IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許-制御システム 図1
  • 特許-制御システム 図2
  • 特許-制御システム 図3
  • 特許-制御システム 図4
  • 特許-制御システム 図5
  • 特許-制御システム 図6
  • 特許-制御システム 図7
  • 特許-制御システム 図8
  • 特許-制御システム 図9
  • 特許-制御システム 図10
  • 特許-制御システム 図11
  • 特許-制御システム 図12
  • 特許-制御システム 図13
  • 特許-制御システム 図14
  • 特許-制御システム 図15
  • 特許-制御システム 図16
  • 特許-制御システム 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-02
(45)【発行日】2024-12-10
(54)【発明の名称】制御システム
(51)【国際特許分類】
   B60L 3/00 20190101AFI20241203BHJP
   B60L 1/00 20060101ALI20241203BHJP
   B60W 20/00 20160101ALI20241203BHJP
   B60W 20/10 20160101ALI20241203BHJP
   B60L 58/10 20190101ALI20241203BHJP
【FI】
B60L3/00 H
B60L1/00 L
B60W20/00 900
B60W20/10
B60L58/10
【請求項の数】 2
(21)【出願番号】P 2021021634
(22)【出願日】2021-02-15
(65)【公開番号】P2022124078
(43)【公開日】2022-08-25
【審査請求日】2023-11-08
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】東谷 光晴
(72)【発明者】
【氏名】池本 宣昭
(72)【発明者】
【氏名】執行 正勝
(72)【発明者】
【氏名】伊東 悠太郎
【審査官】安池 一貴
(56)【参考文献】
【文献】特開2021-002940(JP,A)
【文献】特開2002-036903(JP,A)
【文献】特開2016-215690(JP,A)
【文献】米国特許出願公開第2013/0184901(US,A1)
【文献】特開2010-280335(JP,A)
【文献】特表2017-536279(JP,A)
【文献】特開2015-51685(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60K 6/20- 6/547
B60L 1/00- 3/12
B60L 7/00-13/00
B60L 15/00-58/40
B60W 10/00-20/50
(57)【特許請求の範囲】
【請求項1】
車両(10)におけるパワー供給を制御する制御システム(100、100a、100b)であって、
前記車両の各機能を実現する複数のサブシステムのそれぞれにおける出力パワーを制御するサブパワーマネージャ(sm1-sm5)と、
前記複数のサブパワーマネージャと情報をやりとりすることによって、前記車両全体での出力パワーを統合して制御する統合パワーマネージャ(EM)と、
を備え、
前記複数のサブパワーマネージャと前記統合パワーマネージャとが互いにやりとりする前記情報には、パワー次元とエネルギ次元とのうちの少なくとも一方で表される物理量を算出可能な情報が含まれ
前記複数のサブシステムは、前記車両に搭載された1以上の装置と、前記1以上の装置との間で予め定められた種類のエネルギの出し入れを行うストレージ部と、を含む複数のドメイン(D1-D5)にそれぞれ対応し、
前記複数のサブパワーマネージャから前記統合パワーマネージャに送信される情報は、
前記サブシステムにおける要求パワー値と、
前記サブシステムにおける出力パワーの測定値または推定値と、
前記ストレージ部において蓄えられている蓄積エネルギ量値と、
前記ストレージ部における更なる貯蔵または放出可能な貯蔵放出可能エネルギ量値と、
前記ストレージ部における更なる貯蔵または放出可能な貯蔵放出パワー量値と、
のうちの少なくとも一部を含み、
前記複数のドメインは、前記車両の位置を前記ストレージ部として含む運動ドメインを含む、制御システム。
【請求項2】
請求項に記載の制御システムにおいて、
前記統合パワーマネージャから前記複数のサブパワーマネージャのそれぞれに送信される情報は、前記ストレージ部からの出力パワー提案値と、前記ストレージ部への入力パワー提案値と、前記サブシステムにおける入出力パワー制限値と、のうちの少なくとも一部を含む、制御システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、車両におけるパワー供給を制御する制御システムに関する。
【背景技術】
【0002】
従来から、車両においてパワー供給の制御を行う制御システムが提案されている。例えば、特許文献1の車両統合制御装置のように、エンジンを電気的に制御するためのアクチュエータ等の駆動系システムのアクチュエータを、駆動系のドライバの意思を抽出するためのセンサ、例えばアクセルセンサなどのセンサ等の出力に応じて制御することによって駆動系パワーを制御する制御システムが提案されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2006-297995号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
一般に、車両では、駆動系パワーに限らず、空気調和(以下、「空調」と呼ぶ)に用いるパワーや、パワーステアリング装置やハンドル用ヒータ装置などの補機に供給するパワーなど、様々な種類のパワーの制御が求められる。しかし、上記特許文献1の制御システムのように、単一種類のパワー制御を行う構成では、車両全体としてのパワーの需要と供給を適切に調整することは容易ではない。例えば、駆動系パワーは高い制御応答性が求められるのに対して、空調系パワーは高い制御応答性は必要無いといったパワーの特性の違いが互いに考慮されずにそれぞれ制御されてしまい、例えば、瞬間的に空調系パワーとして必要以上のパワーを供給する一方、駆動系パワーが足りなくなるという不具合が起こり得る。そこで、車両全体としてのパワーを適切に制御可能な技術が望まれる。
【課題を解決するための手段】
【0005】
本開示の一形態として、車両におけるパワー供給を制御する制御システムが提供される。この制御システムは、前記車両の各機能を実現する複数のサブシステムのそれぞれにおける出力パワーを制御するサブパワーマネージャと、前記複数のサブパワーマネージャと情報をやりとりすることによって、前記車両全体での出力パワーを統合して制御する統合パワーマネージャと、を備え、前記複数のサブパワーマネージャと前記統合パワーマネージャとが互いにやりとりする前記情報には、パワー次元とエネルギ次元とのうちの少なくとも一方で表される物理量を算出可能な情報が含まれる。前記複数のサブシステムは、前記車両に搭載された1以上の装置と、前記1以上の装置との間で予め定められた種類のエネルギの出し入れを行うストレージ部と、を含む複数のドメイン(D1-D5)にそれぞれ対応する。前記複数のサブパワーマネージャから前記統合パワーマネージャに送信される情報は、前記サブシステムにおける要求パワー値と、前記サブシステムにおける出力パワーの測定値または推定値と、前記ストレージ部において蓄えられている蓄積エネルギ量値と、前記ストレージ部における更なる貯蔵または放出可能な貯蔵放出可能エネルギ量値と、前記ストレージ部における更なる貯蔵または放出可能な貯蔵放出パワー量値と、のうちの少なくとも一部を含む。前記複数のドメインは、前記車両の位置を前記ストレージ部として含む運動ドメインを含む。
【0006】
この形態の制御システムによれば、統合パワーマネージャは、パワー次元とエネルギ次元とのうちの少なくとも一方で表される物理量を算出可能な情報が含まれる情報を、複数のサブパワーマネージャとやりとりすることによって、車両全体での出力パワーを統合して制御するので、車両全体としてのパワーを適切に制御できる。
【図面の簡単な説明】
【0007】
図1】本開示の一実施形態としての制御システムを搭載する車両の構成を模式的に示すブロック図である。
図2】制御システムの構成を示すブロック図である。
図3】エネルギマネージャと各サブマネージャとの間でやりとりされる情報を示す説明図である。
図4】パワーおよびエネルギ管理処理の手順を示すフローチャートである。
図5】ストレージ計画処理の手順を示すフローチャートである。
図6】車速の時系列予測の処理の一例を示す説明図である。
図7】瞬時パワー最適化の処理の一例を示すフローチャートである。
図8】パワー調停の手順を示すフローチャートである。
図9】パワー調停が実行される様子を模式的に示す説明図である。
図10】第2実施形態における車両の構成を模式的に示すブロック図である。
図11】第2実施形態における制御システムの構成を示すブロック図である。
図12】第3実施形態においてパワー調停が実行される様子を模式的に示す説明図である。
図13】第4実施形態における制御システムの構成を示すブロック図である。
図14】第4実施形態において、サブシステム優先度が変更される状況の一例を示す説明図である。
図15】第5実施形態におけるシステム更改前の機器リストの一例を示す説明図である。
図16】第5実施形態におけるシステム更改後の機器リストの一例を示す説明図である。
図17】第5実施形態の変形例における機器リストの一例を示す説明図である。
【発明を実施するための形態】
【0008】
A.第1実施形態:
A1.システム構成:
本開示の実施形態の制御システム100は、図1に示す車両10に搭載されて用いられる。制御システム100は、車両10におけるパワー供給を制御する。まず、車両10について説明する。
【0009】
本実施形態において車両10は、電気自動車(いわゆる「EV車両」)であり、バッテリd21に蓄電された電力によりモータジェネレータd23を駆動し、モータジェネレータd23から出力される駆動力を、トランスミッションd11を介してタイヤd12に伝達して走行する。
【0010】
本実施形態の制御システム100は、車両10を構成する各構成要素を複数のドメインに分けて管理する。ドメインとは、後述するサブマネージャ(サブマネージャsm1~sm5)がエネルギを管理する対象範囲を意味する。また、ドメインとは、同じ種類のエネルギを互いに出し入れする装置群およびそのエネルギの媒体とを含む概念である。各ドメインには、1以上の装置と、1以上の装置との間で予め定められた種類のエネルギの出し入れを行うストレージ部とが含まれている。図1に示すように、車両10には、合計5つのドメインが設定されている。具体的には、運動ドメインD1と、バッテリドメインD2と、補機ドメインD3と、冷却水ドメインD4と、空気調和(以下、「空調」と呼ぶ)ドメインD5とが設定されている。
【0011】
運動ドメインD1は、運動エネルギを互いに出し入れする装置群およびストレージ部を含む。なお、上述の運動エネルギには、後述の位置エネルギが含まれてもよい。具体的には、運動ドメインD1には、トランスミッションd11、タイヤd12、車体d13、ブレーキd14、位置d15、モータジェネレータd23が含まれている。トランスミッションd11は、モータジェネレータd23から出力される駆動力を、トルクや回転数に変換してシャフトを介してタイヤd12に伝える。タイヤd12は、路面との摩擦力により車体d13を前後に移動させる。車体d13は、シャーシやサイドメンバやクロスメンバ等の各種メンバを含む。ブレーキd14は、図示しないアクチュエータにより摩擦ブレーキの回転を制御して制動力を生じさせる。すなわち、ブレーキd14は、車体d13に蓄えられた運動エネルギをタイヤd12における摩擦熱等に変換させる。位置d15とは、車両10の位置を意味する。本実施形態において、位置とは、位置エネルギの源、すなわち、車両10の高さ方向の位置、つまり標高を意味する。運動ドメインD1においてハッチングを付与している車体d13および位置d15は、エネルギの出し入れを行い、上述の「ストレージ部」に相当する。車体d13は、動いている状態において運動エネルギを蓄え、減速する際に運動エネルギを失う。位置d15は、より高い位置においてよりエネルギを蓄える。モータジェネレータd23は、後述のバッテリドメインD2にも重複して含まれるため、詳細は後述する。
【0012】
バッテリドメインD2は、電気エネルギを互いに出し入れする装置群およびストレージ部を含む。具体的には、バッテリドメインD2には、バッテリd21、インバータd22、モータジェネレータd23、電動コンプレッサd24、DC-DCコンバータd31が含まれている。バッテリd21は、例えば、300V程度の高電圧を出力可能である。インバータd22は、バッテリd21から出力される直流電流を交流電流に変換し、モータジェネレータd23に供給する。また、その逆に、インバータd22は、モータジェネレータd23により生成される交流の回生電流を直流に変換してバッテリd21に供給する。インバータd22は、動作することにより発熱する。本実施形態では、かかる熱は後述の冷却水d42に与えられる。したがって、インバータd22は、バッテリドメインD2に含まれると共に、後述の冷却水ドメインD4に含まれる。モータジェネレータd23は、インバータd22から供給される電力によって回転する。また、トランスミッションd11から入力される回転(運動エネルギ)を電力(電気エネルギ)に変換する。上述のとおり、モータジェネレータd23は、電気エネルギを運動エネルギを変換すると共に運動エネルギを電気エネルギに変換する。また、モータジェネレータd23は、その回転動作により発熱する。そして、本実施形態では、インバータd22と同様に、モータジェネレータd23から生じた熱は、後述の冷却水d42に与えられる。したがって、モータジェネレータd23は、バッテリドメインD2に含まれると共に、後述の冷却水ドメインD4に含まれる。電動コンプレッサd24は、バッテリd21から供給される電力を受けて駆動し、冷凍サイクルにおける冷媒(後述の冷媒d53)を圧縮する。これにより、冷媒d53に熱を与える。したがって、電動コンプレッサd24は、バッテリドメインD2に含まれると共に、後述の空調ドメインD5にも含まれる。DC-DCコンバータd31については、後述する。バッテリドメインD2においては、バッテリd21が「ストレージ部」に相当する。また、バッテリd21では、電力を入出力することにより、内部にジュール熱が発生する。このことから、バッテリd21を、新たな熱エネルギのストレージとして追加してもよい。このバッテリd21で発生したジュール熱は、バッテリd21を冷却するための冷却水d42に与えられる。
【0013】
補機ドメインD3は、電気エネルギを互いに出し入れする装置群およびストレージ部を含む。具体的には、補機ドメインD3には、DC-DCコンバータd31、12Vバッテリd32、12V電気負荷d33が含まれている。DC-DCコンバータd31は、バッテリd21に接続されており、バッテリd21から供給される高電圧電力を、12Vの低電圧電力に変換する。12Vバッテリd32は、DC-DCコンバータd31と接続されており、DC-DCコンバータd31から供給される電力により蓄電する。また、12Vバッテリd32は、放電可能であり、12V電気負荷d33に対して12V電力を供給する。12V電気負荷d33は、DC-DCコンバータd31を介した電力の供給または12Vバッテリd32からの電力の供給を受けて動作する。12V電気負荷d33は、例えば、室内灯や前照灯などの灯火機器類の他、後述のナビゲーション装置201、GPS装置202、外部通信部210が有する通信用モジュール、タッチパネル等を含むユーザインターフェイス部220などが該当する。補機ドメインD3においては、12Vバッテリd32が「ストレージ部」に相当する。
【0014】
冷却水ドメインD4は、熱エネルギを互いに出し入れする装置群およびストレージ部を含む。具体的には、冷却水ドメインD4には、チラーd41、冷却水d42、ヒータコアd43、熱交換器d44、上述のモータジェネレータd23およびインバータd22が含まれている。チラーd41は、バッテリd21と冷却水d42との熱交換を行うことにより冷却水d42を冷やす。冷却水d42は、チラーd41と、ヒータコアd43と、熱交換器d44と、インバータd22と、モータジェネレータd23と、図示しないラジエータとの間で熱を媒介する。上述のように、インバータd22およびモータジェネレータd23は、動作により熱を生じる。かかる熱を冷却水d42に吸収させ、チラーd41または図示しないラジエータにより冷却することにより、バッテリd21、インバータd22およびモータジェネレータd23を冷却し、バッテリd21、インバータd22およびモータジェネレータd23が発熱により故障することを抑制している。また、冷却水d42は、ヒータコアd43を介してキャビンd51を温める。冷却水ドメインD4においては、冷却水d42が「ストレージ部」に相当する。
【0015】
空調ドメインD5は、空気調和のために、熱エネルギを互いに出し入れする装置群およびストレージ部を含む。具体的には、空調ドメインD5には、キャビンd51、エバポレータd52、冷媒d53、上述の電動コンプレッサd24、ヒータコアd43が含まれている。キャビンd51は、冷凍サイクルにより冷やされる。なお、キャビンd51は、図示しない室内コンデンサにより温められても良い。エバポレータd52は、冷凍サイクルを構成する図示しない室内コンデンサ、室外コンデンサ、レシーバ、およびエキスパンジョンバルブを通って低温且つ低圧化された霧状の冷媒d53によってキャビンd51から潜熱を奪ってキャビンd51を冷却すると共に、気化された冷媒d53を電動コンプレッサd24に送る。空調ドメインD5においては、キャビンd51が「ストレージ部」に相当する。
【0016】
制御システム100は、各ドメインに含まれる各装置や、各ドメインにおいて各装置の動作状態を把握するための各種センサと電気的に接続されており、各装置と通信し、また各センサにおける検出結果を取得するように構成されている。各種センサとしては、例えば、運動ドメインD1であれば、アクセルペダルの踏込量を検出するセンサ、車速を検出するセンサ、モータジェネレータd23の回転数を検出するセンサ、車両10の位置(高度)を検出するセンサなどが該当する。バッテリドメインD2であれば、バッテリd21のSOC(State Of Charge)を検出するセンサ、モータジェネレータd23への供給電流を検出するセンサなどが該当する。補機ドメインD3であれば、12Vバッテリd32のSOCを検出するセンサ、各電気負荷への供給電流を測定するセンサなどが該当する。冷却水ドメインD4であれば、冷却水d42の温度を検出するセンサなどが該当する。空調ドメインD5であれば、キャビンd51内の温度を検出するセンサ、電動コンプレッサd24の回転数を検出するセンサなどが該当する。
【0017】
図2に示すように、制御システム100は、互いにCAN(Controller Area Network)190に接続された複数のECU(Electronic Control Unit)および入出力インターフェイス部170を備える。入出力インターフェイス部170は、複数のECUが、後述のナビゲーション装置201、GPS装置202および外部通信部210とCANを介してデータをやりとりするためのインターフェイスを有する。複数のECUとは、エネルギマネージャECU110と、モータジェネレータECU130と、バッテリECU140と、補機ECU150と、空調ECU160とを意味する。
【0018】
エネルギマネージャECU110は、機能部として、エネルギマネージャEMを備える。すなわち、エネルギマネージャECU110が備えるCPUは、エネルギマネージャECU110が備えるメモリ内に記憶されている制御プログラムを実行することにより、エネルギマネージャEMとして機能する。エネルギマネージャEMは、後述する複数のサブマネージャsm1-sm5と情報をやりとりすることによって、車両10全体での出力パワーを統合して制御する。エネルギマネージャEMは、「統合パワーマネージャ」とも呼ばれる。エネルギマネージャEMは、後述のパワーおよびエネルギ管理処理を実行し、かかる処理において複数のサブマネージャsm1-sm5と情報をやりとりする。かかる情報の詳細については後述する。複数のサブマネージャsm1-sm5は、車両10の各機能を実現する複数のサブシステムにおける出力パワーを制御する。サブマネージャは、「サブパワーマネージャ」とも呼ばれる。本実施形態において、「複数のサブシステム」は、上述の5つのドメインD1-D5に対応する。サブマネージャsm1-sm5の詳細については、後述する。
【0019】
モータジェネレータECU130は、モータジェネレータd23の動作を制御する。モータジェネレータd23は、機能部として運動サブマネージャsm1を備える。運動サブマネージャsm1は、運動ドメインD1に対応し、車両10の走行や制動などを実現するサブシステムにおける出力パワーを制御する。本実施形態において「出力パワーの制御」とは、サブシステムに含まれる機器における出力パワーの要求値(以下、「要求パワー値」とも呼ぶ)を特定し、各機器から出力するパワーを決定し、かかるパワーを出力するように、各機器を動作させるアクチュエータに指示を送信する処理を意味する。
【0020】
バッテリECU140は、バッテリd21における蓄電および放電を制御する。バッテリECU140は、機能部としてバッテリサブマネージャsm2を備える。バッテリサブマネージャsm2は、バッテリドメインD2に対応し、高電圧電力の供給や回生電力の蓄電などを実現するサブシステムにおける出力パワーおよび入力パワーを制御する。本実施形態において「入力パワーの制御」とは、サブシステムに含まれるストレージ部への入力パワーの要求値(以下、「要求パワー値」とも呼ぶ)を特定し、かかるパワーでエネルギを蓄えるように、各機器を動作させるアクチュエータに指示を送信する処理を意味する。
【0021】
補機ECU150は、補機の動作を制御する。補機ECU150は、機能部として補機マネージャsm3を備える。補機マネージャsm3は、補機ドメインD3に対応し、補機(12V電気負荷d33)からなるサブシステムにおける出力パワーおよび入力パワーを制御する。
【0022】
空調ECU160は、空調を制御する。空調ECU160は、機能部として冷却水サブマネージャsm4と、空調サブマネージャsm5とを備える。冷却水サブマネージャsm4は、冷却水ドメインD4に対応し、冷却水と外部との熱交換、冷却水の循環等を実現するサブシステムにおける出力パワーおよび入力パワーを制御する。空調サブマネージャsm5は、空調ドメインD5に対応し、空調を実現するサブシステムにおける出力パワーを制御する。
【0023】
図2に示すナビゲーション装置201は、地図情報を備え、ユーザインターフェイス部220を介して入力される目的地の入力情報と、GPS装置202から得られる車両10の現在地の情報とに基づき、候補経路を求め、ユーザインターフェイス部220が有する図示しない表示部に経路情報を表示させる。また、表示部に表示された経路情報のうち、ユーザによって選択された経路に沿って、現在位置を特定し、表示部に表示させる。なお、地図情報は、ナビゲーション装置201に代えて、クラウドネットワーク上のサーバ装置などの外部の装置が有する構成としてもよい。かかる構成においては、ナビゲーション装置201は、サーバ装置と通信を行って地図情報を取得するようにしてもよい。GPS装置202は、GPS(Global Positioning System)衛星から出力される信号に基づき、現在位置を特定する。なお、GPS装置202に代えて、ガリレオや北斗といった任意の種類のGNSS(Global Navigation Satellite System(s))を実現可能な装置を用いてもよい。外部通信部210は、車両10の外部と通信を行うための機能部である。例えば、アンテナ、アンプ、符号化や復号化を行う機能部等であって、4G(第4世代)通信や、5G(第5世代)通信や、衛星通信等を実現可能な機能部であってもよい。ユーザインターフェイス部220は、ボタンやタッチパネル等の図示しない操作部と、液晶ディスプレイ等の図示しない表示部とを有し、ユーザに対して種々の入力を許容すると共に種々の情報を出力する。
【0024】
図3に示すように、車両10が始動すると、換言すると、図示しないスタートボタンが押下されると、各サブマネージャsm1-sm5からエネルギマネージャEMに対し、定期的に「要求パワー値」、「実パワー値」、「アベイラビリティ」、「蓄積エネルギ量値」が送信される。
【0025】
「要求パワー値」とは、サブマネージャが管理するサブシステム(ドメイン)が要求する合計パワーの値を意味する。各ドメインD1-D5において、サブマネージャsm1-sm5は、各機器の動作状態や、ユーザインターフェイス部220や図示しないアクセルペダル等から入力されるユーザ意思などに基づき、各ドメインにおける要求パワーを算出して要求パワー値を取得する。本実施形態において各サブマネージャsm1-sm5からエネルギマネージャEMに送信される「要求パワー値」は、「最終利用形態のパワーとしての要求パワー値」である。「最終利用形態のパワーとしての要求パワー値」とは、各ドメインにおいてやりとりされるエネルギの態様、例えば、熱エネルギ、運動エネルギ、電気エネルギに対応するパワーの要求値を意味する。熱エネルギに対応するパワーとは、例えば、単位時間当たりの温度変化量を意味する。運動エネルギに対応するパワーとは、例えば、単位時間当たりの加速度(現速度)の変化量や、単位時間当たりの位置(高度)の変化量を意味する。電気エネルギに対応するパワーとは、例えば、単位時間当たりの蓄電変化量を意味する。
【0026】
「実パワー値」とは、サブマネージャが管理するサブシステム(ドメイン)において実際に出力されている又は入力されているパワー値を意味する。かかるパワー値は、各種センサの値に基づき算出される。例えば、運動ドメインD1での実パワー値は、車速センサの検出値から車両10の加速度(減速度)を求めて算出され得る。バッテリドメインD2での実パワー値は、電流センサの検出値から算出され得る。補機ドメインD3での実パワー値は、補機ドメインD3に設けられた図示しない電流センサの検出値や、SOCセンサの検出値から算出され得る。冷却水ドメインD4での実パワー値は、冷却水d42の温度を検出する温度センサの検出値から算出され得る。空調ドメインD5での実パワー値は、キャビンd51内の温度を検出する温度センサの検出値から算出され得る。
【0027】
「アベイラビリティ」とは、各ドメインにおける入出力可能な量(上下限値)を意味する。アベイラビリティには、「エネルギアベイラビリティ」、「パワーアベイラビリティ」、「機器アベイラビリティ」が含まれる。
【0028】
「エネルギアベイラビリティ」とは、各ドメインにおいて入出力可能なエネルギ量の限界値を意味する。例えば運動ドメインD1であれば、運動エネルギの出力上限値および下限値が該当する。運動エネルギの出力上限値は、例えば、車両10に対する安全要件(法定速度等)、部品保護要件などが考慮されて定められる。また、運動エネルギの出力下限値は、例えば、安全要件(高速道路の法定最低速度等)や、快適性要件(法定速度に対し、所定値を差し引いた速度等)の他、現在地と目的地との間の標高差から求まる位置エネルギの差等が考慮されて定められる。また、冷却水の出力上下限は、水温の許容範囲における上下限と現在の水温との差によって求められるエネルギとして定めることができる。
【0029】
「パワーアベイラビリティ」とは、各ドメインにおいて入出力可能なパワー(単位時間当たりに入出力可能なエネルギ量)の限界値を意味する。運動ドメインD1であれば、車体d13の運動パワーを意味する。かかる運動パワーの出力限界値としては、安全要件(安全性を損なう過度な加減速や、タイヤのグリップに耐え得る加減速等)、部品保護要件、快適性要件(過度な加速や減速によるユーザに与える不快感等)などが考慮されて定められる。バッテリドメインD2であれば、バッテリd21への充電可能パワーおよびバッテリd21からの放電可能パワーを意味する。これらは主に、部品保護要件から定められる。冷却水ドメインD4であれば、冷却水d42への吸熱パワーおよび冷却水d42からの放熱パワーを意味する。空調ドメインD5であれば、キャビンd51への吸熱可能パワーおよびキャビンd51からの放熱可能パワーを意味する。キャビンd51の吸熱パワーの限界値は、例えば、乗員が不快に感じない温度変化速度から経験的に決定してもよい。
【0030】
「機器アベイラビリティ」とは、各装置における入出力パワーの限界値を意味する。かかる限界値は各機器に対して予め設定されている。例えば、モータジェネレータECU130は、焼き付きを回避するため、モータジェネレータd23の温度を検出する温度センサの検出値に応じて、モータジェネレータd23の出力トルク値を制限する。このため、かかるトルク値と回転数を掛け合わせて得られた値が、モータジェネレータd23についての機器アベイラビリティに該当する。なお、該当機器が故障している場合には、アベイラビリティを「0」(ゼロ)としてもよい。
【0031】
「蓄積エネルギ量値」とは、各ドメインにおけるエネルギ蓄積量(保有量)を意味する。運動ドメインD1であれば、運動ドメインD1のストレージ部(車体d13)に蓄えられている運動エネルギおよび位置エネルギの合計値を意味する。バッテリドメインD2であれば、バッテリd21への蓄電量、SOCを意味する。補機ドメインD3であれば、12Vバッテリd32への蓄電量、SOCを意味する。冷却水ドメインD4であれば、冷却水d42の熱エネルギの量を意味する。空調ドメインD5であれば、キャビンd51の空気の熱エネルギ量を意味する。
【0032】
車両10が始動すると、図3に示すように、エネルギマネージャEMから各サブマネージャsm1-sm5に対し、定期に「入出力パワー提案値」と「入出力パワー制限値」とが送信される。
【0033】
「入出力パワー提案値」とは、本実施形態では、「消費エネルギ量を低減する」というポリシーに基づき、エネルギマネージャEMが最適な入出力パワー値として求めた値を意味する。かかる入出力パワー提案値の求め方については、後述する。この入出力パワー提案値は、あくまでもエネルギマネージャEMからの提案値である。したがって、各サブマネージャsm1-sm5は、この入出力パワー提案値をあくまでも参考値として利用し、かかる値となるように各機器の制御を強制される訳ではない。
【0034】
「入出力パワー制限値」とは、各ドメインにおいて各サブマネージャsm1-sm5が入力パワーおよび出力パワーを制限する際の限界値として用いられる。換言すると、各サブマネージャsm1-sm5は、入出力パワー制限値の範囲内で、各ドメインに含まれる機器を制御できる一方、この入出力パワー制限値を超えてパワーを出力させる或いはパワーを入力させるように、各ドメインの機器を制御できない。入出力パワー制限値の求め方については、後述する。
【0035】
上記構成を有する制御システム100では、後述のパワーおよびエネルギ管理処理を実行することにより、車両10全体として入出力パワーを適切に制御できる。
【0036】
A2.パワーおよびエネルギ管理処理:
図4に示すパワーおよびエネルギ管理処理は、各ドメインD1-D5における入出力パワーおよび入出力エネルギを管理するための処理である。パワー及びエネルギ管理処理は、車両10が始動すると、制御システム100において実行される。図4に示すように、パワーおよびエネルギ管理処理では、ストレージ計画(ステップS10)、瞬時パワー最適化(ステップS20)、パワー調停(ステップS30)がこの順序で実行される。なお、パワー調停の後、上下限制約を考慮した上で、再度瞬時パワー最適化を実行してもよい。
【0037】
A2-1:ストレージ計画:
図5に示すように、ストレージ計画(ステップS10)は、ステップS105-S145からなるサブルーチンを含む。エネルギマネージャEMは、車両10の将来経路情報を取得する(ステップS105)。具体的には、車両10は、GPS装置202から車両10の現在位置を取得し、ナビゲーション装置201から設定されている経路情報を取得し、これらの情報に基づき、将来の経路情報を取得する。本実施形態では、経路情報は、緯度および経度と勾配についての情報が含まれる。勾配についての情報は、走行負荷を演算するために用いられる。また、標高を特定するために用いられてもよい。なお、ナビゲーション装置201において経路設定が行われていない場合、すなわち、経路案内機能が機能していない場合などには、現在走行中の経路から右左折せずに走行できる経路を、将来経路として設定してもよい。また、日常走行しているルートを学習し、車両10がそのルート上を走行していれば、学習した経路を将来経路としてもよい。
【0038】
エネルギマネージャEMは、ステップS105で取得した将来経路情報の示す将来経路における制限車速情報を取得する(ステップS110)。本実施形態では、かかる制限車速情報は、ナビゲーション装置201が有する地図情報から取得される。
【0039】
エネルギマネージャEMは、ステップS105で取得した将来経路情報の示す将来経路における渋滞情報を取得する(ステップS115)。具体的には、エネルギマネージャEMは、外部通信部210を介して外部の装置、例えば、渋滞情報を管理および発信している装置から取得する。エネルギマネージャEMは、ステップS105-S115によって取得された情報を利用して、将来における車両10の車速の時系列(変化)を予測する(ステップS120)。
【0040】
図6では、横軸が現在位置からの距離を、縦軸は車両10の車速を、それぞれ表している。図6において破線で示す変化L1は、地図上の上限車速の変化を示す。また、図6において太い実線で示す変化L2は、最終上限車速の変化を示す。「最終上限車速」とは、信号による停車も加味した上限速度を意味する。また、図6において細い実線で示す変化L3は、ステップS120の結果得られる車速の時系列予測(予測車速)を示す。
【0041】
エネルギマネージャEMは、ステップS110により得られた将来経路における制限車速情報から、変化L1を特定する。しかし、かかる変化L1は、信号機が前進を示す色に点灯している場合且つ渋滞が無い場合の制限速度の変化を示しているに過ぎず、信号機が停止を示す色(日本では赤色)に点灯する場合、および渋滞が発生している場合を考慮していない。そこで、エネルギマネージャEMは、信号機が停止を示す色になる場合を考慮する。具体的には、エネルギマネージャEMは、地図情報から信号機が設置されている場所(現在地からの距離)を特定する。そして、停止を示す色となる信号機を予測する。かかる予測は、例えば、将来経路上のすべての信号機の中からランダムに決めてもよいし、現在時刻における信号機の変化のサイクル情報を信号機から取得し、かかるサイクル情報に基づき推定してもよい。将来経路上のすべての信号機の中からランダムに決める構成においては、例えば、50%の信号機が停止を示す色となる信号機であるものとして予測してもよい。図6の例では、将来経路上に6つの信号機が存在し、これらのうちの2つの信号機が停止を示す色(赤色)である場合を表している。このように停止を示す色となる信号機が特定されると、変化L2に示すように、かかる信号機においては、車速は「0」(ゼロ)となる。そして、エネルギマネージャEMは、「最終上限車速となるようにユーザは運転を行う」との想定の下、また、加速度および減速度の推定値を利用して、変化L3に示すような予測車速を求める。
【0042】
図5に示すように、エネルギマネージャEMは、将来駆動パワーを算出する(ステップS125)。具体的には、下記式(1)に基づき駆動力Fdrvを求め、かかる駆動力FdrvにステップS120で求めた現在の車速vを乗じて駆動パワーを算出する。
【数1】
【0043】
上記式(1)において、Frl(v)は、車速vの関数であり走行抵抗を示す。ΔFrl(v,r)は、車速vとカーブ半径rの関数であり、走行抵抗増加分を示す。変数mは、車両10の総重量を示し、変数gは、重力加速度を示し、変数θは道路の勾配を示す。なお、走行抵抗増加分を、車速vとカーブ半径rとに加えて風の速度(wv)の関数ΔFrl(v,r,wv)により求めてもよい。
【0044】
図5に示すように、エネルギマネージャEMは、天候情報を取得する(ステップS130)。具体的には、エネルギマネージャEMは、外部通信部210を介して、天候情報を管理および配信する外部装置(クラウドネットワーク上のサーバ装置等)から将来の天気、気温などの天候に関する情報を取得する。なお、外部装置に変えて、車両10に天候や気温等を予測または実測するためのセンサを設けておき、かかるセンサの検出値に基づき天候情報を求めるようにしてもよい。
【0045】
エネルギマネージャEMは、ステップS130において取得された天候情報を利用して、将来の空調パワーの予測を行う(ステップS135)。空調パワーとは、空調に必要なパワーを意味する。本実施形態では、予め天候情報に対して用いられる空調パワーがテーブルとして記憶されており、取得された天候情報をキーとしてかかるテーブルを参照して空調パワーの予測を行う。なお、本予測では、空調パワーが所定時間変化しないという前提で予測してもよい。
【0046】
エネルギマネージャEMは、将来の補機パワーの予測を行う(ステップS140)。補機パワーとは、補機に必要なパワーを意味する。かかる予測は、ステップS105からステップS135までにおいて得られた情報を利用して行われる。例えば、将来経路がカーブが多い経路である場合には、ハンドルの操作回数が多くなることが見込まれ、この場合、補機としてのパワーステアリング装置に必要なパワーが増加することが見込まれる。また、例えば、現在時刻や、図示しない外部の明るさを検出する照度センサの検出結果を利用して、現在が夕方、夜、明け方であることが特定された場合には、各種照明装置が点灯し、これらの照明装置に必要なパワーが増加することが見込まれる。なお、将来において変動要素が無いと考えて、現状における補機の消費パワーを、将来の補機パワーとして予測してもよい。
【0047】
エネルギマネージャEMは、ステップS125で算出された将来駆動パワーと、ステップS135で予測された将来空調パワーと、ステップS140で予測された将来補機パワーとを足し合わせてトータル出力パワーを求め、かかるトータル出力パワーに基づき、各ドメインにおけるストレージ(エネルギ蓄積量)を計画する(ステップS145)。本実施形態では、「電力消費量を最小化する」とのポリシーの下、消費電力量を目的関数として、モデル化された車両10において、様々な自由度、例えば、バッテリd21の充放電量、12Vバッテリd32の充放電量、トランスミッションd11において使用するギアの種類、モータジェネレータd23の回転数等を様々に変化させて、トータル出力パワーの各ドメインへの分配を最適化する数理最適化技法を用いて予めシミュレーションしておき、かかるシミュレーション結果をテーブルとしてエネルギマネージャECU110に予め記憶させておく。或いは、本最適化では、各種情報に基づき数理最適化技法を用いてリアルタイムに最適化を図ってもよい。そして、ステップS145では、求められたトータル出力パワーをキーとしてテーブルを参照して、各ドメインにおけるパワーの配分を特定して各ドメインにおけるストレージを計画する。なお、計画されるストレージは、各ドメインにおいて出し入れされるエネルギの蓄積量を示す。例えば、運動ドメインD1であれば、運動エネルギおよび位置エネルギの合計値を示す車体d13の速度および位置を示す。また、例えば、冷却水ドメインD4であれば、冷却水d42に蓄えられた熱エネルギを示す冷却水d42の温度を示す。
【0048】
A2-2.瞬時パワー最適化:
瞬時パワー最適化(ステップS20)とは、各ドメインにおいて入出力されるパワーを最適化する処理を意味する。したがって、本処理は、各ドメインを対象に行われるが、図7では、冷却水ドメインD4に対する処理内容を例示している。
【0049】
図7に示すように、瞬時パワー最適化は、ステップS205およびS210からなるサブルーチンを含む。エネルギマネージャEMは、上述のストレージ計画のステップS145により得られたストレージ計画、すなわち、冷却水ドメインD4における熱エネルギの蓄積量の計画(冷却水d42の温度計画)における現在時刻での冷却水d42の温度と、冷却水サブマネージャsm4から受信する蓄積エネルギ量値に相当する冷却水d42の現在の実温度とを比較しその温度差分ΔTを特定する(ステップS205)。エネルギマネージャEMは、ステップS205で特定された温度差分ΔTに基づき、冷却水ドメインD4(冷却水サブシステム)における要求パワー値(パワー入力要求値およびパワー出力要求値)を決定する(ステップS210)。ステップS210において決定される要求パワー値は、冷却水ドメインD4において瞬時に入力または出力されるパワーとして、ストレージ計画に沿った最適なパワー値といえる。但し、あくまでも計画上において最適なパワー値であり、実際の走行に基づく最適値とは限らない。
【0050】
図7に示すような瞬時パワー最適化は、冷却水ドメインD4に限らず、他の4つのドメインD1-D3、D5においても同様にして実行される。すなわち、各ドメインD1-D3、D5におけるストレージ計画から導かれる現時点でのエネルギ蓄積量と、実エネルギ蓄積量との差分に基づき、予め定められたテーブルを参照して、最適化されたパワーが求められる。但し、本実施形態では、冷却水ドメインD4について実行された瞬時パワー最適化により得られる要求パワーは、パワー調停(ステップS20)において調停対象の要求パワーとして用いられ、他のドメインD1-D3、D5についての求められる要求パワーは、調停対象の要求パワーとしては用いられない。詳細については、後述する。
【0051】
A2-3.パワー調停:
パワー調停(ステップS30)とは、所定のポリシーに沿って車両10全体で適切なパワーの入出力が行われるように、各ドメイン間で入出力パワーを調停する処理を意味する。車両10全体としての入出力可能なパワー(瞬時的に出力可能なエネルギ)は、本実施形態では、「システムアベイラビリティ」と呼ばれ、有限値である。このため、各ドメインの要求パワーの合計値がシステムアベイラビリティを超えた場合、少なくとも一部のドメインについては、入出力パワーとしての要求値を下回るパワーのみを入力または出力しなければならない。そこで、各ドメインにどれだけの入出力パワーを許容するかを決定する処理が必要となり、かかる処理がパワー調停(ステップS30)に相当する。
【0052】
図8に示すように、パワー調停は、ステップS305およびS310からなるサブルーチンを含む。エネルギマネージャEMは、冷却水ドメインD4(冷却サブシステム)についてステップS210において算出した要求パワーと、他のドメインD1-D3、D5(他のサブシステム)の各サブマネージャsm1-sm3、sm5から受信した要求パワー値とを対象として、サブシステム優先度に従って調停を実行する(ステップS305)。サブシステム優先度とは、各サブシステム(各ドメイン)間の優劣を決めるための優先度であり、本実施形態では、予め固定的にエネルギマネージャECU110に設定されている。本実施形態では、以下のように設定されている。なお、かかる設定はあくまでも一例であり、他の任意の設定であってもよい。
補機ドメインD3>バッテリドメインD2>運動ドメインD1>冷却水ドメインD4>空調ドメインD5
【0053】
図9の左上に示すように、運動サブマネージャsm1から受信する要求パワー値RP1と、バッテリサブマネージャsm2から受信する要求パワー値RP2と、補機マネージャsm3から受信する要求パワー値RP3と、冷却水ドメインD4について瞬時パワー最適化のステップS210において決定された要求パワー値RP4と、空調サブマネージャsm5から受信する要求パワー値RP5とが、調停の対象となる。
【0054】
エネルギマネージャEMは、調停の対象となる5つの要求パワー値RP1-RP5を、サブシステムの優先度で並べる。その結果、図9の右上に示すように、優先度の高い側から低い側に、RP3、RP2、RP1、RP4、RP5の順序で並ぶこととなる。エネルギマネージャEMは、並べた要求パワー値を、優先度が最も高い要求パワー値から順番に足し合わせていき、システムアベイラビリティSAに達した時点で、その時点以降の要求パワーを除外する。図9の右上の例では、優先度が1位の要求パワー値RP3から4位の要求パワー値RP4まではすべての要求パワー値がシステムアベイラビリティSA内に含まれている。他方、要求パワー値RP5は、その一部が除外されている。このようにして、システムアベイラビリティSAを基準として、システムアベイラビリティSA内に含まれる要求パワー値が各ドメインにおける入出力パワー制限値として決定される。
【0055】
具体的には、図9の左下に示すように、要求パワー値RP1と同じ値が運動ドメインD1についての入出力パワー制限値lm1として決定される。同様に、要求パワー値RP2と同じ値がバッテリドメインD2についての入出力パワー制限値lm2として決定される。また、要求パワー値RP3と同じ値が補機ドメインD3についての入出力パワー制限値lm3として決定される、要求パワー値RP4と同じ値が冷却水ドメインD4についての入出力パワー制限値lm4として決定される。また、要求パワー値RP5のうち、システムアベイラビリティSAとの比較によって除外されたパワー値を除く残余のパワー値が空調ドメインD5についての入出力パワー制限値lm5として決定される。
【0056】
図8に示すように、エネルギマネージャEMは、ステップS305の調停により決定された入出力パワー制限値と、入出力パワー提案値とを各サブマネージャsm1-sm5に送信する(ステップS310)。本実施形態において、入出力パワー提案値として、瞬時パワー最適化のステップS210で決定された要求パワー値が用いられる。ステップS310が完了すると、パワーおよびエネルギ管理処理は終了し、次のサイクルタイムが到来すると、再びパワーおよびエネルギ管理処理が実行されることとなる。ステップS310において、入出力パワー制限値と、入出力パワー提案値とを受信した各サブマネージャsm1-sm5では、受信した情報を利用して、各ドメイン内に含まれる機器、ストレージ部の動作を制御する。
【0057】
(1-1)以上説明した第1実施形態の制御システム100によれば、エネルギマネージャEMは、パワー次元とエネルギ次元とのうちの少なくとも一方で表される物理量を算出可能な情報が含まれる情報(要求パワー値、実パワー値、アベイラビリティ、蓄積エネルギ量、入出力パワー提案値、入出力パワー制限値)を、複数のサブマネージャsm1-sm5とやりとりすることによって、車両10全体での出力パワーを統合して制御するので、車両10全体としてのパワーを適切に制御できる。
【0058】
(1-2)また、複数のサブシステムは、ストレージ部を含む複数のドメインD1-D5にそれぞれ対応しているので、エネルギマネージャEMは、各サブシステムに含まれるストレージ部におけるエネルギの出し入れを考慮して、各サブマネージャsm1-sm5に対して車両10全体での出力パワーを統合制御するための情報(入出力パワー制限値)を送信できる。また、例えば、一時的にサブシステムへの供給パワーに過不足が生じても、サブシステムに含まれるストレージ部を利用して目標入出力パワーと実際の入出力パワーとの誤差を補償できる。
【0059】
(1-3)また、複数のサブマネージャsm1-sm5からエネルギマネージャEMに送信される情報は、要求パワー値と、出力パワーの測定値(実パワー値)と、蓄積エネルギ量値と、を含むので、エネルギマネージャEMは、各サブシステムおよび各ドメインにおけるパワーに関する状況を精度良く特定できる。
【0060】
(1-4)また、エネルギマネージャEMから複数のサブマネージャsm1-sm5のそれぞれに送信される情報は、入出力パワー提案値と入出力パワー制限値とを含むので、各サブマネージャsm1-sm5は、エネルギマネージャEMから受信する情報を利用して、各サブシステムにおける入出力パワーを適切に制御できる。
【0061】
(2-1)また、エネルギマネージャEMは、各サブマネージャsm1-sm5から受信する要求パワー値を対象として複数のサブシステムの優先度であるサブシステム優先度に従った調停を実行することにより、各サブシステム(各ドメイン)における入出力パワー制限値を決定するので、各サブシステムにおける入出力パワーを適切な範囲に制御でき、かかる入出力パワーの適切な制御が継続して行われることにより、各サブシステムにおいて出し入れされるエネルギを適切に制御できる。このため、車両10全体としてのエネルギの出し入れを適切に制御できる。
【0062】
(2-2)また、少なくとも1つのサブシステムについては、ストレージ計画に基づき算出される要求パワーを対象として調停が実行されるので、ストレージ計画が適切に設定されていることを前提として、少なくとも冷却水ドメインD4について、ストレージ計画に沿った適切な要求パワー値が調停において用いられる。
【0063】
(3-1)また、エネルギマネージャEMは、車両10に搭載された1以上の装置と、1以上の装置との間で予め定められた種類のエネルギの出し入れを行うストレージ部と、を含む複数のドメインD1-D5にそれぞれ対応する複数のサブシステムのサブマネージャsm1-sm5と情報をやりとりすることによって車両10全体での出力パワーを統合制御し、また、各ドメインD1-D5のストレージ部における蓄積エネルギ量を計画するので、各ドメインD1-D5において互いに異なる複数種類のエネルギ(運動エネルギ、電気エネルギ、熱エネルギ)がストレージ部に出し入れされる構成においても、各ドメインD1-D5のストレージ部における複数種類の蓄積エネルギに跨がってエネルギ量を計画できる。
【0064】
(3-2)また、エネルギマネージャEMは、天気、温度、勾配等の走行関連情報と、経路情報とを取得し、取得された情報を利用して蓄積エネルギ量を計画するので、車両の走行状態および走行環境と、走行予定経路とに応じた適切な蓄積エネルギ量を計画できる。
【0065】
(3-3)また、エネルギマネージャEMは、各サブシステム(各ドメイン)のうちの少なくとも1つのサブシステムである冷却水ドメインD4のサブシステムについて、計画された蓄積エネルギ量に基づき要求パワー値を算出し、かかる要求パワー値と、他のサブシステムから受信した要求パワー値とを対象として調停を実行することにより、複数のサブマネージャsm1-sm5のそれぞれに送信される入出力パワー制限値を決定するので、各ドメインD1-D5のストレージ部における複数種類の蓄積エネルギに跨がって計画されたエネルギ量に応じた適切なパワーを、冷却水ドメインD4において出し入れさせることができる。
【0066】
B.第2実施形態:
図10に示す第2実施形態の車両10aは、ハイブリッド車両として構成されている。第2実施形態の車両10aは、燃料ドメインD6を備える点と、運動ドメインD1にエンジンd16を備える点と、バッテリドメインD2に電気ヒータd25を備える点と、インバータd22およびモータジェネレータd23が冷却水ドメインD4に含まれていない点と、チラーd41および熱交換器d44が省略されている点とにおいて図1に示す第1実施形態の車両10と異なる。第2実施形態の車両10aにおけるその他の構成は、第1実施形態の車両10と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。なお、第2実施形態の車両10aは、第1実施形態の車両10と同じ制御システム100を備えている。したがって、第1実施形態と同様にパワーおよびエネルギ管理処理が実行される。
【0067】
燃料ドメインD6は、化学エネルギを互いに出し入れする装置群およびストレージ部を含む。具体的には、燃料ドメインD6には、燃料d61が含まれている。なお、燃料ドメインD6には、燃料d61の他、燃料タンク、燃料ポンプ、燃料パイプなど、燃料の出し入れに関連する図示しないその他の装置も含まれている。ここで、エネルギマネージャEMから燃料ドメインD6(後述の燃料サブマネージャsm6)に送信される情報である入出力パワー提案値および入出力パワー制限値として、例えば、ジオフェンシング(住宅地での排気ガス禁止等)機能を適用する等で使用できる。すなわち、GPSにより住宅地等の特定地域に到着した際、燃料ドメインD6の出力パワーを「0」(ゼロ)とすればよい。
【0068】
エンジンd16は、燃料d61を燃焼させて駆動する。エンジンd16は、運動ドメインD1に含まれていると共に冷却水ドメインD4および燃料ドメインD6にも含まれている。すなわち、エンジンd16によって運動エネルギがもたらさせると共に、エンジンd16の動作により生じる熱エネルギが冷却水d42に吸熱される。
【0069】
電気ヒータd25は、バッテリd21からの給電により動作し、冷却水d42に熱を与える。ヒータコアd43は、エンジンd16により温められた冷却水d42を利用してキャビンd51に対して熱を加える。換言すると、ヒータコアd43は、冷却水d42とキャビンd51内との間で熱交換を行う。
【0070】
図11に示すように、第2実施形態の制御システム100aは、エンジンECU120を備える点において図2に示す第1実施形態の制御システム100と異なり、他の構成は制御システム100と同じである。エンジンECU120は、エンジンd16の動作を制御する。エンジンECU120は、機能部として燃料サブマネージャsm6を備えている。燃料サブマネージャsm6は、燃料ドメインD6に対応し、燃料サブシステムにおける出力パワーおよび入力パワーを制御する。
【0071】
以上説明した第2実施形態の制御システム100aは、第1実施形態の制御システム100と同様な効果を奏する。なお、第2実施形態において、インバータd22およびモータジェネレータd23の冷却用に、冷却水d42を用いる冷却水系統とは別の冷却水系統を持たせてもよい。
【0072】
C.第3実施形態:
第3実施形態の制御システム100は、パワー調停におけるステップS305の調停の具体的な方法が第1実施形態と異なる。第3実施形態の制御システム100におけるその他の構成は、第1実施形態の制御システム100と同じであるので、同一の構成要素および同一の手順には、同一の符号を付し、その詳細な説明を省略する。
【0073】
図12における左側に示すように、各サブマネージャsm1-3、sm5から受信する要求パワー値PR1a、PR2a、PR3a、PR5aと、冷却水ドメインD4について瞬時パワー最適化のステップS210において決定された要求パワー値PR4aとは、それぞれ、互いに異なるパワー優先度が設定された2種類の(2水準の)副要求パワー値からなる。本実施形態では、より高いパワー優先度が設定されている副要求パワー値を、第1副要求パワー値と呼び、図12では、ハッチングを施して表している。また、より低いパワー優先度が設定されている副要求パワー値を、第2副要求パワー値と呼び、図12では、ハッチングを施せずに表している。本実施形態において、第1副要求パワーとは、各ドメインにおいて最低限必要なパワー値(必達の入出力パワー:Must)を意味する。第2副要求パワー値は、余裕があれば満たされることが望ましいパワー値(所望する入出力パワー:Want)を意味する。
【0074】
各サブマネージャsm1-sm5では、予め第1副要求パワー値および第2副要求パワー値という2種類(2水準)の副要求パワー値を求め、パワー優先度の情報と共に、要求パワー値をエネルギマネージャEMに送信する。本実施形態では、サブシステム優先度は、パワー優先度ごとに全ドメイン間で予め設定されている。つまり、高いパワー優先度(第1副要求パワー値)に関して各ドメイン間のサブシステム優先度予め設定され、それとは独立して、低いパワー優先度(第2副要求パワー値)に関して各ドメイン間のサブシステム優先度予め設定されている。図12の例では、サブマネージャsm1は、要求パワー値PR1aとして、第1副要求パワー値m1と、第2副要求パワー値w1とをエネルギマネージャEMに送信している。同様に、バッテリサブマネージャsm2は、要求パワー値PR2aとして、第1副要求パワー値m2と、第2副要求パワー値w2とをエネルギマネージャEMに送信している。また、補機マネージャsm3は、要求パワー値PR3aとして、第1副要求パワー値m3と、第2副要求パワー値w3とをエネルギマネージャEMに送信している。また、空調サブマネージャsm5は、要求パワー値PR5aとして、第1副要求パワー値m4と、第2副要求パワー値w5とをエネルギマネージャEMに送信している。なお、本実施形態の瞬時パワー最適化のステップS210では、第1副要求パワー値m5と、第2副要求パワー値w4とが決定され、これらが冷却水ドメインD4における要求パワー値PR4aとしてエネルギマネージャEMにおいて用いられる。なお、各第1副要求パワー値m1-m5における数字「1」-「5」は、高いパワー優先度についてのサブシステム優先度を示している。また、各第2副要求パワー値w1-w5における数字「1」-「5」は、低いパワー優先度についてのサブシステム優先度を示している。
【0075】
エネルギマネージャEMは、調停の対象となる第1副要求パワー値m1-m5、および第2副要求パワー値w1-w5を、パワー優先度およびサブシステム優先度に基づき並べる。このときのルールには、パワー優先度が高い副要求パワー値は、パワー優先度が低い副要求パワー値よりも優先されるとのルールと、同じパワー優先度の副要求パワー値の中では、サブシステム優先度が高い副要求パワー値は、サブシステム優先度が低い副要求パワー値よりも優先されるとのルールとの両方が含まれる。図12の例では、かかるルールの下、優先度(総合の優先度)の高い側から低い側に、第1副要求パワー値m1、第1副要求パワー値m2、第1副要求パワー値m3、第1副要求パワー値m4、第1副要求パワー値m5、第2副要求パワー値w1、第2副要求パワー値w2、第2副要求パワー値w3、第2副要求パワー値w4、第2副要求パワー値w5の順序で並ぶこととなる。その後、エネルギマネージャEMは、第1実施形態と同様に、並べた要求パワー値を、優先度が最も高い要求パワー値から順番に足し合わせていき、システムアベイラビリティSAに達した時点で、その時点以降の要求パワーを除外する。その結果、図12の例では、第2副要求パワー値w4の一部と、第2副要求パワー値w5のすべてとが除外される。エネルギマネージャEMは、運動ドメインD1についての入出力パワー制限値lm1aとして、第1副要求パワー値m1と第2副要求パワー値w1とを足し合わせた値を運動サブマネージャsm1に送信する。また、エネルギマネージャEMは、バッテリドメインD2についての入出力パワー制限値lm2aとして、第1副要求パワー値m2と第2副要求パワー値w2とを足し合わせた値をバッテリサブマネージャsm2に送信する。また、エネルギマネージャEMは、補機ドメインD3についての入出力パワー制限値lm3aとして、第1副要求パワー値m3と第2副要求パワー値w3とを足し合わせた値を補機マネージャsm3に送信する。また、エネルギマネージャEMは、入出力パワー制限値lm4aとして、第1副要求パワー値m5と、第2副要求パワー値w4の一部とを、冷却水サブマネージャsm4に送信する。また、エネルギマネージャEMは、空調ドメインD5についての入出力パワー制限値lm5aとして、第1副要求パワー値m4を送信する。
【0076】
このように、第3実施形態では、システムアベイラビリティSAが各第1副要求パワー値m1-m5よりも大きな値である場合には、各ドメインD1-D5についての入出力パワー制限値として、少なくとも第1副要求パワー値m1-m5を送信することができる。このため、各ドメインにおいて最低限必要なパワー値(必達の入出力パワー:Must)を入出力することができる。
【0077】
以上説明した第3実施形態の制御システム100は、第1実施形態の制御システム100と同様な効果を奏する。
【0078】
(2-4)加えて、エネルギマネージャEMは、複数のサブマネージャsm1-sm3、sm5から受信する第1および第2副要求パワー値と、冷却水ドメインD4についてストレージ計画に基づく瞬時パワー最適化により得られる第1および第2副要求パワー値とを調停の対象とするので、各サブマネージャsm1-sm3から受信する要求パワー値、および冷却水ドメインD4についてストレージ計画に基づく瞬時パワー最適化により決定される要求パワー値をそれぞれ単一の値として調停する構成に比べて、より精密に各サブシステムについての要求パワーを調停できる。
【0079】
(2-5)また、複数のサブシステム(ドメイン)についての複数の第1副要求パワー値と、複数のサブシステム(ドメイン)についての複数の第2副要求パワー値と、には、それぞれ独立したサブシステム優先度が設定されるので、パワー優先度に応じた副要求パワー値(第1副要求パワー値、第2副要求パワー値)ごとに、それぞれ各サブシステム間の優先順を設けることができる。したがって、例えば、優先度が高いパワー(副要求パワー)については、或るサブシステムの優先度を最も高く調停し、優先度が低いパワー(副要求パワー)については、別のサブシステムの優先度を最も高く調整する、といったパワー(副要求パワー)のより細やかな調整を実現できる。
【0080】
(2-6)また、第1副要求パワー値および第2副要求パワー値のうち、第1副要求パワー値は、サブシステムにおける最低限の要求パワー値であるので、少なくとも最低限の要求パワー値について、サブシステム間の優先度に応じて調整でき、また、最低限の要求パワー値をより高いパワー優先度に設定しているので、各サブシステム(ドメイン)において、最低限の要求パワーを優先して調停できる。
【0081】
D.第4実施形態:
図13に示す第4実施形態の制御システム100bは、エネルギマネージャEMが優先度調整部111を備える点と、サブシステム優先度が固定値ではなく設定変更可能である点と、サブシステム優先度が外部装置からの指示に従って設定(調整)される点とにおいて、図2に示す第1実施形態の制御システム100と異なる。第4実施形態の制御システム100bにおける他の構成は、第1実施形態の制御システム100と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。
【0082】
図13に示す優先度調整部111は、サブシステム優先度を設定する。優先度調整部111は、入出力インターフェイス部170および外部通信部210を介して入力する外部通信装置からの指示に従って、サブシステム優先度を調整(設定)する。
【0083】
例えば、図14に示すように、一般道路rd1を走行していた車両10が、高速道路rd2に入るために、インターチェンジ900を走行中において、サブシステム優先度を設定(調整)してもよい。具体的には、インターチェンジ900の近傍であってインターチェンジ900を走行中の車両10と無線通信可能な距離に設置されている建物510内に、サブシステム優先度の変更を指示する装置500(以下、「優先度調整指示装置500」と呼ぶ)を配置する。この装置500は、装置500から所定距離範囲内の領域Ar1に車両10が進入したことを、例えば無線信号の受信信号強度等により特定すると、車両10に対して、所定のサブシステム優先度を送信する。すると、制御システム100において優先度調整部111は、受信したサブシステム優先度を、調停のために用いるサブシステム優先度として設定する。このとき設定されるサブシステム優先度として、高速道路rd2に入るにあたって車両10を十分に加速しておく必要があるため、運動ドメインD1についてのサブシステム優先度がより高くなるようなサブ優先度が設定され得る。他方、一般道路rd1を走行中においては、例えば、ユーザの温度に対する快適性を向上させる意図で、空調ドメインD5についてのサブシステム優先度がより高くなるようなサブ優先度が設定され得る。なお、装置500は、現在インターチェンジ900を走行中であることを制御システム100に通知し、かかる通知を受けた制御システム100においてエネルギマネージャEMがサブシステム優先度を変更する判断を行ってもよい。
【0084】
なお、本実施形態において、入出力インターフェイス部170は、本開示における「入力インターフェイス」に相当する。
【0085】
以上説明した第4実施形態の制御システム100bは、第1実施形態の制御システム100と同様な効果を奏する。
【0086】
(2-7)加えて、サブシステム優先度を固定値せずに調整できるので、天気や外気温や標高などの車両10の走行環境、走行時間帯、総走行距離など、車両10の状態や走行環境などの変化に応じてサブシステム優先度を設定でき、車両10の状態や走行環境などの変化に応じて、車両10全体としてのエネルギの出し入れの制御を適切に行うことができる。
【0087】
(2-8)また、優先度調整部111は、複数のサブシステム(ドメイン)に設定されるサブシステム優先度を、入出力インターフェイス部170を介して外部通信部210から入力されたサブシステム優先度に調整するので、入出力インターフェイス部170から(本実施形態では、より正確には、優先度調整指示装置500から)適切な優先度を入力することにより、車両10の状態や走行環境などの変化に応じて、車両10全体としてのエネルギの出し入れの制御を適切に行うことができる。
【0088】
(2-9)また、入力インターフェイス部は、通信インターフェイスを有するので、制御システム100bの外部から適切な優先度を入力できる。
【0089】
E.第5実施形態:
第5実施形態の制御システム100は、第1実施形態の制御システム100と同じ構成を有するので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。エネルギマネージャEMが行うストレージ計画(ステップS10)、瞬時パワー最適化(ステップS20)、パワー調整(ステップS30)において用いられるテーブルは、各ドメインに含まれる機器やストレージ部の種類、能力によって大きく変化し得る。そこで、第5実施形態の制御システム100では、機器やストレージ部の更改、さらには、サブシステム(ドメイン)自体の増減時に、これらの機器やストレージ部に関する情報を書き換える。
【0090】
第5実施形態のエネルギマネージャEMは、図15および図16に示す機器リストLs1、および機器リストLs1に記載されている各機器の情報(効率、最大出力等)を予め有している。機器リストLs1とは、車両10において搭載され得る各機器・サブシステムと、実際に搭載されているか否か(有無)を示す情報とを記録するリストである。図15の例では、電気ヒータ2については、搭載されていないものとして記録されている。しかし、電気ヒータ2が車両10に追加された場合、図16に示すように、電気ヒータ2についての有無フラグが、「有」を示す「1」に変化している。このため、エネルギマネージャEMは、この電気ヒータ2の存在を考慮して、瞬時パワー最適化等を行うことができる。
【0091】
また、第5実施形態の変形例として、エネルギマネージャEMは、図17に示す機器リストLs3を有してもよい。機器リストLs3には、各機器の能力(効率、最大出力、最小出力)に加えて、各ドメインD1-D5のうち、いずれのドメインからエネルギの供給を受け(IN)、いずれのドメインにエネルギを与えるか(OUT)を示す情報が記録されている。なお、各機器の能力については、スカラ値を記録してもよいし、マップを別に記録しておき、かかるマップを特定可能な情報を記録するようにしてもよい。この機器リストLs3は、予め車両10に搭載されることが想定されるすべての種類の機器をリストに記録しておき、「IN」を示す情報、および「OUT」を示す情報を追加、削除、変更することにより、該当機器についての追加、削除、変更を行うようにしてもよい。
【0092】
なお、各サブマネージャsm-sm5は、機器やサブシステムが更改された際に、更改された機器やサブシステムについての種類や能力(効率、最大出力、最小出力等)の情報を、エネルギマネージャEMに通知するようにしてもよい。また、通知する情報は、機器やサブシステムについての種類、最大入力パワー、最大出力パワーのうち、少なくとも一部を含むようにしてもよい。
【0093】
F.他の実施形態:
(F1)第1実施形態では、サブシステム優先度は固定的に設定されており、システムアベイラビリティSAの大きさによっては、優先度の低いドメインについては、常に要求パワー値よりも小さな値が入出力パワー制限値として設定されてしまい、常に入出力パワーに制限がかかってしまうことになる。そこで、例えば、図9における要求パワー値RP5のように、一部が除外されて入出力パワー制限値lm5が設定された場合には、制限されたパワー値、換言すると要求パワー値と入出力パワー制限値との差分を積算しておき、その積算値に応じて、サブシステム優先度を変更するようにしてもよい。例えば、積算値が閾値を超えた場合には、サブシステム優先度を1つ挙げる、サブシステム優先度を最も高くする、等の処理をおこなってもよい。なお、差分の積算値に変えて、差分の平均値や、所定時間内における差分の最大値等、任意の種類の差分の統計値に応じてサブシステム優先度を調整してもよい。
(2-11)かかる構成によれば、各サブマネージャから受信する要求パワー値と、各サブマネージャに送信する入出力パワー制限値との差分の統計値に応じて、サブシステム優先度が調整されるので、優先度に従って調停された結果、特定のサブシステムにおいて供給パワーの過不足が続くことを抑制できる。
【0094】
(F2)各実施形態において、エネルギマネージャEMおよび各サブマネージャsm1-sm5と、各ECU110-160とのマッピングは任意に行うことができる。例えば、エネルギマネージャECU110を省略して、モータジェネレータECU130が機能部としてエネルギマネージャEMを備える構成としてもよい。また、例えば、冷却水ECUを新たに設けて、かかる冷却水ECUが機能部として冷却水サブマネージャsm4を備える構成としてもよい。
【0095】
(F3)各実施形態において、各サブマネージャsm1-sm5からエネルギマネージャEMに送信される実パワー値に代えて、または、実パワー値に加えて、現在のパワー推定値を送信するようにしてもよい。例えば、直接的に実パワーを測定可能なセンサが無い構成においては、かかる実パワーを算出可能な値を検出するセンサの検出値を利用して実パワーを算出(推定)し、かかる推定値をエネルギマネージャEMに送信するようにしてもよい。
【0096】
(F4)各実施形態において、各サブマネージャsm1-sm5からエネルギマネージャEMに送信される情報として、各ドメインD1-D5のストレージ部において、更に貯蔵可能なエネルギ量値を、エネルギマネージャEMに送信してもよい。「更に貯蔵可能なエネルギ量値」とは、すなわち、ストレージ部における貯蔵可能限界エネルギ量と、現在のエネルギ貯蔵量との差分値を意味する。なお、上述の蓄積エネルギ量値は、「更に放出可能なエネルギ量」に相当する。
【0097】
(F5)第4実施形態では、サブシステム優先度を調整可能であったが、これを、第3実施形態におけるパワー優先度に適用してもよい。すなわち、第3実施形態において、サブシステム優先度に代えて、または、サブシステム優先度に加えて、パワー優先度についても調整可能に構成してもよい。かかる構成においても、第3および第4実施形態と同様な効果を奏する。
【0098】
(F6)第4実施形態では、入出力インターフェイス部170および外部通信部210を介して優先度調整指示装置500から入力される指示に従ってサブシステム優先度が調整されていたが、本開示はこれに限定されない。ユーザインターフェイス部220からユーザにより入力されるサブシステム優先度についての指示に従ってサブシステム優先度が調整されてもよい。かかる構成によれば、ユーザは、ユーザインターフェイス部220を利用して適切な優先度を入力できる。
【0099】
(F7)各実施形態では、各サブシステムは、各ドメインD1-D5に1対1で対応していたが、本開示はこれに限定されない。例えば、冷却水ドメインD4と空調ドメインD5とを1つのサブシステムと捉えてもよい。
【0100】
(F8)各実施形態において、エネルギマネージャEMから各サブマネージャsm1-sm5に送信される情報は、入出力パワー提案値と、入出力パワー制限値とであったが、入出力パワー提案値を省略してもよい。
【0101】
(F9)各実施形態では、冷却水ドメインD4については、他のドメインD1-D3、D5と異なり、瞬時パワー最適化の結果得られる要求パワーを、調停に用いていたが、本開示はこれに限定されない。冷却水ドメインD4に代えて、または、冷却水ドメインD4に加えて、他のドメインD1-D3、D5の少なくとも一部のドメインについて、瞬時パワー最適化の結果得られる要求パワーを、調停に用いる構成としてもよい。また、これとは逆に、全てのドメインD1-D5について、各サブマネージャsm1-sm5から受信する要求パワー値を調停に用いる構成としてもよい。
【0102】
(F10)各実施形態では、エネルギマネージャEMにおいてサブシステム優先度が設定されていたが、各サブマネージャsm1-sm5においてサブシステム優先度が設定されてもよい。かかる構成においては、各サブマネージャsm1-sm5は、要求パワー値と共にサブシステム優先度を示す情報を、エネルギマネージャEMに送信すればよい。
【0103】
(F11)第3実施形態では、各サブマネージャsm1-sm5は、第1副要求パワー値および第2副要求パワー値と共に、パワー優先度の情報を送信していたが、本開示はこれに限定されない。例えば、各サブマネージャsm1-sm5は、第1副要求パワー値および第2副要求パワー値の合計パワー値と、かかる合計パワー値のうち、第1副要求パワー値と第2副要求パワー値との割合を示す情報とを、エネルギマネージャEMに送信してもよい。かかる構成においても、エネルギマネージャEMは、各ドメインD1-D5における第1副要求パワー値および第2副要求パワー値を特定できる。かかる構成においては、「第1副要求パワー値と第2副要求パワー値との割合を示す情報」は、要求パワー値を、互いに異なるパワー優先度が設定されている複数の副要求パワー値に分割するための情報(分割用情報)とも呼ぶことができる。かかる構成においても、第3実施形態と同様な効果を奏する。
【0104】
(F12)本開示に記載のECU110-160及びそれら手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載のECU110-160及びそれら手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載のECU110-160及びそれら手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
【0105】
本開示は、上述の各実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
【符号の説明】
【0106】
10…車両、100,100a,100b…制御システム、sm1-sm5…サブマネージャ、EM…エネルギマネージャ、D1-D5…ドメイン
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17