領域を有する半導体層と、
前記半導体層のチャネル形成領域と重なる領域を有する第1の導電層と、
前記半導体層のチャネル形成領域と重なる領域を有する第2の導電層と、
前記半導体層と前記第1の導電層との間に位置する領域を有する第1の絶縁層と、
前記半導体層と前記第2の導電層との間に位置する領域を有する第2の絶縁層と、
前記第2のトランジスタのチャネル形成領域として機能する領域を有する酸化物半導体層と、
前記酸化物半導体層と接する領域を有する第3の導電層と、
前記第1の絶縁層と接する領域を有し、且つ前記酸化物半導体層と重なる領域を有する第4の導電層と、
第3の絶縁層と、を有し、
前記第1の導電層は、前記半導体層のチャネル形成領域を介して前記第2の導電層と重なる領域を有し、
前記第1の導電層は、前記第1のトランジスタのゲート電極として機能する領域を有し、
前記第1の絶縁層は、前記第1のトランジスタのゲート絶縁膜として機能する領域を有し、
前記第3の導電層は、前記第2のトランジスタのソース電極またはドレイン電極として機能する領域を有し、
前記第2の絶縁層は、前記酸化物半導体層を介して前記第3の導電層と重なる領域を有し、
前記第3の絶縁層は、前記酸化物半導体層を介して前記第3の導電層と重なる領域を有し、
前記第3の絶縁層は、前記酸化物半導体層と前記第3の導電層とが重なる領域において、前記酸化物半導体層と接する領域を有し、
前記第2の導電層は、前記第3の絶縁層を介さずに前記半導体層と重なる領域を有する半導体装置。
【請求項2】
第1のトランジスタと、第2のトランジスタと、を有する半導体装置であって、
前記第1のトランジスタのチャネル形成領域として機能する領域を有する半導体層と、
前記半導体層のチャネル形成領域と重なる領域を有する第1の導電層と、
前記半導体層のチャネル形成領域と重なる領域を有する第2の導電層と、
前記半導体層と前記第1の導電層との間に位置する領域を有する第1の絶縁層と、
前記半導体層と前記第2の導電層との間に位置する領域を有する第2の絶縁層と、
前記第2のトランジスタのチャネル形成領域として機能する領域を有する酸化物半導体層と、
前記酸化物半導体層と接する領域を有する第3の導電層と、
前記第1の絶縁層と接する領域を有し、且つ前記酸化物半導体層と重なる領域を有する第4の導電層と、
第3の絶縁層と、を有し、
前記第1の導電層は、前記半導体層のチャネル形成領域を介して前記第2の導電層と重なる領域を有し、
前記第1の導電層は、前記第1のトランジスタのゲート電極として機能する領域を有し、
前記第1の絶縁層は、前記第1のトランジスタのゲート絶縁膜として機能する領域を有し、
前記第3の導電層は、前記第2のトランジスタのソース電極またはドレイン電極として機能する領域を有し、
前記第3の導電層は、前記第4の導電層と重なる領域を有し、
前記第2の絶縁層は、前記酸化物半導体層を介して前記第3の導電層と重なる領域を有し、
前記第3の絶縁層は、前記酸化物半導体層を介して前記第3の導電層と重なる領域を有し、
前記第3の絶縁層は、前記酸化物半導体層と前記第3の導電層とが重なる領域において、前記酸化物半導体層と接する領域を有し、
前記第2の導電層は、前記第3の絶縁層を介さずに前記半導体層と重なる領域を有する半導体装置。
【請求項3】
請求項1または請求項2において、
前記酸化物半導体層は、Inと、Gaと、Znと、を有する半導体装置。
【請求項4】
請求項1乃至請求項3のいずれか一項において、
前記第1の絶縁層は、前記半導体層と接する領域を有し、
前記第1の絶縁層は、珪素と、酸素と、を有する半導体装置。
【請求項5】
請求項1乃至請求項4のいずれか一項において、
前記第3の絶縁層は、珪素と、酸素と、を有する半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は酸化物半導体を用いる表示装置に関する。
【背景技術】
【0002】
近年、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する
技術が注目されている。トランジスタはICや電気光学装置のような電子デバイスに広く
応用され、特に画像表示装置のスイッチング素子として開発が急がれている。金属酸化物
は多様に存在しさまざまな用途に用いられている。酸化インジウムはよく知られた材料で
あり、液晶ディスプレイなどで必要とされる透明電極材料として用いられている。
【0003】
金属酸化物の中には半導体特性を示すものがある。半導体特性を示す金属酸化物としては
、例えば、酸化タングステン、酸化錫、酸化インジウム、酸化亜鉛などがあり、このよう
な半導体特性を示す金属酸化物をチャネル形成領域とするトランジスタが既に知られてい
る(特許文献1及び特許文献2)。
【0004】
また、酸化物半導体を適用したトランジスタは、比較的電界効果移動度が高い。そのため
、当該トランジスタを用いて、表示装置などの駆動回路を構成することもできる。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2007-123861号公報
【文献】特開2007-96055号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
表示装置等において、画素部(画素回路とも言う)と駆動回路部を同一基板上に形成する
場合、画素部に用いるトランジスタには、優れたスイッチング特性、例えばオンオフ比が
大きいことが要求され、駆動回路に用いるトランジスタには高速動作が要求される。
【0007】
特に、表示装置の画素密度が高い程、表示画像の書き込み時間が短くなるため、駆動回路
に用いるトランジスタは高速で動作することが好ましい。また、画素部においては、画素
密度が高いほど開口率が小さくなる問題があった。
【0008】
従って、本明細書で開示する本発明の一態様は、上記課題を解決する表示装置及びその作
製方法に関する。
【課題を解決するための手段】
【0009】
本明細書で開示する本発明の一態様は、同一基板上に画素部と、駆動回路部と、を有し、
画素部は、第1のゲート電極層と、第1のゲート電極層上にゲート絶縁層と、ゲート絶縁
層上に第1のゲート電極層と一部が重なる第1のソース電極層及び第1のドレイン電極層
と、ゲート絶縁層上に第1のソース電極層及び第1のドレイン電極層と一部が重なる第1
の酸化物半導体層と、を含む第1のトランジスタと、第1のソース電極層、第1のドレイ
ン電極層、及び第1の酸化物半導体層上に第1の酸化物絶縁層と、第1の酸化物絶縁層上
に第1のドレイン電極層と電気的に接続する接続電極層と、第1の酸化物絶縁層及び接続
電極層上に第2の酸化物絶縁層と、第2の酸化物絶縁層上に保護絶縁層と、保護絶縁層上
に接続電極層と電気的に接続する画素電極層と、を有し、駆動回路部は、第2のゲート電
極層と、第2のゲート電極層上にゲート絶縁層と、ゲート絶縁層上に第2の酸化物半導体
層と、第2の酸化物半導体層上に該第2の酸化物半導体層と一部が重なる第2のソース電
極層及び第2のドレイン電極層と、を含む第2のトランジスタと、第2のソース電極層、
第2のドレイン電極層、及び第2の酸化物半導体層上に第2の酸化物絶縁層と、第2の酸
化物絶縁層上に保護絶縁層と、を有し、第1のゲート電極層、ゲート絶縁層、第1の酸化
物半導体層、第1のソース電極層、第1のドレイン電極層、第1の酸化物絶縁層、第2の
酸化物絶縁層、保護絶縁層及び画素電極層は透光性を有することを特徴とする表示装置で
ある。
【0010】
なお、本明細書において第1、第2として付される序数詞は便宜上用いるものであり、工
程順又は積層順を示すものではない。また、発明を特定するための事項として固有の名称
を示すものではない。
【0011】
上記第1のトランジスタの第1のゲート電極層、第1のソース電極層及び第1のドレイン
電極層は、金属酸化物で形成されており、第2のトランジスタの第2のゲート電極層、第
2のソース電極層及び第2のドレイン電極層は、金属で形成されている。
【0012】
上記金属酸化物には、酸化インジウム、酸化インジウム酸化スズ合金、酸化インジウム酸
化亜鉛合金、または酸化亜鉛を用いることができる。
【0013】
また、画素部の第2の酸化物絶縁層と保護絶縁層の間には、透光性を有する平坦化絶縁層
が形成されていても良い。
【0014】
また、駆動回路部の第2の酸化物半導体層と重なる保護絶縁層上には、導電層が形成され
ても良い。
【0015】
また、第1の酸化物絶縁層及び第2の酸化物絶縁層には、スパッタ法で形成される無機絶
縁膜を用いると良い。例えば、酸化珪素、窒化酸化珪素、酸化アルミニウム、または酸化
窒化アルミニウムなどを用いることができる。
【0016】
また、第2のトランジスタの第2の酸化物半導体層と第2のソース電極層との間、及び第
2の酸化物半導体層と第2のドレイン電極層とのそれぞれの間には、酸化物導電層が形成
されている構成としても良い。この様な構成とすることで接触抵抗を低減することができ
、高速動作が可能なトランジスタを実現できる。なお、酸化物導電層としては、酸化亜鉛
を成分として含むものが好ましく、酸化インジウムを含まないものであることが好ましい
。そのような酸化物導電層として、酸化亜鉛、酸化亜鉛アルミニウム、酸窒化亜鉛アルミ
ニウム、酸化亜鉛ガリウムなどが挙げられる。
【0017】
また、本明細書で開示する本発明の他の一態様は、画素部となる領域に第1のゲート電極
層を形成し、駆動回路部となる領域に第2のゲート電極層を形成し、第1のゲート電極層
及び第2のゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に第1のゲート電極
層の一部と重なる第1のソース電極層及び第1のドレイン電極層を形成し、ゲート絶縁層
上に第1のソース電極層の一部、及び第1のドレイン電極層の一部と重なる第1の酸化物
半導体層を形成して第1のトランジスタを形成し、ゲート絶縁層上に第2のゲート電極層
の一部と重なる第2の酸化物半導体層を形成し、第1の酸化物半導体層上に第1の酸化物
絶縁層を形成し、第1の酸化物絶縁層上に第2の酸化物半導体層の一部と重なる第2のソ
ース電極層及び第2のドレイン電極層を形成して第2のトランジスタを形成し、第1のド
レイン電極層と電気的に接続する接続電極層を形成し、第1の酸化物絶縁層、第2の酸化
物半導体層、第2のソース電極層及び第2のドレイン電極層上に第2の酸化物絶縁層を形
成し、第2の酸化物絶縁層上に保護絶縁層を形成し、画素部となる領域の保護絶縁層上に
接続電極層と電気的に接続する画素電極層を形成することを特徴とする表示装置の作製方
法である。
【0018】
上記作製方法の構成において、第1のゲート電極層、ゲート絶縁層、第1の酸化物半導体
層、第1のソース電極層、第1のドレイン電極層、第1の酸化物絶縁層、第2の酸化物絶
縁層、保護絶縁層及び画素電極層は透光性を有する。
【0019】
また、第1の酸化物半導体層及び第2の酸化物半導体層上に形成される酸化物絶縁層の形
成は、酸化物半導体層を脱水化または脱水素化した後、大気に触れることなく行い、酸化
物半導体層への水や水素の再混入を防止することが好ましい。
【0020】
本明細書において、脱水化または脱水素化とは、水やH2を脱離させていることのみを示
すものではなく、H、OHなどを脱離することも含まれる。
【0021】
脱水化または脱水素化は、窒素、または希ガス(アルゴン、ヘリウムなど)の不活性気体
雰囲気下で、400℃以上基板の歪み点未満、好ましくは425℃以上700℃以下の加
熱処理で行うことが好ましい。
【0022】
窒素、または希ガス(アルゴン、ヘリウムなど)の不活性気体雰囲気下での加熱処理を行
った場合、酸化物半導体層は加熱処理により酸素欠乏型となって低抵抗化、即ちn型化(
n-型化など)させ、その後、酸化物半導体層に接する酸化物絶縁層の形成を行うことに
より酸化物半導体層を酸素過剰な状態とすることで高抵抗化、即ちi型化させているとも
言える。これにより、電気特性が良好で信頼性のよいトランジスタを有する表示装置を作
製し、提供することが可能となる。
【0023】
脱水化または脱水素化を行った酸化物半導体層の熱処理条件は、脱水化または脱水素化後
の酸化物半導体層に対してTDS(昇温脱離ガス分析)で450℃まで測定を行っても水
の脱離を示す2つのピーク、少なくとも300℃付近に現れる1つのピークは検出されな
い程度とする。従って、脱水化または脱水素化が行われた酸化物半導体層を用いたトラン
ジスタに対してTDSで450℃まで測定を行っても少なくとも300℃付近に現れる水
のピークは検出されない。
【0024】
脱水化または脱水素化を行った酸化物半導体層は大気に触れさせることなく、水または水
素を再び混入させないことが重要である。脱水化または脱水素化を行い、酸化物半導体層
を低抵抗化、即ちn型化(n-型、n+型など)させた後、高抵抗化させてi型とした酸
化物半導体層を用いたトランジスタは、そのしきい値電圧値が正であり、所謂ノーマリー
オフ特性を示す。表示装置に用いるトランジスタは、ゲート電圧が0Vにできるだけ近い
正のしきい値電圧であることが好ましい。アクティブマトリクス型の表示装置においては
、回路を構成するトランジスタの電気特性が重要であり、この電気特性が表示装置の性能
を左右する。特に、トランジスタのしきい値電圧は重要である。トランジスタのしきい値
電圧値が負であると、ゲート電圧が0Vでもソース電極とドレイン電極の間に電流が流れ
る、所謂ノーマリーオン特性となり、該トランジスタで構成した回路を制御することが困
難となる。また、しきい値電圧値が正であっても、その絶対値が高いトランジスタの場合
には、駆動電圧が足りずにスイッチング動作そのものができないことがある。nチャネル
型のトランジスタの場合は、ゲート電圧に正の電圧を印加してはじめてチャネルが形成さ
れて、ドレイン電流が流れ出すトランジスタであることが望ましい。駆動電圧を高くしな
いとチャネルが形成されないトランジスタや、負の電圧状態でもチャネルが形成されてド
レイン電流が流れるトランジスタは、回路に用いるトランジスタとしては不向きである。
【0025】
脱水化または脱水素化を行った温度から降温させる際の雰囲気は、昇温時または加熱処理
時の雰囲気と異なる雰囲気に切り替えてもよい。例えば、脱水化または脱水素化を行った
同じ炉で大気に触れさせることなく、炉の中を高純度の酸素ガス、N2Oガス、または超
乾燥エア(露点が-40℃以下、好ましくは-60℃以下)で満たして冷却を行うことが
できる。
【0026】
また、トランジスタは静電気などにより破壊されやすいため、ゲート線またはソース線に
対して、画素部のトランジスタの保護用の保護回路を同一基板上に設けることが好ましい
。保護回路は、酸化物半導体層を用いた非線形素子を用いて構成することが好ましい。
【0027】
本発明の一態様の表示装置は、同一基板上において、駆動回路用トランジスタを有する駆
動回路部、及び画素用トランジスタを有する画素部が作製される。そのため、表示装置の
製造コストを低減することができる。
【発明の効果】
【0028】
脱水化または脱水素化を行う加熱処理が行われた酸化物半導体層を用いることにより、電
気特性が良好なトランジスタを作製することができる。また、画素回路に用いるトランジ
スタを透光性を有する材料で形成することで、開口率が高く、表示特性の優れた表示装置
を作製することができる。また、同一基板上に画素回路と駆動回路を有する表示装置にお
いて、該回路が必要とする電気特性を得やすい様に、該回路のそれぞれを構造の異なるト
ランジスタで形成することができる。
【図面の簡単な説明】
【0029】
【
図8】信号線駆動回路の構成を説明する図及び動作を説明するタイミングチャート。
【
図10】シフトレジスタの構成を説明する図及び動作を説明するタイミングチャート。
【発明を実施するための形態】
【0030】
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は
以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれ
ば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈さ
れるものではない。なお、本明細書中の図面において、同一部分または同様な機能を有す
る部分には同一の符号を付し、その説明は省略する場合がある。
【0031】
(実施の形態1)
本実施の形態では、表示装置及びその作製方法の一形態を図面を用いて詳細に説明する。
図1(E)に同一基板上に形成された駆動回路のトランジスタ、画素部のトランジスタ及
びゲート配線(ゲート電極)のコンタクト部の断面構造の一例を示す。
【0032】
トランジスタ450は、チャネルエッチ型と呼ばれるボトムゲート型のトランジスタであ
り、トランジスタ460は、ボトムコンタクト型(逆コプラナ型とも呼ぶ)と呼ばれるボ
トムゲート型のトランジスタである。
【0033】
画素に配置されるトランジスタ460は、絶縁表面を有する基板400上に、ゲート電極
層451a、ゲート絶縁層402、チャネル形成領域を含む酸化物半導体層454、ソー
ス電極層455a、及びドレイン電極層455bを有する。また、トランジスタ460を
覆い、酸化物半導体層454の上面及び側面に接する酸化物絶縁層426が設けられてい
る。
【0034】
また、画素に配置されるトランジスタ460には、シングルゲート構造のトランジスタを
用いる例を説明したが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造
のトランジスタを用いても良い。
【0035】
なお、酸化物半導体層454は透光性を有し、ソース電極層455aの一部、及びドレイ
ン電極層455bの一部と重なるように形成されている。また、酸化物半導体層454は
、透光性を有するゲート絶縁層402を介してゲート電極層451aと重なっている。画
素に配置されるトランジスタ460のチャネル形成領域は、酸化物半導体層454のうち
、ソース電極層455aの側面と、該側面と向かい合うドレイン電極層455bの側面と
で挟まれる領域、即ち、ゲート絶縁層402と接し、且つゲート電極層451aと重なる
領域である。
【0036】
また、高開口率を有する表示装置を実現するために、トランジスタ460のソース電極層
455a、及びドレイン電極層455bには透光性を有する導電膜を用いる。
【0037】
また、トランジスタ460のゲート電極層451aにも透光性を有する導電膜を用いる。
【0038】
また、駆動回路部に配置されるトランジスタ450は、絶縁表面を有する基板400上に
、ゲート電極層421a、ゲート絶縁層402、酸化物半導体層403、ソース電極層4
25a、及びドレイン電極層425bで構成される。ここで、酸化物半導体層403は、
少なくともチャネル形成領域423、高抵抗ソース領域424a、及び高抵抗ドレイン領
域424bを有する。また、チャネル形成領域423、ソース電極層425a、及びドレ
イン電極層425b上には透光性を有する酸化物絶縁層427及び保護絶縁層428が設
けられている。
【0039】
また、酸化物絶縁層426と重なる酸化物半導体層403の第1領域424c、第2領域
424dは、チャネル形成領域423と同じ酸素過剰な状態であり、リーク電流の低減や
、寄生容量を低減する機能を果たしている。なお、酸化物絶縁層426が酸化物半導体層
403と重ならない構成とする場合は、酸化物半導体層403の第1領域424c、第2
領域424dは形成されない。
【0040】
以下、
図1(A)、(B)、(C)、(D)、(E)を用い、同一基板上にトランジスタ
450及びトランジスタ460を作製する工程を説明する。
【0041】
まず、絶縁表面を有する基板400上に金属膜を形成した後、第1のフォトリソグラフィ
工程及びエッチング工程により、ゲート電極層421a、421bを形成する。なお、ゲ
ート電極層421bは、ゲート配線に相当するが、便宜上ゲート電極層として表記する。
【0042】
なお、フォトリソグラフィ工程に用いるレジストマスクはインクジェット法で形成しても
よい。インクジェット法では、フォトマスクを使用しないため、製造コストを低減するこ
とができる。
【0043】
ゲート電極層421a、421bに用いる金属膜としては、Al、Cr、Ta、Ti、M
o、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み
合わせた積層膜等が挙げられる。
【0044】
基板400には、例えば、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリ
ウムホウケイ酸ガラスなどを用いることができる。また、後の加熱処理の温度が高い場合
には、歪み点が730℃以上のものを用いると良い。
【0045】
なお、ガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶縁体か
らなる基板を用いても良い。
【0046】
また、下地膜となる絶縁層を基板400とゲート電極層421a、421bの間に設けて
もよい。下地膜は、基板400からの不純物元素の拡散を防止する機能があり、窒化珪素
膜、酸化珪素膜、窒化酸化珪素膜、又は酸化窒化珪素膜から選ばれた膜の単層構造、また
は上記複数の膜の積層構造により形成することができる。
【0047】
次いで、ゲート電極層421a、421bを覆って透光性を有する導電膜を成膜した後、
第2のフォトリソグラフィ工程及びエッチング工程により、ゲート電極層451a、45
1bを形成する。なお、ゲート電極層451bは、ゲート配線層に相当するが、便宜上ゲ
ート電極層として表記する。
透光性を有する導電膜には、可視光に対して透光性を有する導電材料、例えばIn-Sn
-O系、In-Sn-Zn-O系、In-Al-Zn-O系、Sn-Ga-Zn-O系、
Al-Ga-Zn-O系、Sn-Al-Zn-O系、In-Zn-O系、Sn-Zn-O
系、Al-Zn-O系、In-O系、Sn-O系、Zn-O系等の金属酸化物を用いるこ
とができる。該導電膜の膜厚は、50nm以上300nm以下の範囲内で適宜選択する。
また、スパッタ法を用いる場合、上記導電材料に2重量%以上10重量%以下のSiO2
を含むターゲットを用いて成膜を行っても良い。
【0048】
本実施の形態では、配線抵抗を低減するため、画素部に配置されるゲート配線の一部をゲ
ート電極層421a、421bと同じ金属膜で形成する。
【0049】
次いで、ゲート電極層421a、421b、451a、451b上にゲート絶縁層402
を形成する。
【0050】
ゲート絶縁層402には、酸化珪素層、窒化珪素層、酸化窒化珪素層または窒化酸化珪素
層等の透光性を有する絶縁膜を用いることができ、プラズマCVD法やスパッタリング法
等を用いて形成する。また、ゲート絶縁層402は、上記絶縁膜の単層に限らず、異なる
膜の積層でも良い。例えば、成膜ガスとして、シラン(SiH4)、酸素及び窒素を用い
てプラズマCVD法により酸化窒化珪素膜を形成することができる。ゲート絶縁層402
の膜厚は、100nm以上500nm以下とし、積層の場合は、例えば、膜厚50nm以
上200nm以下の第1のゲート絶縁層を形成し、第1のゲート絶縁層上に膜厚5nm以
上300nm以下の第2のゲート絶縁層を形成する。
【0051】
本実施の形態では、ゲート絶縁層402にプラズマCVD法で形成した膜厚100nmの
酸化窒化珪素(SiON(組成比N<O))を用いる。
【0052】
次いで、ゲート絶縁層402上に、透光性を有する導電膜を形成した後、第3のフォトリ
ソグラフィ工程及びエッチング工程により、ソース電極層455a、及びドレイン電極層
455bを形成する(
図1(A)参照)。
【0053】
透光性を有する導電膜には、ゲート電極層451a、451bと同様の材料を用いること
ができる。
【0054】
次いで、第4のフォトリソグラフィ工程及びエッチング工程により、ゲート絶縁層402
を選択的にエッチングしてゲート電極層421bに達するコンタクトホールを形成する。
【0055】
次いで、ゲート絶縁層402上に膜厚5nm以上200nm以下、好ましくは10nm以
上20nm以下の透光性を有する酸化物半導体膜をスパッタ法で形成する。酸化物半導体
膜の形成後に脱水化または脱水素化のための加熱処理を行っても酸化物半導体膜を非晶質
な状態とするため、膜厚を50nm以下とすることが好ましい。酸化物半導体膜の膜厚を
薄くすることで後に加熱処理した場合に、結晶化してしまうのを抑制することができる。
【0056】
酸化物半導体膜としては、四元系金属酸化物であるIn-Sn-Ga-Zn-O膜や、三
元系金属酸化物であるIn-Ga-Zn-O膜、In-Sn-Zn-O膜、In-Al-
Zn-O膜、Sn-Ga-Zn-O膜、Al-Ga-Zn-O膜、Sn-Al-Zn-O
膜や、二元系金属酸化物であるIn-Zn-O膜、Sn-Zn-O膜、Al-Zn-O膜
、Zn-Mg-O膜、Sn-Mg-O膜、In-Mg-O膜や、In-O膜、Sn-O膜
、Zn-O膜などの酸化物半導体膜を用いることができる。また、上記酸化物半導体膜に
SiO2を含んでもよい。
【0057】
また、酸化物半導体膜は、InMO3(ZnO)m(m>0)で表記される薄膜を用いる
ことができる。ここで、Mは、Ga、Al、MnおよびCoから選ばれた一または複数の
金属元素を示す。例えばMとして、Ga、Ga及びAl、Ga及びMn、またはGa及び
Coなどがある。InMO3(ZnO)m(m>0)で表記される構造の酸化物半導体膜
のうち、MとしてGaを含む構造の酸化物半導体を、In-Ga-Zn-O系酸化物半導
体とよび、その薄膜をIn-Ga-Zn-O系非単結晶膜ともよぶこととする。
【0058】
本実施の形態では、酸化物半導体膜として、In-Ga-Zn-O系酸化物半導体ターゲ
ットを用いてスパッタ法により膜厚15nmのIn-Ga-Zn-O系非単結晶膜を成膜
する。
【0059】
In-Ga-Zn-O系非単結晶膜は、In-Ga-Zn-O系酸化物半導体ターゲット
(In2O3:Ga2O3:ZnO=1:1:1[mol数比](すなわち、In:Ga
:Zn=1:1:0.5[atom比]))を用い、基板とターゲットの間との距離を1
00mm、圧力0.6Pa、直流(DC)電力0.5kW、酸素(酸素流量比率100%
)雰囲気下で成膜することができる。また、他にも、In:Ga:Zn=1:1:1[a
tom比]や、In:Ga:Zn=1:1:2[atom比]の組成比を有するターゲッ
トを用いてもよい。これらのターゲットの充填率は90%以上100%以下、好ましくは
95%以上99.9%以下である。充填率の高い金属酸化物ターゲットを用いることによ
り、成膜した酸化物半導体膜は緻密な膜となる。
【0060】
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法
があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ
法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に導電膜を成膜する場合
に用いられる。
【0061】
なお、成膜中に発生するごみを低減し、膜厚分布の均一性を向上させるためには、パルス
直流(DC)電源を用いてスパッタを行うことが好ましい。
【0062】
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ
装置は、同一チャンバーで異なる材料を積層成膜することや、同一チャンバーで複数種類
の材料を同時に放電させて成膜することができる。
【0063】
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置
や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ
法を用いるスパッタ装置がある。
【0064】
また、成膜中にターゲット物質とスパッタガス成分とを化学反応させてそれらの化合物薄
膜を形成するリアクティブスパッタ法や、成膜中に基板にも電圧をかけるバイアススパッ
タ法などもある。
【0065】
なお、酸化物半導体膜をスパッタ法により成膜する前に、アルゴンガスを導入してプラズ
マを発生させる逆スパッタを行い、ゲート絶縁層402の表面に付着しているゴミを除去
することが好ましい。逆スパッタとは、アルゴン雰囲気下で基板側にRF電源を用いて電
圧を印加し、イオン化したアルゴンを基板に衝突させて表面を改質する方法である。なお
、アルゴンに代えて窒素、ヘリウム、酸素などを用いてもよい。
【0066】
また、酸化物半導体膜の成膜前に、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、
アルゴン等)下において加熱処理(400℃以上基板の歪み点未満)を行い、ゲート絶縁
層402内に含まれる水素及び水などの不純物を除去してもよい。
【0067】
次いで、酸化物半導体膜を第5のフォトリソグラフィ工程及びエッチング工程により、島
状の酸化物半導体層403、453に加工する(
図1(B)参照)。また、島状の酸化物
半導体層403、453を形成するためのレジストマスクは、インクジェット法で形成し
てもよい。インクジェット法を用いることで、製造コストを低減することができる。
【0068】
なお、本実施の形態では、ゲート電極層421bに達するコンタクトホールの形成は、酸
化物半導体膜の成膜前に第4のフォトリソグラフィ工程及びエッチング工程により、ゲー
ト絶縁層を選択的にエッチングして行う。一方で、該コンタクトホールの形成は、上述し
た島状の酸化物半導体層403、453の形成後に行っても良い。その場合には逆スパッ
タを行い、酸化物半導体層403、453及びゲート絶縁層402の表面に付着している
レジスト残渣などを除去することが好ましい。
【0069】
また、ゲート絶縁層上に酸化物半導体膜を成膜した後にゲート電極層421bに達するコ
ンタクトホールを形成し、その後、酸化物半導体膜を選択的にエッチングして島状の酸化
物半導体層403、453に加工する工程としてもよい。
【0070】
次いで、酸化物半導体層403、453の脱水化または脱水素化を行う。脱水化または脱
水素化を行う第1の加熱処理の温度は、400℃以上基板の歪み点未満、好ましくは42
5℃以上とする。なお、425℃以上であれば熱処理時間は1時間以下でよいが、425
℃以下であれば加熱処理時間は、1時間よりも長時間行うこととする。
【0071】
ここでは、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層403、4
53に対して窒素雰囲気下において加熱処理を行う。本実施の形態では、酸化物半導体層
403、453の脱水化または脱水素化を行う加熱温度Tから、再び水が入らないような
十分な温度まで同じ炉を用い、具体的には加熱温度Tよりも100℃以上下がるまで窒素
雰囲気下で徐冷する。なお、雰囲気は窒素に限定されず、ヘリウム、ネオン、アルゴン等
を用いても良い。
【0072】
なお、第1の加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガス
に、水や水素などが含まれないことが好ましい。ここで、加熱処理装置に導入する窒素、
またはヘリウム、ネオン、アルゴン等の希ガスの純度は、6N(99.9999%)以上
、好ましくは7N(99.99999%)以上とすることが好ましい。
【0073】
酸化物半導体層403、453は、第1の加熱処理によって結晶化し、微結晶膜または多
結晶膜となる場合がある。また、酸化物半導体層403、453は、第1の加熱処理によ
って酸素欠乏型となり、キャリア濃度が1×1018/cm3以上に高まるため低抵抗化
する。
また、ゲート電極層451a、451bも第1の加熱処理によって結晶化し、微結晶膜ま
たは多結晶膜となる場合がある。例えば、ゲート電極層451a、451bに酸化インジ
ウム酸化スズ合金膜を用いる場合は、450℃1時間の第1の加熱処理で容易に結晶化す
るが、該ゲート電極層451a、451bに酸化珪素を含む酸化インジウム酸化スズ合金
膜を用いる場合は、結晶化が起こりにくい。
【0074】
また、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜に行うこともできる。その場合には、第1の加熱処理後に第5のフォトリソグラ
フィ工程を行う。
【0075】
次いで、ゲート絶縁層402、及び酸化物半導体層403、453上に、スパッタ法で透
光性を有する酸化物絶縁層を形成する。そして、第6のフォトリソグラフィ工程によりレ
ジストマスクを形成し、エッチング工程により選択的に酸化物絶縁層426を形成し、そ
の後レジストマスクを除去する。この段階で酸化物半導体層403、453の周縁及び側
面は、酸化物絶縁層426と重なる構造となる。また、第6のフォトリソグラフィ工程及
びエッチング工程により、ゲート電極層421bに達するコンタクトホールと、ドレイン
電極層455bに達するコンタクトホールの形成も行う(
図1(C)参照)。
【0076】
酸化物絶縁層426は、1nm以上の膜厚とし、上述した酸化物絶縁層に水、水素等の不
純物を混入させない方法を適宜用いて形成することができる。本実施の形態では、スパッ
タ法で成膜した酸化珪素膜で酸化物絶縁層426を形成する。
【0077】
成膜時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では100℃と
する。酸化珪素膜のスパッタ法による成膜は、希ガス(代表的にはアルゴン)雰囲気下、
酸素雰囲気下、または希ガス(代表的にはアルゴン)及び酸素雰囲気下において行うこと
ができる。
【0078】
また、ターゲットには、酸化珪素ターゲットまたは珪素ターゲットを用いることができる
。例えば、珪素ターゲットを用いる場合は、酸素及び希ガス雰囲気下でスパッタを行うこ
とにより酸化珪素を形成することができる。低抵抗化した酸化物半導体層403、453
に接して形成する酸化物絶縁層は、水分、水素イオン、またはOH-などの不純物を極力
含まず、これらの外部からの侵入をブロックすることのできる無機絶縁膜を用いると良い
。代表的には酸化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜、または酸化窒化アルミ
ニウム膜などを用いることができる。
【0079】
本実施の形態では、ホウ素を添加した柱状多結晶珪素ターゲット(抵抗率0.01Ωcm
、純度6N)を用い、基板とターゲットの間との距離(T-S間距離)を89mm、圧力
0.4Pa、直流(DC)電力6kW、酸素(酸素流量比率100%)雰囲気下でパルス
DCスパッタ法により成膜する。膜厚は300nmとする。
【0080】
次いで、ゲート絶縁層402、酸化物絶縁層426、及び酸化物半導体層403、453
上に金属膜を形成した後、第7のフォトリソグラフィ工程により、レジストマスクを形成
し、エッチング工程にてソース電極層425a、及びドレイン電極層425bを形成する
。また、ゲート電極層421bに電気的に接続する接続電極層429と、ドレイン電極層
455bと電気的に接続する接続電極層452も形成する。
【0081】
該金属膜の成膜方法には、スパッタ法、真空蒸着法(電子ビーム蒸着法など)、アーク放
電イオンプレーティング法、またはスプレー法を用いることができる。金属膜としては、
Ti、Mo、W、Al、Cr、Cu、Ta、から選ばれた元素、または上述した元素を成
分とする合金か、上述した元素を組み合わせた合金等を用いる。また、該金属膜は、上述
した元素の単層に限定されず、異なる元素の積層を用いても良い。本実施の形態では、チ
タン膜(膜厚100nm)とアルミニウム膜(膜厚200nm)とチタン膜(膜厚100
nm)の3層構造の金属膜を形成する。また、チタン膜に換えて窒化チタン膜を用いても
よい。
【0082】
また、第7のフォトリソグラフィ工程後のエッチング工程においては、酸化物半導体層4
03、453上に接する金属膜を選択的に除去する必要がある。この様な場合は、アルカ
リ性のエッチャント(例えば、アンモニア過水(31重量%過酸化水素水:28重量%ア
ンモニア水:水=5:2:2))などを用いれば、金属膜を選択的に除去し、In-Ga
-Zn-O系酸化物半導体からなる酸化物半導体層403、453を残存させることがで
きる。
【0083】
なお、ソース電極層425a、及びドレイン電極層425bを形成するためのレジストマ
スクをインクジェット法で形成してもよい。インクジェット法を用いることで、製造コス
トを低減することができる。
【0084】
次いで、酸化物絶縁層426、ソース電極層425a、ドレイン電極層425b、接続電
極層429、及び接続電極層452上に透光性を有する酸化物絶縁層427を形成する(
図1(D)参照)。酸化物絶縁層427としては、酸化珪素膜、窒化酸化珪素膜、酸化ア
ルミニウム膜、または酸化窒化アルミニウム膜などを用いる。本実施の形態では、スパッ
タ法で形成した酸化珪素膜を用いて酸化物絶縁層427を形成する。
【0085】
次いで、窒素ガス等の不活性ガス雰囲気下、200℃以上400℃以下、好ましくは25
0℃以上350℃以下で第2の加熱処理を行う。例えば、窒素雰囲気下で250℃、1時
間の加熱処理を行う。
【0086】
第2の加熱処理では、酸化物絶縁層427と酸化物半導体層403の一部、及び酸化物絶
縁層426と酸化物半導体層453が接した状態で加熱される。このため、第1の加熱処
理で低抵抗化された酸化物半導体層403、453は、酸化物絶縁層427、426から
酸素が供給されて酸素過剰な状態となり、高抵抗化(i型化)される。
【0087】
なお、酸化物半導体層403が15nm未満の場合、酸化物半導体層403において、金
属膜からなるソース電極層425a及びドレイン電極層425bと重なる領域では、該領
域の酸素が該金属膜側に移動しやすくなり、該領域は全てn型化する。また、酸化物半導
体層403の膜厚が15nm以上50nm以下の場合は、該金属膜と該領域の界面近傍が
n型化するが、その下側はi型またはn-型化した状態となる。
【0088】
なお、本実施の形態では、酸化珪素膜成膜後に第2の加熱処理を行ったが、加熱処理のタ
イミングは酸化珪素膜成膜以降であれば問題なく、酸化珪素膜成膜直後に限定されるもの
ではない。
【0089】
次いで、酸化物絶縁層427上に透光性を有する保護絶縁層428を形成する(
図1(E
)参照)。保護絶縁層428としては、窒化珪素膜、窒化酸化珪素膜、または窒化アルミ
ニウム膜などを用いる。本実施の形態では、RFスパッタ法を用いて成膜した窒化珪素膜
で保護絶縁層428を形成する。
【0090】
また、図示はしないが、画素部において酸化物絶縁層427と保護絶縁層428の間に透
光性を有する平坦化絶縁層を設けても良い。平坦化絶縁層としては、アクリル系樹脂、ポ
リイミド、ベンゾシクロブテン系樹脂、ポリアミド、またはエポキシ系樹脂等の耐熱性を
有する有機材料を用いることができる。また、上記有機材料の他に、低誘電率材料(lo
w-k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス
)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させても
よい。
【0091】
以上の工程により、同一基板上にチャネルエッチ型のトランジスタ450、及びボトムコ
ンタクト型のトランジスタ460を作製することができる。なお、ボトムコンタクト型の
トランジスタ460は、接続電極層452以外は、透光性を有する材料で構成されている
ため、開口率を向上させることができる。
【0092】
トランジスタ450の様なチャネルエッチ型は、チャネル長を短く形成しやすく、駆動回
路の様な高速動作を必要とするトランジスタの形成に有利である。すなわち、同一基板上
に形成する複数の回路の全てをトランジスタ460の様なボトムコンタクト型で形成する
よりも高速動作が可能な表示装置を作製することができる。
【0093】
また、表示装置に必要な画素電極は画素部の保護絶縁層428上に設け、トランジスタ4
60のドレイン電極層と電気的に接続させる。ここでは、接続電極層452と接続させれ
ば良い。なお、画素電極には、ゲート電極層451a、451b、ソース電極層455a
、及びドレイン電極層455bと同様の透光性を有する導電膜を用いることができる。
【0094】
本発明の一態様は、同一基板上に駆動回路と画素回路を有した表示装置において、該回路
が必要とする電気特性を得やすい様に該回路のそれぞれを構造の異なるトランジスタで形
成するものであり、本実施の形態の様に、駆動回路にチャネルエッチ型のトランジスタ4
50、画素回路にボトムコンタクト型のトランジスタ460を用いることによって表示特
性の優れた表示装置を作製することができる。
【0095】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0096】
(実施の形態2)
本実施の形態では、トランジスタの作製工程の一部が実施の形態1と異なる例を
図2に示
す。
図2は、
図1と工程が一部異なる点以外は同じであるため、同じ箇所には同じ符号を
用い、同じ箇所の詳細な説明は省略する。
【0097】
まず、実施の形態1に従って、基板上にゲート電極層421a、451a、及びゲート絶
縁層402を形成し、ゲート絶縁層402を介してゲート電極層451aと一部が重なる
ソース電極層455a及びドレイン電極層455bを形成する。そして、ゲート絶縁層4
02、ソース電極層455a、及びドレイン電極層455b上に酸化物半導体膜の成膜を
行う。
【0098】
次いで、酸化物半導体膜の脱水化または脱水素化を行う。脱水化または脱水素化を行う第
1の加熱処理の温度は、400℃以上基板の歪み点未満、好ましくは425℃以上とする
。なお、425℃以上であれば熱処理時間は1時間以下でよいが、425℃未満であれば
加熱処理時間は、1時間よりも長時間行うこととする。ここでは、加熱処理装置の一つで
ある電気炉に基板を導入し、酸化物半導体膜に対して窒素雰囲気下において加熱処理を行
った後、大気に触れることなく、酸化物半導体膜への水や水素の再混入を防ぐ。その後、
同じ炉に高純度の酸素ガス、高純度のN2Oガス、又は超乾燥エア(露点が-40℃以下
、好ましくは-60℃以下)を導入して冷却を行う。酸素ガスまたはN2Oガスに、水、
水素などが含まれないことが好ましい。または、加熱処理装置に導入する酸素ガスまたは
N2Oガスの純度を、6N(99.9999%)以上、好ましくは7N(99.9999
9%)以上、(即ち酸素ガスまたはN2Oガス中の不純物濃度を1ppm以下、好ましく
は0.1ppm以下)とすることが好ましい。
【0099】
また、脱水化または脱水素化を行う第1の加熱処理後に200℃以上400℃以下、好ま
しくは200℃以上300℃以下の温度で酸素ガスまたはN2Oガス雰囲気下での加熱処
理を行ってもよい。
【0100】
以上の工程を経ることによって酸化物半導体膜全体は酸素過剰な状態となり、酸化物半導
体膜を高抵抗化、即ちi型化させることができる。なお、本実施の形態では、酸化物半導
体膜成膜直後に第1の加熱処理を行う例を示したが、第1の加熱処理は、酸化物半導体膜
成膜以降の工程であれば特に限定されない。
【0101】
次いで、フォトリソグラフィ工程によりレジストマスクを形成し、エッチング工程にて酸
化物半導体膜及びゲート絶縁層402を選択的にエッチングして、ゲート電極層421b
に達するコンタクトホールを形成する。その後、レジストマスクを除去する(
図2(A)
参照)。
【0102】
次いで、フォトリソグラフィ工程によりレジストマスクを形成し、エッチング工程にて酸
化物半導体膜を選択的にエッチングして島状に加工する。そして、レジストマスクを除去
し、ゲート絶縁層402上に酸化物半導体層404、405を形成する(
図2(B)参照
)。
【0103】
次いで、ゲート絶縁層402、及び酸化物半導体層404、405上にスパッタ法で酸化
物絶縁層を形成した後、フォトリソグラフィ工程によりレジストマスクを形成する。そし
て、エッチング工程にて酸化物絶縁層426を形成し、レジストマスクを除去する。この
段階で、酸化物半導体層404、405と酸化物絶縁層426が重なる領域が形成される
。また、この工程によりゲート電極層421bに達するコンタクトホールの形成と、ドレ
イン電極層455bに達するコンタクトホールの形成も行う(
図2(C)参照)。
【0104】
酸化物絶縁層には、水分、水素イオン、OH-などの不純物を極力含まず、これらが外部
から侵入することをブロックする無機絶縁膜を用いると良い。代表的には酸化珪素膜、窒
化酸化珪素膜、酸化アルミニウム膜、または酸化窒化アルミニウム膜などを用いることが
できる。
【0105】
次いで、ゲート絶縁層402、酸化物絶縁層426、及び酸化物半導体層404、405
上に酸化物導電膜と金属膜の積層を形成する。スパッタ法を用いれば、酸化物導電膜と金
属膜の積層を大気に触れることなく連続的に成膜することができる。
【0106】
酸化物導電膜としては、酸化亜鉛を成分として含むものが好ましく、酸化インジウムを含
まないものであることが好ましい。そのような酸化物導電膜として、酸化亜鉛、酸化亜鉛
アルミニウム、酸窒化亜鉛アルミニウム、酸化亜鉛ガリウムなどが挙げられる。本実施の
形態では酸化亜鉛膜を用いる。
【0107】
また、金属膜としては、Ti、Mo、W、Al、Cr、Cu、Ta、から選ばれた元素、
または上述した元素を成分とする合金か、上述した元素を組み合わせた合金等を用いるこ
とができる。また、該金属膜は、上述した元素の単層に限定されず、異なる元素の積層で
も良い。本実施の形態では、モリブデン膜、アルミニウム膜、及びモリブデン膜を積層し
た三層積層膜を用いる。
【0108】
次いで、フォトリソグラフィ工程により、レジストマスクを形成し、エッチング工程にて
金属膜を選択的にエッチングしてソース電極層445a、ドレイン電極層445b、接続
電極層449、及び接続電極層442を形成した後、レジストマスクを除去する。
【0109】
なお、レジストマスクを除去するために用いられるレジスト剥離液はアルカリ性溶液であ
り、レジスト剥離液を用いる場合は、上記電極層をマスクとして酸化亜鉛膜も選択的にエ
ッチングされる。従って、ソース電極層445aに接する酸化物導電層446a、ドレイ
ン電極層445bに接する酸化物導電層446bが形成される。
【0110】
なお、酸化物半導体層と酸化物導電層はエッチング速度に差があるため、酸化物半導体層
上に接する酸化物導電層は、時間制御で除去することができる。
【0111】
また、金属膜を選択的にエッチングした後、酸素アッシング処理でレジストマスクを除去
した後、ソース電極層445a、ドレイン電極層445b、接続電極層449、及び接続
電極層442をマスクとして酸化亜鉛膜を選択的にエッチングしてもよい。
【0112】
ソース電極層445aと酸化物半導体層404との間に設けられる酸化物導電層446a
はソース領域として機能し、ドレイン電極層445bと酸化物半導体層404との間に設
けられる酸化物導電層446bはドレイン領域として機能する。酸化物導電層446a及
び酸化物導電層446bを設けることによって、酸化物半導体層404とソース電極層4
45a及びドレイン電極層445bとの接触抵抗を下げることができる。この様に、電流
経路の低抵抗化が図られたトランジスタは高速動作が可能となり、周辺回路(駆動回路)
の周波数特性を向上させることができる。
【0113】
モリブデンは、酸化物半導体との接触抵抗が比較的高い材料である。モリブデンは、チタ
ンに比べて酸化しにくいため、酸化物半導体層から酸素を引き抜く作用が弱く、酸化物半
導体層の接触界面がn型化しないためである。この様な場合において、酸化物半導体層と
金属電極層との間に酸化物導電層を介在させることは、接触抵抗を低減させるための大変
有効な手段となる。
【0114】
また、同じ工程で接続電極層449に接する酸化物導電層448が形成され、接続電極層
442に接する酸化物導電層447が形成される(
図2(D)参照)。
【0115】
次いで、トランジスタの電気的特性のばらつきを軽減するため、不活性ガス雰囲気下、例
えば窒素ガス雰囲気下で第2の加熱処理を行ってもよい。第2の加熱処理は、150℃以
上350℃未満で行うことが好ましく、例えば、窒素雰囲気下で250℃、1時間の加熱
処理を行う。
【0116】
なお、第2の加熱処理により、酸化物半導体層404,454中に酸素の含侵または拡散
が行われる。酸化物半導体層404,454中への酸素の含侵または拡散によりチャネル
形成領域を高抵抗化(i型化)を図ることができる。それにより、電気特性がノーマリー
オフとなるトランジスタを得ることができる。また、第2の加熱処理により、酸化物導電
層446a、446b、447、448を結晶化させ、導電性を向上させることもできる
。
【0117】
次いで、酸化物絶縁層426、ソース電極層445a、ドレイン電極層445b上に酸化
物絶縁層427、保護絶縁層428を形成する(
図2(E)参照)。酸化物絶縁層427
、保護絶縁層428は、実施の形態1と同様の材料及び作製方法で形成することができる
。
【0118】
以上の工程により、同一基板上にトランジスタ440と、トランジスタ460を作製する
ことができる。
【0119】
駆動回路部に配置されるトランジスタ440は、絶縁表面を有する基板400上に、ゲー
ト電極層421a、ゲート絶縁層402、酸化物半導体層404、酸化物導電層446a
、446b、ソース電極層445a、及びドレイン電極層445bで構成される。ここで
、酸化物半導体層404は、少なくともチャネル形成領域443、高抵抗ソース領域44
4a、及び高抵抗ドレイン領域444bを有する。また、チャネル形成領域443、ソー
ス電極層445a、及びドレイン電極層445b上には酸化物絶縁層427及び保護絶縁
層428が設けられる。
【0120】
高抵抗ソース領域444aとソース電極層445aとの間にはソース領域として機能する
酸化物導電層446aが設けられ、高抵抗ドレイン領域444bとドレイン電極層445
bとの間にはドレイン領域として機能する酸化物導電層446bが設けられ、接触抵抗の
低減を図っている。
【0121】
また、酸化物絶縁層426と重なる酸化物半導体層404の第1領域444c、第2領域
444dは、チャネル形成領域443と同じ酸素過剰な状態であり、リーク電流の低減や
、寄生容量を低減する機能も果たしている。なお、酸化物絶縁層426が酸化物半導体層
404と重ならない構成とする場合は、酸化物半導体層404の第1領域444c、第2
領域444dは形成されない。
【0122】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0123】
(実施の形態3)
本実施の形態では、実施の形態1または2に示したアクティブマトリクス基板を用いて、
液晶表示装置を構成する一例を示す。
【0124】
アクティブマトリクス基板の断面構造の一例を
図3に示す。
【0125】
実施の形態1及び2では、同一基板上に駆動回路部のトランジスタ、画素部のトランジス
タ及びゲート配線(ゲート電極)コンタクト部を図示したが、本実施の形態では、それら
に加え、保持容量、ゲート配線とソース配線の交差部も図示して説明する。
【0126】
容量、ゲート配線、ソース配線は、実施の形態1または2に示す作製工程と同じ工程で形
成することができ、フォトマスク枚数の増加や、工程数の増加することなく作製すること
ができる。また、画素部の表示領域となる部分においては、ゲート配線、ソース配線、及
び容量配線層が透光性を有する導電膜で形成されており、高い開口率を実現している。ま
た、表示領域でない部分のソース配線層は、配線抵抗を低減するために金属配線を用いる
ことができる。
【0127】
図3において、トランジスタ450は、駆動回路部に設けられるトランジスタであり、画
素電極層457と電気的に接続するトランジスタ460は、画素部に設けられるトランジ
スタである。
【0128】
基板400上方に形成されるトランジスタ460として、本実施の形態では、実施の形態
1または2のトランジスタ460と同じ構造を用いる。
【0129】
トランジスタ460のゲート電極層451aと同じ透光性を有する材料、及び同じ工程で
形成される容量配線層430は、誘電体となるゲート絶縁層402を介して容量電極43
1と重なり、保持容量を形成する。なお、容量電極431は、トランジスタ460のソー
ス電極層455aまたはドレイン電極層455bと同じ透光性を有する材料、及び同じ工
程で形成される。従って、トランジスタ460が透光性を有していることに加え、保持容
量も透光性を有するため、開口率を向上させることができる。
【0130】
保持容量が透光性を有することは、開口率を向上させる上で重要である。特に10インチ
以下の小型の液晶表示パネルにおいて、画素寸法を微細化しても、高い開口率を実現する
ことができる。また、トランジスタ460及び保持容量の構成部材に透光性を有する膜を
用いることで、広視野角を実現するため、1画素を複数のサブピクセルに分割しても高い
開口率を実現することができる。例えば、一つの画素内に2~4個のサブピクセル及び保
持容量を有する場合においても、トランジスタが透光性を有していることに加え、それぞ
れの保持容量も透光性を有するため、開口率を向上させることができる。
【0131】
なお、保持容量は、画素電極層457の下方に設けられ、容量電極431は画素電極層4
57と電気的に接続される。
【0132】
本実施の形態では、容量配線層430、ゲート絶縁層402、及び容量電極431を用い
て保持容量を形成する例を示したが、保持容量を形成する構造については特に限定されな
い。例えば、容量配線層を設けず、隣り合う画素のゲート配線の一部を容量配線層として
も良い。また、ゲート絶縁層の他に保護絶縁層や平坦化絶縁層などの画素部の構成に用い
られる絶縁層を誘電体として用いても良い。
【0133】
また、ゲート配線層、ソース配線層、及び容量配線層は画素密度に応じて複数本設けられ
るものである。また、端子部においては、ゲート配線と同電位の第1の端子電極、ソース
配線と同電位の第2の端子電極、容量配線層と同電位の第3の端子電極などが複数並べら
れて配置される。それぞれの端子電極の数は、それぞれ任意な数で設ければ良いものとし
、実施者が適宣決定すれば良い。
【0134】
ゲート配線コンタクト部において、ゲート電極層421bは、低抵抗の金属材料で形成す
ることができる。ゲート電極層421bは、ゲート配線に達するコンタクトホールを介し
て接続電極層429と電気的に接続される。
【0135】
駆動回路のトランジスタ450のゲート電極層は、酸化物半導体層の上方に設けられた導
電層417と電気的に接続させる構造としてもよい。
【0136】
また、配線交差部において、
図3に示すように寄生容量を低減するため、ゲート配線層4
21cとソース配線層422との間には、ゲート絶縁層402及び酸化物絶縁層426を
積層する構成としている。なお、
図3ではゲート配線層421cを金属膜とする例を示し
たが、トランジスタ460のゲート電極層451aと同じ透光性を有する導電膜を用いて
形成することもできる。
【0137】
また、アクティブマトリクス型の液晶表示装置を作製する場合には、アクティブマトリク
ス基板と、対向電極が設けられた対向基板との間に液晶層を設け、アクティブマトリクス
基板と対向基板とを固定する。なお、対向基板に設けられた対向電極と電気的に接続する
共通電極をアクティブマトリクス基板上に設け、共通電極と電気的に接続する第4の端子
電極を端子部に設ける。この第4の端子電極は、共通電極を固定電位、例えばGND、0
Vなどに設定するための端子である。第4の端子電極は、画素電極層457と同じ透光性
を有する材料で形成することができる。
【0138】
また、ゲート電極、ソース電極、ドレイン電極、画素電極、その他の電極、及び各種配線
層に同じ材料を用いれば、スパッタターゲットや製造装置を共通とすることができる。ま
た、その材料コスト及びエッチング時に使用するエッチャントやエッチングガスに要する
コストを低減することができ、結果として製造コストを削減することができる。
【0139】
また、
図3の構造において、平坦化絶縁層456として感光性の樹脂材料を用いる場合、
レジストマスクを形成する工程を省略することができる。
【0140】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0141】
(実施の形態4)
また、本実施の形態では、トランジスタと同一基板上に設けられる端子部の構成の一例を
図4を用いて説明する。なお、
図4において、
図3と同じ箇所には同じ符号を用いて説明
する。
【0142】
図4(A1)、
図4(A2)は、ゲート配線端子部の断面図及び上面図をそれぞれ図示し
ている。
図4(A1)は
図4(A2)中のC1-C2線に沿った断面図に相当する。
【0143】
図4(A1)において、酸化物絶縁層427と保護絶縁層428の積層上に形成される導
電層415は、入力端子として機能する接続用の端子電極である。また、
図4(A1)に
おいて、端子部では、ゲート配線層421cと同じ材料で形成される第1の端子411と
、ソース配線層422と同じ材料で形成される接続電極層412とがゲート絶縁層402
を介して重なり、導電層415で導通させている。導電層415は、画素電極層457と
同じ透光性を有する材料、同じ工程で形成することができる。
【0144】
また、
図4(B1)、及び
図4(B2)は、ソース配線端子部の断面図及び上面図をそれ
ぞれ図示している。また、
図4(B1)は、
図4(B2)中のC3-C4線に沿った断面
図に相当する。
【0145】
図4(B1)において、酸化物絶縁層427と保護絶縁層428の積層上に形成される導
電層418は、入力端子として機能する接続用の端子電極である。また、
図4(B1)に
おいて、端子部では、ゲート配線層421cと同じ材料で形成される電極層416が、ソ
ース配線と電気的に接続される第2の端子414の下方にゲート絶縁層402を介して重
なる。電極層416は第2の端子414とは電気的に接続しておらず、電極層416を第
2の端子414と異なる電位、例えばフローティング、GND、0Vなどに設定すれば、
ノイズ対策のための容量、または静電気対策のための容量とすることができる。また、第
2の端子414は、導電層418と電気的に接続している。導電層418は、画素電極層
457と同じ透光性を有する材料、同じ工程で形成することができる。
【0146】
ゲート配線、ソース配線、共通電位線、及び電源供給線は画素密度に応じて複数本設けら
れるものである。また、端子部においては、ゲート配線と同電位の第1の端子、ソース配
線と同電位の第2の端子、電源供給線と同電位の第3の端子、共通電位線と同電位の第4
の端子などが複数並べられて配置される。それぞれの端子の数は、それぞれ任意な数で設
ければ良いものとし、実施者が適宣決定すれば良い。
【0147】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0148】
(実施の形態5)
本実施の形態では、液晶表示装置の構成及び作製方法の一例について説明する。
【0149】
本実施の形態においては、液晶素子(液晶表示素子ともいう)を含む表示装置について説
明するが、これに限らず電子インクなど、電気的作用によりコントラストが変化する表示
媒体も適用することができる。
【0150】
なお、本明細書中における表示装置には、表示素子が封止された状態にあるパネルと、該
パネルを動作させるためのIC(集積回路)等が含まれる。また、該表示素子が形成され
ている素子基板には、電流を表示素子に供給するための手段が各画素に備えられている。
また、コネクター、例えばFPC(Flexible printed circuit
)もしくはTAB(Tape Automated Bonding)テープもしくはT
CP(Tape Carrier Package)が取り付けられたモジュール、TA
BテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCO
G(Chip On Glass)方式によりICが直接実装されたモジュールも全て表
示装置に含むものとする。
【0151】
表示装置の一形態に相当する液晶表示パネルの外観及び断面について、
図5を用いて説明
する。
図5(A1)、(A2)は、トランジスタ4010、4011、及び液晶素子40
13を第1の基板4001と第2の基板4006との間にシール材4005によって封止
したパネルの平面図である。また、
図5(B)は、
図5(A1)、(A2)のM-Nにお
ける断面図に相当する。
【0152】
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲む
ようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回
路4004の上に第2の基板4006が設けられている。よって、画素部4002と、走
査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板400
6とによって、液晶層4008と共に封止されている。また、第1の基板4001上のシ
ール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単
結晶半導体膜または多結晶半導体膜で形成された信号線駆動回路4003が実装されてい
る。
【0153】
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG法、ワ
イヤボンディング法、或いはTAB法などを用いることができる。
図5(A1)は、CO
G法により信号線駆動回路4003を実装する例であり、
図5(A2)は、TAB法によ
り信号線駆動回路4003を実装する例である。
【0154】
また、第1の基板4001上に設けられた画素部4002と走査線駆動回路4004は、
トランジスタを複数有している。
図5(B)では、画素部4002に含まれるトランジス
タ4010と、走査線駆動回路4004に含まれるトランジスタ4011とを例示してい
る。トランジスタ4010、4011上には絶縁層4041、4020、4021が設け
られている。
【0155】
トランジスタ4010、4011には、実施の形態1または2で示した酸化物半導体層を
含む信頼性の高いトランジスタを適用することができる。駆動回路用のトランジスタ40
11としては、実施の形態1または2で示したトランジスタ450、画素用のトランジス
タ4010としては、実施の形態1または2で示したトランジスタ460を用いることが
できる。本実施の形態において、トランジスタ4010、4011はnチャネル型トラン
ジスタである。
【0156】
絶縁層4021上において、駆動回路用のトランジスタ4011の酸化物半導体層のチャ
ネル形成領域と重なる位置に導電層4040が設けられている。導電層4040を酸化物
半導体層のチャネル形成領域と重なる位置に設けることによって、トランジスタ4011
のしきい値電圧の変化量を低減することができる。また、導電層4040は、電位がトラ
ンジスタ4011のゲート電極と同じでもよいし、異なっていても良く、第2のゲート電
極として機能させることもできる。また、導電層4040の電位はGND、0V、或いは
フローティング状態であってもよい。
【0157】
また、液晶素子4013が有する画素電極4030は、トランジスタ4010と電気的に
接続されている。そして液晶素子4013の対向電極4031は、第2の基板4006上
に形成されている。画素電極4030と対向電極4031と液晶層4008とが重なって
いる部分が、液晶素子4013に相当する。なお、画素電極4030、対向電極4031
には、それぞれ配向膜として機能する絶縁層4032、4033が設けられている。
【0158】
なお、第1の基板4001、第2の基板4006としては、透光性基板を用いることがで
き、ガラス、セラミックス、プラスチックを用いることができる。プラスチックとしては
、FRP(Fiberglass-Reinforced Plastics)板、PV
F(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィ
ルムを用いることができる。
【0159】
また、4035は、絶縁層を選択的にエッチングすることで得られる柱状のスペーサであ
り、画素電極4030と対向電極4031との間の距離(セルギャップ)を制御するため
に設けられている。なお、球状のスペーサを用いても良い。
【0160】
また、対向電極4031は、トランジスタ4010と同一基板上に設けられる共通電位線
と電気的に接続される。共通接続部を用いて、一対の基板間に配置される導電性粒子を介
して対向電極4031と共通電位線を電気的に接続することができる。なお、導電性粒子
はシール材4005に含有させる。
【0161】
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つで
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、液晶層4008
に用いる場合は、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶
組成物とすることが好ましい。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、
応答速度が1msec以下と短く、光学的等方性であるため配向処理が不要であり、視野
角依存性が小さい特徴を有する。
【0162】
トランジスタ4011では、酸化物半導体層に接して絶縁層4041が形成されている。
絶縁層4041は、実施の形態1で示した酸化物絶縁層427と同様な材料及び方法で形
成することができ、ここでは、スパッタ法で形成した酸化珪素膜を用いる。
【0163】
また、絶縁層4041上に保護絶縁層4020を形成する。保護絶縁層4020は、実施
の形態1で示した保護絶縁層428と同様な材料及び方法で形成すればよい。ここでは、
保護絶縁層4020として、プラズマCVD法で形成した窒化珪素膜を用いる。
【0164】
また、平坦化絶縁層として絶縁層4021を形成する。絶縁層4021としては、アクリ
ル系樹脂、ポリイミド、ベンゾシクロブテン系樹脂、ポリアミド、エポキシ系樹脂等の耐
熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(
low-k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガ
ラス)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させ
ることで、絶縁層4021を形成してもよい。
【0165】
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi-O-S
i結合を含む樹脂に相当する。シロキサン系樹脂の置換基としては、有機基(例えばアル
キル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有して
いても良い。
【0166】
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ、SOG、ス
ピンコート、ディップ、スプレー塗布、インクジェット、スクリーン印刷、オフセット印
刷等を用いることができ、また、ドクターナイフ、ロールコーター、カーテンコーター、
ナイフコーター等を用いて形成することができる。絶縁層4021の焼成工程と半導体層
のアニールを兼ねることで工程を削減することが可能となる。
【0167】
画素電極4030、対向電極4031は、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す)、インジ
ウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性
材料を用いることができる。
【0168】
また、画素電極4030、対向電極4031として、導電性高分子(導電性ポリマーとも
いう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成し
た画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける光の透過率
が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗
率が0.1Ω・cm以下であることが好ましい。
【0169】
導電性高分子としては、いわゆるπ電子共役系導電性高分子を用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
【0170】
また、別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部
4002に与えられる各種信号及び電位は、FPC4018を通じて供給されている。
【0171】
接続端子電極4015は、画素電極4030と同じ導電膜で形成され、端子電極4016
は、トランジスタ4011のソース電極層及びドレイン電極層と同じ導電膜で形成されて
いる。
【0172】
接続端子電極4015は、異方性導電膜4019を介してFPC4018が有する端子と
電気的に接続されている。
【0173】
また、
図5においては、信号線駆動回路4003を別途形成し、第1の基板4001に実
装している例を示しているがこの構成に限定されない。走査線駆動回路を別途形成して実
装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して
実装しても良い。
【0174】
図6は、本明細書に開示する作製方法により作製されるトランジスタ基板2600を用い
た表示装置として、液晶表示モジュールを構成する一例を示している。
【0175】
トランジスタ基板2600と対向基板2601がシール材2602により固着され、その
間にトランジスタ等を含む画素部2603、液晶層を含む表示素子2604、着色層26
05が設けられ表示領域を形成している。
【0176】
着色層2605は、カラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、
青の各色に対応した着色層が各画素に対応して設けられている。トランジスタ基板260
0と対向基板2601の外側には偏光板2606、2607、拡散板2613が配設され
ている。
【0177】
光源は冷陰極管2610と反射板2611により構成される。回路基板2612には、コ
ントロール回路や電源回路などの外部回路が組みこまれており、フレキシブル配線基板2
609を介してトランジスタ基板2600の配線回路部2608と接続される。また偏光
板と液晶層との間に位相差板を設けてもよい。
【0178】
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n-Plane-Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi-domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)モード、ASM(Axially Symmetric aligned
Micro-cell)モード、OCB(Optical Compensated B
irefringence)モード、FLC(Ferroelectric Liqui
d Crystal)モード、AFLC(AntiFerroelectric Liq
uid Crystal)モードなどを用いることができる。
【0179】
以上の工程により、表示装置として信頼性の高い液晶表示パネルを作製することができる
。
【0180】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0181】
(実施の形態6)
本実施の形態では、同一基板上に作製したトランジスタで構成された駆動回路及び画素部
を動作させる例について説明する。
【0182】
本実施の形態では、実施の形態1に従ったトランジスタの作製方法を用いて、同一基板上
に画素部及び駆動回路部を形成する。なお、実施の形態1に示すトランジスタは、nチャ
ネル型トランジスタであり、該駆動回路部は、nチャネル型トランジスタのみで構成する
ことができる一部の回路に限られる。
【0183】
アクティブマトリクス型表示装置のブロック図の一例を
図7(A)に示す。表示装置の基
板5300上には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆動
回路5303、及び信号線駆動回路5304が配置されている。画素部5301には、複
数の信号線が信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査
線駆動回路5302、及び第2の走査線駆動回路5303から延伸して配置されている。
なお走査線と信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に配
置されている。また、表示装置の基板5300は、FPC(Flexible Prin
ted Circuit)等の接続部を介して、タイミング制御回路5305(コントロ
ーラ、制御ICともいう)に接続されている。
【0184】
図7(A)に示す第1の走査線駆動回路5302、第2の走査線駆動回路5303、及び
信号線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのた
め、外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。
また、基板5300と外部の駆動回路との接続部(FPC等)を減らすことができるため
、信頼性や歩留まりの向上を図ることができる。
【0185】
なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対して、第1の
走査線駆動回路用スタート信号(GSP1)、走査線駆動回路用クロック信号(GCLK
1)等を供給する。また、第2の走査線駆動回路5303に対しては、第2の走査線駆動
回路用スタート信号(GSP2)(スタートパルスともいう)、走査線駆動回路用クロッ
ク信号(GCLK2)等を供給する。
【0186】
また、信号線駆動回路5304に対しては、信号線駆動回路用スタート信号(SSP)、
信号線駆動回路用クロック信号(SCLK)、ビデオ信号用データ(DATA)(単にビ
デオ信号ともいう)、ラッチ信号(LAT)等を供給するものとする。なお各クロック信
号は、周期のずれた複数のクロック信号でもよいし、クロック信号を反転させた信号(C
KB)とともに供給されるものであってもよい。なお、第1の走査線駆動回路5302、
または第2の走査線駆動回路5303の一方は省略することが可能である。
【0187】
図7(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第2
の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆動
回路5304を画素部5301とは別の基板に形成する構成について示している。当該構
成により、電界効果移動度が比較的小さいトランジスタを用いても、画素部と同一基板上
に駆動回路の一部を構成することができる。従って、コストの低減や歩留まりの向上など
を図ることができる。
【0188】
次に、nチャネル型トランジスタで構成する信号線駆動回路の構成及び動作の一例につい
て、
図8(A)、
図8(B)を用いて説明する。
【0189】
信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路5602を有する。
スイッチング回路5602は、スイッチング回路5602_1~5602_N(Nは自然
数)で構成される。また、スイッチング回路5602_1~5602_Nは、各々、トラ
ンジスタ5603_1~5603_k(kは自然数)で構成される。ここで、トランジス
タ5603_1~5603_kは、nチャネル型トランジスタである。
【0190】
信号線駆動回路の接続関係について、スイッチング回路5602_1を例として説明する
。トランジスタ5603_1~5603_kの第1端子は、各々、配線5604_1~5
604_kと接続される。トランジスタ5603_1~5603_kの第2端子は、各々
、信号線S1~Skと接続される。トランジスタ5603_1~5603_kのゲートは
、配線5605_1と接続される。
【0191】
シフトレジスタ5601は、配線5605_1~5605_Nに順番にHレベル(H信号
、高電源電位レベル、ともいう)の信号を出力し、スイッチング回路5602_1~56
02_Nを順番に選択する機能を有する。
【0192】
スイッチング回路5602_1は、配線5604_1~5604_kと信号線S1~Sk
との導通状態(第1端子と第2端子との間の導通)に制御する機能、即ち配線5604_
1~5604_kの電位を信号線S1~Skに供給するか否かを制御する機能を有する。
このように、スイッチング回路5602_1は、セレクタとしての機能を有する。またト
ランジスタ5603_1~5603_kは、各々、配線5604_1~5604_kと信
号線S1~Skとの導通状態を制御する機能、即ち配線5604_1~5604_kの電
位を信号線S1~Skに供給する機能を有する。このように、トランジスタ5603_1
~5603_kは、各々、スイッチとしての機能を有する。
【0193】
なお、配線5604_1~5604_kには、各々、ビデオ信号用データ(DATA)が
入力される。ビデオ信号用データ(DATA)は、画像情報または画像信号に応じたアナ
ログ信号である場合が多い。
【0194】
次に、
図8(A)の信号線駆動回路の動作について、
図8(B)のタイミングチャートを
参照して説明する。
図8(B)には、信号Sout_1~Sout_N、及び信号Vda
ta_1~Vdata_kの一例を示す。信号Sout_1~Sout_Nは、各々、シ
フトレジスタ5601の出力信号の一例であり、信号Vdata_1~Vdata_kは
、各々、配線5604_1~5604_kに入力される信号の一例である。なお、信号線
駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲート選択
期間は、一例として、期間T1~期間TNに分割される。期間T1~TNは、各々、選択
された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間である。
【0195】
なお、本実施の形態の図面において、信号波形のなまり等は、明瞭化のために誇張して表
記している場合がある。従って、必ずしもそのスケールには限定されない。
【0196】
期間T1~期間TNにおいて、シフトレジスタ5601は、Hレベルの信号を配線560
5_1~5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ5
601は、ハイレベルの信号を配線5605_1に出力する。このとき、トランジスタ5
603_1~5603_kはオンになり、配線5604_1~5604_kと、信号線S
1~Skとが導通状態になる。そして、配線5604_1~5604_kには、Data
(S1)~Data(Sk)が入力される。Data(S1)~Data(Sk)は、各
々、トランジスタ5603_1~5603_kを介して、選択される行に属する画素のう
ち、1列目~k列目の画素に書き込まれる。こうして、期間T1~TNにおいて、選択さ
れた行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)が書き込まれる
。
【0197】
以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれること
によって、ビデオ信号用データ(DATA)の数、または配線の数を減らすことができる
。よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ
画素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書
き込み不足を防止することができる。
【0198】
なお、シフトレジスタ5601及びスイッチング回路5602としては、実施の形態1、
または2に示すトランジスタで構成される回路を用いることが可能である。この場合、シ
フトレジスタ5601が有する全てのトランジスタを単極性のトランジスタで構成するこ
とができる。
【0199】
次に、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタを有
している。また場合によってはレベルシフタやバッファ等を有していても良い。走査線駆
動回路において、シフトレジスタにクロック信号(CLK)及びスタートパルス信号(S
P)が入力されることによって、選択信号が生成される。生成された選択信号はバッファ
において緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素の
トランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタ
を一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なもの
が用いられる。
【0200】
走査線駆動回路及び/または信号線駆動回路の一部に用いるシフトレジスタの一形態につ
いて
図9及び
図10を用いて説明する。
【0201】
シフトレジスタは、第1のパルス出力回路10_1乃至第Nのパルス出力回路10_N(
Nは3以上の自然数)を有している(
図9(A)参照)。シフトレジスタの第1のパルス
出力回路10_1乃至第Nのパルス出力回路10_Nには、第1の配線11より第1のク
ロック信号CK1、第2の配線12より第2のクロック信号CK2、第3の配線13より
第3のクロック信号CK3、第4の配線14より第4のクロック信号CK4が供給される
。
【0202】
また、第1のパルス出力回路10_1では、第5の配線15からのスタートパルスSP1
(第1のスタートパルス)が入力される。また2段目以降の第nのパルス出力回路10_
n(nは、2以上N以下の自然数)では、一段前段のパルス出力回路からの信号(前段信
号OUT(n-1)という)が入力される。
【0203】
また、第1のパルス出力回路10_1では、2段後段の第3のパルス出力回路10_3か
らの信号が入力される。同様に2段目以降の第nのパルス出力回路10_nでは、2段後
段の第(n+2)のパルス出力回路10_(n+2)からの信号(後段信号OUT(n+
2)という)が入力される。
【0204】
従って、各段のパルス出力回路からは、後段及び/または二つ前段のパルス出力回路に入
力するための第1の出力信号OUT(1)(SR)乃至OUT(N)(SR)、別の回路
等に電気的に入力される第2の出力信号OUT(1)乃至OUT(N)が出力される。な
お、
図9(A)に示すように、シフトレジスタの最終段の2つの段には、後段信号OUT
(n+2)が入力されないため、一例としては、別途第2のスタートパルスSP2、第3
のスタートパルスSP3をそれぞれ入力する構成とすればよい。
【0205】
なお、クロック信号(CK)は、一定の間隔でHレベルとLレベル(L信号、低電源電位
レベル、ともいう)を繰り返す信号である。ここで、第1のクロック信号(CK1)~第
4のクロック信号(CK4)は、順に1/4周期分遅延している(すなわち、互いに90
°位相がずれている)。本実施の形態では、第1のクロック信号(CK1)~第4のクロ
ック信号(CK4)を利用して、パルス出力回路の駆動の制御等を行う。なお、クロック
信号は、入力される駆動回路に応じて、GCK、SCKということもあるが、ここではC
Kとして説明を行う。
【0206】
第1の入力端子21、第2の入力端子22及び第3の入力端子23は、第1の配線11~
第4の配線14のいずれかと電気的に接続されている。例えば、
図9(A)において、第
1のパルス出力回路10_1は、第1の入力端子21が第1の配線11と電気的に接続さ
れ、第2の入力端子22が第2の配線12と電気的に接続され、第3の入力端子23が第
3の配線13と電気的に接続されている。また、第2のパルス出力回路10_2は、第1
の入力端子21が第2の配線12と電気的に接続され、第2の入力端子22が第3の配線
13と電気的に接続され、第3の入力端子23が第4の配線14と電気的に接続されてい
る。
【0207】
第1のパルス出力回路10_1~第Nのパルス出力回路10_Nの各々は、第1の入力端
子21、第2の入力端子22、第3の入力端子23、第4の入力端子24、第5の入力端
子25、第1の出力端子26、第2の出力端子27を有しているとする(
図9(B)参照
)。
【0208】
第1のパルス出力回路10_1において、第1の入力端子21に第1のクロック信号CK
1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3の入力
端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタートパルス
が入力され、第5の入力端子25に後段信号OUT(3)が入力され、第1の出力端子2
6より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27より第2の
出力信号OUT(1)が出力されていることとなる。
【0209】
なお、第1のパルス出力回路10_1~第Nのパルス出力回路10_Nには、3端子のト
ランジスタの他に、4端子のトランジスタ28(
図9(C)参照)を用いることができる
。なお、本明細書において、トランジスタが半導体層を介して二つのゲート電極を有する
場合、半導体層より下方のゲート電極を下方のゲート電極、半導体層に対して上方のゲー
ト電極を上方のゲート電極とも呼ぶ。トランジスタ28は、下方のゲート電極に入力され
る第1の制御信号G1及び上方のゲート電極に入力される第2の制御信号G2によって、
In端子とOut端子間の電気的な制御を行うことのできる素子である。
【0210】
酸化物半導体をトランジスタのチャネル形成領域を含む半導体層に用いた場合、製造工程
により、しきい値電圧がマイナス側、或いはプラス側にシフトすることがある。そのため
、チャネル形成領域を含む半導体層に酸化物半導体を用いたトランジスタでは、しきい値
電圧の制御を行うことのできる構成が好適である。
図9(C)に示すトランジスタ28は
、チャネル形成領域の上下にゲート絶縁層を介してゲート電極が設けられており、上方及
び/または下方のゲート電極の電位を制御することにより、しきい値電圧を所望の値に制
御することができる。
【0211】
次に、パルス出力回路の具体的な回路構成の一例について、
図9(D)を用いて説明する
。
【0212】
図9(D)に示したパルス出力回路は、第1のトランジスタ31~第13のトランジスタ
43を有している。また、上述した第1の入力端子21~第5の入力端子25、及び第1
の出力端子26、第2の出力端子27に加え、第1の高電源電位VDDが供給される電源
線51、第2の高電源電位VCCが供給される電源線52、及び低電源電位VSSが供給
される電源線53を有し、それぞれに接続された第1のトランジスタ31~第13のトラ
ンジスタ43に対して信号、または電源電位を供給する。
【0213】
ここで、
図9(D)の各電源線の電源電位の大小関係は、第1の電源電位VDDは第2の
電源電位VCC以上の電位とし、第2の電源電位VCCは第3の電源電位VSSより大き
い電位とする。なお、第1のクロック信号(CK1)~第4のクロック信号(CK4)は
、一定の間隔でHレベルとLレベルを繰り返す信号であり、例えば、HレベルのときはV
DD、LレベルのときはVSSとする。
【0214】
なお、電源線51の電位VDDを、電源線52の電位VCCより高くすることにより、動
作に影響を与えることなく、トランジスタのゲート電極に印加される電位を低く抑えるこ
とができ、トランジスタのしきい値のシフトを低減し、劣化を抑制することができる。
【0215】
また、
図9(D)に図示するように、第1のトランジスタ31~第13のトランジスタ4
3のうち、第1のトランジスタ31、第6のトランジスタ36乃至第9のトランジスタ3
9には、
図9(C)で示した4端子のトランジスタ28を用いることが好ましい。
【0216】
第1のトランジスタ31、第6のトランジスタ36乃至第9のトランジスタ39の動作は
、ソースまたはドレインとなる電極の一方が接続されたノードの電位をゲート電極の制御
信号によって切り替えることが求められる。また、ゲート電極に入力される制御信号に対
する応答が速い(オン電流の立ち上がりが急峻)ことでよりパルス出力回路の誤動作を低
減することができるトランジスタであることが好ましい。従って、4端子のトランジスタ
28を用いることによりしきい値電圧を制御することができ、誤動作がより低減できるパ
ルス出力回路とすることができる。なお、
図9(D)では第1の制御信号G1及び第2の
制御信号G2が同じ制御信号としたが、異なる制御信号が入力される構成としてもよい。
【0217】
図9(D)において第1のトランジスタ31は、第1端子が電源線51に電気的に接続さ
れ、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極(下
方のゲート電極及び上方のゲート電極)が第4の入力端子24に電気的に接続されている
。
【0218】
第2のトランジスタ32は、第1端子が電源線53に電気的に接続され、第2端子が第9
のトランジスタ39の第1端子に電気的に接続され、ゲート電極が第4のトランジスタ3
4のゲート電極に電気的に接続されている。
【0219】
第3のトランジスタ33は、第1端子が第1の入力端子21に電気的に接続され、第2端
子が第1の出力端子26に電気的に接続されている。
【0220】
第4のトランジスタ34は、第1端子が電源線53に電気的に接続され、第2端子が第1
の出力端子26に電気的に接続されている。
【0221】
第5のトランジスタ35は、第1端子が電源線53に電気的に接続され、第2端子が第2
のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接
続され、ゲート電極が第4の入力端子24に電気的に接続されている。
【0222】
第6のトランジスタ36は、第1端子が電源線52に電気的に接続され、第2端子が第2
のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接
続され、ゲート電極(下方のゲート電極及び上方のゲート電極)が第5の入力端子25に
電気的に接続されている。
【0223】
第7のトランジスタ37は、第1端子が電源線52に電気的に接続され、第2端子が第8
のトランジスタ38の第2端子に電気的に接続され、ゲート電極(下方のゲート電極及び
上方のゲート電極)が第3の入力端子23に電気的に接続されている。
【0224】
第8のトランジスタ38は、第1端子が第2のトランジスタ32のゲート電極及び第4の
トランジスタ34のゲート電極に電気的に接続され、ゲート電極(下方のゲート電極及び
上方のゲート電極)が第2の入力端子22に電気的に接続されている。
【0225】
第9のトランジスタ39は、第1端子が第1のトランジスタ31の第2端子及び第2のト
ランジスタ32の第2端子に電気的に接続され、第2端子が第3のトランジスタ33のゲ
ート電極及び第10のトランジスタ40のゲート電極に電気的に接続され、ゲート電極(
下方のゲート電極及び上方のゲート電極)が電源線52に電気的に接続されている。
【0226】
第10のトランジスタ40は、第1端子が第1の入力端子21に電気的に接続され、第2
端子が第2の出力端子27に電気的に接続され、ゲート電極が第9のトランジスタ39の
第2端子に電気的に接続されている。
【0227】
第11のトランジスタ41は、第1端子が電源線53に電気的に接続され、第2端子が第
2の出力端子27に電気的に接続され、ゲート電極が第2のトランジスタ32のゲート電
極及び第4のトランジスタ34のゲート電極に電気的に接続されている。
【0228】
第12のトランジスタ42は、第1端子が電源線53に電気的に接続され、第2端子が第
2の出力端子27に電気的に接続され、ゲート電極が第7のトランジスタ37のゲート電
極(下方のゲート電極及び上方のゲート電極)に電気的に接続されている。
【0229】
第13のトランジスタ43は、第1端子が電源線53に電気的に接続され、第2端子が第
1の出力端子26に電気的に接続され、ゲート電極が第7のトランジスタ37のゲート電
極(下方のゲート電極及び上方のゲート電極)に電気的に接続されている。
【0230】
図9(D)において、第3のトランジスタ33のゲート電極、第10のトランジスタ40
のゲート電極、及び第9のトランジスタ39の第2端子の接続箇所をノードAとする。ま
た、第2のトランジスタ32のゲート電極、第4のトランジスタ34のゲート電極、第5
のトランジスタ35の第2端子、第6のトランジスタ36の第2端子、第8のトランジス
タ38の第1端子、及び第11のトランジスタ41のゲート電極の接続箇所をノードBと
する(
図10(A)参照)。
【0231】
図10(A)に、
図9(D)で説明したパルス出力回路を第1のパルス出力回路10_1
に適用した場合に、第1の入力端子21乃至第5の入力端子25と第1の出力端子26及
び第2の出力端子27に入力または出力される信号を示す。
【0232】
具体的には、第1の入力端子21に第1のクロック信号CK1が入力され、第2の入力端
子22に第2のクロック信号CK2が入力され、第3の入力端子23に第3のクロック信
号CK3が入力され、第4の入力端子24にスタートパルスが入力され、第5の入力端子
25に後段信号OUT(3)が入力され、第1の出力端子26より第1の出力信号OUT
(1)(SR)が出力され、第2の出力端子27より第2の出力信号OUT(1)が出力
される。
【0233】
なお、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子
を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、ドレ
イン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、ソー
スとドレインとは、トランジスタの構造や動作条件等によって変わるため、いずれがソー
スまたはドレインであるかを限定することが困難である。そこで、ソース及びドレインと
して機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合の一例と
しては、それぞれを第1端子、第2端子と表記する場合がある。
【0234】
なお、
図10(A)において、ノードAを浮遊状態とすることによりブートストラップ動
作を行うための、容量素子を別途設けても良い。またノードBの電位を保持するため、一
方の電極をノードBに電気的に接続した容量素子を別途設けてもよい。
【0235】
ここで、
図10(A)に示したパルス出力回路を複数具備するシフトレジスタのタイミン
グチャートを
図10(B)に示す。なお、シフトレジスタが走査線駆動回路である場合、
図10(B)中の期間61は垂直帰線期間であり、期間62はゲート選択期間に相当する
。
【0236】
なお、
図10(A)に示すように、ゲートに第2の電源電位VCCが印加される第9のト
ランジスタ39を設けておくことにより、ブートストラップ動作の前後において、以下の
ような利点がある。
【0237】
ゲート電極に第2の電源電位VCCが印加される第9のトランジスタ39がない場合、ブ
ートストラップ動作によりノードAの電位が上昇すると、第1のトランジスタ31の第2
端子であるソースの電位が上昇していき、第1の電源電位VDDより大きくなる。そして
、第1のトランジスタ31のソースが第1端子側、即ち電源線51側に切り替わる。その
ため、第1のトランジスタ31においては、ゲートとソースの間、ゲートとドレインの間
ともに、大きなバイアス電圧が印加されるために大きなストレスがかかり、トランジスタ
の劣化の要因となりうる。
【0238】
そこで、ゲート電極に第2の電源電位VCCが印加される第9のトランジスタ39を設け
ておくことにより、ブートストラップ動作によりノードAの電位は上昇するものの、第1
のトランジスタ31の第2端子の電位の上昇を生じないようにすることができる。つまり
、第9のトランジスタ39を設けることにより、第1のトランジスタ31のゲートとソー
スの間に印加される負のバイアス電圧の値を小さくすることができる。よって、本実施の
形態の回路構成とすることにより、第1のトランジスタ31のゲートとソースの間に印加
される負のバイアス電圧も小さくできるため、ストレスによる第1のトランジスタ31の
劣化を抑制することができる。
【0239】
なお、第9のトランジスタ39を設ける箇所については、第1のトランジスタ31の第2
端子と第3のトランジスタ33のゲートとの間に第1端子と第2端子を介して接続される
ように設ける構成であればよい。なお、本実施形態でのパルス出力回路を複数具備するシ
フトレジスタの場合、走査線駆動回路より段数の多い信号線駆動回路では、第9のトラン
ジスタ39を省略してもよく、トランジスタ数を削減できる利点がある。
【0240】
なお、第1のトランジスタ31乃至第13のトランジスタ43の半導体層として、酸化物
半導体を用いることにより、トランジスタのオフ電流を低減し、オン電流及び電界効果移
動度を高めることが出来ると共に、劣化の度合いを低減することが出来るため、回路内の
誤動作を低減することができる。また酸化物半導体を用いたトランジスタは、アモルファ
スシリコンを用いたトランジスタに比べ、ゲート電極に高電位が印加されることによるト
ランジスタの劣化の程度が小さい。そのため、第2の電源電位VCCを供給する電源線に
、第1の電源電位VDDを供給しても同様の動作が得られ、且つ回路間を引き回す電源線
の数を低減することができるため、回路の小型化を図ることが出来る。
【0241】
なお、第7のトランジスタ37のゲート電極(下方のゲート電極及び上方のゲート電極)
に第3の入力端子23によって供給されるクロック信号、第8のトランジスタ38のゲー
ト電極(下方のゲート電極及び上方のゲート電極)に第2の入力端子22によって供給さ
れるクロック信号は、第7のトランジスタ37のゲート電極(下方のゲート電極及び上方
のゲート電極)に第2の入力端子22によって供給されるクロック信号、第8のトランジ
スタ38のゲート電極(下方のゲート電極及び上方のゲート電極)に第3の入力端子23
によって供給されるクロック信号となるように、結線関係を入れ替えても同様の作用を奏
する。
【0242】
なお、
図10(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第8の
トランジスタ38が共にオンの状態から、第7のトランジスタ37がオフ、第8のトラン
ジスタ38がオンの状態、次いで第7のトランジスタ37がオフ、第8のトランジスタ3
8がオフの状態とすることによって、第2の入力端子22(CK2)及び第3の入力端子
23(CK3)の電位が低下することで生じるノードBの電位の低下が、第7のトランジ
スタ37のゲート電極の電位の低下、及び第8のトランジスタ38のゲート電極の電位の
低下に起因して2回生じることとなる。
【0243】
一方、
図10(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第8の
トランジスタ38が共にオンの状態から、第7のトランジスタ37がオン、第8のトラン
ジスタ38がオフの状態、次いで、第7のトランジスタ37がオフ、第8のトランジスタ
38がオフの状態とすることによって、第2の入力端子22(CK2)及び第3の入力端
子23(CK3)の電位が低下することで生じるノードBの電位の低下を、第8のトラン
ジスタ38のゲート電極の電位の低下による一回に低減することができる。
【0244】
そのため、第7のトランジスタ37のゲート電極(下方のゲート電極及び上方のゲート電
極)に第3の入力端子23からクロック信号CK3が供給され、第8のトランジスタ38
のゲート電極(下方のゲート電極及び上方のゲート電極)に第2の入力端子22からクロ
ック信号CK2が供給される結線関係とすることが好適である。なぜなら、ノードBの電
位の変動回数が低減され、ノイズを低減することが出来るからである。
【0245】
このように、第1の出力端子26及び第2の出力端子27の電位をLレベルに保持する期
間に、ノードBに定期的にHレベルの信号が供給される構成とすることにより、パルス出
力回路の誤動作を抑制することができる。
【0246】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0247】
(実施の形態7)
本実施の形態では、表示装置の一形態として、実施の形態1または2で示すトランジスタ
を有し、表示素子として液晶素子を用いた液晶表示装置の例を
図11乃至
図24を用いて
説明する。
【0248】
はじめにVA(Vertical Alignment)型の液晶表示装置について示す
。VA型の液晶表示装置とは、液晶表示パネルの液晶分子の配列を制御する方式の一種で
ある。VA型の液晶表示装置は、電圧が印加されていないときにパネル面に対して液晶分
子が垂直方向を向く方式である。本実施の形態では、特に画素(ピクセル)をいくつかの
領域(例えば2~4個のサブピクセル)に分け、それぞれ別の方向に分子を倒すよう工夫
されている。これをマルチドメイン化あるいはマルチドメイン設計という。以下の説明で
は、マルチドメイン設計が考慮された液晶表示装置について説明する。
【0249】
図12及び
図13は、それぞれ画素電極及び対向電極を示している。なお、
図12は画素
電極が形成される基板側の平面図であり、図中に示す切断線E-Fに対応する断面構造を
図11に表している。また、
図13は対向電極が形成される基板側の平面図である。以下
の説明ではこれらの図を参照して説明する。
【0250】
図11は、トランジスタ628とそれに接続する画素電極層624、及び保持容量部63
0が形成された基板600と、対向電極層640等が形成される対向基板601とが重ね
合わせられ、液晶が注入された状態を示している。
【0251】
対向基板601には、着色膜636、対向電極層640が形成され、対向電極層640上
に突起644が形成されている。画素電極層624上には配向膜648が形成され、同様
に対向電極層640及び突起644上にも配向膜646が形成されている。基板600と
対向基板601の間に液晶層650が形成されている。
【0252】
基板600上には、トランジスタ628とそれに接続する画素電極層624、及び保持容
量部630が形成される。画素電極層624は、絶縁膜620、絶縁膜621、及び絶縁
膜622に形成されたコンタクトホール623を通じて配線618と接続する。トランジ
スタ628には実施の形態1及び2で示すトランジスタを適宜用いることができる。また
、保持容量部630は、トランジスタ628のゲート配線602と同時に形成した第1の
容量配線604と、ゲート絶縁層606と、配線616、618と同時に形成した第2の
容量配線617で構成される。
【0253】
画素電極層624と液晶層650と対向電極層640が重なり合うことで、液晶素子が形
成されている。
【0254】
図12に基板600上の平面構造を示す。画素電極層624は、実施の形態1で示した材
料を用いて形成する。画素電極層624にはスリット625を設ける。スリット625は
液晶の配向を制御するためのものである。
【0255】
図12に示すトランジスタ629とそれに接続する画素電極層626及び保持容量部63
1は、それぞれトランジスタ628、画素電極層624及び保持容量部630と同様に形
成することができる。トランジスタ628とトランジスタ629は共に配線616と接続
している。この液晶表示パネルの画素(ピクセル)は、画素電極層624と画素電極層6
26により構成されている。すなわち、画素電極層624と画素電極層626はサブピク
セルである。本形態では2つのサブピクセルで画素が構成されているが、更に複数のサブ
ピクセルで構成することもできる。
【0256】
図13に対向基板側の平面構造を示す。対向電極層640は、画素電極層624と同様の
材料を用いて形成することが好ましい。対向電極層640上には液晶の配向を制御する突
起644が形成されている。なお、
図13に基板600上に形成される画素電極層624
及び画素電極層626を破線で示し、対向電極層640と、画素電極層624及び画素電
極層626が重なり合って配置されている様子を示している。
【0257】
この画素構造の等価回路を
図14に示す。トランジスタ628とトランジスタ629は、
共にゲート配線602、配線616と接続している。この場合、容量配線604と容量配
線605の電位を異ならせることで、液晶素子651と液晶素子652の動作を異ならせ
ることができる。すなわち、容量配線604と容量配線605の電位を個別に制御するこ
とにより液晶の配向を精密に制御して視野角を広げている。
【0258】
スリット625を設けた画素電極層624に電圧を印加すると、スリット625の近傍に
は電界の歪み(斜め電界)が発生する。このスリット625と、対向基板601側の突起
644とを交互に咬み合うように配置することで、斜め電界を効果的に発生させて液晶の
配向を制御することで、液晶が配向する方向を場所によって異ならせている。すなわち、
マルチドメイン化して液晶表示パネルの視野角を広げている。
【0259】
次に、上記とは異なるVA型の液晶表示装置について、
図15乃至
図18を用いて説明す
る。
【0260】
図15と
図16は、VA型液晶表示パネルの画素構造を示している。
図16は基板600
の平面図であり、図中に示す切断線Y-Zに対応する断面構造を
図15に表している。
【0261】
この画素構造は、一つの画素に複数の画素電極が有り、それぞれの画素電極にトランジス
タが接続されている。各トランジスタは、異なるゲート信号で駆動されるように構成され
ている。すなわち、マルチドメイン設計された画素において、個々の画素電極に印加する
信号を独立して制御する構成を有している。
【0262】
画素電極層624は、コンタクトホール623で配線618を介してトランジスタ628
と接続されている。また、画素電極層626は、コンタクトホール627で配線619を
介してトランジスタ629と接続されている。
【0263】
トランジスタ628とトランジスタ629は、実施の形態1または2で示すトランジスタ
を適宜用いることができる。トランジスタ628のゲート配線602と、トランジスタ6
29のゲート配線603には、異なるゲート信号を与えることができるように分離されて
いる。一方、データ線として機能する配線616は、トランジスタ628とトランジスタ
629で共通に用いられている。また、配線618、619の下部には、ゲート絶縁層6
06を介して容量配線690が設けられている。
【0264】
画素電極層624と画素電極層626の形状は異なっており、スリット625によって分
離されている。V字型に広がる画素電極層624の外側を囲むように画素電極層626が
形成されている。画素電極層624と画素電極層626に印加する電圧をトランジスタ6
28及びトランジスタ629により異ならせることで、液晶の配向を制御している。この
画素構造の等価回路を
図18に示す。トランジスタ628はゲート配線602と接続し、
トランジスタ629はゲート配線603と接続している。また、トランジスタ628とト
ランジスタ629は、共に配線616と接続している。ゲート配線602とゲート配線6
03に異なるゲート信号を与えることで、液晶素子651と液晶素子652の動作を異な
らせることができる。すなわち、トランジスタ628とトランジスタ629の動作を個別
に制御することにより、液晶素子651と液晶素子652の液晶の配向を精密に制御して
視野角を広げることができる。
【0265】
対向基板601には、着色膜636、対向電極層640が形成されている。また、着色膜
636と対向電極層640の間には平坦化膜637が形成され、液晶の配向乱れを防いで
いる。
図17に対向基板側の平面構造を示す。対向電極層640は異なる画素間で共通化
されている電極であるが、スリット641が形成されている。このスリット641と、画
素電極層624及び画素電極層626側のスリット625とを交互に咬み合うように配置
することで、斜め電界を効果的に発生させて液晶の配向を制御することができる。これに
より、液晶が配向する方向を場所によって異ならせることができ、視野角を広げている。
なお、
図17には、基板600上に形成される画素電極層624及び画素電極層626を
破線で示し、対向電極層640と、画素電極層624及び画素電極層626が重なり合っ
て配置されている様子を示している。
【0266】
画素電極層624及び画素電極層626上には配向膜648が形成され、同様に対向電極
層640上にも配向膜646が形成されている。基板600と対向基板601の間に液晶
層650が形成されている。また、画素電極層624と液晶層650と対向電極層640
が重なり合うことで、第1の液晶素子651が形成されている。また、画素電極層626
と液晶層650と対向電極層640が重なり合うことで、第2の液晶素子652が形成さ
れている。
図15乃至
図18で説明する表示パネルの画素構造は、一画素に第1の液晶素
子と第2の液晶素子が設けられたマルチドメイン構造となっている。
【0267】
次に、横電界方式の液晶表示装置について示す。横電界方式は、セル内の液晶分子に対し
て水平方向に電界を加えることで液晶を駆動して階調表現する方式である。この方式によ
れば、視野角を約180度にまで広げることができる。以下の説明では、横電界方式を採
用する液晶表示装置について説明する。
【0268】
図19は、電極層607、トランジスタ628、及び画素電極層624が形成された基板
600と、対向基板601を重ね合わせ、液晶を注入した状態を示している。対向基板6
01には、着色膜636、平坦化膜637などが形成されている。なお、画素電極は、基
板600側に有るので、対向基板601側に対向電極は設けられていない。また、基板6
00と対向基板601の間に、配向膜646及び配向膜648を介して液晶層650が形
成されている。
【0269】
基板600上には、電極層607及び電極層607に接続する容量配線604、並びにト
ランジスタ628が形成される。容量配線604はトランジスタ628のゲート配線60
2と同時に形成することができる。トランジスタ628としては、実施の形態1乃至5で
示したトランジスタを適用することができる。電極層607は、実施の形態1または2で
示す画素電極層と同様の材料を用いることができる。また、電極層607は略画素の形状
に区画化した形状で形成する。なお、電極層607及び容量配線604上にはゲート絶縁
層606が形成される。
【0270】
トランジスタ628の配線616、配線618がゲート絶縁層606上に形成される。配
線616は、液晶表示パネルにおいてビデオ信号をのせるデータ線であり、一方向に伸び
る配線であると同時に、トランジスタ628のソース領域又はドレイン領域と接続し、ソ
ース及びドレインの一方の電極となる。配線618は、ソース及びドレインの他方の電極
となり、画素電極層624と接続する配線である。
【0271】
配線616、配線618上に絶縁膜620及び絶縁膜621が形成される。また、絶縁膜
621上には、絶縁膜620、621に形成されるコンタクトホール623を介して、配
線618に接続する画素電極層624が形成される。画素電極層624は、実施の形態3
で示した画素電極層457と同様の材料を用いて形成することができる。
【0272】
このようにして、基板600上にトランジスタ628とそれに接続する画素電極層624
が形成される。なお、保持容量は電極層607と画素電極層624の間で形成している。
【0273】
図20は、画素電極の構成を示す平面図である。
図20に示す切断線O-Pに対応する断
面構造を
図19に表している。画素電極層624にはスリット625が設けられる。スリ
ット625は、液晶の配向を制御するためのものである。
【0274】
この場合、電界は、電極層607と画素電極層624の間で発生する。電極層607と画
素電極層624の間にはゲート絶縁層606が形成されているが、ゲート絶縁層606の
厚さは50~200nmであり、2~10μmである液晶層の厚さと比較して十分薄いの
で、実質的に基板600と平行な方向(水平方向)に電界が発生する。この電界により液
晶の配向が制御され、基板と略平行な方向の電界を利用して液晶分子を水平に回転させる
。この場合、液晶分子はどの状態でも水平であるため、見る角度によるコントラストの変
化は無く、視野角が広がることとなる。また、電極層607と画素電極層624は共に透
光性の電極であるので、開口率を向上させることができる。
【0275】
次に、横電界方式の液晶表示装置の他の一例について示す。
【0276】
図21と
図22は、IPS型の液晶表示装置の画素構造を示している。
図22は平面図で
あり、図中に示す切断線V-Wに対応する断面構造を
図21に表している。
【0277】
図21は、トランジスタ628とそれに接続する画素電極層624が形成された基板60
0と、対向基板601を重ね合わせ、液晶を注入した状態を示している。対向基板601
には、着色膜636、平坦化膜637などが形成されている。なお、対向基板601側に
対向電極は設けられていない。また、基板600と対向基板601の間に、配向膜646
及び配向膜648を介して液晶層650が形成されている。
【0278】
基板600上には、共通電位線609、及びトランジスタ628が形成される。共通電位
線609は、トランジスタ628のゲート配線602と同時に形成することができる。な
お、トランジスタ628には、実施の形態1または2で示したトランジスタを用いること
ができる。
【0279】
トランジスタ628の配線616、配線618は、ゲート絶縁層606上に形成される。
配線616は、液晶表示パネルにおいてビデオ信号を供給するためのデータ線であり、ト
ランジスタ628のソース領域又はドレイン領域と接続し、ソース及びドレインの一方の
電極としても作用する。配線618は、画素電極層624と接続する配線であり、トラン
ジスタ628のソース及びドレインの他方の電極としても作用する。
【0280】
配線616、配線618上には、絶縁膜620及び絶縁膜621が形成される。また、絶
縁膜620、621上には、コンタクトホール623を介して配線618に接続する画素
電極層624が形成される。画素電極層624は、実施の形態3で示した画素電極層45
7と同様の材料を用いて形成することができる。なお、
図22に示すように、画素電極層
624は、共通電位線609と同時に形成した櫛形の電極との間に横電界が発生するよう
に形成される。また、画素電極層624の櫛歯の部分は、共通電位線609と同時に形成
した櫛形の電極と交互に咬み合うように形成される。
【0281】
画素電極層624と共通電位線609との間に電界を生じさせると、この電界により液晶
の配向が制御される。従って、基板と略平行な方向の電界を利用して液晶分子を水平に回
転させることができる。この場合、液晶分子はどの状態でも水平であるため、見る角度に
よるコントラストの変化は無く、視野角が広がることとなる。
【0282】
このようにして、基板600上にトランジスタ628とそれに接続する画素電極層624
が形成される。保持容量は、共通電位線609、ゲート絶縁層606、及び容量電極61
5で形成している。なお、容量電極615と画素電極層624はコンタクトホール633
を介して接続されている。
【0283】
次に、TN型の液晶表示装置の形態について示す。
【0284】
図23と
図24は、TN型の液晶表示装置の画素構造を示している。
図24は平面図であ
り、図中に示す切断線K-Lに対応する断面構造を
図23に表している。
【0285】
画素電極層624は、コンタクトホール623で配線618を介してトランジスタ628
と接続している。データ線として機能する配線616は、トランジスタ628と接続して
いる。トランジスタ628には、実施の形態1または2に示すトランジスタのいずれかを
用いることができる。
【0286】
画素電極層624は、実施の形態3で示した画素電極層457と同様の材料を用いて形成
することができる
【0287】
対向基板601には、着色膜636、対向電極層640が形成されている。また、着色膜
636と対向電極層640の間には平坦化膜637が形成され、液晶の配向乱れを防いで
いる。液晶層650は、画素電極層624と対向電極層640の間に配向膜648及び配
向膜646を介して形成されている。液晶素子は、画素電極層624、液晶層650及び
対向電極層640が重なり合うことで形成されている。
【0288】
また、着色膜636は、基板600側に形成されていても良い。また、基板600のトラ
ンジスタが形成されている面とは逆の面、及び対向基板601の対向電極層640が形成
されている面とは逆の面に偏光板を貼り合わせておく。
【0289】
以上の工程により、開口率が高い液晶表示装置を作製することができる。
【0290】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0291】
(実施の形態8)
本明細書に開示する表示装置は、さまざまな電子機器(遊技機も含む)に適用することが
できる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受
信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ
、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲ
ーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる
。
【0292】
図25(A)は、携帯電話機の一例を示している。携帯電話機1100は、筐体1101
に組み込まれた表示部1102の他、操作ボタン1103、外部接続ポート1104、ス
ピーカー1105、マイク1106などを備えている。
【0293】
図25(A)に示す携帯電話機1100は、表示部1102を指などで触れることで、情
報を入力ことができる。また、通話やメールの送受信などの操作は、表示部1102を指
などで触れることにより行うことができる。
【0294】
表示部1102の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
【0295】
例えば、通話や、メールを作成する場合は、表示部1102を文字の入力を主とする文字
入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部11
02に認識性良くキーボードまたは番号ボタンを表示させることが好ましい。
【0296】
また、携帯電話機1100内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機1100の向き(縦か横か)を判断して、表
示部1102の画面表示を自動的に切り替えるようにすることができる。
【0297】
また、画面モードの切り替えは、表示部1102を触れること、または筐体1101の操
作ボタン1103の操作により行われる。また、表示部1102に表示される画像の種類
によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画
のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
【0298】
また、入力モードにおいて、表示部1102の光センサで検出される信号を検知し、表示
部1102のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
【0299】
表示部1102は、イメージセンサとして機能させることもできる。例えば、表示部11
02で、掌紋や指紋等を撮像し、本人認証を行うことができる。また、近赤外光を発光す
る光源を用いれば、指静脈、掌静脈などを撮像することもできる。ここで、表示部110
2には、実施の形態1または2に示すトランジスタ460が複数配置されている。トラン
ジスタ460は、透光性を有しているため、トランジスタ460の下部に光センサを配置
することができる。また、近赤外光を発光する光源を用いる場合においてもトランジスタ
460によって遮光されないため、被写体に対して十分な光量の近赤外光を照射すること
ができる。
【0300】
図25(B)も携帯電話機の一例である。
図25(B)を一例とした携帯型情報端末は、
複数の機能を備えることができる。例えば電話機能に加えて、コンピュータを内蔵し、様
々なデータ処理機能を備えることもできる。
【0301】
図25(B)に示す携帯型情報端末は、筐体1800及び筐体1801の二つの筐体で構
成されている。筐体1800には、表示パネル1802、スピーカー1803、マイクロ
フォン1804、ポインティングデバイス1806、カメラ1807、外部接続端子18
08などを備え、筐体1801には、キーボード1810、外部メモリスロット1811
などを備えている。また、アンテナは筐体1801内部に内蔵されている。
【0302】
また、表示パネル1802はタッチパネルを備えており、
図25(B)には映像表示され
ている複数の操作キー1805を点線で示している。
【0303】
また、上記構成に加えて、非接触ICチップ、小型記録装置などを内蔵していてもよい。
【0304】
表示装置は、表示パネル1802として用いられ、使用形態に応じて表示の方向が適宜変
化する。また、表示パネル1802と同一面上にカメラ1807を備えているため、テレ
ビ電話が可能である。スピーカー1803及びマイクロフォン1804は音声通話に限ら
ず、録音、再生などにも使用できる。さらに、筐体1800と筐体1801は、スライド
し、
図25(B)のように展開している状態から重なり合った状態とすることができ、携
帯に適した小型化が可能である。
【0305】
外部接続端子1808は、電源入力や情報通信ための入出力端子であり、充電及びパーソ
ナルコンピュータなどとのデータ通信が可能である。また、外部メモリスロット1811
に記録媒体を挿入し、より大量のデータ保存及び移動に対応できる。
【0306】
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであっても
よい。
【0307】
図26(A)は、テレビジョン装置の一例を示している。テレビジョン装置9600は、
筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示
することが可能である。また、ここでは、スタンド9605により筐体9601を支持し
た構成を示している。
【0308】
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、リモコン操
作機9610により行うことができる。リモコン操作機9610が備える操作キー960
9により、チャンネルの切り替えや音量の操作を行うことができ、表示部9603に表示
される映像を操作することができる。また、リモコン操作機9610に、当該リモコン操
作機9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
【0309】
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0310】
図26(B)は、デジタルフォトフレームの一例を示している。デジタルフォトフレーム
9700には、筐体9701に表示部9703が組み込まれている。表示部9703は、
各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像データ
を表示させることで、通常の写真立てと同様に機能させることができる。
【0311】
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子等)、
外部メモリスロットなどを備える構成とする。これらの構成は、表示部と同一面に組み込
まれていてもよいが、側面や裏面に備えるとデザイン性が向上するため好ましい。例えば
、デジタルフォトフレームの外部メモリスロットに、デジタルカメラで撮影した画像デー
タを記憶したメモリを挿入して画像データを取り込み、取り込んだ画像データを表示部9
703に表示させることができる。
【0312】
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
【0313】
図27は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成されてお
り、連結部9893により、開閉可能に連結されている。筐体9881には表示部988
2が組み込まれ、筐体9891には表示部9883が組み込まれている。
【0314】
また、
図27に示す携帯型遊技機は、スピーカー9884、外部メモリスロット9886
、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ98
88(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化
学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動
、におい、または赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備
えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本明細
書に開示する表示装置を備えた構成であればよく、その他付属設備が適宜設けられた構成
とすることができる。
図27に示す携帯型遊技機は、記録媒体に記録されているプログラ
ムまたはデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行
って情報を共有する機能を有する。なお、
図27に示す携帯型遊技機が有する機能はこれ
に限定されず、様々な機能を有することができる。
【0315】
以上のように、他の実施の形態で示した表示装置は、上記のような様々な電子機器の表示
部に配置することができる。
【0316】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0317】
(実施の形態9)
本実施の形態では、保持容量の構成について、実施の形態3と異なる例を
図28(A)及
び
図28(B)を用いて説明する。
図28(A)、(B)は、画素部のトランジスタ46
0と保持容量の断面図である。なお、
図28(A)、(B)では、
図3と保持容量の構成
が異なる点以外は同じであるため、同じ箇所には同じ符号を用い、同じ箇所の詳細な説明
は省略する。
【0318】
図28(A)は、誘電体に酸化物絶縁層426、427、保護絶縁層428及び平坦化絶
縁層456を用い、画素電極層457と容量配線層432とで保持容量を形成する例であ
る。容量配線層432は、画素部のトランジスタ460のソース電極層と同じ透光性を有
する材料、及び同じ工程で形成されるため、トランジスタ460のソース配線層と重なら
ないようにレイアウトされる。
【0319】
図28(A)に示す保持容量は、一対の電極及び誘電体が透光性を有しており、保持容量
全体として透光性を有する。
【0320】
また、
図28(B)は、
図28(A)と異なる保持容量の構成の例である。
【0321】
図28(B)は、誘電体にゲート絶縁層402を用い、容量配線層430、容量電極43
1及び酸化物半導体層405とで保持容量を形成する例である。ここで、容量電極431
に接して形成された酸化物半導体層405は、保持容量の一方の電極として機能する。な
お、酸化物半導体層405は、トランジスタ460のソース電極層またはドレイン電極層
と同じ透光性を有する材料、及び同じ工程で形成する。また、容量配線層430は、トラ
ンジスタ460のゲート電極層と同じ透光性を有する材料、及び同じ工程で形成されるた
め、トランジスタ460のゲート配線層と重ならないようにレイアウトされる。
【0322】
また、図示はしないが、容量電極431は画素電極層457と電気的に接続されている。
【0323】
図28(B)に示す保持容量も、一対の電極及び誘電体が透光性を有しており、保持容量
全体として透光性を有する。
【0324】
図28(A)及び
図28(B)に示す保持容量は、透光性を有しており、表示画像の高精
細化を図るために画素寸法を微細化しても、十分な容量を得ることができ、且つ、高い開
口率を実現することができる。
【0325】
なお、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【符号の説明】
【0326】
11 配線
12 配線
13 配線
14 配線
15 配線
21 入力端子
22 入力端子
23 入力端子
24 入力端子
25 入力端子
26 出力端子
27 出力端子
28 トランジスタ
31 トランジスタ
32 トランジスタ
33 トランジスタ
34 トランジスタ
35 トランジスタ
36 トランジスタ
37 トランジスタ
38 トランジスタ
39 トランジスタ
40 トランジスタ
41 トランジスタ
42 トランジスタ
43 トランジスタ
51 電源線
52 電源線
53 電源線
61 期間
62 期間
400 基板
402 ゲート絶縁層
403 酸化物半導体層
404 酸化物半導体層
405 酸化物半導体層
411 端子
412 接続電極層
414 端子
415 導電層
416 電極層
417 導電層
418 導電層
422 ソース配線層
423 チャネル形成領域
426 酸化物絶縁層
427 酸化物絶縁層
428 保護絶縁層
429 接続電極層
430 容量配線層
431 容量電極
432 容量配線層
440 トランジスタ
442 接続電極層
443 チャネル形成領域
447 酸化物導電層
448 酸化物導電層
449 接続電極層
450 トランジスタ
452 接続電極層
453 酸化物半導体層
454 酸化物半導体層
456 平坦化絶縁層
457 画素電極層
460 トランジスタ
421a ゲート電極層
421b ゲート電極層
421c ゲート配線層
424a 高抵抗ソース領域
424b 高抵抗ドレイン領域
424c 第1領域
424d 第2領域
425a ソース電極層
425b ドレイン電極層
444a 高抵抗ソース領域
444b 高抵抗ドレイン領域
444c 第1領域
444d 第2領域
445a ソース電極層
445b ドレイン電極層
446a 酸化物導電層
446b 酸化物導電層
451a ゲート電極層
451b ゲート電極層
455a ソース電極層
455b ドレイン電極層
600 基板
601 対向基板
602 ゲート配線
603 ゲート配線
604 容量配線
605 容量配線
606 ゲート絶縁層
607 電極層
609 共通電位線
615 容量電極
616 配線
617 容量配線
618 配線
619 配線
620 絶縁膜
621 絶縁膜
622 絶縁膜
623 コンタクトホール
624 画素電極層
625 スリット
626 画素電極層
627 コンタクトホール
628 トランジスタ
629 トランジスタ
630 保持容量部
631 保持容量部
633 コンタクトホール
634 着色膜
636 着色膜
637 平坦化膜
638 着色膜
640 対向電極層
641 スリット
644 突起
646 配向膜
648 配向膜
650 液晶層
651 液晶素子
652 液晶素子
690 容量配線
1100 携帯電話機
1101 筐体
1102 表示部
1103 操作ボタン
1104 外部接続ポート
1105 スピーカー
1106 マイク
1800 筐体
1801 筐体
1802 表示パネル
1803 スピーカー
1804 マイクロフォン
1805 操作キー
1806 ポインティングデバイス
1807 カメラ
1808 外部接続端子
1810 キーボード
1811 外部メモリスロット
2600 トランジスタ基板
2601 対向基板
2602 シール材
2603 画素部
2604 表示素子
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 トランジスタ
4011 トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 保護絶縁層
4021 絶縁層
4030 画素電極
4031 対向電極
4032 絶縁層
4040 導電層
4041 絶縁層
5300 基板
5301 画素部
5302 走査線駆動回路
5303 走査線駆動回路
5304 信号線駆動回路
5305 タイミング制御回路
5601 シフトレジスタ
5602 スイッチング回路
5603 トランジスタ
5604 配線
5605 配線
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカー
9885 操作キー
9886 外部メモリスロット
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部