IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ セイコーエプソン株式会社の特許一覧

特許7596676光学系、プロジェクター、および撮像装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-02
(45)【発行日】2024-12-10
(54)【発明の名称】光学系、プロジェクター、および撮像装置
(51)【国際特許分類】
   G02B 17/08 20060101AFI20241203BHJP
   G02B 13/16 20060101ALI20241203BHJP
   G02B 13/18 20060101ALI20241203BHJP
   G03B 21/14 20060101ALI20241203BHJP
   G03B 21/00 20060101ALI20241203BHJP
【FI】
G02B17/08
G02B13/16
G02B13/18
G03B21/14 Z
G03B21/00 E
【請求項の数】 12
(21)【出願番号】P 2020145437
(22)【出願日】2020-08-31
(65)【公開番号】P2022040639
(43)【公開日】2022-03-11
【審査請求日】2023-04-24
(73)【特許権者】
【識別番号】000002369
【氏名又は名称】セイコーエプソン株式会社
(74)【代理人】
【識別番号】100179475
【弁理士】
【氏名又は名称】仲井 智至
(74)【代理人】
【識別番号】100216253
【弁理士】
【氏名又は名称】松岡 宏紀
(74)【代理人】
【識別番号】100225901
【弁理士】
【氏名又は名称】今村 真之
(72)【発明者】
【氏名】柳澤 博隆
【審査官】岡田 弘
(56)【参考文献】
【文献】特開2020-024377(JP,A)
【文献】特開2020-020860(JP,A)
【文献】特開2019-133061(JP,A)
【文献】国際公開第2016/162928(WO,A1)
【文献】特開2014-235414(JP,A)
【文献】特開2007-316674(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 9/00-17/08
G02B 21/02-21/04
G02B 25/00-25/04
(57)【特許請求の範囲】
【請求項1】
縮小側共役面と拡大側共役面との間に中間像を形成する光学系において、
縮小側共役面から順に、
第1光軸を有する第1光学系と、
光反射面を有する偏向部材と、
第2光学系と、からなり、
前記第2光学系は、1枚のレンズからなり、
前記1枚のレンズは、縮小側から拡大側に向かって順に、第1透過面、反射面、および
第2透過面を有するレンズから構成され
前記反射面および前記第2透過面は、自由曲面形状であり
記反射面および前記第2透過面は、アナモルフィック面であり、
前記第1光軸を通る光線と、前記第1光軸を通る光線が前記偏向部材により偏向された
後の光線と、によって形成された平面に対して、前記反射面は対称な形状であり、
前記拡大側共役面は、前記縮小側共役面に対して、前記第1光軸方向に平行な方向より
も前記第1光軸に垂直な方向の像面の拡大率が大きいことを特徴とする光学系。
【請求項2】
前記中間像は、前記反射面よりも縮小側に位置することを特徴とする請求項1に記載の
光学系。
【請求項3】
前記中間像は、前記反射面と前記第1透過面との間に位置することを特徴とする請求項
2に記載の光学系。
【請求項4】
縮小側共役面と拡大側共役面との間に中間像を形成する光学系において、
縮小側共役面から順に、
第1光軸を有する第1光学系と、
光反射面を有する偏向部材と、
第2光学系と、からなり、
前記第2光学系は、1枚のレンズからなり、
前記1枚のレンズは、縮小側から拡大側に向かって順に、第1透過面、反射面、および
第2透過面から構成され
前記反射面および前記偏向部材の光反射面は、自由曲面形状であり
記反射面および前記偏向部材の光反射面は、アナモルフィック面であり、
前記第1光軸を通る光線と、前記第1光軸を通る光線が前記偏向部材により偏向された
後の光線と、によって形成された平面に対して、前記反射面は対称な形状であり、
前記拡大側共役面は、前記縮小側共役面に対して、前記第1光軸方向に平行な方向より
も前記第1光軸に垂直な方向の像面の拡大率が大きいことを特徴とする光学系。
【請求項5】
前記第2透過面は、自由曲面形状を備えることを特徴とする請求項4に記載の光学系。
【請求項6】
前記中間像は、前記偏向部材の光反射面と、前記反射面との間に形成されることを特徴
とする請求項4または5に記載の光学系。
【請求項7】
前記第1光学系は、前記偏向部材の前記縮小側に配置された複数の光学素子を備え、
前記光反射面は、前記第1光学系の前記第1光軸の一方側に位置し、
前記第1透過面は、前記第1光軸の他方側に位置することを特徴とする請求項4から6
のうちのいずれか一項に記載の光学系。
【請求項8】
前記第1透過面は、自由曲面形状を備えることを特徴とする請求項1からのうちのい
ずれか一項に記載の光学系。
【請求項9】
前記レンズは、前記縮小側を向く第1面と、前記第1面とは反対側を向く第2面とを備
えるとともに、前記第2面に反射コーティング層を備え、
前記第2面は、凸形状を備え、
前記反射面は、前記反射コーティング層であり、前記第2面の表面形状が転写された凹
形状を備えることを特徴とする請求項1からのうちのいずれか一項に記載の光学系。
【請求項10】
前記第1面は、凸形状を備えることを特徴とする請求項に記載の光学系。
【請求項11】
請求項1から1のうちのいずれか一項に記載の光学系と、
前記光学系の前記縮小側共役面に投写画像を形成する画像形成部と、
を有することを特徴とするプロジェクター。
【請求項12】
請求項1から1のうちのいずれか一項に記載の光学系と、
前記光学系の前記縮小側共役面に配置された撮像素子と、
を有することを特徴とする撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学系、プロジェクター、および撮像装置に関する。
【背景技術】
【0002】
画像形成素子が形成した投写画像を光学系によって拡大して、スクリーンに拡大像を投写するプロジェクターは特許文献1に記載されている。同文献の光学系は、複数枚のレンズを備える第1光学系と、第1光学系の拡大側に配置された第2光学系と、を備える。投写画像は、光学系の縮小側結像面に形成され、拡大像は、光学系の拡大側結像面に形成される。第1光学系と第2光学系との間には投写画像および拡大像と共役な中間像が形成される。第2光学系は、1枚の凹面ミラーからなる。凹面ミラーの反射面は、自由曲面形状を備える。同文献では、拡大像のアスペクト比と、投写画像のアスペクト比とが、相違する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2014-130365号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1の光学系には、投写画像の倍率を幅方向で小さくすることにより、投写画像に対する拡大像のアスペクト比を変換している。特許文献1には、投写画像の倍率を幅方向で大きくして投写画像に対する拡大像のアスペクト比を変換する光学系は、記載されていない。
【課題を解決するための手段】
【0005】
上記の課題を解決するために、本発明は、縮小側共役面と拡大側共役面との間に中間像を形成する光学系において、第1光学系と、前記第1光学系の拡大側に配置された第2光学系と、を有し、前記第2光学系は、縮小側から拡大側に向かって順に、第1透過面、反射面、および第2透過面を有するレンズを備え、前記反射面および前記第2透過面は、自由曲面形状を備えることを特徴とする。
【0006】
また、上記の課題を解決するために、本発明の別の形態は、縮小側共役面と拡大側共役面との間に中間像を形成する光学系において、第1光学系と、前記第1光学系の拡大側に配置された第2光学系と、を有し、前記第1光学系は、最も拡大側に、光反射面を有する偏向部材を備え、前記第2光学系は、縮小側から拡大側に向かって順に、第1透過面、反射面、および第2透過面を有するレンズを備え、前記反射面および前記光反射面は、自由曲面形状を有することを特徴とする。
【0007】
次に、本発明のプロジェクターは、上記の光学系と、前記光学系の前記縮小側結像共役面に投写画像を形成する画像形成部と、を有することを特徴とする。
【0008】
また、本発明の撮像装置は、上記の光学系と、前記光学系の前記縮小側共役面に配置さ
れた撮像素子と、を有することを特徴とする。
また、上記の課題を解決するために、本発明は、縮小側共役面と拡大側共役面との間に
中間像を形成する光学系において、第1光軸を有する第1光学系と、前記第1光学系の拡
大側に配置された第2光軸を有する第2光学系と、を有し、前記第2光学系は、縮小側か
ら拡大側に向かって順に、第1透過面、反射面、および第2透過面を有するレンズを備え
、前記反射面および前記第2透過面は、自由曲面形状を備え、互いに直交する3軸を第1
軸、第2軸、および第3軸とし、前記第2光軸と前記第1軸とを一致させた場合、前記第
1透過面と前記反射面とは、前記第1軸に沿って配列され、前記第1透過面と前記第2透
過面とは、前記第2軸に沿って配列され、前記第1軸および前記第2軸を含む仮想の平面
を第1平面とした場合に、前記反射面は、前記第1平面に対して対称な形状を備え、前記
反射面および前記第2透過面は、アナモルフィック面であり、前記拡大側共役面は、前記
縮小側共役面に対して、前記第2軸方向よりも前記第3軸方向の像面の拡大率が大きいこ
とを特徴とする。
また、上記の課題を解決するために、本発明は、縮小側共役面と拡大側共役面との間に
中間像を形成する光学系において、第1光軸を有する第1光学系と、前記第1光学系の拡
大側に配置された第2光軸を有する第2光学系と、を有し、前記第1光学系は、最も拡大
側に、光反射面を有する偏向部材を備え、前記第2光学系は、縮小側から拡大側に向かっ
て順に、第1透過面、反射面、および第2透過面を有するレンズを備え、前記反射面およ
び前記光反射面は、自由曲面形状を有し、互いに直交する3軸を第1軸、第2軸、および
第3軸とし、前記第2光軸と前記第1軸とを一致させた場合、前記第1透過面と前記反射
面とは、前記第1軸に沿って配列され、前記第1透過面と前記第2透過面とは、前記第2
軸に沿って配列され、前記第1軸および前記第2軸を含む仮想の平面を第1平面とした場
合に、前記反射面は、前記第1平面に対して対称な形状を備え、前記反射面および前記光
反射面は、アナモルフィック面であり、前記拡大側共役面は、前記縮小側共役面に対して
、前記第2軸方向よりも前記第3軸方向の像面の拡大率が大きいことを特徴とする。
また、上記の課題を解決するために、本発明の光学系は、縮小側共役面と拡大側共役面
との間に中間像を形成する光学系において、縮小側共役面から順に、第1光軸を有する第
1光学系と、光反射面を有する偏向部材と、第2光学系と、からなり、前記第2光学系は
、1枚のレンズからなり、前記1枚のレンズは、縮小側から拡大側に向かって順に、第1
透過面、反射面、および第2透過面を有するレンズから構成され、前記反射面および前記
第2透過面は、自由曲面形状であり、前記反射面および前記第2透過面は、アナモルフィ
ック面であり、前記第1光軸を通る光線と、前記第1光軸を通る光線が前記偏向部材によ
り偏向された後の光線と、によって形成された平面に対して、前記反射面は対称な形状で
あり、前記拡大側共役面は、前記縮小側共役面に対して、前記第1光軸方向に平行な方向
よりも前記第1光軸に垂直な方向の像面の拡大率が大きいことを特徴とする。
また、上記の課題を解決するために、本発明の光学系は、縮小側共役面と拡大側共役面
との間に中間像を形成する光学系において、縮小側共役面から順に、第1光軸を有する第
1光学系と、光反射面を有する偏向部材と、第2光学系と、からなり、前記第2光学系は
、1枚のレンズからなり、前記1枚のレンズは、縮小側から拡大側に向かって順に、第1
透過面、反射面、および第2透過面から構成され、前記反射面および前記偏向部材の光反
射面は、自由曲面形状であり、前記反射面および前記偏向部材の光反射面は、アナモルフ
ィック面であり、前記第1光軸を通る光線と、前記第1光軸を通る光線が前記偏向部材に
より偏向された後の光線と、によって形成された平面に対して、前記反射面は対称な形状
であり、前記拡大側共役面は、前記縮小側共役面に対して、前記第1光軸方向に平行な方
向よりも前記第1光軸に垂直な方向の像面の拡大率が大きいことを特徴とする。
【図面の簡単な説明】
【0009】
図1】光学系を備えるプロジェクターの概略構成図である。
図2】実施例1の光学系の全体を模式的に表す光線図である。
図3】実施例1の光学系の光線図である。
図4】第1光学系の最も拡大側に位置するレンズ、偏向部材、および第2光学系の光線図である。
図5】液晶パネル上の投写画像の範囲を示す図である。
図6】スクリーン上の拡大像の範囲を示す図である。
図7】光学系による拡大像の横収差を示す図である。
図8】光学系による拡大像の横収差を示す図である。
図9】実施例2の光学系の全体を模式的に表す光線図である。
図10】実施例2の光学系の光線図である。
図11】第1光学系の最も拡大側に位置するレンズ、偏向部材、および第2光学系の光線図である。
図12】液晶パネル上の投写画像の範囲を示す図である。
図13】スクリーン上の拡大像の範囲を示す図である。
図14】光学系による拡大像の横収差を示す図である。
図15】光学系による拡大像の横収差を示す図である。
図16】実施例3の光学系の全体を模式的に表す光線図である。
図17】実施例3の光学系の光線図である。
図18】第1光学系の最も拡大側に位置するレンズ、偏向部材、および第2光学系の光線図である。
図19】液晶パネル上の投写画像の範囲を示す図である。
図20】スクリーン上の拡大像の範囲を示す図である。
図21】光学系による拡大像の横収差を示す図である。
図22】光学系による拡大像の横収差を示す図である。
図23】実施例4の光学系の光線図である。
図24】撮像光学系を備える撮像装置の概略図である。
【発明を実施するための形態】
【0010】
以下に図面を参照して、本発明の実施形態に係る光学系、プロジェクター、および撮像装置を説明する。
【0011】
(プロジェクター)
図1は本発明の光学系3を備えるプロジェクターの概略構成図である。図1に示すように、プロジェクター1は、スクリーンSに投写する投写画像を生成する画像形成部2と、投写画像を拡大してスクリーンSに拡大像を投写する光学系3と、画像形成部2の動作を制御する制御部4と、を備える。
【0012】
(画像生成光学系および制御部)
画像形成部2は、光源10、第1インテグレーターレンズ11、第2インテグレーターレンズ12、偏光変換素子13、重畳レンズ14を備える。光源10は、例えば、超高圧水銀ランプ、固体光源等で構成される。第1インテグレーターレンズ11および第2インテグレーターレンズ12は、アレイ状に配列された複数のレンズ素子をそれぞれ有する。第1インテグレーターレンズ11は、光源10からの光束を複数に分割する。第1インテグレーターレンズ11の各レンズ素子は、光源10からの光束を第2インテグレーターレンズ12の各レンズ素子の近傍に集光させる。
【0013】
偏光変換素子13は、第2インテグレーターレンズ12からの光を所定の直線偏光に変換させる。重畳レンズ14は、第1インテグレーターレンズ11の各レンズ素子の像を、第2インテグレーターレンズ12を介して、後述する液晶パネル18R、液晶パネル18G、および、液晶パネル18Bの表示領域上で重畳させる。
【0014】
また、画像形成部2は、第1ダイクロイックミラー15、反射ミラー16およびフィールドレンズ17R、および、液晶パネル18Rを備える。第1ダイクロイックミラー15は、重畳レンズ14から入射した光線の一部であるR光を反射させ、重畳レンズ14から入射した光線の一部であるG光およびB光を透過させる。第1ダイクロイックミラー15で反射されたR光は、反射ミラー16およびフィールドレンズ17Rを経て、液晶パネル18Rへ入射する。液晶パネル18Rは光変調素子である。液晶パネル18RはR光を画像信号に応じて変調することにより、赤色の投写画像を形成する。
【0015】
さらに、画像形成部2は、第2ダイクロイックミラー21、フィールドレンズ17G、および、液晶パネル18Gを備える。第2ダイクロイックミラー21は、第1ダイクロイックミラー15からの光線の一部であるG光を反射させ、第1ダイクロイックミラー15からの光線の一部であるB光を透過させる。第2ダイクロイックミラー21で反射されたG光は、フィールドレンズ17Gを経て、液晶パネル18Gへ入射する。液晶パネル18Gは光変調素子である。液晶パネル18GはG光を画像信号に応じて変調することにより、緑色の投写画像を形成する。
【0016】
また、画像形成部2は、リレーレンズ22、反射ミラー23、リレーレンズ24、反射ミラー25、およびフィールドレンズ17B、液晶パネル18Bおよびクロスダイクロイックプリズム19を備える。第2ダイクロイックミラー21を透過したB光は、リレーレンズ22、反射ミラー23、リレーレンズ24、反射ミラー25、およびフィールドレンズ17Bを経て、液晶パネル18Bへ入射する。液晶パネル18Bは光変調素子である。液晶パネル18BはB光を画像信号に応じて変調することにより、青色の投写画像を形成する。
【0017】
液晶パネル18R、液晶パネル18G、および、液晶パネル18Bは、クロスダイクロイックプリズム19を3方向から囲んでいる。クロスダイクロイックプリズム19は、光合成用のプリズムであり、各液晶パネル18R、18G、18Bで変調された光を合成した投写画像を生成する。
【0018】
光学系3は、クロスダイクロイックプリズム19が合成した投写画像(各液晶パネル18R、18G、18Bが形成した画像)をスクリーンSに拡大して投写する。スクリーンSは、光学系3の拡大側共役面である。
【0019】
制御部4は、ビデオ信号等の外部画像信号が入力される画像処理部6と、画像処理部6から出力される画像信号に基づいて液晶パネル18R、液晶パネル18Gおよび液晶パネル18Bを駆動する表示駆動部7と、を備える。
【0020】
画像処理部6は、外部の機器から入力された画像信号を各色の階調等を含む画像信号に変換する。表示駆動部7は、画像処理部6から出力された各色の投写画像信号に基づいて液晶パネル18R、液晶パネル18Gおよび液晶パネル18Bを動作させる。これにより、画像処理部6は、画像信号に対応した投写画像を液晶パネル18R、液晶パネル18Gおよび液晶パネル18Bに表示する。
【0021】
(光学系)
次に、光学系3を説明する。以下では、プロジェクター1に搭載される光学系3の構成例として実施例1~4を説明する。なお、各実施例1~4において、光学系の光線図では、液晶パネル18R、液晶パネル18G、液晶パネル18Bを、液晶パネル18として表す。
【0022】
(実施例1)
図2は、実施例1の光学系の全体を模式的に表す光線図である。図2では、本例の光学系3AからスクリーンSに到達する光束を、光束F1~F3により模式的に示す。光束F1は最も像高が低い位置に達する光束である。光束F3は最も像高が高い位置に達する光束である。光束F2は光束F1と光束F3との間の位置に達する光束である。図3は、実施例1の光学系3Aの光線図である。図4は、第1光学系の最も拡大側に位置するレンズ、偏向部材、および第2光学系の光線図である。
【0023】
本例の光学系3Aは、図3に示すように、縮小側から拡大側に向かって順に、第1光学系31、および第2光学系32からなる。
【0024】
第1光学系31は、14枚のレンズL1~L14と、偏向部材33とを有する。レンズL1~レンズL14は縮小側から拡大側に向かってこの順に配置されている。本例では、レンズL2とレンズL3は接合された第1接合レンズL21である。レンズL4とレンズL5は接合された第2接合レンズL22である。レンズL9とレンズL10は接合された第3接合レンズL23である。レンズL7とレンズL8との間には、絞りOが配置されている。
【0025】
偏向部材33は、レンズL14の拡大側に配置されている。偏向部材33は、光反射面33aを備える反射ミラーである。偏向部材33は、レンズL1~L14の第1光軸Nに対して、一方側にオフセットされた位置に配置されている。これにより、光反射面33aは、第1光軸Nの一方側に位置する。光反射面33aは、第1光軸Nに対して、45°傾斜する。レンズL14から光反射面33aに射出される光線は、第1光軸Nから離間する方向に向かう。レンズL14から拡大側に射出される光線の光路は、光反射面33aにより、第1光軸Nに対して垂直な方向に折り曲げられる。
【0026】
以下の説明では、便宜上、互いに直交する3軸をX軸、Y軸、およびZ軸とする。Y軸は、レンズL1~L14の第1光軸Nと一致する。Y軸に沿ったY軸方向において、レンズL1が位置する側をY1方向、レンズL14が位置する側をY2方向とする。第1光軸Nに対して偏向部材33がオフセットされた方向をZ軸方向とする。第1光軸Nに対して光反射面33aが位置する側をZ1方向、その反対側をZ2方向とする。
【0027】
ここで、光反射面33aは、自由曲面形状である。また、Y軸およびZ軸を含む仮想の面を第1平面としたときに、光反射面33aは、第1平面に対して対称な形状を備える。本例では、光反射面33aは、アナモルフィック面である。なお、光反射面33aは、XY多項式面、フリンジゼルニケ多項式面、ゼルニケ多項式面、Q2D自由曲面とすることもできる。光反射面33aの設計軸M1は、第1光軸NのY1方向で当該光反射面33aを経由する光線の主光線100が通過する位置Cに設定されている。
【0028】
第2光学系32は、1枚のレンズ34からなる。レンズ34は、ガラス製または樹脂製である。レンズ34は、偏向部材33のZ2方向に配置されている。より詳細には、レンズ34は、第1光軸Nを挟んで光反射面33aとは反対側に配置されている。レンズ34は、Z1方向を向く第1面36と、Y2方向から向く第2面37とを備える。第1面36および第2面37は、いずれも凸形状を備える。レンズ34の光軸M2は、Z軸方向に延びる。従って、レンズ34の光軸M2と、第1光学系31のレンズL1~L14の第1光軸Nとは、直交する。また、レンズ34は、第2面37に反射コーティング層を備える。
【0029】
レンズ34は、縮小側から順に、第1透過面41、反射面42、および第2透過面43
を有する。第1透過面41は第1面に設けられている。従って、第1透過面41は、凸形
状を備える。反射面42は、レンズ34の第2面37に設けられた反射コーティング層で
ある。従って、反射面42は、第2面37の表面形状が転写された凹形状を備える。反射
面42の光軸は、レンズ34の光軸M2と一致する。第1透過面41と反射面42とは、
Z軸方向に配列されている。第1透過面41と反射面42は、レンズ34の光軸M2のY
1方向に位置する。第2透過面43は、第1面36に設けられている。従って、第2透過
面43は、凸形状を備える。第1透過面41と第2透過面43とは、Y軸方向に配列され
ている。第2透過面43は、レンズ34の光軸M2のY方向に位置する。

【0030】
本例において、第1透過面41、反射面42、および第2透過面43は、いずれも自由曲面形状である。また、第1透過面41、反射面42、および第2透過面43は、いずれも第1平面に対して対称な形状を備える。第1透過面41、反射面42、および第2透過面43は、いずれもアナモルフィック面である。なお、第1透過面41、反射面42、および第2透過面43は、XY多項式面、フリンジゼルニケ多項式面、ゼルニケ多項式面、またはQ2D自由曲面とすることができる。なお、第1透過面41、反射面42、および第2透過面43は、いずれも反射面42の光軸M2を設計基準軸として設計されている。
【0031】
ここで、光学系3Aの縮小側共役面には、画像形成部2の液晶パネル18が配置されている。液晶パネル18は、第1光軸NのZ2方向に投写画像を形成する。光学系3Aの拡大側共役面には、スクリーンSが配置されている。スクリーンSは、第1光軸NのZ1方向に位置する。スクリーンの高さ方向は、Y軸に沿った方向であり、スクリーンの幅方向は、X軸に沿った方向である。
【0032】
また、光学系3Aは、縮小側共役面と拡大側共役面との間に、縮小側共役面および拡大側共役面と共役な中間像35を形成する。本例において、中間像35は、偏向部材33の光反射面33aと、レンズ34の反射面42との間に形成される。より具体的には、中間像35は、レンズ34の第1透過面41と反射面42との間に形成される。中間像35は、反射面42の光軸M2のY1方向に位置する。
【0033】
(レンズデータ)
光学系3Aのレンズデータは以下のとおりである。面番号は、縮小側から拡大側に順番に付してある。符号は、液晶パネル、ダイクロイックプリズム、レンズ、偏向部材、第1透過面、反射面、第2透過面およびスクリーンの符号である。液晶パネル、ダイクロイックプリズム、レンズ、偏向部材、第1透過面、反射面、第2透過面およびスクリーンに対応しない面番号のデータはダミーデータである。Rは曲率半径である。Dは軸上面間隔である。Cはアパーチャー半径であり、アパーチャー半径の2倍がレンズの面の直径となる。R、D、Cの単位はmmである。
【0034】
符号 面番号 形状 R D 硝材 屈折/反射 C
18 0 球 無限 5.0771 屈折 0.0000
19 1 球 無限 21.5089 SBSL7_OHARA 屈折 7.5728
2 球 無限 3.0000 屈折 9.6430
3 球 無限 0.0000 屈折 10.1058
4 球 無限 0.0000 屈折 10.1058
5 球 無限 0.0000 屈折 10.1058
L1 6 球 55.9095 4.0253 483013.8026 屈折 10.2531
7 球 -27.1743 0.1000 屈折 10.2965
L2 8 球 47.4385 5.3129 450307.8288 屈折 9.8482
L3 9 球 -14.8933 1.0000 842065.2841 屈折 9.7421
10 球 -54.8116 1.3950 屈折 9.9917
L4 11 球 32.2801 4.0889 456482.8109 屈折 9.8711
L5 12 球 -26.7096 4.1270 482866.803 屈折 9.7888
13 球 -16.6304 0.2445 屈折 9.4546
L6 14 球 -15.7295 1.0000 836586.351 屈折 9.3576
15 球 -36.9184 0.4170 屈折 9.5770
L7 16 球 -25.5127 2.4076 481806.6937 屈折 9.5929
17 球 -16.0024 11.0686 屈折 8.0771
O 18 球 無限 0.1000 屈折 4.8152
L8 19 球 49.0908 1.0000 642496.4376 屈折 4.7864
20 球 24.9317 0.2391 屈折 5.2226
L9 21 球 48.6771 3.1071 731417.2722 屈折 5.2289
L10 22 球 -9.9808 15.8582 777487.4899 屈折 5.1966
23 球 118.5765 21.9159 屈折 7.3812
L11 24 球 25.5893 10.7217 547355.6835 屈折 15.6189
25 球 -31.1716 0.8054 屈折 15.4891
L12 26 球 -28.1574 1.5354 846295.2379 屈折 15.1358
27 球 -276.8057 1.1363 屈折 15.4014
L13 28 非球面 82.0346 4.3765 E48R_ZEON 屈折 15.3958
29 非球面 -91.3792 2.4865 屈折 15.6595
L14 30 非球面 -155.531 5.0911 E48R_ZEON 屈折 15.1811
31 非球面 47.0246 0.2132 屈折 17.1113
32 球 無限 20.0000 屈折 16.7997
33 球 無限 0.0000 屈折 21.5257
33 34 アナモルフィック面 967.3805 0.0000 反射 13.4274
35 球 無限 0.0000 屈折 15.4599
36 球 無限 -4.0000 屈折 15.4599
41 37 アナモルフィック面 34.2605 -23.4735 Z330R_ZEON 屈折 15.1254
38 球 無限 0.0000 Z330R_ZEON 屈折 13.3076
42 39 アナモルフィック面 8.8508 0.0000 Z330R_ZEON 反射 13.2270
40 球 無限 23.4735 Z330R_ZEON 屈折 32.4939
43 41 アナモルフィック面 -24.1854 65.8130 屈折 17.2197
42 球 無限 56.8385 屈折 333.9991
43 球 無限 180.0883 屈折 561.3098
S 44 球 無限 0.0000 屈折 1282.8575
【0035】
各非球面係数は以下のとおりである。
【0036】
面番号 S28 S29 S30 S31
Y曲率半径 82.0346 -91.3792 -155.5310 47.0246
コーニック定数(K) 21.76618956 -61.82417386 90 0
4次の係数(A) -4.63110E-05 -1.90366E-05 -6.15509E-05 -1.46009E-04
6次の係数(B) -1.18770E-08 -3.09851E-07 -3.53831E-07 2.74250E-07
8次の係数(C) -2.97251E-10 4.31672E-10 9.90327E-10 -2.71262E-10
【0037】
各アナモルフィック面係数は以下のとおりである。
【0038】
面番号 S34 S37 S39 S41
X曲率半径 967.3805 34.2605 8.8508 -24.1854
Y曲率半径 -51042.3167 35.1877 11.5067 -16.5806
Yコーニック定数 0 -85.14430 -3.95502 -0.03193
Y4次係数 4.83961E-14 -9.19132E-05 5.42411E-05 -1.29994E-05
Y6次係数 -2.28441E-09 3.84046E-07 -3.48032E-07 1.93392E-07
Y8次係数 6.25519E-12 -1.10416E-09 1.17205E-09 -7.25471E-10
Y10次係数 4.86331E-15 8.07984E-13 -2.06713E-12 9.27923E-13
Xコーニック定数 0 -65.23158 -2.89645 0.83773
X4次係数 2.17324E+03 -8.20698E-04 9.70725E-02 -1.82868E-01
X6次係数 4.05570E-01 7.11271E-03 6.09435E-02 2.05477E-01
X8次係数 -2.31214E-01 5.07927E-03 6.07235E-02 2.08498E-01
X10次係数 9.71706E-01 -2.58030E-02 4.16617E-02 2.02584E-01
【0039】
また、光学系3Aの画面幅拡大率、表示デバイス幅、開口数、TRは以下のとおりである。画面幅拡大率は、スクリーンSに投写された拡大像のアスペクト比における横の値を、液晶パネル18面上に形成された投写画像のアスペクト比における横の値で除算した値である。表示デバイス幅は、液晶パネル18面上の幅寸法であり、単位はmmである。開口数はNAで示す。TRは、スローレシオであり、投写距離を、投写画像をスクリーンSへ投写した時のX軸方向の寸法で除算した値である。
【0040】
画面幅拡大率 1.35
表示デバイス幅[mm] 8.2
NA 0.198
TR(0.37”16:9) 0.169
【0041】
ここで、図5図6を参照して、本例の画面幅拡大率について説明する。図5は、液晶パネル18上の投写画像P1の範囲を示す図である。図6は、スクリーンS上の拡大像P2の範囲を示す図である。図5の投写画像P1の右半分において、A1~A9の9個の光束の位置を設定している。図5の「A4」は、投写画像P1の中心の中央光束を示す。図6の拡大像P2において、A1~A9の位置は、投写画像P1のA1~A9から出射された光束が到達した位置を示す。本例の光学系3Aは、液晶パネル18で形成された投写画像P1のアスペクト比における横の値に対して、アスペクト比における横の値が「1.35」倍となる拡大像P2をスクリーンSに投写する。
【0042】
(実施例1の作用効果)
本例は、縮小側共役面と拡大側共役面との間に中間像35を形成する光学系3Aであって、第1光学系31と、第1光学系31の拡大側に配置された第2光学系32と、を有する。第1光学系31は、最も拡大側に、光反射面33aを有する偏向部材33を備える。第2光学系32は、縮小側から拡大側に向かって順に、第1透過面41、反射面42、および第2透過面43を有するレンズを備える。反射面42および光反射面33aは、自由曲面形状を有する。
【0043】
本例によれば、レンズ34の反射面42および偏向部材33の光反射面33aは、自由曲面形状を備える。従って、反射面42および光反射面33aの作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比を変換できる。従って、例えば、反射面42のみの作用によって投写画像と拡大像とのアスペクト比を変換する場合と比較して、本例はアスペクト比を変換する自由度が高い。これにより、本例では、投写画像のX軸方向を拡大して、投写画像と拡大像のアスペクト比を、変換できる。
【0044】
また、本例では、第1透過面41、および第2透過面43が、自由曲面形状を備える。これにより、反射面42、光反射面33a、第1透過面41、および第2透過面43の作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比を変換できる。従って、反射面42および光反射面33aの2面の作用によりアスペクト比を変換する場合と比較して、本例は変換量を大きくすることができる。これにより、本例では、画面幅拡大率を1.35倍とすることができる。
【0045】
本例では、中間像35は、反射面42よりも縮小側に位置する。従って、反射面42および第2透過面43を利用して中間像35を拡大できる。よって、光学系の倍率を高くすることができる。
【0046】
本例では、第2透過面43は、拡大側に突出する凸形状を備える。このようにすれば、光学系の倍率を高くすることが、より、容易となる。
【0047】
本例では、中間像35は、反射面42と第1透過面41との間に位置する。従って、中間像35がレンズ34と偏向部材33との間に形成される場合と比較して、本例は、レンズ34と、偏向部材33とを接近させることができる。よって、光学系を、コンパクトにすることが容易となる。
【0048】
本例では、第1透過面41は、縮小側に突出する凸形状を備える。従って、第1透過面41と反射面42との間に中間像35を形成することが容易である。
【0049】
また、本例では、互いに直交する3軸をX軸(第3軸)、Y軸(第2軸)、およびZ軸(第1軸)とし、レンズ34の光軸M2とZ軸とを一致させた場合に、第1透過面41と反射面42とは、Z軸に沿って配列され、第1透過面41と第2透過面43とは、Y軸に沿って配列されている。そして、Z軸、Y軸を含む仮想の平面を第1平面とした場合に、反射面42は、第1平面に対して対称な形状を備える。従って、反射面42が自由曲面形状を備える場合でも、当該反射面42の設計が容易となる。また、反射面42が第1平面に対して対称な形状を備えれば、反射面42の製造が容易となる。
【0050】
さらに、本例では、第2透過面43は、第1平面に対して対称な形状を備える。従って、第2透過面43が自由曲面形状を備える場合でも、当該第2透過面43の設計が容易となる。また、第2透過面43が第1平面に対して対称な形状を備えれば、第2透過面43の製造が容易となる。同様に、本例では、第1透過面41は、第1平面に対して対称な形状を備える。従って、第1透過面41が自由曲面形状を備える場合でも、当該第1透過面41の設計が容易となる。また、第1透過面41が第1平面に対して対称な形状を備えれば、第1透過面41の製造が容易となる。
【0051】
また、本例では、偏向部材33は、第1光軸NからZ1方向にオフセットされており、光反射面33aは、第1光軸NのZ1方向に位置する。光反射面33aが第1光軸Nの一方側に位置すれば、光反射面33aを利用して、収差を補正することが容易となる。
【0052】
ここで、光反射面33aの設計軸M1は、第1光軸NのY1方向で当該光反射面33aを経由する光線の主光線100が通過する位置Cに設定されている。位置Cは、投写画像P1の中心の中央光束の主光線である。このような設計軸に基づいて光反射面33aを設計すれば、光学系の収差を補正する光反射面33aを設計しやすい。
【0053】
図7および図8は、光学系3Aによる拡大像の横収差を示す図である。図7および図8において、A1~A9は、図6の拡大像P2におけるA1~A9の光束の位置に対応する。図7および図8に示すように、本例の光学系3Aは、拡大像における横収差が抑制されている。
【0054】
(実施例2)
図9は、実施例2の光学系の全体を模式的に表す光線図である。図9では、本例の光学系3BからスクリーンSに到達する光束を、光束F1~F3により模式的に示す。光束F1は最も像高が低い位置に達する光束である。光束F3は最も像高が高い位置に達する光束である。光束F2は光束F1と光束F3との間の位置に達する光束である。図10は、実施例2の光学系3Bの光線図である。図11は、第1光学系の最も拡大側に位置するレンズ、偏向部材、および第2光学系の光線図である。
【0055】
本例の光学系3Bは、図10に示すように、縮小側から拡大側に向かって順に、第1光学系31、および第2光学系32からなる。
【0056】
第1光学系31は、14枚のレンズL1~L14と、偏向部材33とを有する。レンズL1~レンズL14は縮小側から拡大側に向かってこの順に配置されている。本例では、レンズL2とレンズL3は接合された第1接合レンズL21である。レンズL4とレンズL5は接合された第2接合レンズL22である。レンズL9とレンズL10は接合された第3接合レンズL23である。レンズL7とレンズL8との間には、絞りOが配置されている。
【0057】
偏向部材33は、レンズL14の拡大側に配置されている。偏向部材33は、光反射面33aを備える反射ミラーである。偏向部材33は、レンズL1~L14の第1光軸Nに対して、一方側にオフセットされた位置に配置されている。これにより、光反射面33aは、第1光軸Nの一方側に位置する。光反射面33aは、第1光軸Nに対して、45°傾斜する。レンズL14から光反射面33aに射出される光線は、第1光軸Nから離間する方向に向かう。レンズL14から拡大側に射出される光線の光路は、光反射面33aにより、第1光軸Nに対して垂直な方向に折り曲げられる。
【0058】
ここで、光反射面33aは、平坦である。光反射面33aの設計軸M1は、第1光軸NのY1方向で当該光反射面33aを経由する光線の主光線100が通過する位置Cに設定されている。
【0059】
第2光学系32は、1枚のレンズ34からなる。レンズ34は、ガラス製または樹脂製である。レンズ34は、偏向部材33のZ2方向に配置されている。より詳細には、レンズ34は、第1光軸Nを挟んで光反射面33aとは反対側に配置されている。レンズ34は、Z1方向を向く第1面36と、Y2方向から向く第2面37とを備える。第1面36および第2面37は、いずれも凸形状を備える。レンズ34の光軸M2は、Z軸方向に延びる。従って、レンズ34の光軸M2と、第1光学系31のレンズL1~L14の第1光軸Nとは、直交する。また、レンズ34は、第2面37に反射コーティング層を備える。
【0060】
レンズ34は、縮小側から順に、第1透過面41、反射面42、および第2透過面43
を有する。第1透過面41は第1面に設けられている。従って、第1透過面41は、凸形
状を備える。反射面42は、レンズ34の第2面37に設けられた反射コーティング層で
ある。従って、反射面42は、第2面37の表面形状が転写された凹形状を備える。反射
面42の光軸は、レンズ34の光軸M2と一致する。第1透過面41と反射面42とは、
Z軸方向に配列されている。第1透過面41と反射面42は、レンズ34の光軸M2のY
方向に位置する。第2透過面43は、第1面36に設けられている。従って、第2透過
面43は、凸形状を備える。第1透過面41と第2透過面43とは、Y軸方向に配列され
ている。第2透過面43は、レンズ34の光軸M2のY方向に位置する。

【0061】
本例において、第1透過面41は、非球面形状である。反射面42、および第2透過面43は、いずれも自由曲面形状である。また、第1透過面41、反射面42、および第2透過面43は、いずれも第1平面に対して対称な形状を備える。反射面42、および第2透過面43は、いずれもアナモルフィック面である。なお、反射面42、および第2透過面43は、XY多項式面、フリンジゼルニケ多項式面、ゼルニケ多項式面、またはQ2D自由曲面とすることができる。なお、第1透過面41、反射面42、および第2透過面43は、いずれも反射面42の光軸M2を設計基準軸として設計されている。
【0062】
ここで、光学系3Bの縮小側共役面には、画像形成部2の液晶パネル18が配置されている。液晶パネル18は、第1光軸NのZ2方向に投写画像を形成する。光学系3Bの拡大側共役面には、スクリーンSが配置されている。スクリーンSは、第1光軸NのZ1方向に位置する。スクリーンの高さ方向は、Y軸に沿った方向であり、スクリーンの幅方向は、X軸に沿った方向である。
【0063】
また、光学系3Bは、縮小側共役面と拡大側共役面との間に、縮小側共役面および拡大側共役面と共役な中間像35を形成する。本例において、中間像35は、偏向部材33の光反射面33aと、レンズ34の反射面42との間に形成される。より具体的には、中間像35は、レンズ34の第1透過面41と反射面42との間に形成される。中間像35は、反射面42の光軸M2のY1方向に位置する。
(レンズデータ)
光学系3Bのレンズデータは以下のとおりである。面番号は、縮小側から拡大側に順番に付してある。符号は、液晶パネル、ダイクロイックプリズム、レンズ、偏向部材、第1透過面、反射面、第2透過面およびスクリーンの符号である。液晶パネル、ダイクロイックプリズム、レンズ、偏向部材、第1透過面、反射面、第2透過面およびスクリーンに対応しない面番号のデータはダミーデータである。Rは曲率半径である。Dは軸上面間隔である。Cはアパーチャー半径であり、アパーチャー半径の2倍がレンズの面の直径となる。R、D、Cの単位はmmである。
【0064】
符号 面番号 形状 R D 硝材 屈折/反射 C
18 0 球 無限 5.0771 屈折 0.0000
19 1 球 無限 21.5089 SBSL7_OHARA 屈折 7.4712
2 球 無限 3.0000 屈折 9.2120
3 球 無限 0.0000 屈折 9.5974
4 球 無限 0.0000 屈折 9.5974
5 球 無限 0.0000 屈折 9.5974
L1 6 球 65.4704 4.1260 488931.7885 屈折 9.6906
7 球 -25.8779 0.1000 屈折 9.7448
L2 8 球 44.9399 5.4647 451548.8296 屈折 9.2948
L3 9 球 -15.1508 1.0000 841501.2942 屈折 9.0409
10 球 -56.8514 1.2690 屈折 9.1583
L4 11 球 30.3942 5.8367 461122.8106 屈折 8.9197
L5 12 球 -31.3995 3.3918 496228.7721 屈折 8.4395
13 球 -17.1030 0.1752 屈折 8.1083
L6 14 球 -16.3515 1.0000 837496.3489 屈折 8.0387
15 球 -41.2304 0.4240 屈折 8.0687
L7 16 球 -27.3170 2.3815 486259.7942 屈折 8.0684
17 球 -16.6374 11.0686 屈折 8.0771
O 18 球 無限 0.1000 屈折 4.7977
L8 19 球 571.6975 1.0000 712249.3669 屈折 4.7864
20 球 28.6986 0.1392 屈折 4.9318
L9 21 球 42.0590 3.3056 733962.2712 屈折 4.9327
L10 22 球 -9.4250 6.8878 774045.4946 屈折 5.1253
23 球 -292.8891 27.6142 屈折 6.3334
L11 24 球 27.2471 10.2488 555410.6726 屈折 15.0865
25 球 -29.4496 0.5422 屈折 14.9584
L12 26 球 -27.3146 1.2583 846663.2378 屈折 14.7737
27 球 -192.8773 0.2815 屈折 15.0640
L13 28 非球面 47.2244 2.9887 E48R_ZEON 屈折 15.0640
29 非球面 133.9404 2.1048 屈折 15.3315
L14 30 非球面 171.9435 5.0055 E48R_ZEON 屈折 15.2325
31 非球面 39.9613 0.2905 屈折 16.5855
32 球 無限 20.0000 屈折 16.2826
33 球 無限 0.0000 屈折 20.7493
33 34 球 無限 0.0000 反射 13.1400
35 球 無限 0.0000 屈折 14.7281
36 球 無限 -4.0000 屈折 14.7281
41 37 非球面 27.7983 -23.4735 Z330R_ZEON 屈折 14.4036
38 球 無限 0.0000 Z330R_ZEON 屈折 13.0528
42 39 アナモルフィック面 9.5677 0.0000 Z330R_ZEON 反射 12.8083
40 球 無限 23.4735 Z330R_ZEON 屈折 28.8972
43 41 アナモルフィック面 -22.4938 65.8130 屈折 16.9147
42 球 無限 56.8385 屈折 316.3379
43 球 無限 180.0883 屈折 531.2282
S 44 球 無限 0.0000 屈折 1212.0922
【0065】
各非球面係数は以下のとおりである。
【0066】
面番号 S28 S29 S30
Y曲率半径 47.2244 133.9404 171.9435
コーニック定数(K) -1.95000125 60.74248698 90
4次の係数(A) -4.83769E-05 -2.10815E-05 -6.13575E-05
6次の係数(B) -4.13808E-09 -3.24296E-07 -3.39127E-07
8次の係数(C) -2.55845E-10 4.24487E-10 9.35575E-10
10次の係数(D)
12次の係数(E)
【0067】
面番号 S31 S37
Y曲率半径 39.9613 27.7983
コーニック定数(K) 0 -28.28853946
4次の係数(A) -1.49990E-04 -6.92710E-05
6次の係数(B) 2.68632E-07 2.63497E-07
8次の係数(C) -2.37928E-10 -1.26383E-09
10次の係数(D) 2.59141E-12
12次の係数(E) -3.00520E-15
【0068】
各アナモルフィック面係数は以下のとおりである。
【0069】
面番号 S39 S41
X曲率半径 9.5677 -22.4938
Y曲率半径 11.7375 -15.5594
Yコーニック定数 -3.190223057 -0.10651
Y4次係数 6.47141E-05 -8.33250E-06
Y6次係数 -3.75860E-07 1.92339E-07
Y8次係数 1.13758E-09 -7.70099E-10
Y10次係数 -1.79033E-12 1.07800E-12
Xコーニック定数 -3.450952392 0.54644
X4次係数 -6.05044E-02 -1.40604E-01
X6次係数 -3.24341E-02 2.79707E-01
X8次係数 -1.09859E-02 2.66535E-01
X10次係数 -7.88576E-03 2.56702E-01
【0070】
また、光学系3Bの画面幅拡大率、表示デバイス幅、開口数、TRは以下のとおりである。画面幅拡大率は、スクリーンSに投写された拡大像のアスペクト比における横の値を、液晶パネル18面上に形成された投写画像のアスペクト比における横の値で除算した値である。表示デバイス幅は、液晶パネル18面上の幅寸法であり、単位はmmである。開口数はNAで示す。TRは、スローレシオであり、投写距離を、投写画像をスクリーンSへ投写した時のX軸方向の寸法で除算した値である。
【0071】
画面幅拡大率 1.22
表示デバイス幅[mm] 8.2
NA 0.196
TR(0.37”16:9) 0.186
【0072】
ここで、図12図13を参照して、本例の画面幅拡大率について説明する。図12は、液晶パネル18上の投写画像P1の範囲を示す図である。図13は、スクリーンS上の拡大像P2の範囲を示す図である。図12の投写画像P1の右半分において、A1~A9の9個の光束の位置を設定している。図12の「A4」は、投写画像P1の中心の中央光束を示す。図13の拡大像P2において、A1~A9の位置は、投写画像P1のA1~A9から出射された光束が到達した位置を示す。本例の光学系3Bは、液晶パネル18で形成された投写画像P1のアスペクト比における横の値に対して、アスペクト比における横の値が「1.22」倍となる拡大像P2をスクリーンSに投写する。

(実施例2の作用効果)
本例は、縮小側共役面と拡大側共役面との間に中間像35を形成する光学系3Bにおいて、第1光学系31と、第1光学系31の拡大側に配置された第2光学系32と、を有する。第2光学系32は、縮小側から拡大側に向かって順に、第1透過面41、反射面42、および第2透過面43を有するレンズ34を備える。反射面42および第2透過面43は、自由曲面形状を備える。
【0073】
本例の光学系3Bでは、反射面42および第2透過面43は、自由曲面形状を有する。従って、反射面42および第2透過面43の作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比を変換できる。従って、例えば、反射面42のみの作用によって投写画像と拡大像とのアスペクト比を変換する場合と比較して、本例は、アスペクト比を変換する自由度が高い。これにより、本例では、投写画像のX軸方向を拡大して、投写画像と拡大像のアスペクト比を、変換できる。
【0074】
ここで、本例では、反射面42および第2透過面43の2面の作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比を変換する。従って、4面の作用によりアスペクト比を変換する実施例1の光学系と比較して、アスペクト比の変換量は少ない。しかし、この点を除き、実施例1の光学系と同様の作用効果を得ることができる。
【0075】
また、本例では、偏向部材33の光反射面33aが、平坦である。従って、偏向部材33の製造コストを抑制できる。これにより、光学系の製造コストを抑制できる。
【0076】
図14および図15は、光学系3Bによる拡大像の横収差を示す図である。図14および図15において、A1~A9は、図13の拡大像P2におけるA1~A9の光束の位置に対応する。図14および図15に示すように、本例の光学系3Bは、拡大像における横収差が抑制されている。
【0077】
なお、本例では、偏向部材33を省略することもできる。この場合には、例えば、レンズ34を、レンズL1~L14の第1光軸N上に配置して、レンズ34の光軸M2と第1光軸Nとを一致させる。そして、L14から拡大側に向かう光線を第1透過面41に入射させればよい。
【0078】
(実施例3)
図16は、実施例3の光学系の全体を模式的に表す光線図である。図1では、本例の
光学系3CからスクリーンSに到達する光束を、光束F1~F3により模式的に示す。光
束F1は最も像高が低い位置に達する光束である。光束F3は最も像高が高い位置に達す
る光束である。光束F2は光束F1と光束F3との間の位置に達する光束である。図1
は、実施例3の光学系3Cの光線図である。図1は、第1光学系の最も拡大側に位置す
るレンズ、偏向部材、および第2光学系の光線図である。

【0079】
本例の光学系3Cは、図17に示すように、縮小側から拡大側に向かって順に、第1光学系31、および第2光学系32からなる。
【0080】
第1光学系31は、14枚のレンズL1~L14と、偏向部材33とを有する。レンズL1~レンズL14は縮小側から拡大側に向かってこの順に配置されている。本例では、レンズL2とレンズL3は接合された第1接合レンズL21である。レンズL4とレンズL5は接合された第2接合レンズL22である。レンズL9とレンズL10は接合された第3接合レンズL23である。レンズL7とレンズL8との間には、絞りOが配置されている。
【0081】
偏向部材33は、レンズL14の拡大側に配置されている。偏向部材33は、光反射面33aを備える反射ミラーである。偏向部材33は、レンズL1~L14の第1光軸Nに対して、一方側にオフセットされた位置に配置されている。これにより、光反射面33aは、第1光軸Nの一方側に位置する。光反射面33aは、第1光軸Nに対して、45°傾斜する。レンズL14から光反射面33aに射出される光線は、第1光軸Nから離間する方向に向かう。レンズL14から拡大側に射出される光線の光路は、光反射面33aにより、第1光軸Nに対して垂直な方向に折り曲げられる。
【0082】
ここで、光反射面33aは、自由曲面形状である。また、Y軸およびZ軸を含む仮想の面を第1平面としたときに、光反射面33aは、第1平面に対して対称な形状を備える。本例では、光反射面33aは、アナモルフィック面である。なお、光反射面33aは、XY多項式面、フリンジゼルニケ多項式面、ゼルニケ多項式面、Q2D自由曲面とすることもできる。光反射面33aの設計軸M1は、第1光軸NのY1方向で当該光反射面33aを経由する光線の主光線100が通過する位置Cに設定されている。
【0083】
第2光学系32は、1枚のレンズ34からなる。レンズ34は、ガラス製または樹脂製である。レンズ34は、偏向部材33のZ2方向に配置されている。より詳細には、レンズ34は、第1光軸Nを挟んで光反射面33aとは反対側に配置されている。レンズ34は、Z1方向を向く第1面36と、Y2方向から向く第2面37とを備える。第1面36および第2面37は、いずれも凸形状を備える。レンズ34の光軸M2は、Z軸方向に延びる。従って、レンズ34の光軸M2と、第1光学系31のレンズL1~L14の第1光軸Nとは、直交する。また、レンズ34は、第2面37に反射コーティング層を備える。
【0084】
レンズ34は、縮小側から順に、第1透過面41、反射面42、および第2透過面43を有する。第1透過面41は第1面に設けられている。従って、第1透過面41は、凸形状を備える。反射面42は、レンズ34の第2面37に設けられた反射コーティング層である。従って、反射面42は、第2面37の表面形状が転写された凹形状を備える。反射面42の光軸は、レンズ34の光軸M2と一致する。第1透過面41と反射面42とは、Z軸方向に配列されている。第1透過面41と反射面42は、レンズ34の光軸M2のY1方向に位置する。第2透過面43は、第1面36に設けられている。従って、第2透過面43は、凸形状を備える。第1透過面41と第2透過面43とは、Y軸方向に配列されている。第2透過面43は、レンズ34の光軸M2のY2方向に位置する。
【0085】
本例において、第1透過面41、および第2透過面43は、いずれも非球面形状である。反射面42は、自由曲面形状である。また、第1透過面41、反射面42、および第2透過面43は、いずれも第1平面に対して対称な形状を備える。反射面42は、いずれもアナモルフィック面である。なお、反射面42は、XY多項式面、フリンジゼルニケ多項式面、ゼルニケ多項式面、またはQ2D自由曲面とすることができる。なお、第1透過面41、反射面42、および第2透過面43は、いずれも反射面42の光軸M2を設計基準軸として設計されている。
【0086】
ここで、光学系3Cの縮小側共役面には、画像形成部2の液晶パネル18が配置されて
いる。液晶パネル18は、第1光軸NのZ2方向に投写画像を形成する。光学系3の拡
大側共役面には、スクリーンSが配置されている。スクリーンSは、第1光軸NのZ1方
向に位置する。スクリーンの高さ方向は、Y軸に沿った方向であり、スクリーンの幅方向
は、X軸に沿った方向である。

【0087】
また、光学系3Cは、縮小側共役面と拡大側共役面との間に、縮小側共役面および拡大
側共役面と共役な中間像35を形成する。本例において、中間像35は、偏向部材33の
光反射面33aと、レンズ34の反射面42との間に形成される。より具体的には、中間
像35は、レンズ34の第1透過面41と反射面42との間に形成される。中間像35は
、反射面42の光軸M2のY方向に位置する。

【0088】
(レンズデータ)
光学系3Cのレンズデータは以下のとおりである。面番号は、縮小側から拡大側に順番に付してある。符号は、液晶パネル、ダイクロイックプリズム、レンズ、偏向部材、第1透過面、反射面、第2透過面およびスクリーンの符号である。液晶パネル、ダイクロイックプリズム、レンズ、偏向部材、第1透過面、反射面、第2透過面およびスクリーンに対応しない面番号のデータはダミーデータである。Rは曲率半径である。Dは軸上面間隔である。Cはアパーチャー半径であり、アパーチャー半径の2倍がレンズの面の直径となる。R、D、Cの単位はmmである。
【0089】
符号 面番号 形状 R D 硝材 屈折/反射 C
18 0 球 無限 5.0771 屈折 0.0000
19 1 球 無限 21.5089 SBSL7_OHARA 屈折 7.4449
2 球 無限 3.0000 屈折 9.1098
3 球 無限 0.0000 屈折 9.4786
4 球 無限 0.0000 屈折 9.4786
5 球 無限 0.0000 屈折 9.4786
L1 6 球 57.0713 4.0187 494003.7770 屈折 9.5788
7 球 -27.9108 0.1000 屈折 9.6162
L2 8 球 38.4451 5.4144 451900.8212 屈折 9.1787
L3 9 球 -15.5676 1.0000 841501.2862 屈折 8.9103
10 球 -49.4213 0.1000 屈折 8.9688
L4 11 球 31.9049 3.7009 458439.7915 屈折 8.7089
L5 12 球 -36.6050 2.3396 469827.7958 屈折 8.4515
13 球 -19.3008 0.1717 屈折 8.1998
L6 14 球 -17.8217 1.0000 830670.3657 屈折 8.1982
15 球 -41.7100 0.8200 屈折 8.1818
L7 16 球 -27.6160 2.3528 491879.5658 屈折 8.1040
17 球 -16.9399 11.0686 屈折 8.0771
O 18 球 無限 0.7894 屈折 4.9102
L8 19 球 49.5988 1.9135 691223.5549 屈折 4.7864
20 球 23.5700 0.2048 屈折 4.9513
L9 21 球 38.0540 3.2571 710409.2810 屈折 4.9520
L10 22 球 -9.8627 20.0000 797169.4654 屈折 5.1211
23 球 62.6996 9.6112 屈折 8.3667
L11 24 球 28.2951 9.7032 592555.4540 屈折 13.8385
25 球 -23.2121 0.4848 屈折 13.8553
L12 26 球 -21.6667 1.0000 846663.2378 屈折 13.7635
27 球 -120.7690 1.6952 屈折 14.5205
L13 28 非球面 39.9257 4.5299 E48R_ZEON 屈折 14.9486
29 非球面 152.3076 2.2365 屈折 15.4052
L14 30 非球面 244.0190 4.1639 E48R_ZEON 屈折 15.3207
31 非球面 39.2850 0.3068 屈折 16.5913
32 球 無限 20.0000 屈折 16.5529
33 球 無限 0.0000 屈折 21.5996
33 34 アナモルフィック面 451.8107 0.0000 反射 13.0178
35 球 無限 0.0000 屈折 16.5293
36 球 無限 -4.0000 屈折 16.5293
41 37 非球面 -107.8255 -23.4735 Z330R_ZEON 屈折 16.6719
38 球 無限 0.0000 Z330R_ZEON 屈折 12.4050
42 39 アナモルフィック面 11.9050 0.0000 Z330R_ZEON 反射 13.2834
40 球 無限 23.4735 Z330R_ZEON 屈折 24.8649
43 41 非球面 -30.3036 65.8130 屈折 18.0813
42 球 無限 56.8385 屈折 305.8360
43 球 無限 180.0883 屈折 523.5620
S 44 球 無限 0.0000 屈折 1213.4099
【0090】
各非球面係数は以下のとおりである。
【0091】
面番号 S28 S29 S30
Y曲率半径 39.9257 152.3076 244.0190
コーニック定数(K) -0.297488839 32.95732564 90
4次の係数(A) -5.01388E-05 -2.03391E-05 -6.39742E-05
6次の係数(B) 1.47280E-08 -3.29737E-07 -3.36064E-07
8次の係数(C) -2.63287E-10 4.87510E-10 1.05875E-09
10次の係数(D)
12次の係数(E)
【0092】
面番号 S31 S37 S41
Y曲率半径 39.2850 -107.8255 -30.3036
コーニック定数(K) 0 15.00641391 1.467641123
4次の係数(A) -1.48251E-04 -7.63360E-05 -2.35968E-05
6次の係数(B) 2.77482E-07 2.50708E-07 1.66107E-07
8次の係数(C) -2.20173E-10 -9.17212E-10 -8.79862E-10
10次の係数(D) 1.87990E-12 2.30362E-12
12次の係数(E) -2.08377E-15 -2.57301E-15
【0093】
各アナモルフィック面係数は以下のとおりである。
【0094】
面番号 S34 S39
X曲率半径 451.8107 11.9050
Y曲率半径 2153.0363 13.3158
Yコーニック定数 0 -4.12613
Y4次係数 3.41771E-09 4.33133E-05
Y6次係数 -2.99901E-10 -3.63472E-07
Y8次係数 8.96537E-14 1.30008E-09
Y10次係数 -4.70076E-32 -2.49970E-12
Xコーニック定数 0 -3.41961
X4次係数 6.86587E+00 -4.59189E-04
X6次係数 -2.43235E-01 -1.32122E-02
X8次係数 1.21947E+00 -1.02172E-02
X10次係数 -2.24052E+03 -9.93177E-03
【0095】
また、光学系3Cの画面幅拡大率、表示デバイス幅、開口数、TRは以下のとおりである。画面幅拡大率は、スクリーンSに投写された拡大像のアスペクト比における横の値を、液晶パネル18面上に形成された投写画像のアスペクト比における横の値で除算した値である。表示デバイス幅は、液晶パネル18面上の幅寸法であり、単位はmmである。開口数はNAで示す。TRは、スローレシオであり、投写距離を、投写画像をスクリーンSへ投写した時のX軸方向の寸法で除算した値である。
【0096】
画面幅拡大率 1.18
表示デバイス幅[mm] 8.2
NA 0.218
TR(0.37”16:9) 0.193
【0097】
ここで、図19図20を参照して、本例の画面幅拡大率について説明する。図19は、液晶パネル18上の投写画像P1の範囲を示す図である。図20は、スクリーンS上の拡大像P2の範囲を示す図である。図19の投写画像P1の右半分において、A1~A9の9個の光束の位置を設定している。図19の「A4」は、投写画像P1の中心の中央光束を示す。図20の拡大像P2において、A1~A9の位置は、投写画像P1のA1~A9から出射された光束が到達した位置を示す。本例の光学系3Cは、液晶パネル18で形成された投写画像P1のアスペクト比における横の値に対して、アスペクト比における横の値が「1.18」倍となる拡大像P2をスクリーンSに投写する。
【0098】
(実施例3の作用効果)
本例は、縮小側共役面と拡大側共役面との間に中間像35を形成する光学系3Cであって、第1光学系31と、第1光学系31の拡大側に配置された第2光学系32と、を有する。第1光学系31は、最も拡大側に、光反射面33aを有する偏向部材33を備える。第2光学系32は、縮小側から拡大側に向かって順に、第1透過面41、反射面42、および第2透過面43を有するレンズ34を備える。反射面42および光反射面33aは、自由曲面形状を有する。
【0099】
本例によれば、レンズ34の反射面42および偏向部材33の光反射面33aは、自由曲面形状を備える。従って、反射面42および光反射面33aの作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比を変換できる。従って、例えば、反射面42のみの作用によって投写画像と拡大像とのアスペクト比を変換する場合と比較して、本例は、アスペクト比を変換する自由度が高い。これにより、本例では、投写画像のX軸方向を拡大して、投写画像と拡大像のアスペクト比を、変換できる。
【0100】
ここで、本例では、レンズ34の反射面42および偏向部材33の光反射面33aの作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比を変換する。従って、4面の作用によりアスペクト比を変換する実施例1の光学系と比較して、アスペクト比の変換量は少ない。しかし、この点を除き、実施例1の光学系と同様の作用効果を得ることができる。
【0101】
また、本例では、自由曲面形状を設ける部品を、偏向部材33と、レンズ34と、の部品に分けている。従って、例えば、レンズ34に品質のばらつきが発生した場合でも、偏向部材33の品質により、収差の発生を抑制することが可能となる。従って、光学系の生産性が向上する。
【0102】
図21および図22は、光学系3Cによる拡大像の横収差を示す図である。図21およ
図22において、A1~A9は、図20の拡大像P2におけるA1~A9の光束の位置
に対応する。図21および図22に示すように、本例の光学系3は、拡大像における横
収差が抑制されている。
【0103】
(実施例4)
図23は、実施例3の光学系3Dの光線図である。なお、図23では、上述した形態と同様の構成について同一の符号を付して説明を省略する。本例の光学系3Dは、図23に示すように、縮小側から拡大側に向かって順に、第1光学系31、および第2光学系32からなる。
【0104】
第1光学系31は、縮小側から拡大側に向かって、第1光学素子38と、偏向部材39と、を備える。なお、本例の説明では、便宜上、互いに直交する3軸をX軸、Y軸、およびZ軸とする。Y軸方向は、第1光学素子38と偏向部材39との配列方向とする。Z軸方向は、液晶パネル18と第1光学素子38との配列方向とする。また、Y軸方向において第1光学素子38が位置する側をY2方向、偏向部材39が位置する側をY1方向とする。Z軸方向おいて、液晶パネルが位置する側をZ1方向、第1光学素子38が位置する側をZ2方向とする。
【0105】
第1光学素子38は、Z1方向を向く第1面51と、第1面51とは反対側を向く第2面と、Y1方向を向く第3面53を備える。第1光学素子38は、第1面51のY1方向の側に第1反射コーティング層を備える。さらに、第1光学素子38は、第2面52に第2反射コーティング層を備える。これにより、これにより、第1面51のY2方向の側の部分は、入射面61とされ、第1面51のY1方向の部分は第1反射面62とされている。第2面52は、第2反射面63とされている。第3面53は出射面64とされている。第1光学素子38を縮小側から拡大側に向かって通過する光線は、入射面61、第2反射面63、第1反射面62、および出射面64を、この順に経由する。
【0106】
偏向部材39は、第1光学素子38の側を向く第1面56と、第2光学系32の側を向く第2面57と、第2面57とは反対側を向く第3面58を備える。偏向部材39は、第2面57のY2方向の側に第1反射コーティング層を備える。偏向部材39は、第3面58に第2反射コーティング層を備える。これにより、第1面56は、入射面66とされる。第2面57のY2方向の側の部分は、第1反射面67とされ、第2面57のY1方向の側の部分は、出射面68とされる。第3面58は第2反射面69とされている。偏向部材39を縮小側から拡大側に向かって通過する光線は、入射面66、第1反射面67、第2反射面69、および出射面68を、この順に経由する。
【0107】
ここで、第2反射面69(光反射面)は、自由曲面形状である。また、Y軸およびZ軸を含む仮想の面を第1平面としたときに、第2反射面69は、第1平面に対して対称な形状を備える。本例では、第2反射面69は、アナモルフィック面である。
【0108】
第2光学系32は、1枚のレンズ34からなる。レンズ34は、偏向部材39のZ2方向に配置されている。レンズ34は、Z1方向を向く第1面36と、Z2方向を向く第2面37を備える。第1面36および第2面37は、いずれも凸形状を備える。レンズ34の光軸M2は、Z軸方向に延びる。
【0109】
レンズ34は、縮小側から順に、第1透過面41、反射面42、および第2透過面43を有する。第1透過面41は第1面36に設けられている。従って、第1透過面41は、凸形状を備える。反射面42は、レンズ34の第2面37に設けられた反射コーティング層である。従って、反射面42は、第2面37の表面形状が転写された凹形状を備える。反射面42の光軸は、レンズ34の光軸M2と一致する。第1透過面41と反射面42とは、Z軸方向に配列されている。第1透過面41と反射面42は、レンズ34の光軸M2のY2方向に位置する。第2透過面43は、第1面36に設けられている。従って、第1面36は、凸形状を備える。第1透過面41と第2透過面43とは、Y軸方向に配列されている。第2透過面43は、レンズの光軸M2のY1方向に位置する。
【0110】
本例において、第1透過面41、反射面42、および第2透過面43は、いずれも自由曲面形状である。また、第1透過面41、反射面42、および第2透過面43は、いずれも第1平面に対して対称な形状を備える。第1透過面41、反射面42、および第2透過面43は、いずれもアナモルフィック面である。
【0111】
本例によれば、レンズ34の反射面42および偏向部材39の第2反射面69は、自由曲面形状を備える。従って、反射面42および第2反射面69の作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比変換できる。従って、例えば、レンズの反射面のみの作用によって投写画像と拡大像とのアスペクト比を変換する場合と比較して、アスペクト比を変換する自由度が高い。これにより、本例では、投写画像のX軸方向を拡大して、投写画像と拡大像のアスペクト比を、変換できる。
【0112】
また、本例では、第1透過面41、および第2透過面43が、自由曲面形状を備える。これにより、偏向部材39の第2反射面69、レンズ34の反射面42、第1透過面41、および第2透過面43の作用により、縮小側共役面の投写画像と、拡大側共役面の拡大像との間でアスペクト比変換できる。従って、反射面および光反射面の2面の作用によりアスペクト比を変換する場合と比較して、変換量を大きくすることが容易である。
【0113】
(撮像装置)
図24は、本例の光学系3を備える撮像装置5の説明図である。本例の光学系3は、上記の実施例1~4に示す構成と同一の構成とすることができる。撮像装置5では、光学系3の縮小側共役面に撮像素子8を配置する。この場合、拡大側共役面200からの光線Q1は、レンズL15の第1面36において光軸Nの上方Y1に位置する第2透過面43に入射する。第2透過面43に入射した光線は光軸Nの下方Y2に位置する反射面42によって折り返される。反射面42により折り返された光線Q2は、光軸Nの下方に位置する第1透過面41から出射されて、第1光学系31に向かう。第1光学系31に入射した光線は、縮小側共役面に配置された撮像素子8上で結像する。
【0114】
本例の光学系3では、反射面42は、自由曲面形状を有する。また、第1透過面41、光反射面33aおよび第2透過面43のうち少なくとも1つは、自由曲面形状を有する。従って、例えば、反射面42のみの作用によって拡大側共役面200の拡大像と撮像素子8の撮像画像とのアスペクト比を変換する場合と比較して、本例は、アスペクト比を変換する自由度が高い。これにより、本例では、撮像画像のX軸方向を拡大して、撮像画像と拡大像のアスペクト比を、変換できる。
【符号の説明】
【0115】
1…プロジェクター、2…画像形成部、3、3A、3B、3C、3D…光学系、4…制御部、5…撮像装置、6…画像処理部、7…表示駆動部、8…撮像素子、10…光源、11…第1インテグレーターレンズ、12…第2インテグレーターレンズ、13…偏光変換素子、14…重畳レンズ、15…第1ダイクロイックミラー、16…反射ミラー、17R…フィールドレンズ、17G…フィールドレンズ、17B…フィールドレンズ、18R…液晶パネル、18G…液晶パネル、18B…液晶パネル、18R…各液晶パネル、19…クロスダイクロイックプリズム、21…第2ダイクロイックミラー、22…リレーレンズ、23…反射ミラー、24…リレーレンズ、25…反射ミラー、31…第1光学系、32…第2光学系、33…偏向部材、33a…光反射面、34…レンズ、35…中間像、36…第1面、37…第2面、38…第1光学素子、39…偏向部材、41…第1透過面、42…反射面、43…第2透過面、51…第1面、52…第2面、53…第3面、56…第1面、57…第2面、58…第3面、61…入射面、62…第1反射面、63…第2反射面、64…出射面、66…入射面、67…第1反射面、68…出射面、69…第2反射面、100…主光線、200…拡大側共役面、F1~F3…光束、L1~L14…レンズ、L21~L23…接合レンズ、C…中心、N…第1光軸、M1…設計軸、M2…第2光軸、P1…投写画像、P2…拡大像、Q1…光線、Q2…光線、S…スクリーン。





図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24