IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人 宇宙航空研究開発機構の特許一覧

特許7597367気流計測装置、気流計測方法及び気流計測プログラム
<>
  • 特許-気流計測装置、気流計測方法及び気流計測プログラム 図1
  • 特許-気流計測装置、気流計測方法及び気流計測プログラム 図2
  • 特許-気流計測装置、気流計測方法及び気流計測プログラム 図3
  • 特許-気流計測装置、気流計測方法及び気流計測プログラム 図4
  • 特許-気流計測装置、気流計測方法及び気流計測プログラム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-02
(45)【発行日】2024-12-10
(54)【発明の名称】気流計測装置、気流計測方法及び気流計測プログラム
(51)【国際特許分類】
   G01P 5/26 20060101AFI20241203BHJP
   G01S 17/95 20060101ALN20241203BHJP
【FI】
G01P5/26 A
G01S17/95
【請求項の数】 15
(21)【出願番号】P 2021043041
(22)【出願日】2021-03-17
(65)【公開番号】P2022142821
(43)【公開日】2022-10-03
【審査請求日】2023-12-12
(73)【特許権者】
【識別番号】503361400
【氏名又は名称】国立研究開発法人宇宙航空研究開発機構
(74)【代理人】
【識別番号】110003339
【氏名又は名称】弁理士法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【弁理士】
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【弁理士】
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100168181
【弁理士】
【氏名又は名称】中村 哲平
(74)【代理人】
【識別番号】100160989
【弁理士】
【氏名又は名称】関根 正好
(74)【代理人】
【識別番号】100117330
【弁理士】
【氏名又は名称】折居 章
(74)【代理人】
【識別番号】100168745
【弁理士】
【氏名又は名称】金子 彩子
(74)【代理人】
【識別番号】100176131
【弁理士】
【氏名又は名称】金山 慎太郎
(74)【代理人】
【識別番号】100197398
【弁理士】
【氏名又は名称】千葉 絢子
(74)【代理人】
【識別番号】100197619
【弁理士】
【氏名又は名称】白鹿 智久
(72)【発明者】
【氏名】原田 正志
【審査官】榮永 雅夫
(56)【参考文献】
【文献】国際公開第2017/208375(WO,A1)
【文献】特開平11-258360(JP,A)
【文献】特開2010-241412(JP,A)
【文献】特開2002-286840(JP,A)
【文献】特開2002-236174(JP,A)
【文献】特表2009-501915(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01P 5/26
G01S 17/95
G01S 13/95
G01W 1/00
(57)【特許請求の範囲】
【請求項1】
照射装置が光を前記光の光軸に交差する大気中の仮想面に照射してから、受光装置が前記光の反射光を受光するまでの時間遅れを算出し、
前記時間遅れに基づき、前記仮想面で反射した反射光を抽出する
算出装置と、
前記仮想面に対応し複数のグリッドエリアを含むマップの各グリッドエリアに、前記反射光の強度をプロットすることで、反射光の強度のパターンを示す反射光マップを作成し、
前記反射光マップと、所定時間経過後に作成された反射光マップとの前記パターンの変化を演算し、
前記パターンの変化に基づき、前記仮想面上の前記光軸に交差する方向の気流の速度を計測する
演算装置と
を具備する気流計測装置。
【請求項2】
請求項1に記載の気流計測装置であって、
前記複数の反射光マップに対応する前記仮想面は、大気中の同じ位置にあり、
前記演算装置は、前記光軸に交差する方向として、前記仮想面の面方向の気流の速度を計測する
気流計測装置。
【請求項3】
請求項1又は2に記載の気流計測装置であって、
前記仮想面は、前記仮想面上の1点に照射される光の光軸に直交する
気流計測装置。
【請求項4】
請求項1乃至3の何れか一項に記載の気流計測装置であって、
前記気流計測装置は、航空機に搭載される
気流計測装置。
【請求項5】
請求項4に記載の気流計測装置であって、
前記仮想面は、飛行中である前記航空機が通過する予定である飛行経路を含む
気流計測装置。
【請求項6】
請求項4又は5に記載の気流計測装置であって、
前記仮想面は、前記仮想面上に乱気流が存在する場合に前記航空機が前記乱気流を回避するために飛行する飛行経路を含む
気流計測装置。
【請求項7】
請求項4乃至6の何れか一項に記載の気流計測装置であって、
前記算出装置は、前記航空機が飛行中に飛行経路上の異なる位置から光を照射する毎に、抽出する反射光の時間遅れを異ならせる
気流計測装置。
【請求項8】
請求項1乃至7の何れか一項に記載の気流計測装置であって、
前記演算装置は、
前記複数の反射光マップから、前記仮想面上の同じエリアに対応する検査区画をそれぞれ抽出し、
前記複数の反射光マップからそれぞれ抽出した複数の前記検査区画の前記パターンの変化を演算することにより、
前記複数の反射光マップの前記パターンの変化を演算する
気流計測装置。
【請求項9】
請求項8に記載の気流計測装置であって、
前記検査区画に含まれる前記グリッドエリアの数は可変であり、
前記検査区画に含まれる、反射光の強度がプロットされたグリッドエリアの数は、数個以上数十個以下である
気流計測装置。
【請求項10】
請求項1乃至9の何れか一項に記載の気流計測装置であって、
前記照射装置は、
前記仮想面を分割したエリアと同形の断面形状を有するレーザ光を発振するレーザ発振装置と、
前記レーザ光の照射方向を制御して、前記レーザ光で前記仮想面の全てのエリアをスキャンするスキャン装置と
を有する
気流計測装置。
【請求項11】
請求項10に記載の気流計測装置であって、
前記算出装置又は前記演算装置は、前記レーザ光で前記仮想面をスキャンすることにより生じる照射タイミングのずれに応じて時間遅れのずれを補正する
気流計測装置。
【請求項12】
請求項1乃至11の何れか一項に記載の気流計測装置であって、
前記算出装置は、さらに、照射された光と、前記仮想面で反射した反射光との間の周波数のドップラーシフト量を算出し、
前記演算装置は、さらに、前記ドップラーシフト量に基づき、前記仮想面上の前記光軸の方向の気流の速度を計測する
気流計測装置。
【請求項13】
請求項1乃至12の何れか一項に記載の気流計測装置であって、
前記照射装置と、
前記受光装置と
をさらに具備する気流計測装置。
【請求項14】
照射装置が光を前記光の光軸に交差する大気中の仮想面に照射してから、受光装置が前記光の反射光を受光するまでの時間遅れに基づき、前記仮想面で反射した反射光を抽出し、
前記仮想面に対応し複数のグリッドエリアを含むマップの各グリッドエリアに、前記反射光の強度をプロットすることで、反射光の強度のパターンを示す反射光マップを作成し、
前記反射光マップと、所定時間経過後に作成された反射光マップとの前記パターンの変化を演算し、
前記パターンの変化に基づき、前記仮想面上の前記光軸に交差する方向の気流の速度を計測する
気流計測方法。
【請求項15】
気流計測装置の演算装置を、
照射装置が光を前記光の光軸に交差する大気中の仮想面に照射してから、受光装置が前記光の反射光を受光するまでの時間遅れに基づき、前記仮想面で反射した反射光を抽出し、
前記仮想面に対応し複数のグリッドエリアを含むマップの各グリッドエリアに、前記反射光の強度をプロットすることで、反射光の強度のパターンを示す反射光マップを作成し、
前記反射光マップと、所定時間経過後に作成された反射光マップとの前記パターンの変化を演算し、
前記パターンの変化に基づき、前記仮想面上の前記光軸に交差する方向の気流の速度を計測する
よう動作させる気流計測プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、例えば航空機が遭遇する乱気流の検知に用いられる気流計測装置、気流計測方法及び気流計測プログラムに関する。
【背景技術】
【0002】
晴天時に航空機が遭遇する強い乱気流である晴天乱気流(clear air turbulence)は、航空機の乗り心地に影響を与えるだけでなく、しばしば機体破壊の原因となる。晴天乱気流はジェット気流、山岳波などによる速度勾配がケルビン・ヘルムホルツ(Kelvin-Helmhollz)不安定を主な原因として乱流へと移行する際に発生する。時間とともに乱流のスケールが小さくなるほど、乱流のエネルギーが小さくなる。よって発生初期の規模の大きい乱れが機体への影響が大きい。このスケール及びエネルギーの大きな乱流を検知してこれを回避して航行することが望まれる。
【0003】
航空機が乱気流の中に入ると大きく揺れ、急激な上昇及び下降を繰り返すため機体に大きな荷重が加わり、最悪の場合破壊に至ることがある。また、シートベルトのサインが遅れたために機内の乗客や乗員が重軽傷を負う事故も毎年に何例か発生している。そして、機体への負担の軽減のほか、機内サービスや乗客の乗り心地といった快適性、乗客や乗員の身体や生命に影響を及ぼすため、パイロットが前方に乱気流があることを発見したときは、可能な限り回避しなければならない。
【0004】
特許文献1では、レーザ光を前方に照射しこの反射光を受信することで、時間遅れ及びドップラーシフトから光軸方向の距離及び速度を知る。さらに詳細な前方の情報を得るために10度程度の角度で上下2方向に、レーザ光を照射し反射光を受信する。反射光の時系列などからもっともらしい前方の速度場を推定する。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2017-67680号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1の方法で得られる上下方向の気流速度は、光軸方向の速度に上下に10度程度振る角度の正弦(sin)を掛けたものであるため、精度が低いおそれがある。また、これから通過する予定の飛行経路上の気流速度ではなく、これから通過する予定の空域の上方の領域及び下方の領域の気流速度が算出される。このため、航空機が乱気流を回避するために必要な空域の気流速度を適切に算出できないおそれがある。
【0007】
以上のような事情に鑑み、本開示の目的は、航空機が乱気流を回避するために必要な空域の気流速度を精度よく適切に算出することが可能な気流計測装置、気流計測方法及び気流計測プログラムを提供することにある。
【課題を解決するための手段】
【0008】
本開示の一形態に係る気流計測装置は、
照射装置が光を前記光の光軸に交差する大気中の仮想面に照射してから、受光装置が前記光の反射光を受光するまでの時間遅れを算出し、
前記時間遅れに基づき、前記仮想面で反射した反射光を抽出する
算出装置と、
前記仮想面に対応し複数のグリッドエリアを含むマップの各グリッドエリアに、前記反射光の強度をプロットすることで、反射光の強度のパターンを示す反射光マップを作成し、
前記反射光マップと、所定時間経過後に作成された反射光マップとの前記パターンの変化を演算し、
前記パターンの変化に基づき、前記仮想面上の前記光軸に交差する方向の気流の速度を計測する
演算装置と
を具備する。
【0009】
本実施形態によれば、気流計測装置は、照射から受光までの反射光の時間遅れを算出し、時間遅れに基づき、光の光軸に交差する仮想面で反射した反射光を抽出し、仮想面で反射した反射光の強度のパターンを示す反射光マップを作成する。これにより、速度を検出すべき流れの方向と一致する面方向を有する仮想面で反射した反射光の反射光マップを作成することができる。
【0010】
前記複数の反射光マップに対応する前記仮想面は、大気中の同じ位置にあり、
前記演算装置は、前記光軸に交差する方向として、前記仮想面の面方向の気流の速度を計測してもよい。
【0011】
本実施形態によれば、時間的に異なる複数の、大気中の同じ位置にある仮想面で反射した反射光の反射光マップを作成することで、仮想面の面方向の気流の速度を計測することができる。
【0012】
前記仮想面は、前記仮想面上の1点に照射される光の光軸に直交してもよい。
【0013】
本実施形態によれば、光の光軸に直交する面方向の気流の速度を計測することができる。
【0014】
前記気流計測装置は、航空機に搭載されてもよい。
【0015】
本実施形態によれば、航空機から照射される光の光軸に直交する面方向の気流の速度を計測することができる。
【0016】
前記仮想面は、飛行中である前記航空機が通過する予定である飛行経路を含んでもよい。
【0017】
本実施形態によれば、航空機が通過する予定である飛行経路に直交する面方向の気流の速度を計測することができる。特に、晴天乱気流の上下方向の速度を計測することができる。また、仮想面のサイズを適切に設定することで、航空機が乱気流を回避するために必要な空域の気流速度を精度よく適切に算出することを図れる。
【0018】
前記仮想面は、前記仮想面上に乱気流が存在する場合に前記航空機が前記乱気流を回避するために飛行する飛行経路を含んでもよい。
【0019】
本実施形態によれば、仮想面上の予定される飛行経路に乱気流が存在する場合に、航空機は乱気流を回避して仮想面内の安全な(即ち、乱気流が存在しない)空域を飛行することが可能である。
【0020】
前記算出装置は、前記航空機が飛行中に飛行経路上の異なる位置から光を照射する毎に、抽出する反射光の時間遅れを異ならせてもよい。
【0021】
遅れ時間の時間長さは、航空機から仮想面までの距離に依存して変更される。言い換えれば、距離は、航空機が仮想面に近づくに従って小さくなるため、遅れ時間の時間長さも短くなる。算出装置は、より短時間で戻って来た反射光を抽出し続けることで、航空機の位置に依存せず、大気中の同じ位置にある仮想面で反射した反射光を抽出し続けることができる。
【0022】
前記演算装置は、
前記複数の反射光マップから、前記仮想面上の同じエリアに対応する検査区画をそれぞれ抽出し、
前記複数の反射光マップからそれぞれ抽出した複数の前記検査区画の前記パターンの変化を演算することにより、
前記複数の反射光マップの前記パターンの変化を演算してもよい。
【0023】
反射光の強度がプロットされたグリッドエリアの数を適切に設定することで、複数の検査区画のパターンの変化をより正確に演算することができる。
【0024】
前記検査区画に含まれる前記グリッドエリアの数は可変であり、
前記検査区画に含まれる、反射光の強度がプロットされたグリッドエリアの数は、数個以上数十個以下でもよい。
【0025】
グリッドエリアの数は、演算負荷やパイロットの人的負荷を軽くすることを重視するならば固定とすればよいし、演算の正確性を重視するならば可変とすればよい。
【0026】
前記照射装置は、
前記仮想面を分割したエリアと同形の断面形状を有するレーザ光を発振するレーザ発振装置と、
前記レーザ光の照射方向を制御して、前記レーザ光で前記仮想面の全てのエリアをスキャンするスキャン装置と
を有してもよい。
【0027】
これにより、レーザ光が仮想面の全域を短時間で万遍無く照射することができる。
【0028】
前記算出装置又は前記演算装置は、前記レーザ光で前記仮想面をスキャンすることにより生じる照射タイミングのずれに応じて時間遅れのずれを補正してもよい。
【0029】
照射装置は、仮想面の全域を一度に照射するのではなく、仮想面の全域を順にスキャンすることにより仮想面の全域にレーザ光を照射する。このため、最初にスキャンする矩形エリアから、最後にスキャンする矩形エリアまで、厳密には、照射タイミングに時間的なずれがある。従って、最初にスキャンするタイミングから最後にスキャンするタイミングまで、航空機の位置が厳密には異なる。このため、照射タイミングの時間的なずれに依存して、仮想面が、進行方向(即ち、仮想面の中心の光軸方向)に直交ではなく、進行方向の成分を含む方向に歪んだ(即ち、進行方向に対して傾斜した)形になり得る。算出装置又は演算装置は、この様な照射タイミングのずれに応じて時間遅れのずれを補正することで、仮想面を進行方向に直交する面となるように補正してもよい。
【0030】
前記算出装置は、さらに、照射された光と、前記仮想面で反射した反射光との間の周波数のドップラーシフト量を算出し、
前記演算装置は、さらに、前記ドップラーシフト量に基づき、前記仮想面上の前記光軸の方向の気流の速度を計測してもよい。
【0031】
演算装置は、記憶装置から、仮想面で反射した反射光のドップラーシフト量と、位置情報とを読み出す。演算装置は、ドップラーシフト量に基づき、仮想面上の光軸の方向(即ち、航空機の進行方向)の気流の速度を計測する。本実施形態によれば、仮想面の面方向の気流の速度を計測するのに用いられる反射光を利用して、航空機の進行方向の気流の速度も計測することができる。
【0032】
気流計測装置は、前記照射装置と、前記受光装置とをさらに具備してもよい。
【0033】
本実施形態では、最小限のハードウェアであるレーザ発振装置及び受光装置を航空機に搭載するだけでよく、処理装置は受光装置が受光した反射光に基づき、ソフトウェア処理により仮想面の面方向の気流の速度を計測する。また、同時にドップラーシフト量に基づく進行方向の気流速度を検出することも可能である。
【0034】
本開示の一形態に係る気流計測方法は、
照射装置が光を前記光の光軸に交差する大気中の仮想面に照射してから、受光装置が前記光の反射光を受光するまでの時間遅れに基づき、前記仮想面で反射した反射光を抽出し、
前記仮想面に対応し複数のグリッドエリアを含むマップの各グリッドエリアに、前記反射光の強度をプロットすることで、反射光の強度のパターンを示す反射光マップを作成し、
複数の前記反射光マップの前記パターンの変化を演算し、
前記パターンの変化に基づき、前記仮想面上の前記光軸に交差する方向の気流の速度を計測する。
【0035】
本開示の一形態に係る気流計測プログラムは、
気流計測装置の演算装置を、
照射装置が光を前記光の光軸に交差する大気中の仮想面に照射してから、受光装置が前記光の反射光を受光するまでの時間遅れに基づき、前記仮想面で反射した反射光を抽出し、
前記仮想面に対応し複数のグリッドエリアを含むマップの各グリッドエリアに、前記反射光の強度をプロットすることで、反射光の強度のパターンを示す反射光マップを作成し、
複数の前記反射光マップの前記パターンの変化を演算し、
前記パターンの変化に基づき、前記仮想面上の前記光軸に交差する方向の気流の速度を計測する
よう動作させる。
【発明の効果】
【0036】
本開示によれば、航空機が乱気流を回避するために必要な空域の気流速度を精度よく適切に算出することを図れる。
【0037】
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
【図面の簡単な説明】
【0038】
図1】本開示の一実施形態に係る気流計測装置を搭載した航空機を示す。
図2】気流計測装置の構成を示す。
図3】気流計測装置の動作フローを示す。
図4】マップの一例を示す。
図5】複数の反射光マップからそれぞれ抽出した複数の検査区画のパターンの変化を模式的に示す。
【発明を実施するための形態】
【0039】
以下、図面を参照しながら、本開示の実施形態を説明する。
【0040】
1.気流計測装置を搭載した航空機の概要
【0041】
図1は、本開示の一実施形態に係る気流計測装置を搭載した航空機を示す。
【0042】
気流計測装置100は、航空機1に搭載される。航空機1は、例えば、無人機、小型航空機、大型旅客機、電動航空機等である。気流計測装置100は、照射及び受光装置2を有する。照射及び受光装置2は、航空機1の機首下部に設けられる。照射及び受光装置2は、レーザ光を照射し、反射光を受光する。気流計測装置100は、光を利用して気流の速度を遠隔的に計測するLiDAR(Light Detection And Ranging)装置の一種である。
【0043】
2.気流計測装置の構成
【0044】
図2は、気流計測装置の構成を示す。
【0045】
気流計測装置100は、照射及び受光装置2と、処理装置130と、記憶装置140と、表示装置150とを有する。照射及び受光装置2は、照射装置110と、受光装置120とを有する。照射装置110は、レーザ発振装置111と、スキャン装置112とを有する光学系である。処理装置130は、プロセッサがROMに記憶された情報処理プログラム(気流計測プログラムを含む)をRAMにロードして実行することにより、算出装置131及び演算装置132として動作する。記憶装置140は、大容量の不揮発性の記憶媒体であり、例えば、HDD、SSD等である。表示装置150はコックピット内のディスプレイであり、速度表示画面151を表示する。
【0046】
3.気流計測装置の動作フロー
【0047】
図3は、気流計測装置の動作フローを示す。
【0048】
ステップS201:N=1及び遅れ時間Tを設定
【0049】
演算装置132は、N=1と、基準となる遅れ時間Tとを設定する。Nは、照射装置110が光を大気中の仮想面に照射する回数である。N=1は、1回目の照射を意味し、また、1回目の動作フローを意味する。基準となる遅れ時間Tは、N=1回目に照射装置110が光を照射してから受光装置120が反射光を受光するまでの遅れ時間の時間長さである。言い換えれば、N=1のとき(即ち、1回目の照射時)の遅れ時間がTである。
【0050】
遅れ時間の時間長さは、航空機1から速度計測対象である大気までの距離Lに依存して変化する。照射から受光までの遅れ時間の時間長さは、2L/Cである。Cは光速であり、Lは航空機1から速度計測対象である大気までの距離である。航空機1は前進し続けるため、航空機1から速度計測対象である大気までの距離Lは徐々に小さくなり、これに伴い、遅れ時間の時間長さも徐々に短くなる。
【0051】
ステップS202:レーザ光を照射
【0052】
照射装置110は、光を大気中の仮想面6に照射する(図1参照)。大気中の仮想面6には、速度計測対象である大気が存在する。具体的には、照射装置110のレーザ発振装置111は、レーザ光を発振する光源を含む。照射装置110のスキャン装置112は、レーザ発振装置111が発振したレーザ光の照射方向を制御して、レーザ光で仮想面6をスキャンする。照射装置110は、dt時間のスキャン間隔で、定期的に仮想面6をスキャンする。
【0053】
具体的には、レーザ発振装置111は、仮想面6を隙間なく照射できるように、レーザ光を光学的に矩形に整形し、レーザ光の断面形状を見込み角の矩形エリアと一致させる。スキャン装置112は、航空機1の進行方向前方の四角錐を、横10以上数百以下×縦10以上数百以下の見込み角に格子状に分割し、それぞれの見込み角の矩形エリアをレーザ光でスキャンする。四角錐の底面が仮想面6に相当する。スキャン装置112は、ポリゴンミラー等でレーザ発振装置111を左右に振り、レーザ発振装置111が見込み角の矩形エリアに正確に向いた瞬間に、レーザ光の強度をパルス状に変化させる。これを繰り返すことで、スキャン装置112は、レーザ光で仮想面6の全ての矩形エリアをスキャンする。これにより、レーザ光が仮想面6の全域を短時間で万遍無く照射することができる。
【0054】
四角錐の頂角θ、θは、例えば、0.1度以上5度以下、より具体的には、いずれも1度である。スキャン装置112は、左右角θ及び上下角θの範囲でレーザ光をスキャンする。例えば、スキャン装置112は、仮想面6の左上の頂点から右上の頂点に左右角θの範囲でレーザ光をスキャンする。続いて、スキャン装置112は、上下角θを格子の1段分下げて、左から右へと左右角θの範囲でレーザ光をスキャンする。スキャン装置112は、これを繰り返すことで仮想面6の全域に光を照射する。航空機1から仮想面6までの距離はLである。
【0055】
仮想面6は、照射される全ての光の光軸に交差する。中でも、仮想面6は、仮想面6上の1点(例えば、中心点)に照射される光の光軸に直交する。仮想面6は、飛行中である航空機1が通過する予定である飛行経路を含む。例えば、航空機1が通過する予定である飛行経路が、仮想面6上の中心点又は中心点付近に直交する。仮想面6は、仮想面6上に乱気流が存在する場合に航空機1が乱気流を回避するための飛行経路を含む。例えば、仮想面6は、1辺が10kmの正方形である。仮想面6が1辺10kmの正方形であれば、仮想面6の中心(即ち、予定される飛行経路)に乱気流が存在する場合に、航空機1は乱気流を回避して仮想面6内の安全な(即ち、乱気流が存在しない)空域を飛行することが可能である。
【0056】
ステップS203:レーザ光を受光
【0057】
受光装置120は、照射装置110が照射した光の、大気中のエアロゾル(塵、微粒子)からの反射光を受光する。
【0058】
ステップS204:時間遅れを算出
【0059】
算出装置131は、照射装置110が光を大気中に照射してから、受光装置120が反射光を受光するまでの時間遅れを算出する。照射から受光までの時間遅れは、航空機1から反射源(塵等)までの距離に依存して異なる。
【0060】
算出装置131は、さらに、照射装置110から照射された光と、仮想面6上で反射し受光装置120が受光した反射光との間の周波数のドップラーシフト量を算出する。
【0061】
算出装置131は、算出した時間遅れに基づき、仮想面6で反射した反射光(即ち、時間遅れが2L/Cである反射光)だけを抽出する。N=1回目の照射時であれば、算出装置131は、時間遅れがTである反射光だけを抽出する。算出装置131は、抽出した反射光の強度と、ドップラーシフト量と、仮想面6上の位置情報とを、記憶装置140に記録する。位置情報は、この反射光が反射した仮想面6上の見込み角の格子を示す。強度は、例えば輝度である。なお、記憶装置140の記憶容量に余裕があれば、算出装置131は、仮想面6で反射した反射光である反射光だけに限らず、他の時間遅れの反射光の強度と、ドップラーシフト量と、位置情報とをさらに記憶してもよい。
【0062】
なお、N回目のフローで、算出装置131は、T-(N-1)dtの時間遅れの反射光を抽出する。動作フローがループする度に、Nはインクリメント(+1)される。従って、算出装置131は、動作フローがループする度に、より短時間で戻って来た反射光を抽出し続ける。遅れ時間の時間長さは、航空機1から仮想面6までの距離Lに依存して変更される。言い換えれば、距離Lは、航空機1が仮想面6に近づくに従って小さくなるため、遅れ時間の時間長さも短くなる。算出装置131は、より短時間で戻って来た反射光を抽出し続けることで、航空機1の位置の変化に依存せず、大気中の同じ位置にある仮想面6で反射した反射光を抽出し続けることができる。この様に、算出装置131は、航空機1が飛行中に飛行経路上の異なる位置から光を照射する毎に、抽出する反射光の時間遅れを異ならせる。
【0063】
ステップS205:反射光マップを作成
【0064】
図4は、マップの一例を示す。
【0065】
マップは、仮想面6に対応し、複数のグリッドエリアを含む。グリッドエリアは、マップを縦横のグリッド線で格子状に区画し、この区画された各エリアを意味する。マップは、例えば、18×18(左右の分割数N×上下の分割数N)個のグリッドエリアを含む。マップの全体が仮想面6に対応する。1個のグリッドエリアのサイズ(横×縦)は、(Lθ/N)×(Lθ/N)である。マップに含まれるグリッドエリアは、仮想面6の見込み角の矩形と1対1で一致してもよいし、しなくてもよい。仮想面6の見込み角の矩形を、マップに含まれるグリッドエリアに変換可能であれば、マップと仮想面6とは如何なる対応関係でもよい。
【0066】
演算装置132は、記憶装置140から、仮想面6で反射した反射光の強度と、位置情報とを読み出す。演算装置132は、仮想面6の位置情報に対応するグリッドエリアに、反射光の強度をプロットする。具体的には、演算装置132は、反射光の強度を量子化し、量子化された強度をグリッドエリアにプロットする。同図の例では、濃色のグリッドエリアは反射光の強度が高いことを示し、淡色のグリッドエリアは反射光の強度が低いことを示し、白色のグリッドエリアは閾値以上の強度の反射光が無いことを示す。これにより、演算装置132は、仮想面6で反射した反射光の強度のパターンを示す反射光マップ3を作成する。
【0067】
なお、N回目のフローで、演算装置132は、T-(N-1)dtの時間遅れの反射光の強度の反射光マップ3を作成する。動作フローがループする度に、Nはインクリメント(+1)される。従って、演算装置132は、動作フローがループする度に、より短時間で戻って来た反射光の反射光マップ3を作成し続ける。遅れ時間の時間長さは、航空機1から仮想面6までの距離Lに依存して変更される。言い換えれば、距離Lは、航空機1が仮想面6に近づくに従って小さくなるため、遅れ時間の時間長さも短くなる。演算装置132は、より短時間で戻って来た反射光の反射光マップ3を作成し続けることで、航空機1の位置の変化に依存せず、大気中の同じ位置にある仮想面6に対応する反射光マップ3を作成し続けることができる。この様に、演算装置132は、航空機1が飛行中に飛行経路上の異なる位置から照射された光に対応する複数の反射光マップ3毎に、反射光の時間遅れを異ならせることにより、複数の反射光マップ3の光軸方向の位置を補正する。
【0068】
なお、ステップS204又はステップS205で、算出装置131又は演算装置132は、レーザ光で仮想面6をスキャンすることにより生じる照射タイミングのずれに応じて時間遅れのずれを補正してもよい。上述のように、照射装置110は、仮想面6の全域を一度に照射するのではなく、仮想面6の全域を順にスキャンすることにより仮想面6の全域にレーザ光を照射する。このため、最初にスキャンする(例えば、左上の頂点を含む)見込み角の矩形エリアから、最後にスキャンする(例えば右下の頂点を含む)見込み角の矩形エリアまで、厳密には、照射タイミングに時間的なずれがある。従って、最初にスキャンするタイミングから最後にスキャンするタイミングまで、航空機1の位置が厳密には異なる。このため、照射タイミングの時間的なずれに依存して、仮想面6が、進行方向(即ち、仮想面6の中心の光軸方向)に直交ではなく、進行方向の成分を含む方向に歪んだ(即ち、進行方向に対して傾斜した)形になり得る。算出装置131又は演算装置132は、この様な照射タイミングのずれに応じて時間遅れのずれを補正することで、仮想面6を進行方向に直交する面となるように補正してもよい。ただし、照射装置110のスキャン速度性能、仮想面6までの距離、算出装置131又は演算装置132の演算性能等に拠り、照射タイミングのずれに応じて時間遅れのずれを補正しなくてもよい。
【0069】
ステップS206:反射光マップ同士を比較
【0070】
演算装置132は、前回作成した反射光マップ3と、dt時間経過後、今回作成した反射光マップ3とを時系列的に比較する。即ち、前回(即ち、N-1回目に)作成した反射光マップ3(時間遅れ:T-Ndt)と、今回(即ち、N回目に)作成した反射光マップ3(時間遅れ:T-(N-1)dt)とを比較する。具体的には、演算装置132は、前回作成した反射光マップ3の反射光の強度のパターンと、dt時間経過後、今回作成した反射光マップ3の反射光の強度のパターンとを比較することにより、パターンの変化を演算する。
【0071】
具体的には、演算装置132は、前回の反射光マップ3及び今回の反射光マップ3を、それぞれ、複数の検査区画4に分割する。前回の反射光マップ3及び今回の反射光マップ3を複数の検査区画4に分割するレイアウトは、同じである。
【0072】
検査区画4に含まれるグリッドエリアの数(言い換えれば、検査区画4のサイズ)は、固定でも可変でもよい。演算負荷やパイロットの人的負荷を軽くすることを重視するならば固定とすればよいし、演算の正確性を重視するならば可変とすればよい。固定の場合、例えば、検査区画4は、8×8個のグリッドエリアを含む矩形でよい。可変の場合、例えば、検査区画4に含まれる反射光の強度がプロットされたグリッドエリア(即ち、白色で無いグリッドエリア)の数が、例えば、数個以上数十個以下であるように、検査区画4を抽出すればよい。検査区画4に含まれる、反射光の強度がプロットされたグリッドエリアの数は、例えば、5個以上数十個以下とすればよい。反射光の強度がプロットされたグリッドエリアの数を適切に設定することで、複数の検査区画4のパターンの変化をより正確に演算することができる。
【0073】
演算装置132は、複数の反射光マップ3(即ち、前回の反射光マップ3及び今回の反射光マップ3)から、仮想面6上の同じエリアに対応する検査区画4をそれぞれ抽出する。演算装置132は、複数の反射光マップ3からそれぞれ抽出した複数の検査区画4のパターンの変化を演算することにより、複数の反射光マップ3のパターンの変化を演算する。
【0074】
図5は、複数の反射光マップからそれぞれ抽出した複数の検査区画のパターンの変化を模式的に示す。
【0075】
左図は、前回の反射光マップ3から分割された1個の検査区画4を示す(図4の検査区画4と同じ)。右図は、dt時間経過後の反射光マップ3から分割された1個の検査区画4'を示す。検査区画4及び検査区画4'の反射光マップ3内の位置(座標)は、同じである。
【0076】
ステップS207:仮想面上の気流の方向及び速度を計測
【0077】
演算装置132は、前回の検査区画4の反射光のパターンから今回の検査区画4'の反射光のパターンへの変化に基づき、仮想面6上の気流の方向及び速度を計測する。演算装置132が計測する仮想面6上の気流の方向及び速度は、仮想面6の面方向の気流の方向及び速度である。上述のように、仮想面6は、照射される全ての光の光軸に交差し、中でも、仮想面6上の1点(例えば、中心点)に照射される光の光軸に直交する。また、例えば、航空機1が通過する予定である飛行経路が、仮想面6上の中心点又は中心点付近に直交する。この場合、演算装置132が計測する気流の方向及び速度は、予定される飛行経路に直交する方向(即ち、上下方向及び左右方向の成分を含む方向)の気流の速度である。
【0078】
具体的には、演算装置132は、前回の検査区画4の反射光のパターン及び今回の検査区画4'の反射光のパターンから相互相関関数を算出し、その最大値を与える移動ベクトルを算出し、速度を算出する。図5の例の場合、前回の検査区画4の反射光のパターンを右方向に1個及び下方向に2個移動して、dt時間経過後の検査区画4'の反射光のパターンとの相互相関を取ると、最大値が得られる。よって、演算装置132は、時間dtの間に、仮想面6上の右方向にLθ/N、且つ、仮想面6上の下方向に2Lθ/Nだけ大気が移動したと推定する。よって、演算装置132は、気流の速度が、仮想面6上の右方向にLθ/N/dt、且つ、仮想面6上の下方向に2Lθ/N/dtであると計測する。これにより、演算装置132は、気流の流れの方向及び速度を計測することができる。
【0079】
ステップS208:進行方向の気流の速度を計測
【0080】
演算装置132は、記憶装置140から、仮想面6で反射した反射光のドップラーシフト量と、位置情報とを読み出す。演算装置132は、ドップラーシフト量に基づき、仮想面6上の光軸の方向(即ち、航空機1の進行方向)の気流の速度を計測する。本実施形態によれば、仮想面6の面方向の気流の速度を計測するのに用いられる反射光を利用して、航空機1の進行方向の気流の速度も計測することができる。
【0081】
演算装置132は、速度表示画面151を、表示装置150(例えば、コックピット内のディスプレイ)に表示する。速度表示画面151は、計測した仮想面6の面方向の気流の速度と、進行方向の気流の速度を表示するGUIである。
【0082】
ステップS209:ループ
【0083】
演算装置132は、スキャン回数Nが閾値を超えていなければ(ステップS209、NO)、スキャン回数Nをインクリメント(+1)し、照射装置110にN+1回目のレーザ光を照射させる(ステップS202)。一方、演算装置132は、スキャン回数Nが閾値を超えれば(ステップS209、YES)、新たに、N=1と、基準となる遅れ時間Tとを設定してから(ステップS201)、照射装置110にN回目のレーザ光を照射させる(ステップS202)。
【0084】
上述のように、仮想面6上に乱気流が存在する場合に、航空機1は乱気流を回避して仮想面6内の安全な(即ち、乱気流が存在しない)空域を飛行することが望まれる。従って、航空機1から仮想面6までの距離として、航空機1が仮想面6上の乱気流を回避できる程度の距離が必要である。このため、スキャン回数Nの閾値(上限値)を設定する。スキャン回数Nが閾値を超えると、演算装置132は、基準となる遅れ時間Tを新たに設定する。遅れ時間Tに依存して仮想面6までの距離Lが新たに定義される。このため、基準となる遅れ時間Tを新たに設定することで、新たな仮想面6上の乱気流を検出及び計測することができる。これにより、気流計測装置100は、常に、所定距離(即ち、乱気流を回避できる程度の距離)だけ離れた仮想面6上の乱気流を検出及び計測し続けることができる。
【0085】
4.粒子画像流速測定法(PIV)との相違点
【0086】
流体の流れ方向及び速度を計測する方法として、粒子画像流速測定法(PIV:Particle Image Velocimetry)が知られている。仮想面6上の気流の方向及び速度を計測する方法(ステップS207)は、PIVとの相違点も多く、また、PIVに対して有利な点もある。それを説明する。
【0087】
PIVでは、アルミ微粉末等のトレーサ粒子を、流れ場(例えば、実験室内の風洞や回流水槽)にシーディングする。上方から流れ場に向けて、レーザライトシート(即ち、シート状のレーザ光)を照射する。このときライトシートの面方向が、流体の流れの方向(即ち、速度を検出すべき流れの方向)と一致するように、レーザライトシートを照射する。レーザライトシートに直交する方向から、CCD又はCMOSカメラを用いて、レーザライトシートに照射されたトレーサ粒子を経時的に複数回撮像する。経時的に撮像された複数の粒子画像に含まれるトレーサ粒子のパターンを解析し、トレーサ粒子の移動速度、即ち、流体の速度を計測する。これがPIVの概要である。
【0088】
PIVは、トレーサ粒子を流れ場にシーディングし、流れ場に向けて上方からレーザライトシートを照射する。これに対して、航空機1が遭遇する可能性のある気流を計測する場合は、航空機1から離れた空域にトレーサ粒子をシーディングし、空域の上方からレーザライトシートを照射することは、不可能である。これが本実施形態の前提条件である。
【0089】
PIVは、画像解析に適した良好な粒子画像を撮像する必要がある。このため、トレーサ粒子の粒径や、流れ場中の粒子密度を適切にコントロールする必要がある。これに対して、航空機1が遭遇する可能性のある気流を計測する場合は、トレーサ粒子の代わりとなる大気中のエアロゾル(塵、微粒子)の粒径や粒子密度をコントロールすることは出来ない。また、航空機1から速度計測対象である大気までの距離が、PIVでのカメラからライトシートまでの距離に比べて、遥かに大きい。このため、航空機1から離れた空域の大気中の塵等の画像を、画像解析に適したレベルで、航空機1から撮像するのは極めて困難である。
【0090】
以上のような事情に鑑み、本実施形態によれば、気流計測装置100は、照射から受光までの反射光の時間遅れを算出し、時間遅れに基づき、予定される飛行経路に直交する仮想面6で反射した反射光を抽出し、仮想面6で反射した反射光の強度のパターンを示す反射光マップ3を作成する。これにより、速度を検出すべき流れの方向と一致する面方向を有する仮想面6で反射した反射光の反射光マップ3を作成することができる。言い換えれば、PIVの粒子画像と同様に流れの方向及び速度を解析することが可能な反射光マップ3を作成することができる。PIVでは、粒子密度に基づきトレーサ粒子の分布を解析するが、本実施形態では、粒子密度の代わりに反射光の強度に基づき塵の分布を解析することができる。
【0091】
PIVは、レーザライトシートを照射し、レーザライトシートに照らされた(即ち、レーザライトシート内に分布する)トレーサ粒子だけを撮像する。レーザライトシートは、必ず物理的な厚みを持つ。このため、レーザライトシートの面方向だけでなく、レーザライトシートの厚み方向に分布するトレーサ粒子も撮像されることになる。言い換えれば、レーザライトシートの面方向だけでなくレーザライトシートの厚み方向に分布するトレーサ粒子が、粒子画像に含まれる。このため、PIVでは、レーザライトシートの面方向だけの気流速度を正確に計測できないおそれがある。
【0092】
これに対して、本実施形態の気流計測装置100は、特定の遅れ時間で受光する反射光だけを抽出することにより、物理的な厚みの無い仮想面6で反射した反射光だけを抽出することが可能である。このため、本実施形態の気流計測装置100は、仮想面6の面方向だけの気流速度を正確に計測することを図れる。
【0093】
ところで、エアロゾルの大きさが0である場合、仮想面6上にエアロゾルが存在する確率は0である。エアロゾルに大きさ(代表長さd)があればdに比例して存在確率は大きくなる。時間遅れTに時間幅dt'を持たせれば、仮想面6の面積Sにdt'Cの厚さを加えた直方体の中にあるエアロゾルを検出することになり、エアロゾルの大きさdが0だとしても、存在確率は有限になる。高い高度に存在するエアロゾルの密度は非常に低いため、エアロゾルの検出のための時間幅dt'を設けてもよい。
【0094】
5.結語
【0095】
本実施形態によれば、気流計測装置100は、照射から受光までの反射光の時間遅れを算出し、時間遅れに基づき、予定される飛行経路に直交する仮想面6で反射した反射光を抽出し、仮想面6で反射した反射光の強度のパターンを示す反射光マップ3を作成する。これにより、速度を検出すべき流れの方向と一致する面方向を有する仮想面6で反射した反射光の反射光マップ3を作成することができる。時間的に異なる複数の反射光マップ3を作成することで、仮想面6の面方向の気流の速度を計測することができる。
【0096】
仮想面6の面方向を予定される飛行経路に直交する方向とすることで、予定される飛行経路に直交する方向(即ち、上下方向及び左右方向の成分を含む方向)の気流の速度を計測することができる。特に、晴天乱気流の上下方向の速度を計測することができる。また、仮想面6のサイズを適切に設定することで、航空機1が乱気流を回避するために必要な空域の気流速度を精度よく適切に算出することを図れる。
【0097】
また、本実施形態では、航空機1の位置の変化に依存せず、大気中の同じ位置にある仮想面6で反射した反射光の反射光マップ3を作成し続けた(ステップS204、ステップS205)。変形例として、航空機1の位置の変化に依存して、進行方向に対して異なる位置の仮想面6で反射した反射光の反射光マップ3を作成すれば、進行方向の成分を含む方向の気流の速度を計測することも可能である。
【0098】
本実施形態では、最小限のハードウェアであるレーザ発振装置111及び受光装置120を航空機1に搭載するだけでよく、処理装置130は受光装置120が受光した反射光に基づき、ソフトウェア処理により仮想面6の面方向の気流の速度を計測する。また、同時にドップラーシフト量に基づく進行方向の気流速度を検出することも可能である。
【0099】
気流計測装置100は、航空機1に搭載するだけではなく、地上装置にも適用可能である。また、航空機1に搭載された気流計測装置100が計測した気流を、気流計測装置100が地上装置や他の航空機に送信してもよい。また、気流計測装置100は、船舶や車両に搭載することも可能である。
【0100】
本技術の各実施形態及び各変形例について上に説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【符号の説明】
【0101】
1 航空機
2 照射及び受光装置
3 反射光マップ
4 検査区画
5 グリッドエリア
6 仮想面
100 気流計測装置
110 照射装置
111 レーザ発振装置
112 スキャン装置
120 受光装置
130 処理装置
131 算出装置
132 演算装置
140 記憶装置
150 表示装置
151 速度表示画面
図1
図2
図3
図4
図5