(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-02
(45)【発行日】2024-12-10
(54)【発明の名称】ゲル支持環境における付加製造
(51)【国際特許分類】
B29C 64/106 20170101AFI20241203BHJP
B33Y 10/00 20150101ALI20241203BHJP
B33Y 30/00 20150101ALI20241203BHJP
B29C 64/209 20170101ALI20241203BHJP
B29C 64/40 20170101ALI20241203BHJP
B29C 64/393 20170101ALI20241203BHJP
【FI】
B29C64/106
B33Y10/00
B33Y30/00
B29C64/209
B29C64/40
B29C64/393
(21)【出願番号】P 2023044127
(22)【出願日】2023-03-20
(62)【分割の表示】P 2019554862の分割
【原出願日】2018-04-04
【審査請求日】2023-04-19
(32)【優先日】2017-04-04
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591177277
【氏名又は名称】マサチューセッツ インスチテュート オブ テクノロジー
【氏名又は名称原語表記】MASSACHUSETTS INSTITUTE OF TECHNOLOGY
(73)【特許権者】
【識別番号】510208387
【氏名又は名称】スチールケース・インコーポレーテッド
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ティビッツ・スカイラー・ジェイ・イー
(72)【発明者】
【氏名】ガビラン・クリストフ
(72)【発明者】
【氏名】ロークス・ジャレッド・スミス
(72)【発明者】
【氏名】ケルニザン・シェンディー・ジー
(72)【発明者】
【氏名】ハジャッシュ・キャスリーン・ソフィア
(72)【発明者】
【氏名】スパルマン・ビョルン・エリック
(72)【発明者】
【氏名】ノル・ポール
【審査官】▲高▼橋 理絵
(56)【参考文献】
【文献】特表2003-533367(JP,A)
【文献】米国特許出願公開第2016/0067918(US,A1)
【文献】国際公開第2016/090286(WO,A1)
【文献】米国特許出願公開第2016/0167312(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 64/00-64/40
B33Y 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
a)ゲル容器内のゲル中にノズルを配置することと;
b)三次元物体の設計と前記ノズルを用いた前記三次元物体のレンダリング方法が予めプログラムされたソフトウェアの定義された機能に従って、前記ノズルからの化合物の流れを空気圧制御又は電気的制御することであって、前記流れには、前記ノズル内の圧力や前記ゲルを通過する前記ノズルの移動速度を上昇又は低下させるパラメータが含まれることと;
c)前記ノズルから出て前記三次元物体の部品となる固化材料を堆積させながら、前記ゲル中で前記ノズルの位置を変えることであって、前記ゲルが、前記固化材料
を支持して、前記固化材料が前記ゲル中で浮遊していることと;
d)前記固化材料を前記ゲル中で固化させて、前記三次元物体である固形物を形成することとを含む三次元物体の製造方法であって、
前記ノズルが第1ノズルであり、前記固化材料が第1固化材料であり、前記固形物が第1固形物であり、前記方法が、さらに、
e)前記ゲル容器内の前記ゲル中に第2ノズルを配置することと;
f)前記三次元物体の設計と前記第2ノズルを用いた前記三次元物体のレンダリング方法が予めプログラムされたソフトウェアの定義された機能に従って、前記第2ノズルからの化合物の流れを空気圧制御又は電気的制御することであって、前記流れには、前記第2ノズル内の圧力や前記ゲルを通過する前記第2ノズルの移動速度を上昇又は低下させるパラメータが含まれることと;
g)前記第2ノズルから出る第2固化材料を堆積させながら、前記ゲル中で前記第2ノズルの位置を変えることであって、前記ゲルが、前記第2固化材料
を支持していて、前記第1および第2固化材料を
同時又はほぼ同時に堆積させることが、前記第1および第2固化材料が堆積した状態で接触するように行われ
得ることと;
h)前記第2固化材料を固化させて、第2固形物を形成することであって、前記第1および第2固形物が前記三次元物体として接合されることとを含み、
前記ゲルが、前記第1または第2ノズルによって動かされた後に元の場所に戻り(但し、前記第1および第2固化材料が堆積された領域を除く)、
前記ゲルが、水性ゲルである方法。
【請求項2】
請求項1に記載の方法において、前記ノズルが多軸機械に装着され、前記ゲル中で前記ノズルの前記位置を変えることが、前記ノズルが装着されている前記多軸機械の1つ以上の軸を動作させることを含む方法。
【請求項3】
請求項1または2に記載の方法において、前記ノズルから出る前記固化材料を堆積させることが、さらに、前記固化材料が堆積する速度を変化させることを含む方法。
【請求項4】
請求項1または2に記載の方法において、前記ゲル中で前記ノズルの前記位置を変えることが、さらに、変化する速度で前記ノズルの前記位置を変えることを含む方法。
【請求項5】
請求項1または2に記載の方法において、前記ゲル中で前記ノズルの前記位置を変えることが、前記ゲル容器の位置を変えることを含む方法。
【請求項6】
請求項1または2に記載の方法において、前記固化材料を固化することが、前記固化材料を光または熱に曝すことを含む方法。
【請求項7】
請求項1または2に記載の方法において、前記固化材料を固化することが、前記固化材料を冷却することを含む方法。
【請求項8】
請求項1または2に記載の方法において、前記固化材料を固化することが、前記ノズルから出る前記固化材料を堆積させながら、前記固化材料を光に曝すことを含む方法。
【請求項9】
請求項1または2に記載の方法において、前記固化材料が、ポリマー、ゴム、パルプ、発泡体、金属、コンクリート、またはエポキシ樹脂である方法。
【請求項10】
請求項9に記載の方法において、前記ゴムがシリコーンゴムである方法。
【請求項11】
請求項1または2に記載の方法において、前記固化材料の硬度が、固化時に約ショア00~10から約ショア90Dの範囲である方法。
【請求項12】
請求項1または2に記載の方法において、前記固化材料が発泡体である方法。
【請求項13】
請求項12に記載の方法において、固化した前記発泡体の密度が、約3lb/ft
3~約30lb/ft
3である方法。
【請求項14】
請求項1または2に記載の方法において、前記ゲルが懸濁液である方法。
【請求項15】
請求項1または2に記載の方法において、前記ゲルがカルボマーを含む方法。
【請求項16】
請求項1または2に記載の方法において、前記ゲルの粘度が約20000cP~約50000cPである方法。
【請求項17】
請求項1または2に記載の方法において、前記ノズルが、円形、長方形、正方形、菱形、V字形、U字形、またはC字形の先端を有し、前記先端から出る前記固化材料が堆積する方法。
【請求項18】
請求項1または2に記載の方法において、前記固化材料が、共重合する2種類の化合物を含み、前記固化材料を固化することが、前記2種類の化合物を共重合させることを含む方法。
【請求項19】
請求項17に記載の方法において、前記ノズルが、さらに、前記2種類の化合物が前記ノズルから出て堆積するときに前記2種類の化合物を混合する混合部を有する方法。
【請求項20】
請求項2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に3軸から8軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
【請求項21】
請求項2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に5軸から8軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
【請求項22】
請求項2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に3軸から6軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
【請求項23】
請求項2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に6軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
【請求項24】
請求項1または2に記載の方法において、前記ノズルの前記位置を変えることが、前記ゲル中の他の物体の表面上、周囲、または内部に固化材料を堆積させるために前記ノズルの前記位置を変えることを含む方法。
【請求項25】
請求項1に記載の方法において、前記第1および第2ノズルが異なる形状の先端を有する方法。
【請求項26】
請求項1に記載の方法において、前記第1および第2固化材料が異なる材料である方法。
【請求項27】
a)多軸機械に装着された第1ノズルおよび第2ノズルと、
b)前記第1ノズルから第1固化材料を押し出し、前記第2ノズルから第2固化材料を押し出す手段と、
c)ゲル容器と
、
d)三次元物体の設計と前記第1および第2ノズルを用いた前記三次元物体のレンダリング方法が予めプログラムされたソフトウェアの定義された機能に従って、前記第1および第2ノズルからの化合物の流れを制御するように構成された空気圧制御又は電気的制御システムであって、前記流れには、前記第1および第2ノズル内の圧力や前記ゲルを通過する前記第1および第2ノズルの移動速度を上昇又は低下させるパラメータが含まれる、システムとを備える三次元物体の製造装置であって、
前記多軸機械が、前記ゲル容器内のゲル中に前記第1ノズルを配置し、
前記ゲルが、前記第1および第2固化材料
を支持して、前記第1および第2固化材料が前記ゲル中で浮遊しており、
前記多軸機械が、前記第1および第2ノズルから出て前記三次元物体の部品となる固化材料を堆積させながら、前記ゲル中で前記第1および第2ノズルの位置を変え、
前記第1および第2固化材料を
同時又はほぼ同時に堆積させることが、前記第1および第2固化材料が堆積した状態で接触するように行われ
ることができ、
前記第1および第2固形物が前記三次元物体として接合され、
前記ゲルが、前記第1または第2ノズルによって動かされた後に元の場所に戻り(但し、前記第1および第2固化材料が堆積された領域を除く)、
前記ゲルが、水性ゲルである装置。
【請求項28】
a)ゲル容器内のゲル中にノズルを配置することと;
b)三次元物体の設計と前記ノズルを用いた前記三次元物体のレンダリング方法が予めプログラムされたソフトウェアの定義された機能に従って、前記ノズルからの化合物の流れを空気圧制御又は電気的制御することであって、前記流れには、前記ノズル内の圧力や前記ゲルを通過する前記ノズルの移動速度を上昇又は低下させるパラメータが含まれることと;
c)前記ノズルから出て前記三次元物体の部品となる固化材料を堆積させながら、前記ゲル中で前記ノズルの位置を変えることであって、前記ゲルが、前記固化材料を支持して、前記固化材料が前記ゲル中で浮遊していることと;
d)前記固化材料を前記ゲル中で固化させて、前記三次元物体である固形物を形成することとを含む三次元物体の製造方法であって、
前記ノズルが第1ノズルであり、前記固化材料が第1固化材料であり、前記固形物が第1固形物である方法。
【発明の詳細な説明】
【技術分野】
【0001】
この出願は、2017年4月4日出願の米国仮特許出願第62/481,358号の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
【背景技術】
【0002】
従来の製造は、通常、成形物である部品や一定形状を有する他の構成要素を含み、これらの個々の構成要素が、より複雑な構造体として組み立てられることが多い。この方法は、費用が高くなることが多く、手作業による多大な労力を要することもある。また、成形に用いられる金型は、製造に多額の費用がかかり、得られる成形物の寸法形状は変えられない。
【0003】
付加製造(additive manufacturing)とは、材料を層状に付加することによって三次元物体を形成する技術の総称である。光造形法(SLA)は、ポリマーをUV光に露出させて選択的な光重合を行う付加製造技術である。
【0004】
選択的レーザー焼結法(SLS)、直接金属レーザー焼結法(DMLS)、およびレーザー溶融法(SLM)は、粉末の薄層を基板の上に分布させる付加製造技術である。SLSおよびDMLSでは、粉末をレーザーが選択的に焼結する。SLMでは、粉末をレーザーが選択的に溶融させる。典型的にポリマーに対して用いられるSLAとは異なり、SLS、DMLSおよびSLSは金属に対して用いることができる。
【0005】
熱溶解積層法(FDM)は、熱溶解フィラメント製法(fused filament fabrication, FFF)と称されることもあり、1層ごとに所定の経路で溶融した材料を選択的に堆積させることによって物体を形成する。
【0006】
既存技術が有する問題の1つは、遅すぎるということである。既存技術が有する別の問題は、複雑な形状(支持されていない張り出し部など)の製造には、後処理の間に除去される支持構造の作製が必要になることがあるという点である。支持構造を作製することにより、部品の設計費用が増大することが多く、また、部品の作製にかかる加工時間が増大することになり得る。さらに、支持構造の一部またはすべてが廃棄されるので、部品を作製するための材料費が増大する。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本明細書に記載の方法は、三次元物体を形成するために使用できる付加製造技術に関する。
【課題を解決するための手段】
【0008】
以下において、三次元物体の製造方法について説明する。この方法は、ゲル容器内のゲル中にノズルを配置することと;前記ノズルから出る固化材料を堆積させながら、前記ゲル中で前記ノズルの位置を変えることであって、前記ゲルが、前記固化材料をその固化材料が堆積した位置で支持していることと;前記固化材料を固化させて、三次元物体である固形物を形成することとを含んでいてもよい。
【0009】
前記ノズルから出る前記固化材料を堆積させることが、さらに、例えば、1つ以上のピストンに加えられる圧力を変化させて前記固化材料を押し出すことによって、前記固化材料が堆積する速度(rate、流量、流速)を変化させることを含んでいてもよい。前記ゲル中で前記ノズルの前記位置を変えることが、さらに、変化する速度で前記ノズルの前記位置を変えることを含んでいてもよい。
【0010】
前記ノズルは多軸機械に装着できる。前記ゲル中で前記ノズルの前記位置を変えることが、前記ノズルが装着されている前記多軸機械の1つ以上の軸を動作させることを含んでいてもよい。前記ゲル中で前記ノズルの前記位置を変えることが、前記ゲル容器の位置を変えることを含んでいてもよい。
【0011】
前記固化材料を固化することが、前記固化材料を光または熱に曝すことを含んでいてもよい。前記固化材料を固化することが、前記固化材料を冷却することを含んでいてもよい。前記固化材料を固化することが、前記ノズルから出る前記固化材料を堆積させながら、前記固化材料を光に曝すことを含んでいてもよい。
【0012】
前記固化材料が、ポリマー、ゴム、パルプ、発泡体、金属、コンクリート、またはエポキシ樹脂であってもよい。前記ゴムがシリコーンゴムであってもよい。
【0013】
前記固化材料の硬度が、固化時に約ショア00~10から約ショア90Dの範囲であってもよい。
【0014】
前記固化材料が発泡体であってもよい。固化した前記発泡体の密度が、約3lb/ft3(ポンド/フィートの3乗)~約30lb/ft3であってもよい。
【0015】
前記ゲルが懸濁液であってもよい。前記ゲルがカルボマーまたはポリアクリル酸を含んでいてもよい。前記ゲルの粘度が20000cP(センチポイズ)~約50000cPであってもよい。
【0016】
前記ノズルが、円形、長方形、正方形、菱形、V字形、U字形、またはC字形の先端(tip )を有し、前記先端から出る前記固化材料が堆積してもよい。
【0017】
前記固化材料が、共重合する2種類の化合物を含んでいてもよい。前記固化材料を固化することが、前記2種類の化合物を共重合させることを含んでいてもよい。前記ノズルが、さらに、前記2種類の化合物が前記ノズルから出て堆積するときに前記2種類の化合物を混合する混合部を有する。
【0018】
前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に3軸から8軸方向に前記ゲル中で前記ノズルの前記位置を変えることを含んでいてもよい。前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に5軸から8軸で前記ゲル中で前記ノズルの前記位置を変えることを含んでいてもよい。前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に3軸から6軸で前記ゲル中で前記ノズルの前記位置を変えることを含む。前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に6軸で前記ゲル中で前記ノズルの前記位置を変えることを含んでいてもよい。
【0019】
前記ノズルの前記位置を変えることが、前記ゲル中の他の物体の表面上、周囲、または内部に固化材料を堆積させるために前記ノズルの前記位置を変えることを含んでいてもよい。
【0020】
前記ノズルが第1ノズルであってもよく、前記固化材料が第1固化材料であってもよく、前記固形物が第1固形物であってもよい。前記方法が、さらに、前記ゲル容器内の前記ゲル中に第2ノズルを配置することと、前記第2ノズルから出る第2固化材料を堆積させながら、前記ゲル中で前記第2ノズルの位置を変えることであって、前記ゲルが、前記第2固化材料をその第2固化材料が堆積した位置で支持していて、前記第1および第2固化材料を堆積させることが、前記第1および第2材料が堆積した状態で接触するように行われることと;前記第2固化材料を固化させて、第2固形物を形成することであって、前記第1および第2固形物が前記三次元物体として接合されることとを含んでいてもよい。前記第1および第2ノズルが異なる形状の先端を有していてもよい。前記第1および第2固化材料が異なる材料であってもよい。
【0021】
以下において、三次元物体の製造装置について説明する。この装置は、多軸機械に装着されたノズルと、前記ノズルから固化材料を押し出す手段と、ゲル容器とを備えていてもよい。
【0022】
前記装置は、本明細書に記載のように構成することで、本明細書に記載の方法を実施できる。
【0023】
本明細書に記載の方法は多くの利点を提供する。特に、前記方法は高速である。他の付加製造方法(FDMやSLMなど)と比較すると、本明細書に説明する付加製造方法およびそのシステムの開示された実施形態におけるゲル懸濁液中での印刷(造形)は、複雑な形状(
図4において示された形状など)を有する部品を印刷する場合にはるかに速く、場合によっては桁違いに速くなり得る。いくつかの例では、前記方法は、既存の方法よりも300倍以上速くなり得る。支持構造を堆積させる必要がないので、製造された物体の後処理が実質的に削減される。例えば、後処理には、単に前記物体を水中で洗浄することが含まれてもよい。支持構造を手作業で切り取ることまたは他の方法で除去する必要はない。また、前記方法を用いて大型の物体を製造することもできる。前記ゲル容器のサイズは、製造可能な物体のサイズを制限する唯一の要因である。
【0024】
公知技術と比較した場合に速度およびサイズを増大させることが可能であり、しかも、製造される物体は高品質である。本明細書に記載の方法において使用できる固化材料としては、工業用グレードの材料が挙げられる。例えば、本明細書に記載の方法は、シリコーンゴムを用いて物体を作製するために使用できるが、他の方法では、シリコーンではないエラストマーの使用が必要となることもある。また、前記方法は、発泡体から材料を作製するために使用することも可能である。さらに、前記方法は、硬質ポリマーから材料を作製するために使用することも可能であるが、他の方法では粉末の焼結が必要となることがあり、得られる物体が機械的特性で劣ることもある。本明細書に記載の方法は1層ごとの堆積を必要としないので、形成される物体は、均質な断面を有するように形成された製品に対して機械的に劣るものになり得る積層を有しない。
【図面の簡単な説明】
【0025】
以上の説明は、添付の図面に記載の例示的な実施形態についての以下のより具体的な説明から明瞭となる。これらの図面において、同一の部品には同一の符号が付されている。図面は必ずしも縮尺に合わせたものではなく、実施形態を説明するにあたり強調が付されている。
【
図1】ゲル懸濁液中で三次元部品を印刷する二液型混合堆積システムを有する3軸ガントリー機の図である。
【
図2】ゲル懸濁液中で三次元部品を印刷する二液型混合堆積システムを有する6軸ロボットアームの図である。
【
図3】二液型固化材料を用いる堆積システムであって、固化材料が、完全に混合されてノズルから押し出されるように、空気圧で制御されて混合先端から流れるシステムの図である。
【
図4】同一のすじかい形状の部品(diagonally-shaped part)に用いられる様々な印刷方法の比較である。
【
図5】様々なノズル形状、サイズおよび得られる印刷経路の図である。
【
図6】3D空間に浮遊させた状態で実物大の椅子を印刷するゲル懸濁媒体の大型タンクの図である。
【
図7】大型タンクに挿入された金属フレームの表面上および/またはその周囲における椅子の印刷部分を示す図である。
【発明を実施するための形態】
【0026】
以下において、例示的な実施形態を説明する。
【0027】
本明細書において、「ゲル」という用語は、液状媒体に粒子が分散したコロイドを指している。通常、分散している粒子は架橋粒子である。前記ゲルはチキソトロープ性(thixotropic )であってもよい。ほとんどのゲルは、重量の面では主に液体であるが、液体中の三次元架橋ネットワークにより固体状の材料特性を示す。
【0028】
本明細書に記載の方法は、ゲル懸濁液環境での付加製造方法に関する。通常、ゲルは、容器に入れられる。固化材料は、溶融状態または液体状態にでき、ノズルおよび工具経路を介して堆積する。
【0029】
いくつかの実施形態では、前記ゲル中で移動するノズルの経路を制御するために多軸機械が使用される。多軸機械の例としては、ガントリー型システム(gantry-type system)および産業用ロボットアームが挙げられる。一般に、様々な種類の多軸機械およびロボットアームが利用可能である。ガントリー機(gantry-style machine)は、通常、3つの動作軸(移動軸、つまりx、yおよびz軸)を提供する。ロボットアームは、よく、アームが有する回転軸の数に従って説明される。例えば、5軸ロボットアームは5つの個別の回転軸で回転可能であり、6軸ロボットアームは6つの個別の回転軸で回転可能である。回転軸のみならず、ロボットアームは、直線のレールまたはガントリー機に装着することで、直線の動作軸を提供することも可能である。一例として、直線のレールに装着された6軸ロボットアームは、7軸で動作可能である。他の例として、ガントリー機に装着された6軸ロボットアームは、このガントリー機の特定の動作に応じて、7軸、8軸、9軸で動作可能である。
【0030】
多軸機械によって提供される動作軸に加えて、前記ゲルを入れる容器も移動させることもできる。例えば、前記ゲル容器は多軸ガントリー機に配置することができ、この多軸ガントリー機は、前記ノズルが装着されている多軸機械の動作軸とは異なる別個の3軸で、前記ゲル容器を移動させることができる。また、前記ゲル容器を、回転軸周りに移動させることもできる。
【0031】
いくつかの実施形態では、前記ゲル容器が1軸で移動し、前記ノズルが2軸で移動する。いくつかの実施形態では、前記ノズルが静止しており、前記タンクが2軸または3軸で移動する。いくつかの実施形態では、前記タンクがガントリー機によって制御される。
【0032】
いくつかの実施形態では、前記ノズルは、ケーブルロボットとも呼ばれるウィンチロボットによって制御される。これらの実施形態において、複数のケーブルが、前記ノズルの移動をx、yおよびz方向に制御する。
【0033】
これらの部品の組み合わせにより、様々な材料を用いた極めて速い印刷が可能である。例えば、溶融状態のポリマーは前記ノズルから出て堆積し、固化できる。例えば、硬化には重合が含まれてもよく、この重合は光重合でもよい。他の実施形態では、ポリマーを加熱して重合反応速度を加速できる。化学的に硬化、光硬化、または空気/水硬化されるプラスチック、ゴム、発泡体および他の液体は大規模に(at large-scales )印刷することができ、容器またはロボット装置のサイズによってのみ制限される。種々のノズルを用いて、流量、サイズ、方向および断面形状を制御することが可能である。同様に、複雑な三次元工具経路を形成して、3D空間において任意の向きおよび方向に印刷することが可能である。
【0034】
既存の付加製造方法は、他の工業的製造方法と比較すると、速度およびサイズの問題により産業上の用途が限られていた。本明細書に記載の方法は、他の三次元印刷方法とは異なり、支持材料を必要とせずかつ材料が固化するのを待つために印刷速度を低下させることもないゲル懸濁液を使用することにより、印刷速度を向上させることが可能である。また、大型の構造体を印刷するために時間がかかりすぎる他の付加製造方法(例えば、FDM、液体バインダおよび粉末を用いるインクジェット式印刷(例えば、ZCorp社から販売され、3Dシステムによって達成されるもの)、SLA、SLS、およびポリジェット印刷(例えば、Stratasys Ltd社から販売されるCONNEXプリンター))とは異なり、物体が1層ごとに形成されないので、製造速度も向上する。それどころか、部品を三次元空間で印刷できる。
【0035】
図4は、同一のすじかい形状の部品に用いられる種々の付加製造印刷方法の比較である。FDM印刷では、この部品は横方向のスライスに分割され、張り出した部分を支持するために横方向にスライスされた支持領域が印刷されている。SLA印刷では、この部品は横方向にスライスされており、張り出した部分を支持するために小さい上下方向の支持体が印刷されている。パウダーベースのシステム(例えば、SLSまたはZCorp)では、この部品は横方向にスライスされ、周囲の粉末が張り出した部分を支持する。本明細書に記載のゲル支持環境における方法では、この部品は、横方向にスライスされることなく構成要素の向きで直ちに印刷され、部品の印刷速度および構造的連続性が効果的に向上し、周囲のゲルが支持材料として作用する。
【0036】
支持物構造が必要でないことから、後処理の時間も大幅に減少する。従来、これらの支持構造は手作業で除去または溶解されていた。本願の方法では、印刷時間は、前記機械の速度および堆積した固化材料の硬化時間(組成に応じて数秒から数時間)のみによって制限される。
【0037】
印刷の規模(スケール、scale )は可変である。より小さなノズル先端を用いることで、微細な形体(features)を有する極めて小さな構造体を形成できる。より大きなノズルを用いることで、より大きな形体を有するより大きな構造体を形成できる。
【0038】
図1は、二液型材料とともに使用される3軸ガントリー機100の図である。アーム110は、図示されているとおり、x軸、y軸およびz軸で動作可能となるようにガントリーシステム100に装着されている。この特定の実施形態では、空気圧制御システムを介して空気圧堆積を行うことができ、前記空気圧制御システムは、ピストン126aおよび126b(
図3を参照)に力を加えるためのチャンバ120を備える。2つの異なる材料を入れる2つのチャンバ130aおよび130bが設けられている。これらの材料は、混合先端140において混合され、ノズル150から出て堆積する。容器またはタンク160にゲル170が入れられる。アーム110が移動するとともに、ノズル150はゲル中で移動し、前記2つの材料がチャンバ130aおよび130bから前記ゲルに押し出されて三次元物体(印刷部品)180aを形成する。
図2は、二液型材料を用いる6軸ロボットアーム200の図である。他の部分は、
図1と実質的に同じである。
【0039】
図3は、混合先端を通って流れるように空気圧制御される二液型材料の堆積システムの図である。空気は、チューブ124を介して進入し、圧力調整器122を通って流れてチャンバ120に進入する。これにより、前記空気は、ピストン126aおよび126bに下向きの力を加え、チャンバ130aおよび130bからそれぞれ材料を押し出す。固化材料(例えば、液体)180bは、ノズル先端150から押し出される。
【0040】
図3に示される空気圧堆積の代わりに、電動ねじ堆積システムを使用することもできる。例えば、モータを用いてピストン126aおよび126bに下向きの力を加えることができる。
【0041】
図6は、本明細書に記載の発明を椅子180cの形成に用いた場合の図である。
【0042】
1.固化材料の堆積
1.1.材料
本明細書に記載の方法は、堆積システムを用いて、様々な量および粘度の固化材料を堆積させる。前記方法は、容易な液体材料の流動/堆積、より速い印刷速度、および工業用グレードの材料の使用を可能とし、他の付加製造方法と比較すると格別の効果がある。いくつかの実施形態では、前記固化材料は1種類の化合物である。他の実施形態では、前記固化材料は、共重合する2種類の異なる化合物である。
【0043】
これまでに、一液型または二液型の空気硬化または化学硬化材料である様々なプラスチック、発泡体およびゴムの試験がなされている。他のほとんどの方法では、接着性バインダとともに粉末材料を用いること、粉末に選択的焼結を施すこと、UV硬化性ポリマーまたはホットエンドフィラメント押し出し機を用いることに依拠していることにより、利用可能な材料および印刷された構造体の最終的な材料特性を本質的に制限している。本明細書に記載の方法は、ポリウレタン(PU)ゴム、発泡体およびプラスチック、樹脂、シリコーン、生体材料、液状木材パルプ、コンクリート、液体金属または任意の他の固化材料などといった工業用グレードの材料を用いて印刷を行うために、利用でき、産業上の印刷用途の可能性が大きく広がる。
【0044】
発泡体の例としては、ウレタンおよび発泡シリコーンが挙げられる。本明細書で使用されるように、発泡体とは、液体または固体中に捕捉されたガスポケットを有する材料を指している。発泡体は、通常、液体状で堆積し、その後固化する。
【0045】
プラスチックの例としては、ウレタン、アクリルおよびポリメチルメタクリレートなどの化学的に硬化されるプラスチック、放射線硬化されるプラスチックならびに湿分硬化されるプラスチックが挙げられる。
【0046】
樹脂の例としては、エポキシ樹脂、フェノール-ホルムアルデヒド樹脂、嫌気性樹脂、およびシアノアクリレートが挙げられる。
【0047】
シリコーンの例としては、付加および縮合硬化されるシリコーンゴム(硬度が、固化時にショア00~10からショア60Aの範囲であるもの)が挙げられる。
【0048】
ウレタンゴムの例としては、硬度がショア10Aからショア90Dの範囲の材料が挙げられる。
【0049】
生体材料の例としては、バクテリア、抗体、リグニン、増殖培地、イースト、細胞マトリックス(cellular matrices )、真核細胞、非真核細胞、真菌用培地(fungal medium )、種子/植物成長(seed/plant growth )が挙げられる。
【0050】
液状木材パルプの例としては、セルロース、リグニン、ならびに天然繊維および合成繊維の両方を含む他の紙繊維混合物(paper fiber mixes )が挙げられる。
【0051】
コンクリートの例としては、ポルトランドセメント、または水を用いた化学反応により固化する他の水硬セメントが挙げられる。
【0052】
液体金属の例としては、約100℃未満の融点を有する金属および合金(フィールドメタル(field’s metal )、ウッドメタルおよびローズメタルなど)が挙げられる。
【0053】
前記方法は、1層ごとの堆積を要しない。それどころか、前記ノズルは、三次元空間における任意の向きに移動および押し出しを行うことが可能である。結果として、最終的な印刷製品は、レイヤーベースでの印刷方法から得られる製品と比較すると、より強く、より均一な材料一貫性および表面仕上げを有することができる。
【0054】
1.2.堆積
本明細書に記載の方法では、様々な形状およびサイズの開口を有するシリンジ型のノズルを使用できる。また、前記方法では、投入材料を1:1、2:1、1:2、または他の比で押し出すことができる二液型液体押出機を使用できる。前記ノズルのサイズおよび形状は、種々の粘度および種々の押出形状、または形体サイズに対応できる。例えば、より粘度の高い材料には、より大きなノズルおよびより高い圧力を必要となるが、より粘度の低い材料には、より小さなノズルおよびより低い圧力を用いることができる。押出圧力は、空気圧式または機械式の作動で生じさせることができる。いずれの作動手法でも、所望量の液体を正確に堆積させるように制御すること、残存液体が押し出されないように停止することが可能であり、また、場合によっては、逆に材料を物理的に除去することも可能である。前記ノズルサイズにより、印刷部品の形体サイズを大きくすることおよび分解能を向上させることも可能であり、材料の量および速度を増大させて分解能を低下させることも可能である。堆積速度、ノズルのサイズ、およびシリンダ内の圧力は、相互に関連するプロセス変数である。例えば、より速く印刷するためには、ノズルサイズまたは圧力のいずれかを増大させることができ、いずれかが増大されなければ、前記ノズルが移動する単位距離当たりに押し出される材料の体積は、前記ノズルの速度が増大するにつれて低下する。換言すれば、ノズルサイズまたは付加圧力を変化させることにより、前記固化材料がノズルから押し出される速度に影響を与え、これにより、前記固化材料が堆積する速度に影響を与えることができる。また、ノズル開口の形状を変化させることにより、三次元カリグラフィー手法に類似する様々な効果を印刷部品に生じさせることもできる。円形、正方形、菱形、V字形、U字形、C字形を有するノズルまたは実質的にあらゆる他の形状のノズルを用いて、様々な形体プロファイルを形成することが可能である。ノズル形状の例は
図5に示されている。いずれの構成要素も、システムにおいて交換可能に使用することまたは同時に使用することが可能である。例えば、複数のノズルを同時に用いて、2つの異なる材料を同時に堆積させることが可能である。あるいは、器具交換部を用いて様々なノズルを取り換えることにより、様々な形体サイズ、材料および/またはプロファイルを有する単一の複雑なデザインを形成することが可能となる。
【0055】
また、混合先端140を用いて、化学的に硬化させるために二液型の固化材料を完全に混合できる。液体材料は、数秒から数分または数時間といった様々な硬化時間を有していてもよい。また、前記液体材料は様々な最終硬化特性を有していてもよく、高剛性(例えば、アクリロニトリルブタジエンスチレン(ABS)プラスチック);弾性(例えば、ゴム);膨張性、可撓性、または剛性の発泡体;溶解性(液体);脆性;耐高温性、または理論的にはあらゆる他の特性が挙げられる。また、前記液体は、フィラーおよび着色料を用いることで、実質的にあらゆる色および粘度にできる。これらの特性はいずれも、独立式のカートリッジ、動作中に特性を変化させる連続充填機構、複数材料印刷用または様々な位置で様々な材料を使用できるようにする器具取換用の複数ノズルを用いることにより、変化させることができる。
【0056】
2.ゲル状印刷媒体
2.1.組成
ゲルは、前記固化材料が堆積する媒体として用いられる。前記固化材料が堆積したとき、前記ゲルが前記固化材料を支持することにより、前記固化材料がゲル中で浮遊する。
【0057】
様々なゲルが好適である。使用されているゲルの1つの具体例としては、中和されたポリアクリル酸(カルボマー940)ゲルである。0.25~1重量%の範囲のカルボマー940が、塊が残らないように水中で完全に混合される。このとき、この混合物は粘度が低くpHが低い。前記カルボマー混合物に、pHが中和されるまで水酸化ナトリウム(NaOH)水溶液が徐々に加えられ、気泡が生じないように緩やかに撹拌される。この時点で、前記混合物は高粘度のゲルとなる。
【0058】
以下で述べるように、pHの調整により前記ゲルの粘度を調整して、前記ゲルが種々の密度の物体を受けて支持できるようにしてもよい。
【0059】
また、前記ゲルの粘度の調整は、前記ノズルがどのように前記ゲル中で移動するかということ、および印刷された構造体の形体にも影響する。例えば、前記ゲルおよび固化材料の両方が低粘度であれば、前記固化材料は、堆積した位置に精密に留まらないかもしれない。前記ゲルの粘度を増大させることにより、堆積した前記固化材料が、前記ゲル中で流れることなく、堆積した経路内に留まるようにすることができる。あるいは、いくつかの実施形態では、前記ゲルの粘度が低すぎる場合には、前記固化材料の粘度を増大させることも可能である。
【0060】
2.2.物体の浮力の制御
前記ゲルに使用されるカルボマー940の量は、その後の異物、液体または固体の支持(浮遊)に影響する。
【0061】
カルボマーの割合がより高い場合には、粘度および剪断応力がより高いゲルが生じる。この状態では、前記ゲルは、ゲル自体の密度よりもはるかに低いまたは高い密度を有する材料を浮遊させることができる。カルボマーの割合が1重量%である場合、前記ゲルは1/4インチの鉛球体を浮遊させることができる。
【0062】
カルボマーの割合がより低い場合、粘度および剪断応力がより低いゲルが生じる。この状態では、前記ゲルは、ゲル自体の密度よりもはるかに低いまたは高い密度を有する材料を浮遊させることができない。カルボマーの割合が0.25重量%である場合、前記ゲルは1/4インチのアルミニウム球体を浮遊させることができない。
【0063】
前記ゲル組成物は、所望の物体の形成に適するように変性させることができる。通常、前記ゲルの粘度は20000cP~約50000cPの範囲であってもよい。
【0064】
2.3.自己回復
ゲルは、前記ノズルが前記ゲル中で移動した後、前記ノズルの通過した空隙領域のギャップを前記ゲルが閉じるように再形成することにより、自己回復可能である。結果として、前記ゲル中のエアポケットが最小化される。より低い剪断応力(より遅いノズル速度)により、前記ノズルが通過する際に、前記ゲルが速やかに自己回復できる。その結果、より粘度の低いゲルに固化材料を堆積させることによって、堆積ノズルオリフィスの形態がより良好に維持される。高粘度ゲルは、自己回復により長い時間を要する。結果として、前記ゲルが自己回復できる前に、器具によって残されるキャビティに液体材料が流れ込むことがある。これにより、円形の堆積を有効に引き延ばして液滴状にする。したがって、前記液体材料の形状は、前記ゲルの相対粘度および前記ノズルが通過する速度に応じて異なる。
【0065】
3.製造装置
3.1.ガントリーシステム
ゲル懸濁液内での液体押し出し方法は、少なくとも3軸のCNC機械を用いて精密に制御できる。3軸ガントリー機を用い、カートリッジおよびノズルをZ軸に取り付けることで、前記ゲル中で三次元構造体を印刷できる。前記ノズルは、3つの直線方向(three linear dimensions, つまりx、yおよびz方向)すべてに移動自在であるが、前記ノズルは、(3軸機械で使用される場合)z軸周りに回転不能である。通常、印刷される部品は、ノズルの向きが鉛直方向となるような三次元形状に限定される。
【0066】
5軸ガントリー機を使用することもできる。5軸機械では、前記ノズルは、3つの直線方向(x、yおよびz方向)のすべてに移動可能であり、かつA軸およびB軸周りに回転可能である。前記ノズルが回転可能なので、前記固化材料は必ずしも鉛直方向から堆積しなくてもよい。
【0067】
3.2. 産業用ロボットアーム
他の実施形態では、6軸産業用ロボットを用いて、前記ゲル中で前記ノズルを移動させることができる。通常、6軸産業用ロボットは、6つの異なる軸での回転が可能である。結果として、前記ノズルを様々な方向に向けることができるので、横方向に印刷することまたは前記ノズルを空間内で移動させる際に回転させることが可能である。同様に、前記ロボットの向きおよび印刷軸との関係について、より自由なものにできる。
【0068】
3.3.他の機械
「デルタ」ロボット、ケーブルボット(cable bot )などの他の堆積機械も利用可能であり、さらには、自律ロボットを用いた分散印刷方法(distributed printing processes)も利用可能である。この方法は、極めて特殊な機械を必要とせず、むしろ、複数の制御軸で三次元において動作可能な、ほとんどあらゆるコンピュータ数値制御(CNC)機械に対応できる。
【0069】
3.4.規模
これらの方法はいずれも、用途に応じて高精度および/または高速での大型(数立方メートル)または小型(数立方ミリメートル)の印刷体積に規模の拡大縮小が可能である。高精度の小型部品が必要である場合、ガントリー機については、極めて精密なシリンジ先端を用いてゲル体積を小さくして使用できる。逆に、極めて大型の構造体が必要である場合、大型のガントリー機(数十メートル)または大型の産業用ロボット(5メートル以上)を使用できる。理論的には機械のサイズに制限はないが、大型のゲル槽が必要であり、規模が増大するほど、要求されるゲルの量および容器のサイズが増大する。数ミリメートルから数メートル程度の工業製品に対して、この方法は、極めて有望であり、工業用グレードの材料を用いた極めて高速かつ精密な印刷方法を提供できる。
【0070】
3.5.速度および複数機械
概説した製造装置は、用途、時間的制限、または印刷される部品の形体に応じて低速または高速で動作できる。通常、前記ノズルを制御するロボットアームは、より小さな部品および部品のより小さな形体に対しては、より遅く移動する必要がある。より大きな部品および部品のより大きな形体に対しては、前記ノズルを制御するロボットアームはより速く移動できる。あるいは、大きな形体が1つのアームを用いて形成され、より小さな形体が他のアームを用いて同時に形成される場合、複数ロボットの印刷方法を使用できる。これにより、種々の材料もしくは連結部品、または単一の機械では実現可能でなかった他の形体も可能となる。
【0071】
4.速度
4.1.支持材料
本発明は、いくつかの理由により既存の印刷方法よりもはるかに高速である。速度を顕著に向上させる第1の要素は、支持用の余分な設計材料が削減されるということである。堆積した材料を様々なゲルが支持できるので、FDM、SLA、または多くの他の方法で必要な印刷された支持材料は、不要である。これにより、印刷する必要のある材料の量、印刷にかかる時間、および印刷物から余分な材料を除去するのにかかる時間が顕著に減少される。例えば、張り出した形体を有するすじかい部品は、支持壁または支持柱を要することなく、三次元空間において直ちにそれだけを印刷できる。
【0072】
この制限をなくすことにより、支持体を必要とする他の印刷方法では印刷することができない極めて複雑な構造体を印刷することもできる。例えば、中空であるが中空キャビティ内に複雑な形状を有する構造体は、支持材料が印刷部品のキャビティを埋めて1つの印刷部品から他の印刷部品まで延びていることが必要となるので、他の方法では作製が難しい。この余分な材料は取り除くことができない場合もあり、考え得る形状の複雑性が制限されるおそれがある。SLAまたはパウダーベースの印刷方法では、支持材料がキャビティ内に捕捉されて、部品が必要とする材料の量を大きく増加させてしまうこともある。
【0073】
4.2.印刷後のプロセス
化学的に硬化または空気硬化される固化材料を用いて粘性ゲル中で印刷することにより、本明細書に記載の方法は、複雑かつ時間の要する後処理を低減しまたはなくす。SLA印刷方法では、通常、支持体除去工程が必要となり、この工程では支持構造を手作業で破壊することが必要となることもある。未硬化のポリマーを除去するためのアルコール槽における洗浄プロセスも存在する。これらの工程は、有毒で、費用が高く、極めて時間がかかるおそれがある。FDMおよびポリジェット印刷は、通常、支持体溶解工程を有しており、この工程では、支持材料を除去するために溶液槽に部品が入れられる。この工程も有毒かつ極めて時間のかかる工程となり得る。長時間にわたって部品を印刷した後、部品は、支持体が除去される間、何分間または何時間も溶液槽に入れる必要がある。パウダーベースの印刷方法には極めて煩雑で時間のかかる発掘プロセスが存在し、このプロセスでは、ユーザは粉末槽から部品を掘り出す必要がある。本明細書に記載の方法を用いることで、部品が印刷されたとき、この部品は直ちに(または、材料選択に応じて時間を遅らせて)硬化させることができ、その後、単に部品に手を伸ばして引き上げるだけで直ちにゲルから取り出すことができる。その後、前記部品は、単に余分なゲルを除去するために水を噴射するだけで、使用できる状態の仕上げられたものとなる。この簡易な印刷後のプロセスにより、工業分野における3D印刷の用途を大きく広げ、危険性を低減し、印刷をより多くの人々にアクセスしやすいものとし、かつ後処理の速度を向上できる。
【0074】
4.3.レイヤー印刷vs空間印刷
粘性ゲル媒体中で空間液体堆積を行うことにより、スライス用およびレイヤーベース印刷用のソフトウェアファイル準備工程なしで、任意の複雑な構造体を三次元空間において直ちにそれだけを印刷することが可能である。
【0075】
対照的に、1層ごとのプロセスは極めて複雑なソフトウェアを必要とし、大きなファイルサイズが生成される。また、スライスプロセスは、印刷された部品の失敗率または表面粗さを大きくすることが多い。複雑な三次元モデルが2次元経路でアルゴリズム的に再構築される必要があることから、形体が抜けてしまうことや、経路が不正確となること、または1層ごとの材料のテクスチャにより部品の分解能が低下してしまうおそれがある。同様に、この1層ごとのプロセスは、不均質性により、印刷された部品の強度を顕著に低下させる。本明細書に記載の方法は、1層ごとの印刷プロセスを含んでおらず、3次元において任意の向きの印刷経路内に完全に均質な断面を形成できる。
【0076】
同様に、本明細書に記載の方法では、1層ごとのプロセスと比較すると、極めて速く印刷部品を印刷できる。1層ごとの印刷を用いる場合、印刷時間は、各2次元経路の直線長さにz方向高さのスライス数を乗算することによって計算できる。これにより、各層を印刷するために要する時間が顕著に増大する。本願の方法では、前記ノズルは任意の方向に任意の形体サイズで印刷することができ、1層ごとに印刷する必要がないので、印刷部品または物体の速度および形体の可能性を顕著に向上させることができる。
【0077】
5.使用
5.1.三次元空間における印刷
本明細書に記載の方法により、小型または大型の物体を、あたかも2Dの描画またはスケッチのように、三次元空間で印刷することが可能となる。いくつかの実施形態では、前記ノズルを、多軸機械を用いずに、前記ゲル中で手動により移動させることができる。いくつかの実施形態では、前記ロボットアームまたはガントリー機を、前記ゲル中で手動により移動させることができる。前記ロボットアームまたはガントリー機の手動による移動は、ロボットアームまたはガントリー機が移動される際に、ソフトウェアによって記録することができ、これにより、その後の自動生産のために再生可能な移動の記録を形成できる。他の実施形態では、前記ガントリー機またはロボットアームをコントローラで制御できる。
【0078】
本明細書に記載の方法の一部において、作製される構造体は、3D空間における曲線としてロボットアームに送信できる。一例として、三次元曲線はモデリングソフトウェアで生成できる。この曲線は、印刷プロセスの間に前記機械が辿る3D空間の一連の点としてエクスポートできる。モデリングソフトウェアの出力は、通常、機械コードである(例えば、Gコード、Shopbotコード、URコード、または使用されている特定のCNC機械と関連付けられた様々な他の形式のコードファイル)。このプロセスにより、通常、モデリングソフトウェアからエクスポートされて、その後、機械が1層ごとに辿る工具経路を形成する層にSTL/メッシュ形状をスライスするために、スライスソフトウェアにインポートされるSTLファイル(または、メッシュ形状ファイル)を使用する必要性がなくなる。スライスソフトウェアは、通常のプリンター用の機械コードを生成する。多軸機械を用いる本明細書に記載の方法では、スライス工程は必要ではなく、機械コードは、元の3D曲線に基づく空間内の一連の三次元の点から生成される。前記機械コードは他のパラメータおよび値を含んでいてもよい。例えば、前記機械コードは、空気圧を上昇または低下させる(例えば、空気圧のオンオフを行う)パラメータ;前記機械の速度を調整する(例えば、ゲル中でノズルが移動するときのノズルの速度を調整する)パラメータ;および前記機械がゲル中でノズルを移動させる際のノズルの向きを調整するパラメータを含んでいてもよい。
【0079】
設計ソフトウェア、モデリングツールまたはVRヘッドセットと接続されている場合、本明細書に記載の方法は、設計者が、空中でスケッチングまたは設計を行い、それと同時に前記ゲル中で同一速度および同一規模で印刷することを可能とする。生産速度および長さスケールについてのこの1:1の設計は、物理的な製造に内在する時間的制約により、これまで実現されていなかった。ほとんどの作製方法は(クイックスケッチモデルであっても)著しく時間がかかるので、スケッチするほど速くなり得ない。この技術により、ロボットまたは人間がアーム/腕を空気中で動かすのと同じ速度で、印刷部品を形成できる。
【0080】
5.2.他の物品への印刷
製造機械(ガントリーまたはロボット)が対象物を持ち上げて前記ゲル中に配置する場合、前記機械は、この対象物の表面上、周囲または内部に液体印刷を行うことができる。この機能により、一回の構築で、様々な特性を有する材料の連続的な印刷が可能となる。椅子の作製を一例とすると、前記ゲル中に、他の作製方法によって生成された構造体(この場合、金属構造体)を配置できる。通常、軟質のゴム材料から形成される椅子の背面は、配置された金属構造体の周囲に印刷できる。次に、ロボットを切り替えて、金属構造体に直接接続された椅子のシートクッションとして、発泡体材料を印刷できる。この方法により、ねじ、ボルトまたは他のコネクタなどの締結細部を組み込むことができ、ハイブリッド作製方法が可能となる。種々の材料を有する多くの(可撓性または剛性の)対象物を、さらなる構築プロセスの基板となる前記ゲル中に配置または設置できる。布地であっても、前記ゲル中に配置してその上に印刷することが可能である。
【0081】
図7は、本明細書に記載の方法を用いた椅子の作製の説明である。金属フレーム190は、ゲル170のタンク160に配置できる。椅子カバーおよびフレーム180dを、金属フレーム190の表面上および/または周囲に印刷して、椅子における張られた平面を形成できる。この方法により、ゲル懸濁液における他の部品(例えば、工業的に生産された部品)を組み込んだハイブリッド印刷が可能となる。
【0082】
5.3.硬化時間
印刷された固化材料は、用途に応じて極めて速やかにまたは緩やかに硬化するように構成できる。より速い硬化時間は全体的な製造時間を抑えることができ、より遅い硬化時間は、交差する経路を印刷する場合に、より完全な結合を可能とする。また、より遅い硬化時間は、前記ゲル中に配置された対象物に対して、液体印刷された構造体の結合を可能とする。
【0083】
5.4.複雑な工具経路
この技術の考え得る他の利点は、完全に連結された三次元部品を、支持材料を用いずにまたはキャビティを充填せずに形成できるということである。例えば、織物構造体または編物構造体(woven or knit structure )の印刷は、液体を同時に堆積させる複数のロボットを用いることで、または他の方法では不可能であった複雑な工具経路によって、行えるようになった。6軸産業用ロボットを用いることで、ほとんどカリグラフィーのように、様々なノズル押し出し方向を有する複雑な工具経路を用いることができる。他にも、前記ゲル中の他の印刷物/対象物の下、側方(next to )または上に印刷することも可能である。
【0084】
5.5.後処理
様々な形式の後硬化(材料の特性を変化させるためのUV設定または温度設定など)を導入できる。ゲル槽から部品を取り出した後、前記部品は余分なゲルを除去するために水で容易に洗浄すること、または、前記部品を強化するために何らかの材料で被覆すること、前記部品を着色すること、さらに前記部品を硬化させること、または任意の数の後処理となり得る工程を行うことができる。例えば、前記ゲル中または木材もしくは金属のスラリー中でセラミック材料が印刷される場合、印刷される部品は、前記ゲル中で硬化し、取り出されて後処理のためにオーブンに配置され得る。これが可能であることにより、セラミックまたは金属の製造で用いられるように印刷後の焼成または焼結プロセスなどを介して、または多くの他の興味深い材料の性能によって、部品の強度を大きく向上させることができる。
【0085】
5.5.材料の使用
この印刷方法における印刷される支持材料の撤廃および真に三次元的な性質により、印刷部品に使用する材料をはるかに少なくすることができる。この方法では、粉末または液体樹脂で満たされた槽またはベッドが必要とならない。同様に、レイヤーベースの方法および積層で印刷される支持材料は、最終部品に要する材料と比較すると、使用される材料の総量において多大な無駄となる。本明細書に記載の方法では、材料を無駄にしなくてよい。
【0086】
6.既存の方法に対する利点および改良
この技術は、SLA、SLA、FDM、ポリジェットおよびパウダーベースの印刷を含む既存の三次元印刷方法に対して顕著な改良を提供する。これまでのところ、三次元印刷は、工業的製造方法において顕著な影響を与えていない。その理由としては、1)射出成形または他の製造方法と比較すると印刷時間が長いこと;2)ビルド容積が比較的小さく、現実的な用途が限定されていること;および3)低品質の印刷可能プラスチックなどの材料しか利用できず、これらの材料の特性が工業材料に劣るということがいえる。本明細書に記載の方法は、これらの問題点を顕著に改善する。
【0087】
本明細書に記載の方法は、張り出し部または複雑な三次元構造体を構築するために支持材料を必要としないので、前記構造体を顕著に速く形成できる。FDM、ポリジェットおよびSLA技術は、印刷に要する時間、および手作業でまたは溶解により支持体を除去する必要性による印刷後の時間を顕著に増大させる支持体を必要とする。本明細書に記載の方法は、支持体を用いることなく、同一の複雑な三次元形状を印刷することができ、同時に、不要な付加的材料、印刷にかかる不要な時間および不要な印刷後プロセスの必要性を低減できる。構造体が印刷され、固化材料が固化(例えば、硬化)すると、前記構造体はゲルから取り出され、単に水で洗浄されると完成となる。本方法は、三次元空間において印刷物を浮遊させるためにゲル材料の構造を用いており、ノズルが随時3軸で移動自在である非レイヤーベースの印刷を可能とする。
【0088】
また、この技術は、連続的な層で印刷するための要件をなくすことにより、印刷速度を顕著に向上させる。現在利用可能なほとんどすべての印刷方法は、各層が1層ごとに印刷されることを必要とする。これにより、高さのあるまたは複雑な3次元形状の印刷に要する時間が著しく増大し、大きなファイルサイズが生成される精巧なデジタル「スライス」技術が必要となる。例えば、ワイヤーフレーム構造がFDM、SLA、SLS、パウダーベースの印刷またはポリジェットを使用して印刷される場合、この構造は、多数の層にスライスされてから各層における直線の経路に印刷されることが必要となる。ワイヤーフレーム構造の端は、カンチレバー形状および支持されていない形状により、その下に印刷された支持材料を有することも必要となる。本明細書に記載の方法では、三次元空間にこれらの線を単に描画することで、支持材料およびスライスをなくすことができる。他の自由形式または空中三次元印刷方法と比較して印刷速度を向上させる他の構成は、押し出しの速度である。他の方法は、機械が、次の層に移動する前または前記ノズルを続けて移動させる前に、材料が硬化または固化することを必要とする。これにより、ロボットまたはプリンターが移動できる速度が著しく低下する。本明細書に記載の方法では、材料は三次元空間のゲル中に浮遊しているので、ノズルは速やかな移動を続け、ノズル経路の後ろで浮遊し固化(例えば、化学的に硬化)される材料を押し出し続けることが可能である。これらの要因により、印刷速度は、従来の印刷方法と比較すると桁違いに向上され得ると考えられる。
【0089】
従来の三次元印刷方法と比較すると、本明細書に記載の方法は、極めて小型で高分解能のものから大型のものまで規模の拡大縮小が可能である。本方法は、他のいずれの方法よりも顕著に速いので、より少ない時間ではるかに大きな構造体を構築できる。例えば、6立方インチの材料は、SLA機械で印刷するには24~48時間を要することがあるが、本明細書に記載の方法では数分で印刷できる。また、この方法は、より大きなゲルタンクおよびより大きな産業用ロボットまたはガントリー機を使用することにより規模の拡大が可能であり、極めて大きな構造体を極めて速く製造することを可能とする。このとき、印刷の速度および規模は、射出成形または機械加工などの他の工業的な方法に劣らないものにできる。特に従来の製品の組み立て時間を考慮すると、本明細書に記載の方法は、製品全体を同時に印刷できることにより組み立てを要しない場合もあるので、製造の様態を大きく変える可能性がある。
【0090】
従来の三次元印刷方法に対する最も顕著な進歩の1つは、材料特性における改良である。本方法では液体または溶融状態の固化材料が印刷され、その材料が化学的に硬化されるので、現実的な、工業生産される材料を使用できる。使用可能な材料のいくつかの例としては、ポリウレタン(PU)ゴム、発泡体、プラスチック、または任意の他の液状もしくは溶融材料が挙げられる。FDM印刷ではフィラメントが生成され、このフィラメントは、その後、液状で加熱されて押し出される必要があり、その後、冷却されて三次元構造体に固化する。この方法は使用可能な材料の種類を制限し、FDM印刷方法における積層という性質は、射出成形と比較すると、印刷された部品の構造的一体性を大幅に低下させる。SLS印刷では、材料が粉末にされ、その後焼結されることを要することから、利用可能な材料の範囲が制限されるので、材料はさらに限られている。本明細書に記載の方法は、現在多くの工業的製造方法において利用可能な材料と同じ材料を使用し、これらの材料は、加熱、焼結または熱間押出を必要とせず、化学的または他の方法(例えば、光重合)で硬化される。また、本方法は連続的な積層に依拠していないので、部品を、従来の製造方法によって形成される部品と同程度の強度にできる。さらに、本明細書に記載の方法は、液状スラリー木材、生体材料、低温液体金属、セメント、またはゲル支持体に押し出し可能な他の種類の材料を印刷するためにも用いることができる。
【0091】
7.用途
本明細書に記載の方法は、様々な製品を作製するため使用できる。例としては、衣服およびスポーツ用品;製作および製造;航空および自動車用途;家具および内装製品;建築、エンジニアリングおよび建設;玩具および消費財などが挙げられる。以下に、これらのカテゴリに含まれる製品のいくつかの例を挙げる。
【0092】
衣服およびスポーツ用品:1:1スポーツ用品(自転車、ボード、ブーツ、靴、ヘルメット、パッドなど)の印刷;印刷による布地;店内用途またはハイテクアピールのための革新的で新しい方法を用いたマーケティング/コマーシャル/PR用途;既存の製造方法の速度以上となり得、高度にカスタマイズされた、工業用品質の材料(発泡体、ゴム、プラスチック)からなる大型または小型部品;物理的三次元1:1サイズ/速度スケッチングを用いた新しい設計方法。
【0093】
製作および製造:大型工具作製(large-scale tooling )、プロトタイプ製造(prototyping )および備品製造(fixturing );既存の製造方法の速度以上となり得、高度にカスタマイズされた、工業用品質の材料(発泡体、ゴム、プラスチック)からなる大型または小型部品;複数の製造方法を用いたハイブリッドアプローチ(すなわち、溶接または鋳造された金属部品がゲルに挿入され、この金属部品の内部/周囲/表面上に液状印刷部品を受ける)。
【0094】
航空および自動車用途:内装用途の大型印刷部品(パネル、座席、シェード、ダッシュボード、天井、床);中型印刷部品(シートクッション/構造体、エンジン部品、ブラケット、コネクタ);外部パネル用の大型印刷部品;工具作製(tooling )、プロトタイプ製造および備品製造;既存の製造方法の速度以上となり得、高度にカスタマイズされた、工業用品質の材料(発泡体、ゴム、プラスチック)からなる大型または小型部品;物理的三次元1:1サイズ/速度スケッチングを用いた新しい設計方法。
【0095】
家具および内装製品:内装用途(スクリーン、設備など)用の大型印刷部品;中型印刷部品(シートクッション、シート構造体、背もたれ/布地、テーブル、デスク、スツール、棚など);工具作製、プロトタイプ製造および備品製造;店内用途またはハイテクアピールのための革新的で新しい方法を用いたマーケティング/コマーシャル/PR用途;既存の製造方法の速度以上となり得、高度にカスタマイズされた、工業用品質の材料(発泡体、ゴム、プラスチック)からなる大型または小型部品;物理的三次元1:1サイズ/速度スケッチングを用いた新しい設計方法。
【0096】
建築、エンジニアリングおよび建設:大型工具作製(ブレード、コンクリートワーク、支持構造);最終構造体(壁、表面、スキン/パネル、1:1の細部);速度/規模による建設時のオンサイト製作方法;物理的三次元1:1サイズ/速度スケッチングを用いた新しい設計方法。
【0097】
玩具および消費財:1:1消費財/玩具の印刷(自転車、ボード、ブーツ、靴、ヘルメット、パッドなど);既存の製造方法の速度以上となり得、高度にカスタマイズされた、工業用品質の材料(発泡体、ゴム、プラスチック)からなる大型または小型部品;物理的三次元1:1サイズ/速度スケッチングを用いた新しい設計方法。
【関連出願】
【0098】
本明細書で引用したすべての特許、公開公報および引例の教示内容は、その全体を参照により本発明の一部を成すものとして引用される。
【0099】
例示的な実施形態を具体的に記載し説明しているが、当業者であれば、本発明において、添付の請求の範囲に包含される実施形態の範囲から逸脱することなく、形態および詳細に様々な変更を施してもよいということを理解するであろう。
なお、本発明は、実施の態様として以下の内容を含む。
[態様1]
a)ゲル容器内のゲル中にノズルを配置することと;
b)前記ノズルから出る固化材料を堆積させながら、前記ゲル中で前記ノズルの位置を変えることであって、前記ゲルが、前記固化材料をその固化材料が堆積した位置で支持していることと;
c)前記固化材料を固化させて、三次元物体である固形物を形成することと
を含む三次元物体の製造方法。
[態様2]
態様1に記載の方法において、前記ノズルが多軸機械に装着され、前記ゲル中で前記ノズルの前記位置を変えることが、前記ノズルが装着されている前記多軸機械の1つ以上の軸を動作させることを含む方法。
[態様3]
態様1または2に記載の方法において、前記ノズルから出る前記固化材料を堆積させることが、さらに、前記固化材料が堆積する速度を変化させることを含む方法。
[態様4]
態様1または2に記載の方法において、前記ゲル中で前記ノズルの前記位置を変えることが、さらに、変化する速度で前記ノズルの前記位置を変えることを含む方法。
[態様5]
態様1または2に記載の方法において、前記ゲル中で前記ノズルの前記位置を変えることが、前記ゲル容器の位置を変えることを含む方法。
[態様6]
態様1または2に記載の方法において、前記固化材料を固化することが、前記固化材料を光または熱に曝すことを含む方法。
[態様7]
態様1または2に記載の方法において、前記固化材料を固化することが、前記固化材料を冷却することを含む方法。
[態様8]
態様1または2に記載の方法において、前記固化材料を固化することが、前記ノズルから出る前記固化材料を堆積させながら、前記固化材料を光に曝すことを含む方法。
[態様9]
態様1または2に記載の方法において、前記固化材料が、ポリマー、ゴム、パルプ、発泡体、金属、コンクリート、またはエポキシ樹脂である方法。
[態様10]
態様9に記載の方法において、前記ゴムがシリコーンゴムである方法。
[態様11]
態様1または2に記載の方法において、前記固化材料の硬度が、固化時に約ショア00~10から約ショア90Dの範囲である方法。
[態様12]
態様1または2に記載の方法において、前記固化材料が発泡体である方法。
[態様13]
態様12に記載の方法において、固化した前記発泡体の密度が、約3lb/ft3~約30lb/ft3である方法。
[態様14]
態様1または2に記載の方法において、前記ゲルが懸濁液である方法。
[態様15]
態様14に記載の方法において、前記ゲルがカルボマーまたはポリアクリル酸を含む方法。
[態様16]
態様1または2に記載の方法において、前記ゲルの粘度が約20000cP~約50000cPである方法。
[態様17]
態様1または2に記載の方法において、前記ノズルが、円形、長方形、正方形、菱形、V字形、U字形、またはC字形の先端を有し、前記先端から出る前記固化材料が堆積する方法。
[態様18]
態様1または2に記載の方法において、前記固化材料が、共重合する2種類の化合物を含み、前記固化材料を固化することが、前記2種類の化合物を共重合させることを含む方法。
[態様19]
態様18に記載の方法において、前記ノズルが、さらに、前記2種類の化合物が前記ノズルから出て堆積するときに前記2種類の化合物を混合する混合部を有する方法。
[態様20]
態様1または2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に3軸から8軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
[態様21]
態様1または2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に5軸から8軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
[態様22]
態様1または2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に3軸から6軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
[態様23]
態様1または2に記載の方法において、前記ノズルの前記位置を変えることが、少なくとも一時的に、同時に6軸で前記ゲル中で前記ノズルの前記位置を変えることを含む方法。
[態様24]
態様1または2に記載の方法において、前記ノズルの前記位置を変えることが、前記ゲル中の他の物体の表面上、周囲、または内部に固化材料を堆積させるために前記ノズルの前記位置を変えることを含む方法。
[態様25]
態様1または2に記載の方法において、前記ノズルが第1ノズルであり、前記固化材料が第1固化材料であり、前記固形物が第1固形物であり、前記方法が、さらに、
d)前記ゲル容器内の前記ゲル中に第2ノズルを配置することと、
e)前記第2ノズルから出る第2固化材料を堆積させながら、前記ゲル中で前記第2ノズルの位置を変えることであって、前記ゲルが、前記第2固化材料をその第2固化材料が堆積した位置で支持していて、前記第1および第2固化材料を堆積させることが、前記第1および第2材料が堆積した状態で接触するように行われることと;
f)前記第2固化材料を固化させて、第2固形物を形成することであって、前記第1および第2固形物が前記三次元物体として接合されることと
を含む方法。
[態様26]
態様25に記載の方法において、前記第1および第2ノズルが異なる形状の先端を有する方法。
[態様27]
態様25に記載の方法において、前記第1および第2固化材料が異なる材料である方法。
[態様28]
a)多軸機械に装着されたノズルと、
b)前記ノズルから固化材料を押し出す手段と、
c)ゲル容器と
を備える三次元物体の製造装置。