(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-02
(45)【発行日】2024-12-10
(54)【発明の名称】異常検出装置及び方法
(51)【国際特許分類】
H02P 29/024 20160101AFI20241203BHJP
G01R 31/34 20200101ALI20241203BHJP
【FI】
H02P29/024
G01R31/34 A
(21)【出願番号】P 2021036621
(22)【出願日】2021-03-08
【審査請求日】2024-01-16
(73)【特許権者】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
(74)【代理人】
【識別番号】100101454
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100189555
【氏名又は名称】徳山 英浩
(74)【代理人】
【識別番号】100091524
【氏名又は名称】和田 充夫
(72)【発明者】
【氏名】佐藤 高洋
(72)【発明者】
【氏名】矢野 慧介
(72)【発明者】
【氏名】中村 昂洋
【審査官】池田 貴俊
(56)【参考文献】
【文献】国際公開第2019/082657(WO,A1)
【文献】特開2020-176998(JP,A)
【文献】国際公開第2021/029104(WO,A1)
【文献】特許第6824494(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 29/024
G01R 31/34
(57)【特許請求の範囲】
【請求項1】
電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
前記電流又は電圧のデータを周波数分析することで、前記周波数分析結果の最大ピーク値を有するピークの周波数幅を計算し、
前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
備える異常検出装置。
【請求項2】
前記周波数幅は前記最大ピーク値を有するピークの半値幅である、
請求項1に記載の異常検出装置。
【請求項3】
前記信号処理部は、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
前記電流又は電圧のデータの時間期間を複数時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算し、
前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する、
請求項1又は2に記載の異常検出装置。
【請求項4】
前記信号処理部は、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
前記電流又は電圧のデータの時間期間を2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算し、
前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する、
請求項1又は2に記載の異常検出装置。
【請求項5】
前記信号処理部は、前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記電流又は電圧のデータの2分割された時間期間をさらに2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算し、
前記計算された周波数幅が所定のさらに別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する、
請求項4に記載の異常検出装置。
【請求項6】
電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
前記電流又は電圧のデータの時間期間を複数分割して周波数分析することで、各周波数分析結果の最大ピーク値を有する周波数のうちの最高周波数と最低周波数の差周波数を計算し、
前記計算された差周波数が所定の差周波数しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
備える異常検出装置。
【請求項7】
電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出方法であって、
信号処理部が、前記電流又は電圧のデータを周波数分析することで、前記周波数分析結果の最大ピーク値を有するピークの周波数幅を計算ステップと、
前記信号処理部が、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
含む異常検出方法。
【請求項8】
前記周波数幅は前記最大ピーク値を有するピークの半値幅である、
請求項7に記載の異常検出方法。
【請求項9】
前記信号処理部が、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
前記電流又は電圧のデータの時間期間を複数時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算するステップと、
前記信号処理部が、前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
さらに含む請求項7又は8に記載の異常検出方法。
【請求項10】
前記信号処理部が、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
前記電流又は電圧のデータの時間期間を2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算するステップと、
前記信号処理部が、前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
さらに含む請求項7又は8に記載の異常検出方法。
【請求項11】
前記信号処理部が、前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記電流又は電圧のデータの2分割された時間期間をさらに2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算ステップと、
前記信号処理部が、前記計算された周波数幅が所定のさらに別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップと、
をさらに含む請求項10に記載の異常検出方法。
【請求項12】
電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出方法であって、
信号処理部が、前記電流又は電圧のデータの時間期間を複数分割して周波数分析することで、各周波数分析結果の最大ピーク値を有する周波数のうちの最高周波数と最低周波数の差周波数を計算するステップと、
前記信号処理部が、前記計算された差周波数が所定の差周波数しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
含む異常検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えばモータ等の回転機の異常状態を検出する異常検出装置及び方法に関する。
【背景技術】
【0002】
モータの状態を診断する監視機器において、センサで取得した例えばモータ電流のデータを周波数分析したときに、常時現れるピーク以外にノイズ成分が見られた場合、それを異常状態と判断し、ノイズ成分を数値化して異常の度合いを示すことが行われている。
【0003】
例えば、特許文献1では、周期的な雑音が存在する場合でも、音声信号に基づいて回転が発する音の周期に相当する周波数を特定可能な異常検出装置が開示されている。この異常検出装置は、所定枚数の羽を有する回転体から発せられる周期的な音及び他の物体から発せられる周期的な音が表された音声信号の包絡線を検波し、包絡線からフレームごとに音声信号の周波数スペクトルを算出し、フレームごとに、そのフレームにおける回転体から発せられる音の周期に相当する周波数の候補を検出する。次いで、フレーム毎に、そのフレームについて検出された候補における周波数スペクトルの成分のパワーに対する、パワーの変動が一定以下となる継続時間を求め、継続時間が最長となる候補を回転体から発せられる音の周期に相当する周波数として特定する。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上述の従来技術では、モータの回転速度が一定であることが前提となっており、仮に測定期間中にモータの駆動周波数が変動した場合、常時現れるピークとノイズ成分の切り分けが困難となる。その結果、常時現れるピークをノイズ成分として判断してしまい、診断結果の異常度合いが高くなってしまうという問題点があった。
【0006】
ユーザは、正しい診断結果を得るためには、少なくとも診断のための測定を行っている間はモータの回転速度を一定に保たなければならない。また、診断結果の異常度合いが大きくなった場合、それが実際にモータの異常に起因するものか、モータの回転速度が変化したことによるものかをユーザ側で切り分けなければならない。
【0007】
本発明の目的は以上の問題点を解決し、従来技術に比較して高い精度でモータの異常状態を検出することができる異常検出装置及び方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明の一態様に係る異常検出装置は、
電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
前記電流又は電圧のデータを周波数分析することで、前記周波数分析結果の最大ピーク値を有するピークの周波数幅を計算し、
前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
備える。
【0009】
本発明の別の一態様に係る異常検出装置は、
電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
前記電流又は電圧のデータの時間期間を複数分割して周波数分析することで、各周波数分析結果の最大ピーク値を有する周波数のうちの最高周波数と最低周波数の差周波数を計算し、
前記計算された差周波数が所定の差周波数しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
備える。
【発明の効果】
【0010】
従って、本発明に係る異常検出装置等によれば、前記モータの回転速度が変化したか否かを検出することで、従来技術に比較して高い精度でモータの異常状態を検出することができる。
【図面の簡単な説明】
【0011】
【
図1】実施形態1に係るモータの異常検出装置4の構成例を示すブロック図である。
【
図2】
図1のプロセッサ10により実行される異常検出処理を示すフローチャートである。
【
図3】
図1の異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【
図4】
図2の異常検出処理において設定される周波数幅しきい値を設定する考え方を説明するためのモータ電流のスペクトルの一例を示すグラフである。
【
図5】実施形態2に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。
【
図6】実施形態2に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【
図7】実施形態3に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。
【
図8】実施形態3に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【
図9】実施形態4に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。
【
図10】実施形態4に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【発明を実施するための形態】
【0012】
以下、本発明に係る実施形態について図面を参照して説明する。なお、同一又は同様の構成要素については同一の符号を付している。
【0013】
(実施形態1)
図1は実施形態1に係るモータの異常検出装置4の構成例を示すブロック図である。
図1は異常検出装置4及びその周辺回路を示しており、交流電源1からの交流電力は電流センサ3を介してモータ2に供給される。
図1において、異常検出装置4は、AD変換器11と、周波数分析部12及び異常検出部13を有して「信号処理部」を構成するプロセッサ10と、表示部14とを備えて構成される。ここで、周波数分析部12及び異常検出部13はそれぞれメモリ12m,13mを有する。
【0014】
図1において、電流センサ3は、交流電源1からモータ2に供給される電流の電流値を検出して、電流値を示す検出信号をAD変換器11に出力する。AD変換器11は、入力される検出信号を、電流値を示す電流データにAD変換した後、周波数分析部12に出力する。周波数分析部12は、所定の時間期間T1の電流データのAD変換値に対して高速フーリエ変換(FFT)処理を実行し、スペクトルのFFT値(パワー)を計算してメモリ12mに格納する。異常検出部13は、計算されたスペクトルのFFT値において、最大ピーク値の周波数幅(例えば半値幅)を検索してメモリ13mに格納し、検索された最大ピーク値の周波数幅が所定の周波数幅しきい値以上であるか否かを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動しており、モータ1の回転速度が変化したと判断して判断結果を表示部14に表示する。一方、異常検出部13は、検索された最大ピーク値の周波数幅が所定の周波数幅しきい値を超えないときに、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断して判断結果を表示部14に表示する。
【0015】
図2は、
図1のプロセッサ10により実行される異常検出処理を示すフローチャートである。
【0016】
図2のステップS1において、電流センサ3により検出された所定時間期間T1の電流値のAD変換値を入力し、ステップS2において、周波数分析部12は、所定期間期間T1の電流値のAD変換値に対して、メモリ12mを用いてFFT処理を実行してスペクトルとのFFT値(パワー)のスペクトルを計算する。次いで、ステップS3において、異常検出部13は、計算されたスペクトルのFFT値において、最大ピーク値の周波数幅(例えば半値幅)を計算し、ステップS4において計算された周波数幅≧所定の周波数幅しきい値であるか否かがを判断する。なお、異常検出部13は、ステップS3~S6の処理を実行する。ステップS4において、YESのときはステップS5に進む一方、NOのときはステップS6に進む。ステップS5において、駆動周波数が変動しており、モータ1の回転速度が変化したと判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS6において、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。
【0017】
次いで、実施形態1に係る異常検出装置4の実施例について以下に説明する。
【0018】
図3は
図1の異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【0019】
実施形態1では、
図3に示すように、モータ1の駆動電流に対して周波数分析した最大ピーク値の周波数幅(例えば半値幅Fwp)があらかじめ設定した周波数幅しきい値を超えている場合に、駆動周波数が変動したと判定する。例えば4秒間の電流波形を周波数分析し、最大のピークに対して、例えば半値幅(-6dB下がる幅)Fwpを算出し、算出した半値幅が所定の周波数幅しきい値を超えるときに駆動周波数が変動したと判定する。
【0020】
図4は
図2の異常検出処理において設定される周波数幅しきい値を設定する考え方を説明するためのモータ電流のスペクトルの一例を示すグラフである。
【0021】
前記周波数幅しきい値は、モータ1のすべり周波数(通常は1Hz~2Hz程度)×2倍程度に設定することが好ましい。これは、駆動周波数±すべり周波数の周波数帯にモータの回転子異常の傾向が現れるので、すべり周波数分だけ駆動周波数が変動すると、回転子異常の成分がその駆動周波数成分に埋もれてしまって、その異常が捉えられなくなる。その異常が捉えられるかどうかを判断するために、周波数幅しきい値は上記の考え方で設定することが好ましい。
【0022】
以上説明したように、実施形態1によれば、電流データに対してFFT処理を実行して計算されたスペクトルの最大ピーク値を有するピークの周波数幅が所定の周波数幅しきい値以上であるか否かがを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動しているか否かに応じてモータ1の回転速度が変化したか否かを判断している。従って、従来技術に比較して高い精度でモータの異常状態を検出することができる。
【0023】
以上の実施形態1では、
図4のステップS4で判断する周波数幅は例えば半値幅であるが、本発明はこれに限らず、最大ピーク値のピークに係る所定の周波数幅であってもよい。すなわち、最大ピーク値から所定の値(例えば-3dB、-8dBなど)だけ下がる周波数幅であってもよい。これは、後述する実施形態2~4においても同様である。
【0024】
(実施形態2)
図5は実施形態2に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。なお、実施形態2に係る異常検出装置4の装置構成は、
図1と同様である。実施形態2に係る異常検出処理は、
図2の実施形態1に係る異常検出処理と比較して、以下の相違点を有する。
【0025】
(1)ステップS5の処理に代えて、ステップS5Aの処理を実行する。
(2)ステップS7~S11の処理を追加して実行する。
以下、相違点について説明する。
【0026】
なお、ステップS4の周波数幅しきい値は、実施形態1と同様の周波数幅しきい値であるが、ステップS9の周波数幅しきい値は、実施形態1とは別の周波数幅しきい値を用いる。これについては、後述する実施形態3でも同様である。
【0027】
図5において、ステップS5Aにおいて、異常検出部13は、駆動周波数が変動していると判断した後、ステップS7に進む。なお、異常検出部13は、ステップS3~S11の処理を実行する。ステップS7では、所定期間期間T1の電流値のAD変換値を、複数の所定の時間期間T2(<T1)に分割して各時間期間T2毎に、メモリ12mを用いてFFT処理を実行してFFT値(パワー)を計算する。次いで、ステップS8において、各時間期間T2のFFT値に基づいて、各時間期間T2の最大ピーク値を検索し、最大ピーク値の半値幅を計算し、ステップS9において、計算された周波数幅≧所定の別の周波数幅しきい値であるか否かを判断する。ここで、別の周波数幅しきい値は、ステップS4の周波数幅しきい値よりも小さい値に設定され、例えばステップS7の時間期間の分割数をNdとすると、別の周波数幅しきい値は、ステップS4の周波数幅しきい値をNdで除算した値などに設定される。
【0028】
ステップS9において、YESのときはステップS10に進む一方、NOのときはステップS11に進む。ステップS10において、駆動周波数が変動していると判断し、モータ1の回転速度が変化したと判断して、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS11では、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、また、最大のピーク値の周波数を駆動周波数と判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。
【0029】
図6は実施形態2に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【0030】
図6において、モータの電流データに対して周波数分析したスペクトルの最大ピーク値の周波数幅(半値幅Fpw)が所定の周波数幅しきい値以上である場合に、駆動周波数が変動していると判定する(
図6(a))。次いで、周波数分析する時間期間T1を細かく分割して、再度周波数分析する。
図6の例では、
図6(b)~
図6(e)に示すように、
(1)0~1秒の時間期間と、
(2)1~2秒の時間期間と、
(3)2~3秒の時間期間と、
(4)3~4秒の時間期間と、
の4個の時間期間に分割してFFTを行っている。ここで、前記分割して周波数分析した最大ピーク値の半値幅Fpwが所定の周波数幅しきい値以上である場合に、駆動周波数が変動したと判定し、所定の周波数幅しきい値未満である場合は、最大ピーク値に対応する周波数を駆動周波数と判定する。
【0031】
以上説明したように、実施形態2によれば、電流データに対してFFT処理を実行して計算されたスペクトルの最大ピーク値を有するピークの周波数幅が所定の周波数幅しきい値以上であるか否かがを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動していると判断した後、時間期間を分割して再度FFT処理を実行して別の周波数幅しきい値を用いて駆動周波数の変動を判断してモータ1の回転速度が変化したと判断している。従って、従来技術に比較して高い精度でモータの異常状態を検出することができる。
【0032】
(実施形態3)
図7は、実施形態3に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。なお、実施形態3に係る異常検出装置4の装置構成は、
図1と同様である。実施形態3に係る異常検出処理は、
図5の実施形態2に係る異常検出処理と比較して、以下の相違点を有する。
【0033】
(1)ステップS6に代えて、ステップS6Aの処理を実行する。
(2)ステップS7に代えて、ステップS7Aの処理を実行する。
(3)ステップS10~S11に代えて、ステップS21~S22を実行し、ここで、ステップS9でYESのときは、ステップS21の時間期間T1,T2を変更した後、ステップS7Aに戻る。
以下、相違点について説明する。
【0034】
図7のステップS6においてNOのときは、ステップS6Aにおいて、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、また、最大のピーク値の周波数を駆動周波数と判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS6においてYESのときは、ステップS5Aにおいて、駆動周波数が変動していると判断して、ステップS7Aに進む。
【0035】
ステップS7Aにおいて、所定の時間期間T1の電流値のAD変換値を、2個の所定の時間期間T2に2分割して各時間期間T2毎に、メモリ12mを用いてFFT処理を実行してスペクトルのFFT値(パワー)を計算し、ステップS8において、各時間期間T2のFFT値に基づいて、各時間期間T2の最大ピーク値を検索し、最大ピーク値の周波数幅(例えば半値幅)を計算する。ステップS9では、計算された周波数幅≧所定の周波数幅しきい値であるか否かが判断され、YESのときはステップS21に進む一方、NOのときはステップS22に進む。
【0036】
ステップS22において、モータ1の駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、また、最大のピーク値の周波数を駆動周波数と判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。ステップS21において、駆動周波数が変動していると判断し、時間期間T1/2(これは、現時点における時間期間T2に対応する)を時間期間T1に置き換えて代入し、時間期間T2/2を時間期間T2に置き換えて代入し、ステップS7Aに戻る。すなわち、周波数幅を計算するFFT処理の対象とする時間期間を前回の計算に比較して半分に設定することを意味する。
【0037】
以上の実施形態3では、ステップS9の別の周波数幅しきい値を、例えばステップS3の周波数幅しきい値の半分としているが、本発明はこれに限らず、ステップS9の処理を2回目以降判断するときは、別の周波数幅しきい値をさらに半分にしてもよい。すなわち、ステップS21において、別の周波数幅しきい値を半分にして置き換えるようにしてもよい。この場合は、時間期間T1=2×T2である場合であり、時間T1=Nf×T2(N≧3の自然数)であるときは、別の周波数幅しきい値を1/Nfして置き換えてもよい。
【0038】
図8は実施形態3に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【0039】
実施形態3では、モータ1の電流データに対して周波数分析した最大ピーク値の周波数幅が所定の周波数幅しきい値以上であるときに、駆動周波数が変動していると判定し、このとき、周波数分析する時間期間を半分に分割して、再度、周波数分析する。その分割して周波数分析した最大ピーク値の周波数幅が前記別の周波数幅しきい値以上であるときに、駆動周波数が変動していると判定するが、周波数幅しきい値未満のときは最大ピーク値に対応する周波数が駆動周波数と判定する。これに対して、分割して周波数分析した最大ピーク値の周波数幅が前記別の周波数幅しきい値以上である場合には、さらに時間期間を半分にして周波数分析し、同じ判定を繰り返す。
【0040】
図8に示すように、例えば4秒間の電流データを周波数分析し、最大ピーク値から例えば半値(-6dB)下がる半値幅Fpwを算出し(
図8(a))、半値幅Fpwが所定の周波数幅しきい値以上のときに、駆動周波数が変動していると判定し(
図8(b))、周波数幅しきい値未満のときに当該最大ピーク値を有するピークに対応する周波数を駆動周波数と判定する(
図8(c))。一方、駆動周波数が変動していると判定した場合、例えば2秒毎で周波数分析を再度行う(
図8(d),(e))。2秒毎の周波数分析結果であるスペクトルの最大ピーク値から例えば半値下がる半値幅Fpwを算出し、再度算出された半値幅Fpwが所定の別の周波数幅しきい値未満のときに、当該半値幅Fpwに係るピークは駆動周波数のピークと判定する。ここで、当該半値幅Fpwが前記別の周波数幅しきい値以上であるときに、駆動周波数が変動していると判定し、さらに1秒毎で周波数分析して、駆動周波数が変動している駆動周波数の最大ピークが判定できるまで繰り返す。
【0041】
以上説明したように、実施形態3によれば、電流データに対してFFT処理を実行して計算されたスペクトルの最大ピーク値を有するピークの周波数幅が所定の周波数幅しきい値以上であるか否かがを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動していると判断する。次いで、時間期間を2分割して再度FFT処理を実行して別の周波数幅しきい値を用いて駆動周波数の変動を判断し、駆動周波数がいまだ変動していると判断されたときに、さらに時間期間を2分割して再度FFT処理を実行して別の周波数幅しきい値を用いて駆動周波数の変動を判断することでモータ1の回転速度が変化したか否かを検出している。従って、従来技術に比較して高い精度でモータの異常状態を検出することができる。
【0042】
(実施形態4)
図9は実施形態4に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。なお、実施形態4に係る異常検出装置4の装置構成は、
図1と同様である。実施形態3に係る異常検出処理は、
図2の実施形態1に係る異常検出処理と比較して、以下の相違点を有する。
【0043】
(1)ステップS2,S3,S4の各処理をそれぞれ、ステップS2A,S3A,S4Aに置き換えて実行する。
以下、相違点について説明する。
【0044】
図9のステップS2Aにおいて、周波数分析部12は、所定期間期間T1の電流値のAD変換値を、複数Ndaの所定の時間期間T2(<T1)にNda分割して各時間期間T2毎に、メモリ12mを用いてFFT処理を実行してFFT値(パワー)を計算する。ここで、Ndaは2以上の自然数である。次いで、ステップS3Aにおいて、異常検出部13は、各時間期間T2のFFT値に基づいて、各時間期間T2の最大ピーク値の周波数を検索し、検索された複数Nda個の周波数のうち、最高周波数と最低周波数との差周波数を計算する。ステップS4Aにおいて、計算された差周波数≧所定の差周波数しきい値であるか否かが判断され、YESのときはステップS5に進む一方、NOのときはステップS6に進む。ステップS5では、駆動周波数が変動しており、モータ1の回転速度が変化したと判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS6では、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、判断結果を表示部14に表示する。
【0045】
図10は実施形態4に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
【0046】
実施形態4は、モータ1の駆動周波数が非連続的に変動している場合の対策について説明する。実施形態4では、
図10に示すように、周波数分析する時間期間を分割して、周波数分析する。各周波数分析結果のスペクトルで最大ピーク値に対応する周波数を求める。その各周波数の最大値と最小値の差が、差周波数しきい値以上である場合は、モータ1の駆動周波数が変動していると判定する。
【0047】
具体的には、例えば4秒間の電流波形を1秒毎に分割して周波数分析し、各最大ピーク値に対応する周波数のうちの最高周波数と最低周波数の差が前記差周波数しきい値以上のときに駆動周波数が変動していると判定する。
図10の例の場合において、最高周波数が52Hzで、最低周波数が49Hzで、前記差周波数しきい値を2Hzとすると、52-49=3Hzなので2Hz以上となり、モータ1の駆動周波数は変動していると判定する。
【0048】
以上説明したように、実施形態4によれば、周波数分析する時間期間を分割して、周波数分析し、各周波数分析結果のスペクトルで最大ピーク値に対応する周波数を求め、各周波数の最大値と最小値の差、すなわち、最高周波数と最低周波数の差が前記差周波数しきい値以上である場合は、モータ1の駆動周波数が変動し、モータ1の回転速度が変化したと判定する。これにより、従来技術に比較して高い精度でモータの異常状態を検出することができる。
【0049】
(変形例)
以上の各実施形態では、交流電源からモータに供給される電流の電流データを周波数分析して、前記モータの回転速度が変化したか否かを判断しているが、本発明はこれに限らず、交流電源からモータに供給される電圧の電圧データを周波数分析して、同様にモータの回転速度が変化したか否かを判断してもよい。
【産業上の利用可能性】
【0050】
以上詳述したように、本発明によれば、例えば、モータの電流データを周波数分析して周波数分析結果のスペクトルの最大ピーク値の周波数幅が所定の周波数幅しきい値以上であるか、もしくは、モータの電流データを複数の時間期間に分割して周波数分析して各周波数分析結果のスペクトルの最大ピーク値の周波数のうちの最高周波数と最低周波数の差が所定の差周波数しきい値以上であるか否かに応じて、モータの駆動周波数が変動しているか否かを判定することで、モータの回転速度が変化したか否かを判断する。これにより、従来技術に比較して高い精度でモータの異常状態を検出することができる。
【符号の説明】
【0051】
1 交流電源
2 モータ
3 電流センサ
4 異常検出装置
10 プロセッサ(信号処理部)
11 AD変換器
12 周波数分析部
12m メモリ
13 異常検出部
13m メモリ
14 表示部