IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インターナショナル・ビジネス・マシーンズ・コーポレーションの特許一覧

特許7597466磁気記録層と下位層とを有するテープ媒体
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-02
(45)【発行日】2024-12-10
(54)【発明の名称】磁気記録層と下位層とを有するテープ媒体
(51)【国際特許分類】
   G11B 5/738 20060101AFI20241203BHJP
   G11B 5/70 20060101ALI20241203BHJP
   G11B 5/73 20060101ALI20241203BHJP
   G11B 5/78 20060101ALI20241203BHJP
   G11B 5/84 20060101ALI20241203BHJP
   G11B 23/30 20060101ALI20241203BHJP
   G11B 23/40 20060101ALI20241203BHJP
   G11B 5/708 20060101ALI20241203BHJP
【FI】
G11B5/738
G11B5/70
G11B5/73
G11B5/78
G11B5/84 Z
G11B23/30 Z
G11B23/40
G11B5/708
【請求項の数】 24
(21)【出願番号】P 2022510870
(86)(22)【出願日】2020-08-04
(65)【公表番号】
(43)【公表日】2022-11-07
(86)【国際出願番号】 IB2020057359
(87)【国際公開番号】W WO2021033059
(87)【国際公開日】2021-02-25
【審査請求日】2023-01-20
(31)【優先権主張番号】16/545,963
(32)【優先日】2019-08-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390009531
【氏名又は名称】インターナショナル・ビジネス・マシーンズ・コーポレーション
【氏名又は名称原語表記】INTERNATIONAL BUSINESS MACHINES CORPORATION
【住所又は居所原語表記】New Orchard Road, Armonk, New York 10504, United States of America
(74)【代理人】
【識別番号】100112690
【弁理士】
【氏名又は名称】太佐 種一
(72)【発明者】
【氏名】ブラッドショー、リチャード
【審査官】松元 伸次
(56)【参考文献】
【文献】特開平10-124847(JP,A)
【文献】特開平04-117620(JP,A)
【文献】特開2001-052326(JP,A)
【文献】特開2016-181316(JP,A)
【文献】特表2005-529439(JP,A)
【文献】特開2008-243317(JP,A)
【文献】特開平11-259849(JP,A)
【文献】特開2018-129108(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B24B3/00-3/60
21/00-39/06
C09K3/14
G11B5/62-5/858
23/00-23/50
(57)【特許請求の範囲】
【請求項1】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記下位層は、少なくとも前記第1の磁気ナノ粒子が導電性を有することによって製品内の電荷を放散させるための導電性を有する、
製品。
【請求項2】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記第1の磁気ナノ粒子は、200エルステッド(Oe)未満の平均磁場強度を有する、製品。
【請求項3】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記下位層は、引張貯蔵率(E’)と温度とのプロットにおいて、少なくとも摂氏35度の開始ガラス転移温度を有することを特徴とする、製品。
【請求項4】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記第1の磁気ナノ粒子の平均の直径は、2ナノメートル~15ナノメートルの範囲にある、製品。
【請求項5】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記第1の芳香族ポリマの平均の厚さは、1ナノメートル~8ナノメートルの範囲にある、製品。
【請求項6】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記下位層の平均の厚さは1ミクロン未満である、製品。
【請求項7】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記第2の磁気ナノ粒子の平均の直径は、2ナノメートル~20ナノメートルの範囲にある、製品。
【請求項8】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
各封止層の平均の厚さは1ナノメートル未満である、製品。
【請求項9】
下位層であって、
第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、
前記第1の封止されたナノ粒子を結合させる第1のポリマ・バインダと
を含む、前記下位層と、
前記下位層の上に形成された磁気記録層であって、
封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、
前記第2の封止されたナノ粒子を結合させる第2のポリマ・バインダと
を含む、前記磁気記録層と
を含み、
前記記録層の平均の厚さは0.2ミクロン未満である、製品。
【請求項10】
前記下位層における前記第1の封止されたナノ粒子の平均濃度は、少なくとも35体積%である、請求項1ないし9のいずれか一項に記載の製品。
【請求項11】
前記第1の磁気ナノ粒子は酸化クロムを含む、請求項1ないし9のいずれか一項に記載の製品。
【請求項12】
前記第1の芳香族ポリマはカルバメートを含む、請求項1ないし9のいずれか一項に記載の製品。
【請求項13】
前記第1のポリマ・バインダはアクリル・ポリマを含む、請求項1ないし9のいずれか一項に記載の製品。
【請求項14】
前記第2の磁気ナノ粒子は、ニッケル、コバルトおよび鉄で構成されるグループから選択される少なくとも1つの磁気材料を含む、請求項1ないし9のいずれか一項に記載の製品。
【請求項15】
前記第2の磁気ナノ粒子は、Co、CoFe、Fe、FeおよびCo(fcc)で構成されるグループから選択される少なくとも1つの磁気材料を含む、請求項1ないし9のいずれか一項に記載の製品。
【請求項16】
前記封止層は、ポリ芳香族膜とグラファイト状支配連続膜とで構成されるグループから選択される層である、請求項1ないし9のいずれか一項に記載の製品。
【請求項17】
前記第2のポリマ・バインダはアクリル・ポリマである、請求項1ないし9のいずれか一項に記載の製品。
【請求項18】
前記記録層には摩耗粒子が存在しない、請求項1ないし9のいずれか一項に記載の製品。
【請求項19】
前記記録層の表面に結合された潤滑剤分子を含む、請求項1ないし9のいずれか一項に記載の製品。
【請求項20】
前記封止層は第2の芳香族ポリマを含む、請求項1ないし9のいずれか一項に記載の製品。
【請求項21】
前記記録層は前記下位層と実質的に混合していない、請求項1ないし9のいずれか一項に記載の製品。
【請求項22】
請求項1ないし21のいずれか一項に記載の前記製品を含む、磁気記録テープ。
【請求項23】
ハウジングと、
前記ハウジングに少なくとも部分的に格納された請求項22に記載の磁気記録テープとを備える、テープ・カートリッジ。
【請求項24】
前記ハウジングに結合された不揮発性メモリを備えた、請求項23に記載のテープ・カートリッジ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、データ記憶システムに関し、さらに詳しくは、本発明は、テープ媒体のための磁気記録層に関する。
【背景技術】
【0002】
磁気記憶システムでは、磁気トランスデューサが、磁気記録媒体からデータを読み出し、磁気記録媒体上にデータを書き込む。データは、データが記憶される媒体上の位置に磁気記録トランスデューサを移動させることによって、磁気記録媒体上に書き込まれる。そして、磁気記録トランスデューサは磁場を発生させ、この磁場がデータを磁気媒体の中にエンコードする。データは、磁気読み出しトランスデューサを同様に位置決めし、磁気媒体の磁場を感知することによって、媒体から読み出される。読み出し動作と書き込み動作とは、データが媒体上の所望の場所から読み出されることができ所望の場所に書き込まれることができることを保証するため、独立に、媒体の移動と同期され得る。
【0003】
データ・ストレージ産業における重要で継続的な目標は、媒体上に記憶されるデータ密度を向上させることである。テープ記憶システムの場合、その目標は、記録テープ上のトラックおよび線形ビット密度を上昇させることと、磁気テープ媒体の厚さを低下させることに通じる。しかし、フットプリントが小さく、より高い性能のテープ駆動システムの開発は、そのようなシステムで用いるためのテープ・ヘッド・アセンブリの設計からテープの寸法的な不安定性への対処まで、様々な課題を生じさせている。
【発明の概要】
【0004】
あるアプローチによる製品は、下位層と、下位層の上に形成された磁気記録層とを含む。下位層は、第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、第1の封止されたナノ粒子を結合させる第1のポリマ・バインダ(polymeric binder)とを含む。記録層は、封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、第2の封止されたナノ粒子を結合させる第2のポリマ・バインダとを含む。
【0005】
上述した構造を有する製品の様々な利点は、ただし、これらに限定されることはないが、以下のうちの1つまたは複数を含むのであり、すなわち、記録層がより薄いこと、記録層における磁気粒子の分散がより均一であること、より平坦であること、下位層と記録層との間の界面の混濁(turbid)が少ないこと、ガラス転移温度がより高いこと、記録層において磁気粒子の空洞の発生がより少ないことまたは実質的に除去されていることなどである。これらの利点のそれぞれの結果として、これらに限定されることはないが、引き裂き抵抗の改善、1nm以下まで記録分解能を高めること、より高い信号対雑音比を結果的に生じさせるより低い雑音などのうち1つまたは複数の特性を示すテープなどの磁気記録製品が得られる。
【0006】
ある態様では、下位層は導電性である。下位層が導電性であるという特性は、例えば電荷を接地されているハブに運ぶことによって、電荷の放散を助け、それによって、ヘッドに移動する電荷を最小化し、結果的に、テープとヘッド表面との間の、記録ヘッド構造の電気化学的な腐食への経路を提供する導電性経路を形成する凝縮流体水(condensed liquid water)というリスクを軽減させる。
【0007】
別の態様では、下位層に、摩耗粒子が存在しない。そのような摩耗粒子は、現在および将来の記録ヘッドにおける、ますます許容不可能な欠陥と、収縮する読み出しおよび書き込み構造への損傷原因とを構成することが判明している。
【0008】
ある態様では、封止層は、第2の芳香族ポリマを含む。芳香族ポリマが封止層として好適であるのは、芳香環構造が磁気ナノ粒子の表面を封止するからである。芳香環は、磁気ナノ粒子の磁気軸と適切な位置合わせがなされている場合に磁気ナノ粒子の表面において改善された安定性といくらかの磁気遮蔽とを与えるそれらの分子における芳香族性のユニークな特性により、特に酸化クロムなどの化学的反応性の金属酸化物との関係で、非常に優れた振る舞いを有する。例えば、芳香環構造は、それらのユニークな分子における電子構造と外部磁場を抑制する能力とにより、磁場修正手段として作用することができる。芳香族ポリマは、また、顔料の表面において磁気遮蔽を提供し、封止されたナノ粒子の独立のスイッチングを改善するために、磁気ナノ粒子を他の粒子から孤立させることを助け、結果的に、より高いビット分解能を生じさせる。
【0009】
ある態様では、記録層は、下位層とは実質的に混合していない。この特徴により、磁気記録テープ製品における長年の問題が解決されるのであって、すなわち、それらの界面における複数の層の混合と、そのような混合が生じさせる広く知られた問題とが解決される。
【0010】
ある好適な態様では、この製品は、磁気記録テープである。
【0011】
本発明の他の態様とアプローチとは、以下の詳細な説明から明らかになるのであるが、その説明は、図面と共に読まれることにより、本発明の原理を、例を通じて例示するものである。
【図面の簡単な説明】
【0012】
図1A】単純化されたテープ駆動システムの概略図である。
図1B】本発明の一態様によるテープ・カートリッジの概略図である。
図2A】本発明の一態様によるフラットラップされ(flat-lapped)双方向で2つのモジュールからなる磁気テープ・ヘッドの側面図である。
図2B図2Aの線2Bから見たテープ支持面の図である。
図2C図2Bの円2Cから見た詳細図である。
図2D】1対のモジュールの部分的なテープ支持面の詳細図である。
図3】書き込み-読み出し-書き込み構成を有する磁気ヘッドの部分的なテープ支持面の図である。
図4】読み出し-書き込み-読み出し構成を有する磁気ヘッドの部分的なテープ支持面の図である。
図5】モジュールすべてがほぼ平行な平面に沿って全体として存在する3つのモジュールを用いた磁気テープ・ヘッドの側面図である。
図6】接線(角度付きの)(tangent (angled))構成の3つのモジュールを用いた磁気テープ・ヘッドの側面図である。
図7】オーバーラップ構成の3つのモジュールを用いた磁気テープ・ヘッドの側面図である。
図8A】テープ・テンティング(tape tenting)の原理を示す概略図である。
図8B】テープ・テンティングの原理を示す概略図である。
図8C】テープ・テンティングの原理を示す概略図である。
図9】本発明の一態様による磁気テープ上に記憶されているファイルとインデックスの表現図である。
図10】様々なアプローチによる磁気記録媒体の基本構造の部分的断面図である。
図11】様々なアプローチによる、限界顔料体積濃度(CPVC)を決定するためのコーティングの動的機械分析(DMA)を示すプロットである。
図12】従来型の記録テープの断面の透過型電子顕微鏡(TEM)の像である。
【発明を実施するための形態】
【0013】
以下の説明は、本発明の一般的原理を例示する目的で行われているのであって、本明細書で特許請求されている発明の概念を限定することは、意図されていない。さらに、本明細書で説明されている特定の特徴は、様々な可能性のある組合せおよび順列において、説明されている他の特徴との組合せとして、用いられることが可能である。
【0014】
本明細書で特に別の定義が与えられない限り、すべての用語には、それらの最も広く可能性のある解釈が与えられるべきであり、それには、本明細書から含意される意味と、当業者によって理解されるまたは辞書や専門書などにおいて定義されているまたはその両方の意味とが含まれる。
【0015】
本明細書と添付の特許請求の範囲とで用いられる場合、単数形の「a」、「an」および「the」は、そうではないと指定されない限り、複数の指示対象を含むということも留意されるべきである。
【0016】
以下の説明は、特に磁気記録媒体において有用な、層の様々な構成と、それらの層を形成するための方法とを開示している。
【0017】
ある一般的なアプローチでは、製品が、下位層と、下位層の上に形成された磁気記録層とを含む。下位層は、第1の芳香族ポリマによって封止された第1の磁気ナノ粒子をそれぞれが含む第1の封止されたナノ粒子と、第1の封止されたナノ粒子を結合させる第1のポリマ・バインダとを含む。記録層は、封止層によって封止された第2の磁気ナノ粒子をそれぞれが含む第2の封止されたナノ粒子と、第2の封止されたナノ粒子を結合させる第2のポリマ・バインダとを含む。
例示的な動作環境
【0018】
図1Aは、テープ・ベースのデータ記憶システムの単純化されたテープ・ドライブ100を図解しており、このテープ・ベースのデータ記憶システムは、本発明の文脈で用いられ得るものである。テープ・ドライブのある特定の実装形態が図1Aに示されているが、ここで説明されるアプローチは、どのタイプのテープ駆動システムの文脈でも実装され得るということが留意されるべきである。
【0019】
示されているように、テープ供給カートリッジ120と巻取リール121とが、テープ122を支持するために提供されている。リールの1つまたは複数が、取り外し可能なカートリッジの一部を形成し得るが、必ずしもテープ・ドライブ100の一部とは限らない。図1Aに図解されているようなテープ・ドライブは、さらに、テープ供給カートリッジ120を駆動する駆動モータ(単数または複数)と、テープ122をいずれかのタイプのテープ・ヘッド126上で移動させる巻取リール121とを含み得る。このようなヘッドは、リーダ、ライタまたはその両方のアレイを含むことがある。
【0020】
ガイド125は、テープ・ヘッド126を横断するように、テープ122を誘導する。このテープ・ヘッド126は、また、ケーブル130を経由して、コントローラ128に結合されている。コントローラ128は、ドライブ100のどのサブシステムでも制御するためのプロセッサもしくはいずれかのロジックまたはその両方であり得るし、あるいはドライブ100のどのサブシステムでも制御するためのプロセッサもしくはいずれかのロジックまたはその両方を含み得る。例えば、コントローラ128は、典型的には、サーボ追跡、データ書き込み、データ読み出しなどのヘッド機能を制御する。コントローラ128は、少なくとも1つのサーボ・チャネルと、少なくとも1つのデータ・チャネルとを含み得るが、これらは、それぞれが、テープ122に書き込まれるまたはテープ122から読み出されるあるいはその両方の情報を、処理または記憶あるいはその両方を行うように構成されたデータ・フロー処理ロジックを含む。コントローラ128は、当該技術分野で既知のロジックの下で、また同様に本明細書に開示されているいずれかのロジックの下で、動作し得るのであって、様々なアプローチにおいて本明細書に含まれているテープ・ドライブの説明のいずれかのためのプロセッサとして考えられ得る。コントローラ128は、いずれかの既知のタイプのメモリ136に結合され得るが、メモリ136は、コントローラ128によって実行可能な命令を記憶し得る。さらに、コントローラ128は、本明細書で提示されている方法論の一部もしくはすべてを実行または制御するように、構成またはプログラム可能あるいはその両方であり得る。よって、コントローラ128は、1つまたは複数のチップ、モジュールまたはブロックあるいはこれらの組合せと、1つまたは複数のプロセッサにとって利用可能なソフトウェア、ファームウェアまたはそれ以外の命令もしくはこれらの組合せと、それらの組合せとの中にプログラムされたロジックによって、様々な動作を実行するように構成されていると考えられ得る。
【0021】
ケーブル130は、データをテープ・ヘッド126に伝送する、テープ122上に記録する、およびテープ・ヘッド126によって読み出されたデータをテープ122から受け取るための読み出し/書き込み回路を含み得る。アクチュエータ132は、テープ122に対するテープ・ヘッド126の位置を制御する。
【0022】
インターフェース134は、また、テープ・ドライブ100とホスト(内部または外部)との間でデータを送信および受信する通信のため、そしてテープ・ドライブ100の動作を制御しテープ・ドライブ100の状態をホストに通信するために、提供され得るのであるが、これらはすべて当業者によって理解されるであろう。
【0023】
図1Bは、例示的なテープ・カートリッジ150を図解しているが、これは、様々なアプローチにおいて、本明細書で説明されているテープ形式での磁気記録媒体のいずれかの構成を含み得る。このようなテープ・カートリッジ150は、図1Aに示されているようなシステムと共に用いられ得る。示されているように、テープ・カートリッジ150は、ハウジング152と、ハウジング152の中のテープ122と、ハウジング152に結合されたオプションの不揮発性メモリ156とを含む。いくつかのアプローチでは、不揮発性メモリ156は、図1Bに示されているように、ハウジング152の内部に埋め込まれていることがあり得る。より多くのアプローチでは、不揮発性メモリ156は、ハウジング152を修正することなく、ハウジング152の内部または外部に、付着されていることもあり得る。例えば、不揮発性メモリが、自己接着性ラベル154に埋め込まれていることがあり得る。ある好適なアプローチでは、非揮発性メモリ156は、テープ・カートリッジ150の内部もしくは外部に埋め込まれたまたは結合されたソリッド・ステート・メモリ(例えば、フラッシュ・メモリ)、リード・オンリ・メモリ(ROM)デバイスなどであり得る。この不揮発性メモリは、テープ・ドライブ、テープ動作ソフトウェア(ドライバ・ソフトウェア)、または他のデバイスあるいはこれらの組合せによって、アクセスが可能である。
【0024】
例により、図2Aは、本発明の文脈で実装され得る、フラットラップされ双方向で2つのモジュールからなる磁気テープ・ヘッド200の側面図を図解している。示されているように、ヘッドは、1対のベース202を含んでおり、ベース202は、それぞれが、モジュール204を備え、相互に対して小さな角度αで固定されている。ベースは、相互に接着的に結合されている「Uビーム」であり得る。各モジュール204は、基板204Aと、「ギャップ」と称されるのが通常でありリーダまたはライタあるいはその両方206が形成される薄膜部を備えた閉包(closure)204Bとを含む。使用の際には、テープ208が、媒体(テープ)支持面209に沿って、モジュール204上を、リーダおよびライタを用いてテープ208上のデータを読み出しテープ上にデータを書き込むために、示されている様態で移動される。平坦な媒体支持面209上に進行するおよび平坦な媒体支持面209から去るエッジにおけるテープ208のラップ角(wrap angle)θは、通常、約0.1度から約3度までの間である。
【0025】
基板204Aは、典型的には、セラミックなどの耐摩耗材料で構成される。閉包204Bは、基板204Aと同じまたは同様のセラミックで作られ得る。
【0026】
リーダとライタとは、ピギーバックまたは統合構成として配列され得る。例示的なピギーバック構成は、(磁気シールドされた)リーダ・トランスデューサ(例えば、磁気抵抗リーダなど)の上(または下)にある(磁気誘導)ライタ・トランスデューサを含み、ライタの磁極とリーダのシールドとは、分離されているのが一般的である。例示的な統合構成は、ライタの一方の磁極と同じ(したがって「統合」)物理層に1つのリーダ・シールドを含む。リーダとライタとは、インターリーブ構成として配置されることもあり得る。あるいは、チャネルの各アレイが、リーダまたはライタのみである場合もあり得る。これらのアレイは、どれも、媒体上のサーボ・データを読み出すための1つまたは複数のサーボ・トラック・リーダを含み得る。
【0027】
図2Bは、図2Aの線2Bから見たモジュール204の1つのテープ支持面209を図解している。代表的なテープ208が、破線で示されている。モジュール204は、好ましくは、ヘッドがデータ・バンドの間を進むときに、テープを支持することができるのに十分な程度の長さを有する。
【0028】
この例では、テープ208は、例えば1.5インチ(約3.81センチメートル)幅のテープ208上に図2Bに示されている16のデータ・バンドと17のサーボ・トラック210を備えているように、4~32のデータ・バンドを含む。データ・バンドは、サーボ・トラック210の間で定義される。各データ・バンドは、例えば1024のデータ・トラック(図示せず)など、多数のデータ・トラックを含み得る。読み出し/書き込み動作の間、リーダまたはライタあるいはその両方206は、データ・バンドの1つの内部における特定のトラック位置に位置決めされる。時にはサーボ・リーダと称される外部リーダが、サーボ・トラック210を読み出す。それに対し、サーボ信号は、読み出し/書き込み動作の間、リーダまたはライタあるいはその両方206を、特定の組のトラックと位置合わせされた状態に維持するのに用いられる。
【0029】
図2Cは、図2Bの円2Cにおけるモジュール204上のギャップ218に形成されている複数のリーダまたはライタあるいはその両方206を示す。示されているように、リーダおよびライタ206のアレイは、個数は変動することがあり得るが、例えば、16のライタ214と、16のリーダ216と、2つのサーボ・リーダ212とを含む。例示的なアプローチは、1アレイ当たりに、8、16、32、40および64のアクティブなリーダまたはライタあるいはその両方206を含み、あるいは、インターリーブ型の設計の場合には、17、25、33など、奇数個のリーダまたはライタを有する。例示的なアプローチは、1アレイ当たり32のリーダまたは1アレイ当たり32のライタあるいはその両方を含んでおり、その場合に、トランスデューサ要素の実際の個数は、例えば33、34などというように、より大きいことがあり得る。これにより、テープがより低速で移動することが可能になり、よって、速度で誘導されるトラッキングおよび力学的困難を低減させることができるまたはテープを充填するもしくは読み出すためにより少数の「ラップ」を実行することができるあるいはその両方が可能になる。リーダとライタとは図2Cに示されているようにピギーバック構成に配列され得るが、リーダ216とライタ214とは、インターリーブ構成にも配列され得る。あるいは、リーダ/ライタ206の各アレイはリーダまたはライタのみの場合もあり得るし、アレイが1つまたは複数のサーボ・リーダ212を含むこともあり得る。図2Aおよび2B~2Cを考察することによって留意されるように、各モジュール204は、双方向読み出しおよび書き込み、読み出しと書き込みとを同時に行う能力、後方互換性などのために、リーダまたはライタあるいはその両方206の相補的な組を含むことがあり得る。
【0030】
図2Dは、あるアプローチによる、磁気テープ・ヘッド200の相補的モジュールの部分的なテープ支持面の図を示している。このアプローチでは、各モジュールは、共通基板204Aとオプションで電気絶縁性の絶縁層236との上に形成されたピギーバック構成の複数の読み出し/書き込み(R/W)ペアを有する。ライタ214とリーダ216とは、R/Wペア222として例示されているR/Wペアを形成するように、それらを横断するテープ媒体の意図された移動方向と平行に、位置合わせされている。テープの意図された移動方向は、本明細書では、ときに、テープの移動方向とも称されるのであって、これらの用語は相互に交換可能に用いられ得るということに留意してほしい。このテープの移動方向は、システムの設計から、例えば、説明書を検討すること、基準点に対するテープの実際の移動方向を観察することなどによって、推測され得る。さらに、双方向の読み出しまたは書き込みあるいはその両方が可能であるように動作するシステムでは、双方向へのテープの移動方向は、典型的には平行であり、したがって、両方の方向は相互に均等であると考えられ得る。
【0031】
8、16、32のペアなど、いくつかのR/Wペア222が存在し得る。示されているR/Wペア222は、それらを横断するテープの移動方向に対してほぼ垂直な方向に、直線的に位置合わせされている。しかし、これらのペアは、対角線方向などにも位置合わせされ得る。サーボ・リーダ212は、R/Wペアのアレイの外側に位置決めされているが、その機能は広く知られている。
【0032】
一般に、磁気テープ媒体は、矢印220によって指示されているように、順方向または逆方向のいずれかに移動する。磁気テープ媒体とヘッド・アセンブリ200とは、当該技術分野で広く知られている様態で、変換関係として動作する。ヘッド・アセンブリ200は、一般的には同一の構成を有する2つの薄膜モジュール224および226を含む。
【0033】
モジュール224および226は、相互に結合され、それらの閉包204B(部分的に示されている)の間に存在する空間を有し、先行モジュールのライタと、それらに対するテープの移動方向と平行に先行モジュールのライタと位置合わせされた後続モジュールのリーダとを付勢することによって、同時的な読み出しおよび書き込み能力を提供する単一の物理ユニットを形成する。磁気テープ・ヘッド200のモジュール224、226が構築されるときに、例えばAlTiCなどの導電性基板204A(部分的に図示)の上方に生じるギャップ218に、一般的には下記の順序で、R/Wペア222のための層が形成されるのであり、すなわち:絶縁層236と、典型的にはNiFe(-)、コバルト・ジルコニウム・タンタル(CZT)またはAl-Fe-Si(センダスト)などの鉄合金の第1のシールド232と、磁気媒体上のデータ・トラックを感知するためのセンサ234と、典型的にはニッケル-鉄合金(例えば、パーマロイとしても知られている~80/20の%のNiFe)の第2のシールド238と、第1および第2のライタの磁極228、230と、コイル(図示せず)とである。センサは、いずれかの既知のタイプであり得るが、磁気抵抗性(MR)、GMR、AMR、トンネル磁気抵抗性(TMR)などに基づくものを含む。
【0034】
第1および第2のライタの磁極228、230は、~45/55のNiFeなど、高磁気モーメント材料から製造され得る。これらの材料は、単に例として提供されているのであって、他の材料も用いられ得ることに留意してほしい。シールドまたは磁極端あるいはその両方の間の絶縁などの追加的な層と、センサの周囲の絶縁層とが存在することもあり得る。絶縁のための例示的な材料には、アルミナおよびそれ以外の酸化物、絶縁性ポリマなどが含まれる。
【0035】
テープ・ヘッド126の構成は、好ましくは3またはそれより多い、複数のモジュールを含み得る。書き込み-読み出し-書き込み(W-R-W)ヘッドでは、書き込みのための外側モジュールが、読み出しのための1つまたは複数の内側モジュールの横に配置される。W-R-W構成を示している図3を参照すると、外側モジュール252、256は、それぞれが、ライタ260の1つまたは複数のアレイを含む。図3の内側モジュール254は、同様の構成で、リーダ258の1つまたは複数のアレイを含む。マルチ・モジュール・ヘッドの変更例には、R-W-Rヘッド(図4)、R-R-Wヘッド、W-W-Rヘッドなどが含まれる。さらに他の変更例では、モジュールの1つまたは複数が、トランスデューサの読み出し/書き込みペアを有し得る。さらに、3よりも多くのモジュールが存在する場合もあり得る。さらなるアプローチでは、例えば、W-R-R-W、R-W-W-Rという配列など、2つの外側モジュールの横に、2つまたはそれより多くの内側モジュールが配置されることがあり得る。単純にするために、本発明の態様を例示するのには、本明細書では、W-R-Wヘッドが主に用いられる。本明細書における教示を得た当業者であれば、本発明の順列が、W-R-W構成とは異なる構成にどのように適用され得るのかを理解するであろう。
【0036】
図5は、あるアプローチによる磁気ヘッド126を図解しており、それぞれがテープ支持面308、310、312をそれぞれ有し、平坦、起伏がある、その他であり得る第1、第2および第3のモジュール302、304、306を含む。「テープ支持面」という用語が、テープ315に面している表面がこのテープ支持面と物理的に接していることを含意するために用いられているが、これは必ずしも妥当しないことに留意してほしい。むしろ、テープの一部分のみが、常時または断続的にテープ支持面と接する場合があり得るだけであり、テープの他の部分は、テープ支持面の上方で、時には「空気支持」とも称される空気の層に乗っている(または「飛んでいる」)のである。第1のモジュール302は、テープが指示された方向に動いている場合に、3モジュール設計において、テープが最初に遭遇するモジュールであるから、「先行」モジュールと称される。第3のモジュール306は、「後続」モジュールと称される。後続モジュールは、中間モジュールに続いており、3モジュール設計の場合にテープが最後に見るモジュールである。先行および後続モジュール302、306は、集合的に、外側モジュールと称される。外側モジュール302、306は、テープ315の移動方向に応じて、先行モジュールとして交代することにも留意してほしい。
【0037】
あるアプローチでは、第1、第2および第3のモジュール302、304、306のテープ支持面308、310、312が、ほぼ平行な平面(これは、例えば、図6におけるように、平行と接線方向との間など、平行な平面とほとんど平行な平面を含むことが意図されている)の上に存在しており、第2のモジュール304のテープ支持面310は、第1および第3のモジュール302、306のテープ支持面308、312の上方にある。後述されるように、これは、第2のモジュール304のテープ支持面310に対するテープの所望のラップ角αを生じさせるという効果を有する。
【0038】
テープ支持面308、310、312が平行またはほとんど平行であるがオフセットを有する平面に沿って存在する場合には、直感的には、テープは、先行モジュール302のテープ支持面308から剥がれるはずである。しかし、先行モジュール302のスカイビング・エッジ(skiving edge)318によって生じた真空が、テープを先行モジュール302のテープ支持面308に接着された状態に維持するのに十分であることが実験的に発見されている。先行モジュール302の後続エッジ320(テープが先行モジュール302を去る端部)は、第2のモジュール304のテープ支持面310上のラップ角αを定義する近似的な基準点である。テープは、先行モジュール302の後続エッジ320の近くまで、テープ支持面の密接な近傍に留まる。したがって、トランスデューサ322は、外側モジュール302、306の後続エッジの近くに配置され得る。これらのアプローチは、書き込み-読み出し-書き込みの応用に特に適している。
【0039】
この態様と本明細書で説明されている他の態様との利点は、外側モジュール302、306が第2のモジュール304から所定のオフセットの位置に固定されているため、モジュール302、304、306が相互に結合されているまたはそれ以外の様態でヘッドの中に固定されているときには、内側ラップ角αが固定されることである。内側ラップ角αは、δをテープ支持面308、310の面の間の高さの差であり、Wをテープ支持面308、310の対向する端部の間の幅であるとして、ほぼ、tan-1(δ/W)である。例示的な内側ラップ角αは、約0.3度から約1.1度までの間に属するが、設計によって必要とされる任意の角度であってよい。
【0040】
有利であることに、テープを受け取るモジュール304の側(先行エッジ)における内側ラップ角αは、後続エッジにおける内側ラップ角αよりも大きいのであるが、その理由は、テープ315は後続モジュール306の上方に乗っているからである。この差は、一般的に有利であるのだが、その理由は、αが小さいほど、より傾斜が急な、出て行く有効ラップ角であったものに対向する傾向にあるからである。
【0041】
外側モジュール302、306のテープ支持面308、312は、外側モジュール302の後続エッジ320において負のラップ角を生じさせるように位置決めされるということに留意してほしい。これは、ヘッドから剥がれる場所においてテープに形成されるバール領域の位置を適切に考慮するならば、後続エッジ320との接触に起因する摩擦を減少させることを助ける点で、一般的に優れている。この負のラップ角は、また、フラッタと、先行モジュール302上の要素に対するスクラブ損傷とを減少させる。さらに、後続エッジ306においては、テープ315は、テープ支持面312の上を飛ぶために、テープがこの方向に動いているときに、要素上の摩耗は実質的に存在しない。特に、テープ315は、空気に乗っているため、第3のモジュール306のテープ支持面312に著しく載ることはない(いくらかの接触が生じることはあり得る)。後続モジュール306がアイドル状態である場合でも先行モジュール302は書き込みを行っているため、これは許容可能である。
【0042】
書き込み機能と読み出し機能とは、どの与えられた時間でも、異なるモジュールによって実行される。あるアプローチでは、第2のモジュール304は、複数のデータおよびオプションであるサーボ・リーダ331を含み、ライタは含まない。第1および第3のモジュール302、306は、複数のライタ322を含み、データ・リーダは含まないが、例外的に、外側モジュール302、306は、オプションのサーボ・リーダを含むことがあり得る。サーボ・リーダは、読み出しまたは書き込みあるいはその両方の動作の間に、ヘッドを位置決めするのに用いられ得る。各モジュールにおけるサーボ・リーダは、典型的には、リーダまたはライタのアレイの端部に向かって配置される。
【0043】
基板と閉包との間のギャップにリーダのみを有する、またはライタとサーボ・リーダとを並んで有することにより、ギャップの長さを実質的に縮小させることが可能である。典型的なヘッドは、ピギーバック式のリーダとライタとを有しているが、その場合に、ライタは、各リーダの上方に形成される。典型的なギャップは、20~35ミクロンである。しかし、テープ上の不規則性は、ギャップの中に垂れ下がることで、ギャップの腐食を生じさせる傾向があり得る。よって、ギャップは、小さければ小さいほど、優れていることになる。本明細書において可能になるより小さなギャップは、摩耗に関する問題をより少なく示すことになる。
【0044】
いくつかのアプローチでは、第2のモジュール304は閉包を有するのに対し、第1および第3のモジュール302、306は閉包を有しない。閉包がない場合には、ハード・コーティングがモジュールに追加されることが好ましい。1つの好ましいコーティングは、ダイアモンド・ライク・カーボン(DLC)である。
【0045】
図5に示されているアプローチでは、第1、第2および第3のモジュール302、304、306は、それぞれが、関連するモジュールのテープ支持面を延長する閉包332、334、336を有することにより、読み出し/書き込み要素を、効果的に、テープ支持面のエッジから離れて位置決めすることになる。第2のモジュール304上の閉包332は、テープ・ヘッドにおいて典型的に見られるタイプのセラミック製閉包であり得る。しかし、第1および第3のモジュール302、306の閉包334、336は、それぞれのモジュールの上のテープの移動方向と平行に測定された場合、第2のモジュール304の閉包332よりも短いことがあり得る。これが、モジュールを相互により近く位置決めすることを可能にする。より短い閉包334、336を生じさせる1つの方法は、第2のモジュール304の標準的なセラミック製閉包に追加的な量を重ねることである。別の方法は、薄膜処理の間に、要素の上に薄膜閉包をメッキまたは堆積させることである。例えば、センダストまたはニッケル-鉄合金(例えば、45/45)などの硬い材料の薄膜閉包を、モジュール上に形成させることが可能である。
【0046】
外側モジュール302、306上に、厚さが縮小されたセラミックもしくは薄膜閉包334、336が存在するか、または閉包がない状態の場合、書き込みから読み出しまでのギャップ間隔は、例えば約0.75mmなどの約1mm未満まで、または通常用いられているリニア・テープ・オープン(LTO(R))テープ・ヘッドの間隔の50%未満まで、縮小させることが可能である。モジュール302、304、306の間の開放空間は、依然として、約0.5~0.6mmに設定されることが可能であり、これは、いくつかのアプローチでは、第2のモジュール304上のテープ移動を安定化させるのに理想的である。
【0047】
テープの張力と剛性とに応じて、外側モジュールのテープ支持面を、第2のモジュールのテープ支持面に対して角度を設けることが望まれる場合があり得る。図6は、モジュール302、304、306が接線またはほぼ接線(角度付きの)構成になっている装置を図解している。特に、外側モジュール302、306のテープ支持面は、第2のモジュール304の所望のラップ角αで、テープとほぼ平行である。換言すると、外側モジュール302、306のテープ支持面308、312の平面は、第2のモジュール304に対して、テープ315のおおよその所望のラップ角αという向きになっている。このアプローチでは、テープは、また、後続モジュール306から離れることになり、それによって、後続モジュール306における要素上の摩耗を減少させる。これらのアプローチは、書き込み-読み出し-書き込みの応用にとって特に有用である。これらのアプローチの追加的な態様は、上述したものと類似している。
【0048】
典型的には、テープ・ラップ角は、図5に示されたアプローチと図6に示されたアプローチとのほぼ中間に設定され得る。
【0049】
図7は、モジュール302、304、306がオーバーラップした構成にある装置を図解している。特に、外側モジュール302、306のテープ支持面308、312は、第2のモジュール304に対して所望のラップ角αに設定されるときには、テープ315よりも僅かに大きな角度を有する。このアプローチでは、テープは、後続モジュールから離れることはなく、後続モジュールが書き込みまたは読み出しのために用いられることを可能にする。したがって、先行モジュールと中間モジュールとは、共に、読み出しまたは書き込み機能あるいはその両方を実行することができるが、他方で、後続モジュールは、書き込まれたデータだけを、どのようなものであっても読み出すことができる。こうして、これらのアプローチは、書き込み-読み出し-書き込み、読み出し-書き込み-読み出し、書き込み-書き込み-読み出しの応用に好適である。後者のアプローチでは、閉包は、読み出し能力を保証するために、テープ・キャノピーよりも幅が広くなくてはならない。より幅の広い閉包は、より幅の広いギャップ間の分離を要求することがあり得る。したがって、好適なアプローチは、書き込み-読み出し-書き込み構成を有しており、この構成は、より幅の狭いギャップ間の分離を許容する短縮された閉包を用い得る。
【0050】
図6および7に示されたアプローチの追加的な態様は、上述したものと同様である。
【0051】
マルチ・モジュール・テープ・ヘッド126の32チャネル・バージョンは、現在の16チャネルのピギーバックLTOモジュールと同じまたはそれよりも小さなピッチ上にリードを有するケーブル350を用い得るか、または代替的に、モジュール上の接続が、ケーブル・スパンを50%縮小するために、オルガンの鍵盤状であり得る。上下の書き込みペアのシールドされていないケーブルが、ライタのために用いられ得るが、ライタは、一体化されたサーボ・リーダを有することがあり得る。
【0052】
外側ラップ角αは、調整可能なローラやスライドなど、当該技術分野で既知であるいずれかのタイプのガイドによって、または代替的にヘッドと一体であるアウトリガによって、ドライブにおいて設定され得る。ラップ角を設定するのには、例えば、オフセットのある軸を有するローラが用いられることがあり得る。オフセットのある軸は、回転の軌道弧を生じさせ、ラップ角αの正確な位置合わせを可能にする。
【0053】
上述したアプローチのいずれかを組み立てるには、従来型のUビーム・アセンブリを用いることが可能である。したがって、結果的に得られるヘッドの質量は維持され得るし、または従来の世代のヘッドと比較すると、軽量化される場合さえあり得る。他のアプローチでは、モジュールは、単体として構築されることもあり得る。本明細書における教示を得た当業者であれば、これらのヘッドを製造する他の既知の方法を、これらのヘッドを構築するために適合させ得ることを理解するであろう。さらに、特に断らない場合には、本開示を読むことで当業者には明らかになるように、当該技術分野で知られているタイプのプロセスおよび材料を、本明細書における教示と一致するような様々なアプローチにおける使用のために、適合させ得る。
【0054】
テープがモジュールの上を移動させられるときには、例えば低いエラー・レートで読み出しまたは書き込みあるいはその両方が効率的に実行されるように、テープがモジュール上の磁気トランスデューサの十分に近くを通過することが好ましい。いくつかのアプローチによると、モジュールの磁気トランスデューサを有する部分の十分に近くをテープが通過することを保証するために、テープ・テンティングが用いられることがあり得る。このプロセスをよりよく理解するため、図8A~8Cが、テープ・テンティングの原理を図解している。図8Aは、対向するエッジ804とエッジ806との間に延長する上側のテープ支え面802を有するモジュール800を示している。静止したテープ808が、エッジ804、806の周囲に巻き付いている状態で示されている。示されているように、テープ808の曲げ剛性が、テープをテープ支え面802から持ち上げる。図8Aに示されているように、テープの張力は、テープの形状を平坦にする傾向を有する。テープの張力が最小である場合、テープの曲率は、示されているより放物線状になる。
【0055】
図8Bは、移動中のテープ808を示している。先行エッジ、すなわち移動しているときにテープが遭遇する最初のエッジは、空気をテープから剥ぐように機能する場合があり、それによって、テープ808とテープ支え面802との間に準大気気圧(subambient air pressure)を生じさせる。図8Bでは、テープが左から右に移動しているときに、先行エッジは左側のエッジであり、右側のエッジが後続エッジである。その結果、テープの上方の大気圧が、テープをテープ支え面802に向かう方向に強制し、それによってエッジのそれぞれの近傍でテープ・テンティングを生じさせる。テープの曲げ剛性が大気圧の影響に抵抗し、それによって先行エッジと後続エッジとの両方の近傍にテープ・テンティングを引き起こす。モデル化は、2つのテントが、形状において極めて類似することを予測する。
【0056】
図8Cは、後続ガイド810がテープ支え面の平面の上方に配置されたとしても、準大気圧がどのようにテープ808をテープ支え面802に向かう方向に強制するかを示している。
【0057】
したがって、テープがモジュール上を通過するときのテープの経路を方向付けるため、テープ・テンティングが用いられ得ることになる。上述したように、好ましくは、読み取りまたは書き込みあるいはその両方が、例えば低いエラー・レートで効率的に実行されるように、モジュールの磁気トランスデューサを有する部分の十分近くをテープが通過するのを保証するために、テープ・テンティングが用いられることがあり得る。
【0058】
磁気テープは、テープ・カートリッジに格納されることがあり得るが、テープ・カートリッジは、次に、データ・ストレージ・ライブラリ内部のストレージ・スロットなどに格納される。テープ・カートリッジは、物理的に取り出すためにアクセス可能な様態で、ライブラリに格納され得る。磁気テープおよびテープ・カートリッジに加え、データ・ストレージ・ライブラリは、データの磁気テープへの記憶またはデータの磁気テープからの回収あるいはその両方を行うデータ・ストレージ・ドライブを含み得る。さらに、テープ・ライブラリとそれらに含まれるコンポーネントとは、テープとテープに格納されたデータとへのアクセスを可能にするファイル・システムを実装し得る。
【0059】
ファイル・システムは、どのようにデータがメモリに記憶されメモリから取り出されるのかを制御するのに、用いられ得る。よって、ファイル・システムは、例えばファイルがメモリにおいて編成される様態など、オペレーティング・システムがメモリ内のファイルを追跡するのに用いるプロセスとデータ構造とを含み得る。リニア・テープ・ファイル・システム(LTFS)とは、適合するテープへのアクセスを可能にするために、与えられたライブラリにおいて実装され得るファイル・システムの例示的なフォーマットである。本明細書で説明されている様々な態様が、例えばIBM(R)のスペクトラム・アーカイブ・ライブラリ・エディション(LTFS LE)を含む、広い範囲のファイル・システム・フォーマットを用いて実装可能であるということが、理解されるべきである。しかし、コンテキストを提供するため、そして単に読者を助けるために、以下のアプローチのいくつかが、あるタイプのファイル・システム形式であるLTFSを参照して説明される場合がある。これは、単なる例として行われているのであって、特許請求の範囲で定義されている本発明に対する限定であると見なされるべきではない。
【0060】
テープ・カートリッジは、そのカートリッジをテープ・ドライブに挿入することによって「ロード」され得るのであり、そして、テープ・カートリッジは、そのテープ・カートリッジをテープ・ドライブから取り外すことによって「アンロード」され得る。いったんテープ・ドライブにロードされると、カートリッジ内のテープは、テープ・カートリッジからテープ(磁気記録部分)を物理的に引き出し、引き出されたテープをテープ・ドライブの磁気テープ・ヘッドの上を通過させることによって、ドライブに「通される」ことになり得る。さらに、テープは、そのテープを磁気テープ・ヘッドの上を移動させるため、巻取リール(例えば、上記の図1Aの121を参照)に、取り付けられ得る。
【0061】
いったんテープ・ドライブに通されると、カートリッジ内のテープは、テープ上のメタデータを読み取り、そのテープをLTFSがファイル・システムの構成要素として用いることができる状態にすることにより、「マウント」され得る。さらに、テープを「マウント解除」するためには、メタデータが(例えば、インデックスとして)テープ上に最初に書き込まれるのが好ましいのであって、その後であれば、LTFSがテープをファイル・システムの構成要素として用いることが許容されている状態から、テープを取り除くことができる。最後に、テープを「抜き取る」ためには、テープが巻取リールから取り外され、再びテープ・カートリッジの内部に物理的に配置される。カートリッジは、テープが抜き取られた後であっても、例えば別の読み取り要求または書き込み要求あるいはその両方を待ちながら、テープ・ドライブ内にロードされたままの状態に留まり得る。しかし、他の場合には、例えば上述したように、テープが抜き取られる際に、テープ・カートリッジがテープ・ドライブからアンロードされることもある。
【0062】
磁気テープは、シーケンシャルなアクセス媒体である。つまり、新たなデータは、以前に書き込まれたデータの末尾にそのデータを追加することによって、テープに書き込まれる。したがって、ただ1つのパーティションを含むテープにデータが記録されるときには、データが頻繁に更新されそれに応じてテープに再び書き込まれると、メタデータ(例えば、割り当て情報)が、以前に書き込まれたデータの末尾に連続的に追加されることになる。その結果、テープが最初にマウントされると、そのテープに対応するメタデータの最新のコピーにアクセスするために、最後尾の情報が読み出される。しかし、これは、与えられているテープをマウントするプロセスに、相当な量の遅延をもたらす。
【0063】
単一パーティションのテープ媒体によって生じる遅延を克服するために、LTFS形式は、インデックス・パーティションとデータ・パーティションとを含む、2つのパーティションに分割されたテープを含む。インデックス・パーティションは、例えばファイル割り当て情報(インデックス)などのメタデータ(メタ情報)を記録するように構成され得るが、他方で、データ・パーティションは、例えばデータ自体であるデータの本体を記録するようにも構成され得る。
【0064】
図9を参照すると、インデックス・パーティション902とデータ・パーティション904とを含む磁気テープ900が、あるアプローチに従って、図解されている。示されているように、データ・ファイルとインデックスとが、テープ上に記憶されている。ここでの説明を読むときに当業者によって理解されるだろうが、LTFS形式は、テープ906の先頭にあるインデックス・パーティション902にインデックス情報が記録されることを可能にする。
【0065】
インデックス情報が更新されるときには、以前のバージョンのインデックス情報を上書きするのが好ましく、それによって、更新された現在のインデックス情報に、テープの先頭にあるインデックス・パーティションでアクセスできるようになる。図9に図解されている特定の例によると、最新バージョンのメタデータであるインデックス3が、テープ906の先頭にあるインデックス・パーティション902に記録されている。逆に、3つすべてのバージョンのメタデータであるインデックス1、インデックス2、インデックス3と、データであるファイルA、ファイルB、ファイルC、ファイルDとは、テープのデータ・パーティション904に記録されている。インデックス1とインデックス2とは古い(例えば、更新されていない)インデックスであるけれど、上述したように、情報は、以前に書き込まれたデータの末尾にその情報を追加することによってテープに書き込まれるため、これらの古いインデックスであるインデックス1、インデックス2は、上書きされずに、テープ900上のデータ・パーティション904に記憶されたままになる。
【0066】
メタデータは、インデックス・パーティション902またはデータ・パーティション904あるいはその両方において、所望のアプローチに応じて同じ様態でまたは異なる様態で、更新され得る。いくつかのアプローチによると、例えばテープが再びマウントされるときにインデックスがインデックス・パーティションから迅速に読み取られることができるように、インデックス・パーティション902またはデータ・パーティション904あるいはその両方のメタデータが、テープがアンマウントされることに応答して、更新され得る。例えばバックアップのオプションとしてデータ・パーティション904に記録されているメタデータを用いてテープがマウントされ得るようにするためには、メタデータは、データ・パーティション904に書き込まれることが好ましい。
【0067】
本発明を限定することなどまったく意図されていない1つの例によると、例えば突然の停電が発生したときのデータ損失を軽減できるように、ユーザがシステムに明示的にそうするようにと指示をしたとき、またはユーザによって設定され得る所定の期間によって指定された時間に、インデックスをデータ・パーティションに書き込む機能を提供するのに、LTFS LEが用いられることがあり得る。
磁気記録媒体およびその層の製造
【0068】
図10は、本明細書で説明されている様々なアプローチによる磁気記録媒体1000の基本構造の部分的な断面図を、寸法通りではないが、示している。オプションであるが、本発明による磁気記録媒体1000は、他の図面を参照して説明されているものなど本明細書で列挙されているいずれかの他のアプローチによる特徴と共に、実装され得る。しかし、もちろん、そのような磁気記録媒体1000と本明細書で提示されている他のものとは、本明細書で列挙されている例示的なアプローチにおいて特定の説明がなされ得るもしくはなされ得ない様々な応用例または順列あるいはその両方で用いられ得る。さらに、本明細書で提示されている磁気記録媒体1000は、どの所望の環境でも用いられ得る。本明細書で開示されている様々な順列における磁気記録媒体1000は、使用および記憶のための要求される環境において、テープ記憶媒体の安定性および性能を向上させるように開発された。
【0069】
本明細書においてそうではないと断らない限り、磁気記録媒体1000の様々な層は、従来型の構成、設計または機能あるいはそれらの組合せであり得る。様々なアプローチでは、新しく新規な層が、従来型の層と共に用いられ得る。さらなるアプローチでは、複数の新しく新規な層が、従来型の層と共に用いられ得る。
【0070】
本明細書においてそうではないと断らない限り、磁気記録媒体1000の様々な層は、特にそれぞれの層が従来型の構成である場合には、従来型の方法を用いて、形成され得る。
【0071】
磁気記録媒体1000は、好ましくは磁気記録テープであるが、他の態様では、異なるタイプの変形可能な媒体である。
【0072】
図10に示されているように、磁気記録媒体1000には、4つの基本的な層が存在する。オプションであるバックコート1002は、基板1004の一方の側(図では下側)に沿って位置決めされる。下位層1006は、基板1004のもう一方の側(図では上側)に沿って位置決めされる。記録層1008は、下位層1006の上側に位置決めされる。従来型構成の追加的な層が、様々なアプローチで、磁気記録媒体1000に存在することがあり得る。例えば、最終的なテープの両側への記録を可能にするためには、バックコートが除去され、複数の層が、基板の両側に配置されることがあり得る。
バックコート
【0073】
磁気記録媒体1000には、バックコート1002が存在することがあり得るし、または存在しないこともあり得る。バックコート1002は、従来型の構成、設計および機能を有し得るのであるが、いくつかのアプローチでは、数十年もの間この業界で一般的に実践されてきたようにポリマ・バインダ・システムに分散された導電性のカーボン・ブラックを含む従来型の組成を有し得るのであって、やはり、いずれかの従来型のバックコート材料も用いられ得る。好ましくは、バックコート1002は、以下の利点すなわち、スプール上のテープの別の部分からの分離が容易であること、摩擦の面における改善、静電気の消散などのうちの1つまたは複数を提供する材料で構築されている。バックコート1002の好適な厚さは、約0.3ミクロン未満であり、好ましくは、約0.2ミクロン未満である。
基板
【0074】
基板1004は、好ましくは、従来型の構成、設計および機能を有する。基板1004は、典型的には、最も厚い層である。基板1004のための例示的な材料には、ポリエチレン・テレフタレート(ポリエステルまたはPET)、ポリエチレン・ナフタレート(PEN)、超伸張(super-tensilised)PEN、アラミド類似の材料(例えば、郵便番号103-8666日本国東京都中央区日本橋室町2丁目1-1日本橋三井タワー所在の東レ株式会社からミクトロン(R)という商品名で販売されているもののような可溶化されたパライミド)などが含まれる。
下位層
【0075】
下位層1006は、構造における以下の機能すなわち、記録層を通過する磁気信号の減衰、記録層の基板1004への接着などのうちの1つまたは複数を提供する。したがって、本明細書で説明されているほとんどのアプローチにおいて、下位層1006の機能は、ライタ磁束に関するいずれかの記憶を保持することではなく、むしろ、記録層1008への書き込みの間に書き込みヘッド要素からの書き込み磁束ボックス(flux box)を向上させることである。さらに、書き込みに起因するどの保持された磁気モーメントの配向も、読み返しの間のノイズを最小化するために、弱いまたは存在しないのが好ましい。
【0076】
様々なアプローチによる、下位層における磁気充填されたコーティングの非常に重要な属性の1つは、書き込みの間に遭遇する非常に急な磁気スイッチングの間に上の記録層を通過する漂遊磁場を迅速に吸収することである。理想的な下位層は、書き込み磁場が下位層のその体積を通過した後に配向を維持しないように、非常に低い残留モーメント(M)を有していなければならない。
【0077】
いくつかのアプローチでは、下位層1006は、新しく新規な構成を有する。新しく新規な下位層1006は、ある態様では、従来型の記録層1008がその上にある状態で、媒体1000に存在し得る。別の態様では、新しく新規な下位層1006は、新しく新規な記録層1008がその上にある状態で、媒体1000に存在し得る。他のアプローチでは、下位層1006は、従来型の構成を有しており、新しく新規な記録層1008がその上にある状態で、媒体1000に存在する。
【0078】
様々なアプローチにおいて、下位層1006は、次に挙げる特性のうちの1つまたは複数を有し、好ましくは、次に挙げる特性のすべてを有する、すなわち、導電性であること、弱い磁性を有すること(バルク磁気強度が200エルステッド(Oe)未満、好ましくは100エルステッド未満)である。理想的には、下位層は、以下でより詳細に説明されるように、記録層1008との界面を向上させるため、その上に記録層1008が形成される前に、コーティングされ、カレンダ処理される。好適な実施形態では、下位層1006は、記録層1008のエルステッドを単位として約10分の1の保磁力と、その上にある記録層1008との間で信号干渉を生じさせることなく下位層1006が磁場の磁束吸収体として機能することを可能にする低い残留磁化とを有する。
【0079】
導電性であるという特性は、テープに対して動作する磁気ヘッドの腐食を減少させるように機能する。特に、テープが巻かれていないときには、記録層の分離は、摩擦による電位と電流とを生じさせ、これは、乾燥した環境では静電放電を生成し、湿潤した環境ではヘッド腐食への電気化学的経路を生じさせる。これらの状況は、共に、テープの性能および耐久性にとって望ましくなく、共に、ヘッド腐食の顕著な因子であると信じられている。下位層1006の導電性は、例えば電荷を接地されているハブに運ぶことによって電荷を散逸させ、それにより、ヘッドの中に移動する電荷を最小化し、結果的に記録ヘッド構造の電気化学的腐食に至る道筋を提供するテープとヘッド表面との間の導電経路を形成する凝縮された流体水の危険性を軽減する。
【0080】
弱い磁性は、下位層1006から出る磁場が寄与するノイズの量を軽減させ、下位層の上の記録層における書き込まれたビットの分解能を改善させる。
【0081】
いくつかのアプローチでは、下位層1006が従来型の構成を有し、典型的には、低い保磁力とミクロン・サイズの範囲の低モーメントの粒子を用いる。コーティングは、非常に小さな(ナノ・スケールの)粒子の高い装着には最適化されていない。いくつかのアプローチにおける下位層は、以前のテープ製品形式で用いられたポリ(イソシアン酸)で硬化されたポリ(ビニール・アセテート-ビニール・アルコール-塩化ビニール)硬質樹脂を有する従来型のポリエステル-ポリウレタン・ゴム状樹脂を用いて、弱い磁性を有する鉄酸化物で構成されている。しかし、このような従来型のコーティングは、最終的なテープにおいてその上にある信号記録層のための最適な下位層となるように特に設計または組成されてもいない。
【0082】
好適なアプローチでは、下位層1006は、下位層1006が弱い磁性を有するが導電性でもあり基板への十分な接着を提供しその上にある非常に薄い記録層に力学的な安定性と応力除去とを提供する低応力のUV硬化されたマトリクスにおいて分散されている粒子1010を含む新しい組成を含む。
【0083】
下位層1006は、様々なアプローチにおいて、ナノ粒子のサイズに関して狭い分布を有することを必要としないが、ただし、小さな粒子の使用は、記録層が適用されるときに記録層に提示される表面の粗さを改善する。本明細書で説明されている新規の製造プロセスを用いると、下位層1006は、攻撃されること(記録層をその上に適用する間に、記録層によって膨潤すること)がない。
【0084】
好適なアプローチでは、下位層1006は、下位層1006が少なくとも1つの磁気ナノ粒子1012をそれぞれが含む封止されたナノ粒子1010を含む新しい組成と、芳香族ポリマ1014によって封止された好ましくはただ1つの磁気ナノ粒子1012とを含む。ポリマ・バインダ1016は、下位層1006において、封止されたナノ粒子を結合させる。
【0085】
下位層1006における封止されたナノ粒子の平均濃度は、好ましくは、少なくとも約35体積%であり、例えば、40体積%、45体積%、50体積%、55体積%、60体積%、約60%超、約40~75体積%の範囲、約45~75体積%の範囲、約50~75体積%の範囲、約35~50体積%の範囲、約40~60体積%の範囲、または上述の範囲内のいずれかの他の部分範囲である。理想的には、封止されたナノ粒子の平均濃度は、コーティングがその力学的完全性を喪失して、存続可能で永続可能なコーティングとしてもはや機能しなくなる限界顔料体積濃度(CPVC)を超えることはない。ナノ粒子が充填されたコーティングの場合には、より高いCPVCを許容するようなナノ粒子の新規な封止とバインダ設計とが実装されなければ、非常に大きな表面積が、CPVCを劇的に減少させることがあり得る。CPVCは、充填剤の体積%が増加していく一連のコーティングに対するコーティングの自由膜の動的機械分析(DMA)を用いて、決定され得る。従来型のDMA技術が、本明細書で説明されている新規な配合に対して用いられ得る。CPVCは、引張貯蔵率(E’)がその最大値に到達する体積%において、決定される。図11は、様々なアプローチによる、下位層における顔料の様々な体積%に対するCPVCのDMAプロット1100を示す。このプロット1100は、当業者が本明細書における教示に従い、従来型のDMAプロット技術を用いることにより、不要な実験に頼ることなく、生成され得るプロットの例示である。
【0086】
磁気ナノ粒子は、好ましくは、弱フェリ磁性材料を含む。「弱フェリ磁性」という用語によって意図されているのは、磁気ナノ粒子が、高い保磁力(H)または磁気モーメント(M)は有していないが、オーバレイする記録層の読み出しの間に最小の信号を寄与する平均的な磁場強度を有する、ということである。最終的なコーティングは、理想的には、データ記憶層における書き込まれたビットに対して、観察された応答への検出可能なノイズ信号の寄与を与えない。
【0087】
好適なアプローチでは、磁気ナノ粒子は、約200エルステッド未満の保磁力(H)を、より好ましくは100エルステッド未満で50エルステッド超の保磁力を有する。磁気ナノ粒子の磁場強度の例示的な範囲は、50~200エルステッドである。磁気ナノ粒子は、また、好ましくは、例えば12emu/g未満などの低い残留モーメントによって特徴付けられる。
【0088】
磁気ナノ粒子のための好適な材料は二酸化クロムであるが、この二酸化クロムは、弱い磁性を有し、導電性で、非常に硬い。他のアプローチでは、磁気ナノ粒子は、コバルト、ニッケルまたは鉄、およびそれらの合金など、酸化された外面または酸化物をその上に有する磁気金属粒子の中の1つまたは複数を(導電性を犠牲にして)含む。
【0089】
磁気ナノ粒子の平均の直径は、好ましくは、材料に応じて、2ナノメートル(nm)~20nmの範囲に属し、より好ましくは4nm~10nmに属するが、ただし、この平均の直径は、いくつかのアプローチでは、この範囲よりも高いまたは低いことがあり得る。平均の直径に関する考察は、サイズが小さくなればなるほど、バインダがコーティング・マトリクスにおいて顔料を適切に保持することが、より困難になり得る。したがって、磁気ナノ粒子の平均の直径は、受け入れ可能な範囲に限界顔料体積を維持するように選択されるべきである。平均の直径が小さすぎる場合には、隣接する粒子の間に不十分なバインダが存在し得ることになり、材料が砕けやすく破損しやすくなる。粒子が大きすぎる場合には、下位層1006と記録層1008との間の界面が、本明細書で説明されている所望の平坦特性を失う。
【0090】
好適なアプローチでは、下位層に存在する磁気ナノ粒子は、弱い磁性を有し、導電性であって、記録層を適用するのに用いられる溶媒による膨潤が無視可能であるかまたはそのような膨潤をまったく伴わない乾燥されたコーティングを生じさせるように策定される。下位層におけるナノ粒子の使用は、記録層との平坦な界面が可能になるように、より大きな粒子を用いるのが好ましい。
【0091】
様々な好適な実装形態における封止されたナノ粒子は、結果的に生じる乾燥された膜が限界顔料体積濃度を超えない限り、広範なサイズの分布を有し得る。
【0092】
好ましくは、下位層1006における粒子の大半は、凝集性で安定的なコーティングを達成するように、十分なバインダでコーティングされており、最小限の個数だけが、コーティングされた粒子クラスタまたは集合体になっている。理想的なコーティングであれば、100%に近い粒子が、個々の粒子としてバインダ・マトリクスにおいて完全に分散されているように、最終的なコーティングにおいてはクラスタや集合体を有していないことになるだろう。粒子がマトリクスの中に適切に分散していて、粒子の向きが最小限になっていることにより、記録層における記録された信号への下位層のノイズの寄与が減少する。
【0093】
やはり、好適には、封止されたナノ粒子は、相互に対し十分に位置合わせされていないのであって、例えば、下位層1006においてランダムに向いている。これが、下位層1006における向き付けられた磁気領域の形成を抑制することにより、下位層1006において生じるノイズを削減することによって、下位層の性能をさらに向上させる。しかし、コーティングの準備のためには、封止された粒子の単分散で集合していない分散を生成させるのが望ましいが、力学的特性の方が磁気信号性能よりも重要であるから、これは下位層にとっては必ずしも必要ではない。
【0094】
磁気ナノ粒子を封止する芳香族ポリマは、下位層1006において、芳香族ポリマが磁気ナノ粒子の表面の少なくとも約80%を、好ましくは磁気ナノ粒子の表面の少なくとも約90%を、そして理想的には磁気ナノ粒子のほぼ100%を封止する限り、多くの異なる芳香族ポリマのいずれかであり得るまたはいずれかを含み得るあるいはその両方であり得る。したがって、芳香族ポリマは、少なくとも部分的なシェルを、そして好ましくは完全なシェルを、磁気ナノ粒子の周囲に形成する。
【0095】
ナノ粒子を封止する層は、例えば0.4nm未満などの単分子層と同じくらい薄いものであり得るが、約1~2nmの厚さならばより堅牢な層が達成される。層が厚くなるにつれて、コーティングの中へのナノ粒子の充填は減少する。これは、下位層においては危機的なものではなく、その理由は、下位層は記録層ではないからである。
【0096】
磁気ナノ粒子を封止する芳香族ポリマの平均の厚さは、好ましくは、例えば1~4nm、3~5nm、4~5nm、4~7nm、5~7nmなどのように約0.5nm~約8nmの範囲に属するが、これらの範囲よりも若干高いまたは低いこともあり得る。本明細書で用いられる厚さとは、一般的に、特にそうではないと断らない限り、下位の構造の上の堆積の厚さを指す。
【0097】
芳香族ポリマが封止層として好適であるのは、芳香環構造が磁気ナノ粒子の表面を封止するからである。芳香環は、磁気ナノ粒子の磁気軸と適切な位置合わせがなされている場合に磁気ナノ粒子の表面において改善された安定性といくらかの磁気遮蔽とを与えるそれらの分子における芳香族性のユニークな特性により、特に酸化クロムなどの化学的反応性の金属酸化物との関係で、非常に優れた振る舞いを有する。例えば、芳香環構造は、それらのユニークな分子における電子構造と外部磁場を抑制する能力とにより、磁場修正手段として作用することができる。
【0098】
芳香族ポリマは、また、顔料の表面において磁気遮蔽を提供し、封止されたナノ粒子の独立のスイッチングを改善するために、磁気ナノ粒子を他の粒子から孤立させることを助け、結果的に、より高いビット分解能を生じさせる。
【0099】
好適な芳香族ポリマは、カルバメートである。粒子を効果的に封止し、密に充填されたマトリクスにおいて粒子をその隣接する粒子から孤立させるために二酸化クロムの粒子と反応することが知られている芳香族分子の好適な例は、メチレン・ビス・ジフェニル・カルバメートである。理想的には、封止を行うポリマは、二酸化クロムのナノ粒子と共に用いられるときには芳香族カルバメートに対するエステル・セグメントとして官能アクリル・ポリエステルと共に、メチレン・ビス・ジフェニル・カルバメートから構成される。UV照射の際には、粒子表面での重合が、封止を行うポリマ膜層を形成するように進行し得る。
【0100】
特に、二酸化クロムの磁気ナノ粒子と共に用いるためには、芳香族ポリマは、好ましくは、例えばクロムと反応する酸化可能部分を有していることによって二酸化クロム微粒子への芳香族ポリマの吸収を助ける、脂肪族置換芳香族である。ジフェニル・メタン・ジカルバメートのベンジル炭素は、結果的に生じるジフェニル・ケトンを粒子表面に確実に結合させるように、二酸化クロムによって効率的に酸化されることが知られている。
【0101】
他のアプローチでは、芳香族ポリマは、アミン、アルコール、カルボン酸またはニトリル基など、反応性の官能性置換基を含む。一例は、ナノ粒子表面上に結合されたポリマ層を形成するスチレンを伴うコポリマとして存在するケイ皮酸である。
【0102】
さらに他のアプローチでは、芳香族ポリマは、アミン、ケイ皮酸などのカルボン酸、および用いられている磁気ナノ粒子の表面と結合する他の官能性芳香族などの粒子表面に化学的に吸収されるまたは結合するあるいはその両方が可能な置換基を伴う1つまたは複数の反復単位を含む。
【0103】
代替的な実装形態では、封止されている微粒子の封止層は、全芳香族ポリマによるのではなく、ポリエステル・ポリウレタンまたはアクリル変性ポリウレタンなどのコポリマであり得る。例には、既知のタイプの脂肪族ポリマ、既知のタイプの非芳香族ポリマなどが含まれる。
【0104】
封止されたナノ粒子を相互に結合させているポリマ・バインダは、様々なタイプのバインダ材料であり得るまたは様々なタイプのバインダ材料を含み得るあるいはその両方であり得る。好適なアプローチでは、バインダは、例えばアクリル酸またはアクリル酸塩のポリマであるアクリル・ポリマ、好ましくは官能性アクリル・ポリマを含む。様々なアプローチにおけるバインダとして用いるのに適した例示的なアクリル・ポリマには、メチル・メタクリレート、アクリル酸などの成分が含まれる。一般に、好適なポリマ・バインダは、約2400未満の数平均分子量、好ましくは約1200未満の数平均分子量を有するものである。
【0105】
好適な実装形態において、ポリマ・バインダは、封止された微粒子の封止層への結合を可能にするUV硬化機能を有する。この機能は、アクリレート基、ビニールなどによって提供されることが可能である。
【0106】
いくつかのアプローチでは、バインダは、塩化ビニール、ビニール・アセテート-ビニール・アルコール・コポリマを含む。さらに別のアプローチでは、バインダは、ポリエステルまたはポリエーテル・ポリウレタンを含む。ナノ粒子が充填されたコーティングに対しては、ポリマは、従来用いられていた材料よりもはるかに低い分子量(サイズ)である。典型的には、有用なポリマは、UV硬化の前には、長さが20反復単位未満である。
【0107】
下位層1006におけるバインダに対する封止されたナノ粒子の相対量は、限界顔料体積濃度(CPVC)を上回ることがない範囲に属すべきである。当業者は、本明細書で説明されている新規な配合をいったん知れば、用いられているバインダ、粒子の表面積など、用いられている材料の特性に基づき、既知の技術を用いて、CPVCを計算することができるだろう。一般的な経験則は、下位層1006における約50体積%未満の顔料(封止されたナノ粒子)であり、それによって、磁気層を構造的に安定化するなど下位層1006の他の機能と共に、下位層1006の構造的完全性が維持され、テープの耐久性が向上し、記録層1008の付着が提供される。顔料の装着は、好ましくは、DMAを用いて測定された適切な力学的完全性を提供する程度に高く、不所望の摩擦電気的特性を緩和するのに十分な導電性を提供する。
【0108】
下位層1006には、適用および硬化の前に分散の安定性のために用いられる移動潤滑剤または安定剤あるいはその両方など、追加的な材料が、存在し得る。
【0109】
結果的に得られる下位層1006は、好ましくは、引張貯蔵率(E’)と摂氏0度から摂氏60度までの温度とのグラフにおける開始ガラス転移温度Tgを有する乾燥したコーティングを達成するように、弱磁性、導電性、顔料に対して密接に結合されたバインダにおける封止されたナノ粒子の分散(封止されたナノ粒子)によって特徴付けられる。Tgは、摂氏35度より高くあるべきであり、摂氏約45度を超えるのが好ましいのであって、例えば約8GPa、約10GPa、約11GPa、約12GPa、約15GPa、約16GPaなど、少なくとも約6ギガパスカル(GPa)から約16GPaまたはそれよりも若干高い値までの、摂氏約20度でDMAを介して10Hzにおいて測定されたE’に対する絶対値であるはずである。ほとんどのアプローチにおいて、テープに対する通常の動作範囲は、摂氏0度から摂氏60度の範囲に属するが、それよりも高いまたは低いこともあり得る。
【0110】
従来型の磁気記録テープで用いられるバインダは、結果的に、摂氏20~30度のガラス転移温度を有する下位層1006を生じさせる。これでは、柔軟すぎるのであって、結果的に、使用の間に安定的で一貫性のある記録媒体を提供するには過度な可撓性を有する下位層1006を生じさせる。しかし、下位層1006は、使用と記憶の間に堅牢であり耐久性を有するのに十分な弾力性を有していなければならない。したがって、好適な実施形態は、結果的に、摂氏約35度を超えるE’と温度とのDMAプロットによって決定される開始Tgを、そして好ましくは、10Hzにおいて少なくとも摂氏50度までの柔軟性のある範囲に留まる非常に広範な応答の好適な開始Tgを有する下位層1006を生じさせる。
【0111】
下位層1006の平均の厚さは、1ミクロン未満であり、好ましくは約0.6ミクロン未満である。与えられているテープ・カートリッジの固定された体積の中に、より多くのテープが巻かれることを可能にするためには、厚さは、薄い方が好ましい。
【0112】
好適なアプローチでは、下位層1006に摩耗粒子はまったく存在しないのであるが、理想的には、製品の中に摩耗粒子はまったく一切存在しない。従来、テープ・ヘッドを清掃する目的またはスティクションを減少させる目的あるいはその両方の目的のために追加された摩耗粒子は、現在および将来の記録ヘッドにおいて、読み出しおよび書き込み構造を縮小させるという、ますます許容不可能な欠陥と損傷源とになることが発見されている。しかし、他のアプローチでは、摩耗粒子が、下位層1006に存在する場合があり得る。
【0113】
下位層1006は、好ましくは、基板1004に適用され、少なくとも部分的に乾燥され、層間の混濁度(turbidity)を最小化するため、磁気記録層1008に適用される前に硬化される。したがって、好適なアプローチでは、記録層1008は、下位層1006との間で、実質的に相互に混合されることはない(逆も妥当する)。この特徴は、磁気記録テープ製品において長年継続している問題点を克服する。
【0114】
図12を参照すると、従来型の記録テープ1200の断面のTEM画像が示されている。示されているように、記録層とその下にある下位層との間の界面は、明確に画定されている。記録層における明るい粒子は、バリウム・フェライトの粒子である。示されているように、バリウム・フェライトの粒子は、記録層において、単分散ではなく、密に充填されてもいない。さらに、粒子がない場所には、空洞が存在している。また、記録層と下位層との間の界面は、相当に粗い。理想的には、磁場は、ライタから、完全に垂直に、記録層を通過することになるだろう。不運にも、磁場は、ライタを出る際に拡張または屈曲しており、その曲率は、ライタの磁極の先端から離れれば離れるほど、より深刻になっている。空洞と、記録層と下位層との間の波打っている界面と、磁気粒子の不均一な分散とは、すべて、拡張するライタ磁場の効果を生じさせている。(例えば、書き込み磁場が下を向いているのが、テープがライタを通過すると上を向くというような)変化が書き込まれ、記録層を通過する際に磁場が例えば10~20%拡張する場合には、この変化は鮮明なものではなく、テープの分解能を低下させる。読み返しの間には、この変化は、鮮明ではないために、ノイズを含む。読み返しの間に信号対雑音比(SNR)が1dB改善すると、それは、顕著な達成である。本発明の発明者は、硬化された下位層上に形成されることで層間の混濁度が最小化される本明細書で説明されている新しく新規な記録層を用いると、読み返しの間の信号対雑音比(SNR)が5または6dB程度改善すると確信している。
【0115】
好適なアプローチでは、下位層の上側表面は実質的に平坦であり、変動は、図12に示されている記録層の上側表面のように最終的なテープ・コーティングのTEM断面において撮像されると、層間の界面の厚さの約25%未満であり、好ましくは約5%未満である。
下位層を製造するためのプロセス
【0116】
様々なアプローチによる、例えば磁気記録媒体の下位層1006を製造するための方法が、以下で提示される。オプションとして、本発明による方法は、上述されたもののような下位層1006を製造するように実装され得る。しかし、もちろんであるが、この方法および本明細書で提示されている他の方法は、本明細書に列挙されている例示的な態様と関係があり得るまたは関係があり得ない下位層1006を形成するのに用いられ得る。さらに、本明細書で提示されている方法は、どのような所望な環境でも、実行され得る。また、様々なアプローチによると、以下で説明される動作よりも多くの動作またはそれよりも少ない動作が、この方法に含まれる場合があり得る。上述された特徴のどれであっても、様々な方法に従って説明されるアプローチのどれにおいても用いられ得ることが留意されるべきである。
【0117】
この方法は、一般に、芳香族ポリマによって封止された少なくとも1つの磁気ナノ粒子をそれぞれが含む封止されたナノ粒子と、封止されたナノ粒子を結合させるポリマ・バインダとを有する下位層1006を形成することを含む。
【0118】
封止されたナノ粒子は、購入されることがあり得るし、または製造されることもあり得る。例えば、いくつかのアプローチでは、医療用撮像および薬剤搬送への応用のために用いることが可能な市販されている封止されたナノ粒子が用いられることがある。
【0119】
あるアプローチでは、下位層1006を形成することは、混合物を形成するために、ポリマ・バインダと、封止されたナノ粒子および溶媒(溶媒系)とを混合することを含む。封止されたナノ粒子とバインダとの相対量は、好ましくは、先のセクションで列挙された特性を提供するように選択される。例えば、この混合は、封止されたナノ粒子をポリマ・バインダと溶媒との中に超音波によって分散させることにより、溶媒において放射線硬化性の乳状液を生じさせることを含む。
【0120】
従来型のコーティング方法であると、有用な粘性を達成するような配合が要求され、また、現在の進歩したテープ構成のための目的となる設計に最適であるよりもはるかに大きな分子量を有するバインダがおそらくは要求され得る。結果的に、本明細書で説明されているのは、従来型のコーティングには適していない配合の例である。例のすべては、噴霧式エアロゾルのコーティングとして、基板に最も適切に適用されるのであるが、ただし、他のコーティング方法も考慮される。
【0121】
一般に、ここで用いられる溶媒は、以下の特性すなわち、ポリマ・バインダを膨潤させるが、しかし乾燥の間には、ポリマが収縮するよりもむしろ顔料の周囲で崩壊することを許容する、という特性のうちの1つまたは複数を、好ましくは全部を提供すべきである。この溶媒は、ポリマ・バインダの鎖を解放させ、そのθ条件(最小の自由体積)に向かう方向に移動させる。
【0122】
層は、ポリマ・バインダがθ条件にあるときに最も安定的であり、この時点で硬化が生じるはずである。ポリマ・バインダがそのθ条件に近いときには、硬化が生じる速度のために、UV硬化が好適である。
【0123】
溶媒成分のうちの1つは、バインダ添加物に対して適切な溶媒であるべきであり、ポリマ封止された磁気粒子が懸濁するのを助ける。第2の溶媒は、ポリマ・バインダに対する非溶媒であり得る。「適切な」溶媒相が蒸発すると、残留するコーティングは、非溶媒が支配的な癒合コーティングに近づく。第2の溶媒に富んだコーティングは、このようにして、バインダと封止された磁気粒子とがほぼそれらの最小自由体積またはθ条件にある乾燥プロセスにおける点を通過する。これが、最終的な乾燥したコーティングにおける最小残留応力を生じさせる。そして、これが、最終テープにおけるカールおよびそりを排除する。
【0124】
好適な溶媒は、その溶媒系をほとんど完全に共沸にする相対濃度にある、水およびテトロヒドロフラン(THF)溶媒系である。この溶媒系は、アクリル・ポリマ・バインダと共に用いるために好適であるが、その理由は、よく乾燥し、環境に優しく、エネルギ消費がより少なく、共沸混合物として燃焼または爆発への感度が低いからである。THF/水の溶媒は、また、乾燥の間にTHFが先に去った後に水が去るので、それがバインダをθ条件に向かって維持する助けとなるため、好適である。具体的には、THFは、水よりも揮発性が高いために、先に去るのである。有機溶媒が先に去ることにより、膜の癒合が崩壊し応力を低下させることを可能にする。そして、水が溶媒界面を支配することによって、ポリマがθ条件に近づくことになる。
【0125】
例えば6.7質量%という共沸混合物の濃度に対する水の割合が僅かに上昇することが、最適なコーティングの乾燥を提供するのに必要となる。この結果として、92~93%のTHFに対して7~8%の水という範囲の溶媒混合物が、摂氏64度で乾燥することになる。このように乾燥温度がより低いことは、現在の磁気テープのコーティング・プロセスと比較して、動作コストを低減させるという追加的な利点を有する。
【0126】
結果的に得られる混合物(顔料+溶媒)は、基板1004などの構造上に適用される。混合物を適用するには、いずれかの適切な技術が、用いられ得る。顔料と溶媒との混合物が乳状液を形成する場合には、好適な技術は噴霧コーティングであって、噴霧コーティングは、ブラシによるコーティングに典型的な筋またはブレード・コーティングに典型的な塊を生じさせずに、高速で均一な適用を提供する。他の適用技術には、ブレード・コーティング、スロット・ダイ・コーティング、グラビア・ロールの使用などが含まれる。
【0127】
別のアプローチでは、下位層1006を形成することは、安定的な分散を生じさせるのに分散剤またはそれ以外の添加物を追加することなく微小な懸濁を形成するために、ポリマ・バインダと封止されたナノ粒子とを混合することを含む。
【0128】
適用された混合物は、溶媒の少なくとも一部を除去するまたは実質的に完全に乾燥させるように、乾燥される。例えば、適用された混合物は、より多くの揮発性有機溶媒(例えば、THF)が除去されることによって乾燥しつつある膜における非溶媒内容物が増加するように、乾燥され得る。ポリマ・バインダは、溶媒が乾燥の間に除去されるにつれて、封止された微粒子の間で崩壊する。例えば、バインダが疎水性であるような態様では、適用された混合物を最後に去る溶媒はバインダに対する非溶媒である水であり、これにより、疎水性のバインダは顔料上に崩壊することが強制される。これは、また、乾燥コーティングにおける残留応力を最小化し、それによって、テープにカールが生じるのを防止する。乾燥は、好ましくは、(摂氏約75度未満の)低温条件下での強制された空気を用いて実行される。
【0129】
磁気記録層のための下位層を結果的に提供することになる部分的に乾燥したコーティングは、例えば、2つの層を硬化させる熱誘起化学反応、2つの層を硬化させる放射線誘起化学反応などを用いて、硬化され得る。例えば、UV光またはそれ以外の既知の放射線への露出が、ポリマ・バインダの架橋を生じさせるために適用される。両方のコーティングに対して適切な溶媒選択がなされる場合には、硬化ステップの結果として、2つの層の間に最小の応力が生じ、安定的な(平坦な)コーティングが結果的に生じる。
【0130】
熱誘起硬化の場合には、コーティングにおける溶媒の膨潤を減少させると共に、硬化されたコーティングの力学的性質を向上させるために、化学反応が用いられ得る。乾燥膜における化学的硬化は、硬化された高充填コーティングの所望の均一性を達成するには、低速で非効率的である。好適なアプローチは、放射誘起の化学的硬化を用いることである。幸運にも、テープへの応用に用いられる現在および将来の磁気記録層は、すべて、今日では、コーティングを通過する光の効率的な移動を可能にし、そのような硬化反応の目標であるバインダに富む領域の範囲内での化学反応を生じさせるのに十分な程度に、薄いのである。紫外(UV)放射は、これらの反応種の重合を開始させてより堅牢な分子構造を形成するために、オレフィン、ビニールおよびアクリル酸などの不飽和炭素結合を攻撃することができるフリー・ラジカルの形成を活性化させることができる、ということが、広く知られている。UV硬化も好適であって、その理由は、フリー・ラジカル形成の間に、下位層1006もまたいくつかの基板1004に結合し、それによってテープの耐久性が向上し得るからである。
【0131】
下位層1006を硬化させた後で、磁気記録層1008が、下位層1006の上にまたはその上方に形成される。いずれかのタイプの磁気記録層1008をその上に形成する前に下位層1006を乾燥させ硬化させることによって、下位層と記録層との間の界面における層間での混濁度が最小化される。これにより、従来型の磁気記録テープ製造に広く存在しており結果的にテープの達成可能な面積記録密度が制限されていた問題が、克服される。
【0132】
ある例示的なアプローチでは、弱磁気材料(二酸化クロム)のナノ粒子が、芳香族ポリマ・シェル(芳香族カルバメートに対するエステル・セグメントとして官能アクリル・ポリエステルを有するメチレン・ビス・ジフェニル・カルバメート)を用いてコーティングされ、官能アクリル・ポリマと相互に結合される。上述の材料の配合が、超音波分散法を用いて、テトラヒドロフラン(THF)と水との溶媒系における紫外(UV)硬化可能な乳状液の中に分散され、基板1004の上に適用され、乾燥され、硬化される。乾燥されたコーティングは、カルバメート・バインダのポリエステル-アクリル塩領域から形成された弾力的でゴム状の粒子間マトリクスを維持しながら、マトリクスが40%を超えるまで磁性および導電性の顔料を用いて高度に充填されるように、芳香族によるガラス状ポリマを用いて封止された顔料を有する。
封止された磁気ナノ粒子を製造するためのプロセス
【0133】
様々なアプローチでは、本明細書に開示されている新規なプロセスのいずれかを用いて後で封止されるベース磁気ナノ粒子が、例えばミリングなどの既知の技術を用いて、準備される。別のアプローチでは、ベース磁気粒子が、使用する準備ができた形態で取得され、本明細書に開示されている新規なプロセスのいずれかを用いて封止される。
【0134】
封止された磁気ナノ粒子の形成は、様々な技術を用いて、実行され得る。磁気ナノ粒子を封止するこれまでのアプローチは、不成功に終わっている。封止されたナノ粒子の(高熱変換によって最終的な磁性状態にまだ変換されていない)前駆物質の分離を維持しようと試みるよりも、好適なアプローチでは、磁気ナノ粒子が、芳香族による分散剤が存在する有機溶媒と混合される。芳香族種をナノ粒子に吸収させることにより、多くの適切な芳香族分散剤にとって良い溶媒であるトルエンなどの初期溶媒において、粒子の安定的な懸濁が可能になる。この混合物は、懸濁を維持するために加えられる超音波分散エネルギを用いて、加熱される。アントラセン、フェナンスレン、ピレンなど、高沸点の芳香族炭化水素が、蒸留の前に、ほぼ正確な体積のトルエンに加えられる。この混合物は、トルエンの沸点より上まで加熱され、トルエンが蒸留により除去され、融点が摂氏約380度より高い融解したフェナンスレンなどの全芳香族ポリ芳香族の融解物に、分散されたナノ粒子の融解した懸濁が残留する。
【0135】
ある例示的なアプローチでは、この混合物は、圧力容器の中で加熱され、温度を摂氏400度まで上昇させ、4~6時間の間そのまま維持される。鉄製のナノ粒子が、鉄酸化物の磁気イプシロン形態に変換される。このプロセスでは、磁気粒子が、全芳香族シェルに包囲された状態のままで維持される。
【0136】
次に、この混合物は、封止された粒子を抽出するための処理が実行される前に、室温まで冷却される。いったん室温まで冷却されると、分散されたナノ粒子を伴うワックス状の固形物が、もう一度混合された芳香族による溶媒におけるナノ粒子の分散を得るために、トルエンなどの溶媒の中で溶かされる。これに対して、芳香族層を分離させ、クロロホルムの中で懸濁している粒子から注がれることが可能になるように、十分なクロロホルムまたは類似物が、加えられる。
【0137】
乾燥した粒子が、クロロホルムの蒸留によって、または芳香族による封止層が、水の中への安定的な分散が可能になるように十分な残留磁極機能を有するために修正される場合には、溶媒によって維持されている懸濁が乳状液を形成するように水の中に交換されることによって、回復されることが可能である。
記録層
【0138】
いくつかのアプローチでは、記録層1008は、新しく新規な構成を有する。新しく新規な記録層1008は、ある態様では、その下に従来型の下位層1006を伴うように、媒体1000に存在し得る。別の態様では、新しく新規な記録層1008は、その下に新しく新規な下位層1006を伴うように、媒体1000に存在し得る。他のアプローチでは、記録層1008は従来型の構成を有し、その下に新しく新規な下位層1006を伴うように、媒体1000に存在する。
【0139】
記録層1008が従来型の構成を有するアプローチでは、分散の前にガラス封止層において粒子を封止することを試みないバインダ・システムに分散されている弱磁気粒子の分散は、10年間を超える間、現在のテープ媒体の構築で行われてきたように、磁束分散層として用いられ得る。これらの下位層は、導電性または研磨強度の改善のために追加された追加的な粒子を有する場合があり得るし、または有していない場合もあり得る。
【0140】
好適なアプローチでは、記録層1008は、新しい組成を含むのであって、この新しい組成では、記録層1008が、それぞれが少なくとも1つの磁気ナノ粒子1020を好ましくはただ1つの磁気ナノ粒子1020を含んでおり封止層1022によって封止された封止されたナノ粒子1018と、封止されたナノ粒子を結合させるポリマ・バインダ1024とを含む。一般に、記録層1008における磁気ナノ粒子の磁気強度は、存在する場合の下位層1006におけるナノ粒子の磁気強度よりも著しく高い。
【0141】
記録層1008における封止されたナノ粒子の平均の濃度は、好ましくは、少なくとも約35重量%(wt%)であり、例えば、約45~50wt%、約30~50wt%の範囲、好ましくは約46~50wt%、または上述の範囲の中のいずれかの他の部分範囲にある。
【0142】
記録層1008の封止されたナノ粒子における磁気ナノ粒子は、磁気記録などの意図されている応用に適したいずれかの磁気材料で構築され得る。さらに、磁気的撮像で用いることができる磁気材料が、いくつかのアプローチでは、磁気ナノ粒子において用いられ得る。様々なアプローチにおいて、磁気ナノ粒子は、混合された化合物を含めてニッケルとコバルトと鉄との合金または酸化物あるいはそれらの組合せと、バリウム鉄、NiFe、バリウム・フェライトおよびコバルト・プラチナなどのニッケルとコバルトと鉄との組合せを用いた結晶とで構成されるグループから選択される少なくとも1つの磁気材料を含む。
【0143】
本明細書で説明されているアプローチは、現時点ではテープ記憶層のために典型的には有用ではないMnAlなどの他のナノ粒子と、紙やすりや他の研磨剤で有用なSiCやSiO分散などコーティングの完全性制御の向上によって利益を得ることができる非磁気的な分散さえにも適用可能だということが留意されるべきである。したがって、どの既知のタイプの磁気ナノ粒子であっても、様々なアプローチにおいて用いられ得る。
【0144】
好適なアプローチでは、磁気ナノ粒子は、Co、CoFe、Fe、アルファ-酸化鉄(α-Fe)、イプシロン-酸化鉄(ε-Fe)およびCo(fcc)で構成されるグループから選択される少なくとも1つの磁気材料を含む。他のアプローチでは、磁気ナノ粒子は、マンガン-アルミニウム合金、磁気金属の酸化物、およびピネル・フェライトを含み得る。
【0145】
記録層1008における磁気ナノ粒子の平均の直径は、好ましくは約2nm~約20nmの範囲に属し、特にイプシロン-酸化鉄粒子に対しては、好ましくは約2nm~約10nmの範囲に属する。平均の直径は、磁気ナノ粒子がその残留分極を喪失して超常磁性になるサイズに応じて、この範囲よりも高いまたは低い場合があり得る。一般に、より小さな平均の半径の方が、ビット分解能を上昇させるためには優れている。
【0146】
好ましくは、記録層において用いられる封止されたナノ粒子は、同じ組成、結晶構造および形態を有すると共に、データ書き込みの間に印加される外部磁場への最終的な記録層の応答を最適化するために、非常に狭い粒子サイズの範囲を有する。好適なアプローチでは、封止されたナノ粒子の約80%超が、その中にただ1つの磁気ナノ粒子を有するのであって、さらに好ましくは、封止されているナノ粒子の約90%超が、さらになお好ましくは約98%超が、理想的には少なくとも約100%が、その中に、ただ1つの磁気ナノ粒子を有する。
【0147】
芳香族ポリマが、下位層1006において、磁気ナノ粒子の表面の少なくとも約75%を、好ましくは磁気ナノ粒子の表面の少なくとも約90%を、そして理想的には磁気ナノ粒子のほぼ100%を封止する限り、そして、特に記録層における磁気ナノ粒子の最適化のためには、磁気ナノ粒子を封止する芳香族ポリマは、多くの異なる芳香族ポリマのいずれかであり得るまたは多くの異なる芳香族ポリマのいずれを含み得るあるいはその両方である。記録層では、大きな量を実際に構築するのに用いられる実行可能なプロセスによって取得可能であるように、粒子封止の効率は、100%に近いものであるべきである。したがって、芳香族ポリマは、少なくとも部分的なシェルを、好ましくは完全なシェルを、磁気ナノ粒子の周囲に形成する。磁気ナノ粒子を封止する芳香族ポリマの平均の厚さは、好ましくは、最終的な記録層1008において、1nm未満である。好ましくは、芳香族ポリマによるシェルの平均の厚さは、例えば、0.5~0.75nm、0.6~0.8nm、0.7~1nm、0.8~1nmなど、約0.5nm~約1nmの範囲に属するのであるが、これらの範囲よりも僅かに高いまたは低いことも可能である。いくつかの場合には、部分的にコーティングされたナノ粒子のクラスタまたは集合体が、最終的なコーティングに至る形成プロセスを通じて持続し得る封止プロセスの間に、形成され得る。これらのクラスタと集合体とがコーティングの実質的な割合ではなく(例えば、体積の10%未満)、表面の粗さおよび欠陥を生じさせないように、最終的なコーティングの厚さよりも小さい(例えば、最終的な乾燥されたコーティングの直径における厚さの60%未満である)限りは、クラスタと集合体との存在は、層の所望の機能に対する制限にはならないはずである。
【0148】
封止されたナノ粒子が熱分解される実施形態では、結果的なカーボン・シェルの平均の厚さは、約0.05nm~約1nmの範囲に属する。
【0149】
そのような薄いシェルは、記録層1008における磁気粒子の充填密度を向上させ、したがって、記録されるビット分解能を高めることができる。
【0150】
芳香族構造は、最終的な密接に充填されたドライ・コーティングにおいて、それらとその近くの隣接物とを結合させる磁場からの各ナノ粒子の幾分弱いものの重要な分離を提供するそれらのユニークな電子的特性のために、磁気ナノ粒子の分離のための封止層として好適である。
【0151】
芳香族ポリマは、好ましくは、鉄製の磁気ナノ粒子が用いられている場合に鉄酸化物への付着への親和性を有する官能基を含む。例示的な官能基には、カルボン酸官能基、ニトリル官能基およびその他を含む。
【0152】
好適な芳香族ポリマは、放射線硬化が可能な置換芳香族ポリマである。別のアプローチでは、芳香族ポリマは、ポリスチレンなどのスチレンである。理想的には、芳香族ポリマは、スチレン・モノマ上のパラ位にゴム状ポリマ鎖を有するコポリマを備えたポリスチレンである。好ましくは、封止層は、ポリ芳香族の膜を含む。
【0153】
他のアプローチでは、芳香族ポリマが、グラファイト、カーボンファイバ、カーボン・ナノチューブなどを作成するのに使用可能な既知の前駆物質である。したがって、封止層は、グラファイト状支配連続膜(graphite-like dominated continuous film)であり得る。
【0154】
封止されているナノ粒子を相互に結合させるポリマ・バインダは、様々なタイプのバインダ材料であり得るまたは様々なタイプのバインダ材料を含み得るあるいはその両方である。
【0155】
考慮されたアプローチでは、封止された磁気ナノ粒子を従来型のバインダ・システムの中に組み入れることが試みられたが、そのようなアプローチでは、粒子がより小さく配向膜の中により多く詰め込まれているという仮定から予測されるよりも、ずっと多くの雑音を有し信号性能がはるかに劣る記録層が結果的に生じることが発見された。従来型のバインダ・システムを用いたアプローチではそのように劣った性能が生じることの理由は完全には理解されていないものの、本発明者たちは、本明細書で説明されている新規な技術によれば、従来型のバインダ・システムを用いた前記のアプローチよりもはるかに優れた記録性能を示す新しい記録層が結果的に得られることを見いだした。
【0156】
好適なアプローチでは、バインダは、例えばアクリル酸またはアクリル酸塩のポリマなどのアクリル・ポリマ、好ましくは、機能性アクリル・ポリマを含む。特に好適なアプローチでは、ポリマ・バインダは、放射線硬化性のゴム状アクリル・ポリマを含む。様々なアプローチでのバインダとしての使用に適切な例示的なアクリル・ポリマは、アクリル末端を有する(acrylic terminated)ポリエステルと、メタクリル酸メチルやアクリル酸などの成分を含むものとを含む。例えば、バインダは、アクリル末端を有する脂肪族ポリエステルまたは脂肪族ポリエーテル・ポリマを含み得る。一般的に、好適なポリマ・バインダは、約2400未満の数平均分子量、好ましくは約1200未満の数平均分子量を有するものである。
【0157】
様々なアプローチにおいて、記録層1008で用いられるバインダは、下位層1006で用いられるバインダと同じであり得るし、またはそれとは異なる場合もあり得る。
【0158】
記録層1008は、引き裂き抵抗性と衝撃抵抗性とを提供しながら、使用中の動作温度範囲で可撓性(ゴム状の性質)を有しなければならない。したがって、好適な実施形態は、摂氏約35度を超える、好ましくは摂氏約45度を超える、理想的には少なくとも摂氏約50度の、ガラス転移温度を有する記録層1008を結果的に生じさせる。これは、バインダの選択を介して達成が可能である。
【0159】
記録層1008には、潤滑剤などの追加的な材料が存在することがあり得る。しかし、本明細書に開示されている様々なアプローチの利点の1つとして、摩耗粒子など、記録層への従来型の追加材料の排除が可能になることがある。
【0160】
その形成面に対して垂直方向に測定された記録層1008の平均の厚さは、約0.2ミクロン未満であり、好ましくは0.1ミクロン未満である。記録層1008のこの厚さの利点の1つは、その内部の顔料さえも含めて、記録層1008のすべての部分にUV光が到達することであり、それにより、層の全体にわたる高速で一貫した硬化が保証される。従来型の記録層は、厚いことにより、UVによって硬化されることが不可能であり、したがって、それほど高速ではない他のタイプの硬化に依存していた。したがって、従来型のテープは形成されると、テープがスプールの上に巻かれているにつれて、硬化が継続した。しかし、テープがスプール上に巻かれると、テープの全体に張力と圧力とが生じ(例えば、半径方向の圧縮)、結果的に、ハブの内部におけるテープからハブの外部におけるテープで変動するテープの力学的特性に変化が生じる。
【0161】
記録層1008が下位層1006の上に直接形成される場合、記録層1008は、好ましくは、層の間での混濁度を最小化するために、下位層1006が硬化した後で、適用される。したがって、好適なアプローチでは、記録層1008は、下位層1006との間で(および、その逆の関係でも)実質的に混合を生じない。
【0162】
好ましくは、下位層1006は、エルステッドを単位として200エルステッド未満の、より好ましくは100エルステッド未満の、バルク磁場強度を有する。下位層1006は、本明細書の他の場所で開示されている下位層と同様の構成または特性あるいはその両方を有し得る。
【0163】
いくつかの態様では、潤滑剤の分子1030が、記録層1008の表面に結合されている。潤滑剤の分子は、表面に結合されている場合、表面に埋め込まれている場合、またはその両方の場合があり得る。好ましくは、記録層1008の表面に沿った潤滑剤分子の量は、記録層1008の表面に沿って連続的な潤滑膜を形成することになるよりも少ない。
【0164】
好適なアプローチでは、記録層1008に摩耗粒子は、まったく存在せず、理想的には、製品自体に摩耗粒子はまったく一切存在しない。しかし、別のアプローチでは、記録層1008に摩耗粒子が存在することがあり得るし、または下位層1006から記録層1008を通過することもあり得るし、あるいはその両方もあり得る。導電性の下位層1006を備えた記録層1008という以上の力学的設計は、摩耗粒子の含有を必要とすることなく、所望の低摩擦とテープ表面のヘッド腐食特性とを達成することが期待されるのであり、というのは、摩耗粒子は、次第に許容不可能となる欠陥と、現在および将来の記録ヘッドにおける収縮する読み出しおよび書き込み構造への損傷原因とを構成するからである。
記録層を製造するためのプロセス
【0165】
様々なアプローチに従って例えば磁気記録媒体の記録層1008を製造するための方法を、以下で提示する。オプションとして、この方法は、既に説明されたもののような記録層1008を製造するために実装され得る。しかし、もちろんであるが、この方法および本明細書で提示されている方法は、本明細書に列挙されている例示的な態様と関係し得るまたは関係し得ない記録層1008を形成するのに用いられることがあり得る。さらに、本明細書で提示されている方法は、いずれかの所望の環境において、実行され得る。また、様々なアプローチによると、以下で説明されるよりも多い操作または少ない操作がこの方法に含まれる場合があり得る。上述した特徴のいずれかが、様々な方法によって説明されるアプローチのいずれかにおいて用いられ得ることも留意されるべきである。
【0166】
この方法は、一般的に、磁気記録層1008を形成することを含み、磁気記録層1008は、それぞれが芳香族ポリマによって封止された少なくとも1つの磁気ナノ粒子を含む封止されたナノ粒子と、封止されたナノ粒子を結合させるポリマ・バインダとを含む。
【0167】
あるアプローチでは、記録層1008の形成は、磁気ナノ粒子と芳香族ポリマとを、芳香族ポリマにおける磁気ナノ粒子の懸濁を結果的に生じさせる温度まで加熱することを含む。一般的に、ほとんどの芳香族ポリマの場合、この温度は、用いられている芳香族ポリマに応じて、摂氏約200度から摂氏約538度までの範囲にある。
【0168】
芳香族ポリマが単純な芳香族構造を有する場合には、摂氏200度未満の温度が用いられ得る。懸濁における磁気ナノ粒子と芳香族ポリマとの相対量は、好ましくは、先のセクションに列挙されていた特性を提供するように、またナノ粒子のクラスタが生じるのを回避するように、選択される。
【0169】
ナノ粒子のクラスタ発生とシンタリングとを回避する懸濁を生じさせるため、有機溶媒が、ナノ粒子および芳香族ポリマと混合されることがある。そのような溶媒は、フェナンスレンなどの溶解した芳香族溶媒を含み得る。好ましくは、溶媒は、磁気ナノ粒子との間で酸化反応を結果的に生じさせないものである。トルエンまたは類似のものが、混合物をより乳状液の方向にシフトさせるために追加されることもあり得る。
【0170】
いくつかのアプローチでは、封止された粒子は熱分解され、結果的に、カーボン・シェルに封止されている磁気ナノ粒子が生じる。
【0171】
磁気ナノ粒子と芳香族ポリマとのあたたかい懸濁液が、ポリマ・バインダおよび溶媒と混合され、混合物を形成する。乳状液を生じさせるために、好ましくは、超音波分散が用いられる。封止されたナノ粒子合成とポリマ封止というこの技術は、従来型の製造技術では典型的である、粒子の凝集したクラスタからのミリングおよび再分散の必要性を、効果的に消去してくれる。
【0172】
一般に、溶媒混合物は、以下の特性のうちの1つまたは複数を、好ましくはすべてを提供しなければならない、すなわち、最も揮発性の高い溶媒(乾燥の間に最初に去るもの)は、ポリマ・バインダを膨張させること、乾燥の間に二番目にまたは最後に去る溶媒は、理想的には、乾燥の間に収縮して最終的なコーティングにおいて不所望の圧力を結果的に生じさせるのではなく、乾燥の間に溶液がそのバインダのためのシータ条件を通過しバインダが顔料の周囲で崩壊するように強制させるような、そのバインダのための貧溶媒である。乾燥の間の最後に去る溶媒は、そのバインダに対する非溶媒であるから、乾燥の間に第1の溶媒によって十分に溶解された状態から非溶媒の富む環境に包囲されるように移動する際に、シータ条件と称される膨潤した鎖が巻かれて最小の自由体積状態になるように強制する。層は、ポリマ・バインダがシータ条件にあるときに最も安定的であり、この時点で硬化が開始するのである。硬化が生じる速度のためにポリマ・バインダがそのシータ条件に近いときには、UV硬化が好適である。
【0173】
好適な溶媒は、最終的な乾燥コーティングが乾燥の間にシータ条件を通過することを強制するために、水が僅かに超過していて溶媒系を優位的に共沸にする相対濃度での水およびTHF溶媒系である。THFは、その揮発性が水よりも高いために、最初に去る。有機溶媒が去ることにより、膜の合体が崩壊することが許容され、圧力を減少させる。こうして、水が溶媒界面を支配することにより、ポリマがシータ条件に近づくことが可能になる。
【0174】
他のアプローチでは、溶媒系が水によって支配される場合もあり、その場合には、コーティングは真の乳状液であり、吸収されたバインダが乳化剤として機能し、また最終コーティングにおいてゴム相の樹脂を提供する。さらなるアプローチでは、有益な溶媒には、揮発性極性有機物質と、MEK/トルエン、アセトン/メチル・イソブチル・ケトンなど、バインダのためのより高い沸点を有する非溶媒との混合物が含まれ得る。
【0175】
結果的に得られる乳状液/溶媒が、上述した下位層1006または別の基板などの構造上に適用される。乳状液/溶媒を適用するには、いずれかの適切な技術が用いられ得る。好適な技術は、特別に設計された低圧大容量の吹付コーティングであり、これによると、高速で均一な適用がなされ、ブラシでのコーティングに典型的な複数の筋や、このような非常に薄いコーティングのための高剪断ブレードまたはダイ押出コーティング方法によって生じる界面の厚さの変動および変調が伴わない。
【0176】
適用される混合物は、溶媒の少なくとも一部を除去するように部分的に乾燥されるか、または実質的に完全に乾燥される。ポリマ・バインダは、溶媒が乾燥の間に除去されるのに伴い、封止された微粒子の上に崩壊する。例えば、バインダが疎水性であるような態様では、適用された混合物を最後に去るのは、バインダに対する非溶媒である水であり、これによって、疎水性のバインダは強制的に顔料の上に崩壊することになる。これは、また、乾燥コーティングにおける残留圧力を最小化する。乾燥は、好ましくは、低温(摂氏約75度未満)の条件下で強制された空気を用いて行われる。
【0177】
少なくとも部分的に乾燥された適用された混合物は、その後の処理と環境的な応力への露出の間の、コーティングされたままの状態であり圧力から解放された層におけるさらなる膨張または収縮を制限するように硬化され、緊密に充填された磁気ナノ粒子を有する薄く高密度の記録層1008が生成される。あるアプローチでは、少なくとも部分的に乾燥された状態の適用された混合物は、放射線を適用される。例えば、UV光またはそれ以外の既知の放射露出が適用され、ポリマ・バインダの架橋を生じさせる。別のアプローチでは、封止されたナノ粒子層における熱反応機能グループと乾燥された膜のゴム状バインダ相との反応を増加させるために加熱することによって、異なる硬化プロセスが実行される。
【0178】
オプションとして、記録層1008の形成の間に潤滑剤が追加されることがあり、潤滑剤分子1030は、記録層1008が形成されるときに、最終的には記録層1008の表面に結合されることになる。潤滑剤分子は、表面に結合されるか、表面に埋め込まれるか、またはその両方であり得る。再び、好ましくは、記録層1008の表面に沿った潤滑剤分子の量は、記録層1008の表面に沿って連続的な潤滑剤の膜を形成する量より少ない。ある例示的なアプローチでは、潤滑剤分子は、平均では、中心から中心までが、約2から約15の分子半径の範囲にある距離になるように、記録層1008の表面に沿って離間するように位置決めされる。
【0179】
あるアプローチでは、潤滑剤分子1030は、有機溶媒相において分散されており、潤滑剤分子を駆動ベアリングとヘッド表面とに移動させることなく安定的な低摩擦層を形成するように、硬化する間に表面へ移植される乾燥の間に表面に運ばれる。これが、他方では、ヘッドの汚染を減少させる。
【0180】
他のアプローチでは、潤滑剤は、完成された記録層1008の外部表面に適用される。
【0181】
ある例示的な場合には、芳香族ポリマを用いて封止されたCo、CoFe、Fe、またはCo(fcc)などの磁気ナノ粒子の主に単分散の懸濁液が、ゴム状ポリマと混合されるのであるが、このゴム状ポリマは、放射線硬化性の末端基と、分散されたナノ粒子の芳香族による封止層上で放射線硬化性の末端基に硬化の間に結合されるときにゴム相を提供するのに十分な鎖長の側鎖とを有する。結果的に得られる懸濁液は、高密度の記録を記録可能な緊密に充填された薄い記録層1008を構築するのに用いられる。芳香族による封止層に付着されたゴム状鎖は、高度に架橋されたマトリクスを形成するようにUV硬化が可能なアクリルまたはメタクリル官能基を末端に有しており、そのマトリクスでは、磁気ナノ粒子が、例えば、溶媒に加えられたアクリル末端を有する低分子量のポリエステルなど、ゴム相の膨潤を通じて凝集性のコーティングの中に保持された芳香族によるガラス状ポリマによって、完全に封止されている。溶媒で膨潤されたコーティングとポリエステルとのUV硬化は、乾燥の間に行われる。
【0182】
現在の磁気記録媒体と比較すると、新しい下位層とその上の新しい記録層とを有する磁気記録テープの様々な利点は、これらに限定されることはないが、以下のうちの1つまたは複数を含むのであり、すなわち、記録層がより薄いこと、磁気粒子の分散がより均一であること、より平坦であること、下位層と記録層との間の界面の混濁が少ないこと、ガラス転移温度がより高いこと、記録層において磁気粒子の空洞の発生がより少ないことまたは実質的に除去されていることなどである。これらの利点のそれぞれの結果として、これらに限定されることはないが、下記のうちの1つまたは複数などの特性を示す磁気記録テープが得られるのであって、すなわち、寸法安定性がより高いこと、引き裂き抵抗性がより高いこと、記録分解能が1nm未満まで至るほどに高いこと、雑音がより低く、より高い信号対雑音比を結果的に生じさせることなどである。
【0183】
上述したシステムまたは方法あるいはその両方の様々な特徴はいずれかの様態で組み合わされ得ることは明らかであり、それによって、以上で提示された説明から複数の組合せを生じさせることができる。
【0184】
本発明の実施形態は、顧客に代わって展開されるサービスの形態で提供され得ることが、さらに理解されるであろう。
【0185】
本明細書に開示されている発明的な概念は、複数の例示的なシナリオ、実施形態または実装形態あるいはそれらの組合せとして、その無数の特徴を例示する例によって提示されてきた。一般的に開示されている概念は、モジュール的なものであると考察されるべきであり、それらのいずれかの組合せ、順列、または合成として実装され得ることが理解されるべきである。さらに、当業者が今回の説明を読むことにより理解し得る本明細書で開示されている特徴、機能、および概念のいかなる修正、変更、または均等物も、本開示の範囲に属するものと考えるべきである。
【0186】
本発明の様々な実施形態に関する説明を、例示の目的のために以上で提示してきたが、網羅的であること、または開示されている実施形態に限定されることは、意図されていない。説明されている実施形態の範囲から逸脱することなく、当業者には、多くの修正および変更が明らかであろう。本明細書で用いられている用語は、実施形態の原理と、市場で見つけられる技術と比較した場合の実際的な応用もしくは技術的改善とを最良に説明するように、または他の当業者が本明細書に開示されている実施形態を理解することを可能にするように、選択された。
図1A
図1B
図2A
図2B
図2C
図2D
図3
図4
図5
図6
図7
図8A
図8B
図8C
図9
図10
図11
図12