IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 帝人株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-02
(45)【発行日】2024-12-10
(54)【発明の名称】ポリアリーレンスルフィド樹脂組成物
(51)【国際特許分類】
   C08L 81/02 20060101AFI20241203BHJP
   C08G 75/0209 20160101ALI20241203BHJP
   C08G 75/0263 20160101ALI20241203BHJP
   C08K 13/04 20060101ALI20241203BHJP
   C08L 69/00 20060101ALI20241203BHJP
   C08K 3/22 20060101ALN20241203BHJP
   C08K 7/14 20060101ALN20241203BHJP
【FI】
C08L81/02
C08G75/0209
C08G75/0263
C08K13/04
C08L69/00
C08K3/22
C08K7/14
【請求項の数】 4
(21)【出願番号】P 2021042356
(22)【出願日】2021-03-16
(65)【公開番号】P2022142247
(43)【公開日】2022-09-30
【審査請求日】2023-12-14
(73)【特許権者】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(74)【代理人】
【識別番号】100169085
【弁理士】
【氏名又は名称】為山 太郎
(72)【発明者】
【氏名】藤本 大樹
(72)【発明者】
【氏名】松野 勇一
【審査官】松村 駿一
(56)【参考文献】
【文献】特開2013-253173(JP,A)
【文献】特開2020-132832(JP,A)
【文献】特開2005-290328(JP,A)
【文献】特開平06-322271(JP,A)
【文献】特開平02-218754(JP,A)
【文献】特開平06-166783(JP,A)
【文献】特開平05-339501(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 81/02
C08G 75/0209
C08G 75/0263
C08K 13/04
C08L 69/00
C08K 3/22
C08K 7/14
(57)【特許請求の範囲】
【請求項1】
(A)ポリアリーレンスルフィド樹脂(A成分)および(B)ポリカーボネート樹脂(B成分)の合計100重量部に対し、(C)ハイドロタルサイト類化合物(C成分)0.1~30重量部および(D)ガラス繊維(D成分)10~300重量部を含有するポリアリーレンスルフィド樹脂組成物であって、C成分が下記一般式(1)で表されるハイドロタルサイト類化合物であり、かつ式(1)中のM2+とM3+との比率(モル比)(M2+/M3+)が2.5未満であることを特徴とするポリアリーレンスルフィド樹脂組成物。
[M2+ 1-x3+ (OH)x+[An- x/n・mHO]x- (1)
(式中、M2+は2価の金属イオン、M3+は3価の金属イオン、An-はn価のアニオンを示す。x、m、nは0<x≦0.33、0≦m≦5、0<n≦4を満たす数である。)
【請求項2】
A成分とB成分との割合(重量比)(A成分/B成分)が99/1~50/50であることを特徴とする請求項1記載のポリアリーレンスルフィド樹脂組成物。
【請求項3】
A成分が反応性官能基を含有するポリアリーレンスルフィド樹脂を含むポリアリーレンスルフィド樹脂であることを特徴とする請求項1または2に記載のポリアリーレンスルフィド樹脂組成物。
【請求項4】
A成分が、総ナトリウム含有量が39ppm以下であるポリアリーレンスルフィド樹脂であることを特徴とする請求項1~3のいずれかに記載のポリアリーレンスルフィド樹脂組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、ハイドロタルサイト類化合物およびガラス繊維からなる樹脂組成物であって、高い熱安定性を維持しつつ低バリ性に優れる樹脂組成物に関するものである。
【背景技術】
【0002】
ポリアリーレンスルフィド樹脂は、耐薬品性、耐熱性、機械的特性などに優れるエンジニアリングプラスチックである。このため、ポリアリーレンスルフィド樹脂は、優れた特性を活かし金属代替材料として、電気電子、車両関連、航空機、住設などの用途に広く利用されている。特に、ポリアリーレンスルフィド樹脂は流動性の高い材料であるため、小型部品や薄肉成形品用途に幅広く展開されている。しかしながらポリアリーレンスルフィド樹脂はその流動性に起因したバリが成形加工時に発生するという問題がある。成形加工品にバリが発生すると、電気電子部品における接点不良や、バリ取り工程によるコストの増加につながる。この問題を解決する手段として特許文献1にはポリアリーレンスルフィド樹脂に対してポリカーボネート樹脂を含有する樹脂組成物が開示されている。しかしながら、特許文献1に記載される樹脂組成物ではバリの抑制は十分ではなく、また熱安定性に関しても述べられていない。特許文献2にはポリアリーレンスルフィド樹脂に対してハイドロタルサイト類化合物を含有した樹脂組成物が提案されているが、低バリ性に関しては述べられていない。特許文献3、4には、結晶核剤により結晶化温度を向上させたポリアリーレンスルフィド樹脂が提案されているが、その効果は十分とは言えない。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2020-132832号公報
【文献】特開2012-122009号公報
【文献】特開2003-96300号公報
【文献】特開2016-147967号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の目的は、高い熱安定性を維持しつつ、低バリ性に優れる樹脂組成物を提供することである。
【課題を解決するための手段】
【0005】
本発明者は鋭意検討を重ねた結果、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、ハイドロタルサイト類化合物およびガラス繊維よりなる樹脂組成物が、高い熱安定性を維持しつつ低バリ性に優れる樹脂組成物であることを見出し本発明に至った。
【0006】
具体的には、上記課題は、(A)ポリアリーレンスルフィド樹脂(A成分)および(B)ポリカーボネート樹脂(B成分)の合計100重量部に対し、(C)ハイドロタルサイト類化合物(C成分)0.1~30重量部および(D)ガラス繊維(D成分)10~300重量部を含有する樹脂組成物であって、C成分が下記一般式(1)で表されるハイドロタルサイト類化合物であり、かつ式(1)中のM2+とM3+との比率(モル比)(M2+/M3+)が2.5未満であることを特徴とするポリアリーレンスルフィド樹脂組成物により達成される。
[M2+ 1-x3+ (OH)x+[An- x/n・mHO]x- (1)
(式中、M2+は2価の金属イオン、M3+は3価の金属イオン、An-はn価のアニオンを示す。x、m、nは0<x≦0.33、0≦m≦5、0<n≦4を満たす数である。)
【0007】
以下、本発明の詳細について説明する。
【0008】
(A成分:ポリアリーレンスルフィド樹脂)
本発明のA成分として使用されるポリアリーレンスルフィド樹脂としては、ポリアリーレンスルフィド樹脂と称される範疇に属するものであれば如何なるものを用いてもよい。
【0009】
ポリアリーレンスルフィド樹脂としては、その構成単位として、例えばp-フェニレンスルフィド単位、m-フェニレンスルフィド単位、o-フェニレンスルフィド単位、フェニレンスルフィドスルホン単位、フェニレンスルフィドケトン単位、フェニレンスルフィドエーテル単位、ジフェニレンスルフィド単位、置換基含有フェニレンスルフィド単位、分岐構造含有フェニレンスルフィド単位、等よりなるものを挙げることができ、その中でも、p-フェニレンスルフィド単位を70モル%以上、特に90モル%以上含有しているものが好ましく、さらに、ポリ(p-フェニレンスルフィド)がより好ましい。
【0010】
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の総塩素含有量は、好ましくは500ppm以下、より好ましくは450ppm以下、さらに好ましくは300ppm以下、特に好ましくは50ppm以下である。総塩素含有量が500ppmを超える場合には、発生ガス量が増加しモールドデポジットが増え剥離性を悪化させる場合がある。
【0011】
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の総ナトリウム含有量は、好ましくは39ppm以下、より好ましくは30ppm以下、さらに好ましくは10ppm以下、特に好ましくは8ppm以下である。39ppmを超える場合には、樹脂の分解の促進による物性低下だけではなく、高温高湿環境下において、ナトリウム金属と水分子の配位結合による樹脂の吸水量の増加によって耐湿熱性を低下させる場合がある。なお、総ナトリウム含有量はICP発光分析法(ICP-AES法)により測定した。
【0012】
本発明のA成分として使用されるポリアリーレンスルフィド樹脂の重量平均分子量(Mw)と数平均分子量(Mn)で表される分散度(Mw/Mn)は好ましくは2.7以上、より好ましくは2.8以上、さらに好ましくは2.9以上である。分散度が2.7未満の場合は、成形時のバリ発生が多くなる場合がある。なお、分散度(Mw/Mn)の上限は特に規定されないが、10以下であることが好ましい。ここで、重量平均分子量(Mw)および数平均分子量(Mn)はゲルパーミネーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出された値である。なお、溶媒には1-クロロナフタレンを使用し、カラム温度は210℃とした。
【0013】
ポリアリーレンスルフィド樹脂の製造方法としては、特に限定されるものではなく、既知の方法で重合されるが、特に好適な重合方法としては、米国登録特許第4,746,758号、第4,786,713号、特表2013-522385、特開2012-233210および特許5167276等に記載された製造方法が挙げられる。これらの製造方法は、ジヨードアリール化合物と固体硫黄を、極性溶媒なしに直接加熱して重合させる方法である。
【0014】
前記製造方法はヨウ化工程および重合工程を含む。該ヨウ化工程ではアリール化合物をヨードと反応させて、ジヨードアリール化合物を得る。続く重合工程で、重合停止剤を用いてジヨードアリール化合物を固体硫黄と重合反応させてポリアリーレンスルフィド樹脂
を製造する。ヨードはこの工程で気体状で発生し、これを回収して再びヨウ化工程に用いられる。実質的にヨードは触媒である。
【0015】
前記製造方法で用いられる代表的な固体硫黄としては、室温で8個の原子が連結されたシクロオクタ硫黄形態(S)が挙げられる。しかしながら重合反応に用いられる硫黄化合物は限定されるものではなく、常温で固体または液体であればいずれの形態でも使用し得る。
【0016】
前記製造方法で用いられる代表的なジヨードアリール化合物としては、ジヨードベンゼン、ジヨードナフタレン、ジヨードビフェニル、ジヨードビスフェノールおよびジヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられ、またアルキル基やスルホン基が結合していたり、酸素や窒素が導入されたりしているヨードアリール化合物の誘導体も使用される。ヨードアリール化合物はそのヨード原子の結合位置によって異なる異性体に分類され、これらの異性体のうち好ましい例は、p-ジヨードベンゼン、2,6-ジヨードナフタレン、及びp,p’-ジヨードビフェニルのようにヨードがアリール化合物の分子両端に対称的に位置する化合物である。該ヨードアリール化合物の含有量は前記固体硫黄100重量部に対し500~10,000重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
【0017】
前記製造方法で用いられる代表的な重合停止剤としては、モノヨードアリール化合物、ベンゾチアゾール類、ベンゾチアゾールスルフェンアミド類、チウラム類、ジチオカルバメート類、芳香族スルフィド化合物などが挙げられる。モノヨードアリール化合物のうち好ましい例としては、ヨードビフェニル、ヨードフェノール、ヨードアニリン、ヨードベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾール類のうち好ましい例としては、2-メルカプトベンゾチアゾール、2,2’-ジチオビスベンゾチアゾールからなる群より選ばれる少なくとも1種が挙げられる。ベンゾチアゾールスルフェンアミド類のうち好ましい例としては、N-シクロヘキシルベンゾチアゾール2-スルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾールスルフェンアミド、2-モルホリノチオベンゾチアゾール、ベンゾチアゾールスルフェンアミド、ジベンゾチアゾールジスルファイド、N-ジシクロヘキシルベンゾチアゾール2-スルフェンアミドからなる群より選ばれる少なくとも1種が挙げられる。チウラム類のうち好ましい例としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドからなる群より選ばれる少なくとも1種が挙げられる。ジチオカルバメート類のうち好ましい例としては、ジメチルジチオカルバメート酸亜鉛、ジエチルジチオカルバメート酸亜鉛からなる群より選ばれる少なくとも1種が挙げられる。芳香族スルフィド化合物のうち好ましい例としては、ジフェニルスルフィド、ジフェニルジスルフィド、ジフェニルエーテル、ビフェニル、ベンゾフェノンからなる群より選ばれる少なくとも1種が挙げられる。またいずれの重合停止剤においても、共役芳香環骨格上に一つまたは複数の官能基が置換されていてもよい。前記官能基の例としては、ヒドロキシ基、カルボキシ基、メルカプト基、アミノ基、シアノ基、スルホ基、ニトロ基などが挙げられ、好ましい例としてはカルボキシ基、アミノ基が挙げられ、さらに好ましい例としてはFT-IRスペクトル上で、1600~1800cm-1のピークを示すカルボキシ基が挙げられる。重合停止剤の含有量は前記固体硫黄100重量部に対し1~30重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
【0018】
また本発明のA成分として使用されるポリアリーレンスルフィド樹脂として、より高い相溶化を得ることを目的に、カルボキシ基やカルボキシ基誘導体基、チオール基、スルホン基、ヒドロキシ基、アミノ基、エポキシ基、メルカプト基、シアノ基、ニトロ基等の反応性官能基を末端に有するポリアリーレンスルフィド樹脂を用いることもできる。該反応性官能基を末端に有するポリアリーレンスルフィド樹脂を用いることで、他の高分子素材
や、炭素繊維などとの優れた相溶性を示し、剥離性に優れ、より高い機械的強度を有する樹脂組成物を得ることができる場合がある。該反応性官能基を末端に有するポリアリーレンスルフィド樹脂のうちより好ましい例としては、カルボキシ基およびアミノ基から選ばれる少なくとも1種の末端基構造を有するポリアリーレンスルフィド樹脂が挙げられる。前記カルボキシ基およびアミノ基から選ばれる少なくとも1種の末端基構造を有するポリアリーレンスルフィド樹脂とは、FT-IR分光法のFT-IRスペクトルにて、カルボキシ基由来の約1600~1800cm-1またはアミノ基由来の約3300~3500cm-1のピークを示し、かつ1400~1600cm-1で現れる芳香環伸縮ピークの高さ強度を100%としたとき、前記約1600~1800cm-1または約3300~3500cm-1のピークの相対的高さ強度が0.001~10%であるポリアリーレンスルフィド樹脂である。
【0019】
前記カルボキシ基およびアミノ基から選ばれる少なくとも1種の末端基構造を有するポリアリーレンスルフィド樹脂のうち特に好ましい例としては、カルボキシ基の末端基構造を有するポリアリーレンスルフィド樹脂であり、下記一般式(2)で表される構造単位で示される。
-(SAr)n-COOH (2)
(式中、Ar基はアリーレン基であり、nは繰り返し単位数である。)
【0020】
ここで、前記アリーレン基は、p-フェニレン基、m-フェニレン基、o-フェニレン基、および、置換されたフェニレン基などを使用することができる。具体的に、置換されたフェニレン基は、一つ以上のF、Cl、Br、C1~C3のアルキル、トリフルオロメチル、C1~C3のアルコキシ、トリフルオロメトキシ、トリフルオロメチルチオ、ジメチルアミノ、シアノ、(C1~C3アルキル)SO-、(C1~C3アルキル)NHSO-、(C1~C3アルキル)2NSO-、NHSO-により任意に置換されたフェニレン基である。
【0021】
ポリアリーレンスルフィド樹脂に前記反応性官能基を導入する方法としては特に限定されるものではなく、既知の方法で重合されるが、共役芳香環骨格上に一つまたは複数の基を有する重合停止剤を使用する方法が挙げられる。前記重合停止剤で用いられる共役芳香環骨格としては、例えば、ジフェニルジスルフィド、モノヨードベンゼン、チオフェノール、2,2’-ジベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、2-(モルホリノチオ)ベンゾチアゾール、N,N’-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミドなどが挙げられる。
【0022】
カルボキシ基の末端基構造を有するポリアリーレンスルフィド樹脂の製造方法の好適な重合方法としては、ジヨード芳香族化合物と硫黄元素を含む反応物を重合反応させる段階、前記重合反応段階を進行しながら、カルボキシ基を有する化合物を添加してポリアリーレンスルフィド主鎖の末端基中をカルボキシ基で置換する製造方法が挙げられる。前記カルボキシ基を有する化合物で用いられる代表的な例は、2-ヨード安息香酸、3-ヨード安息香酸、4-ヨード安息香酸、および2,2’-ジチオ安息香酸からなる群より選ばれる少なくとも1種が挙げられる。前記カルボキシ基を有する化合物は、ジヨード芳香族化合物100重量部を基準に約0.0001~5重量部添加することができる。
【0023】
前記製造方法では重合反応触媒を使用しても良く、代表的な重合反応触媒としては、ニトロベンゼン系触媒が上げられる。ニトロベンゼン系触媒のうち好ましい例としては、1,3-ジヨード-4-ニトロベンゼン、1-ヨード-4-ニトロベンゼン、2,6-ジヨード-4-ニトロフェノール、ヨードニトロベンゼン、2,6-ジヨード-4-ニトロアミンからなる群より選ばれる少なくとも1種が挙げられる。重合反応触媒の含有量は前記固体硫黄100重量部に対し0.01~20重量部であることが好ましい。この量はジスルフィド結合の生成を考慮して決定される。
【0024】
該製造方法の反応条件の代表的な例は、温度180~250℃および圧力50~450Torr(6.7~60kPa)の初期反応条件から、温度270~350℃および圧力0.001~20Torr(0.00013~2.7kPa)の最終反応条件まで、温度を上昇させると共に圧力を降下させながら、1~30時間進行させる。好ましくは前記初期反応条件は反応速度を考慮して、温度180℃以上、圧力450Torr(60kPa)以下とし、最終反応条件は高分子の熱分解を考慮して温度350℃以下、圧力20Torr(2.7kPa)以下が挙げられる。
【0025】
但し、重合反応の条件は、反応器の構造設計および生産速度に依存し、当業者に知られているため、特に制限されない。反応条件は、当業者がプロセス条件を考慮して適宜設定することができる。
【0026】
この重合方法を使うことにより、実質的にナトリウム含有量を低減させる必要が無く、コストパフォーマンスに優れたポリフェニレンスルフィド樹脂を得ることができる。
【0027】
(B成分:ポリカーボネート樹脂)
本発明において使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができるが、溶融エステル交換法が好ましい。ポリカーボネート樹脂はまた3官能フェノール類を重合させた分岐ポリカーボネート樹脂であってもよく、更に脂肪族ジカルボン酸や芳香族ジカルボン酸、または二価の脂肪族または脂環族アルコールを共重合させた共重合ポリカーボネートであってもよい。
【0028】
ポリカーボネート樹脂の粘度平均分子量(M)は、好ましくは1.3×10~4.0×10、より好ましくは1.5×10~3.8×10である。芳香族ポリカーボネート樹脂の粘度平均分子量(M)は塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液から20℃で求めた比粘度(ηsp)を次式に挿入して求めたものである。かかるポリカーボネート樹脂の詳細については、特開2002-129003号公報に記載されている。
ηsp/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10-40.83
c=0.7
【0029】
本発明で使用されるポリカーボネート樹脂は、通常使用されるビスフェノールA型ポリカーボネート以外にも、他の二価フェノールを用いて重合された、高耐熱性または低吸水率の各種のポリカーボネート樹脂であってもよい。他の二価フェノールを用いて重合された、高耐熱性または低吸水率の各種のポリカーボネート樹脂の具体例としては、下記のものが好適に例示される。
【0030】
(1)該ポリカーボネートを構成する二価フェノール成分100モル%中、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称)成分が20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつ9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称)成分が20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する二価フェノール成分100モル%中、ビスフェノー
ルA成分が10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCF成分が5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する二価フェノール成分100モル%中、BPM成分が20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつ1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン成分が20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
【0031】
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。これらの特殊なポリカーボネートの製法および特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報および特開2002-117580号公報等に詳しく記載されている。さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート-ポリオルガノシロキサン共重合体の使用も可能である。
【0032】
ポリカーボネート樹脂はバージン原料のみならず、使用済みの製品から再生されたポリカーボネート樹脂を利用することが可能である。その使用済みの製品としては、水ボトルに代表される容器、光学ディスクおよび自動車ヘッドランプなどが例示される。
【0033】
A成分とB成分との割合(重量比)(A成分/B成分)は99/1~50/50であることが好ましく、90/10~60/40がより好ましく、85/15~65/35がさらに好ましい。重量比が99/1以上ではポリカーボネート樹脂の特徴が発現されずバリの発生が抑えられない場合があり、50/50未満ではポリカーボネート樹脂の分解が大きく、熱安定性が低下し、さらに低バリ性に劣る場合がある。
【0034】
(C成分:ハイドロタルサイト類化合物)
本発明のC成分として使用されるハイドロタルサイト類化合物は下記一般式(1)で表される化合物である。
[M2+ 1-x3+ (OH)x+[An- x/n・mHO]x- (1)
(式中、M2+は2価の金属イオン、M3+は3価の金属イオン、An-はn価のアニオンを示す。x、m、nは下記式で示される数を示す。0<x≦0.33、0≦m≦5、0<n≦4)
【0035】
2+としてはMg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+等があげられ、M3+としてはAl3+、Fe3+、Cr3+、Co3+、In3+等があげられ、An-としてはOH、F,Cl、Br、NO 、CO 2-、SO 2-、Fe(CN) 2-、CHCOO、シュウ酸イオン、サリチル酸イオンなどがあげられる。M2+およびM3+、An-はそれぞれ1種類または2種類以上から構成されてよい。
【0036】
本発明において、ハイドロタルサイト類化合物は上記一般式(1)中のM2+とM3+との比率(モル比)(M2+/M3+)が2.5未満であり、好ましくは2.3未満、より好ましくは2.1未満である。モル比率が2.5以上であるとポリカーボネート樹脂の分解が促進され低バリ性が発現せず、また物性も低下する。なお、該モル比の下限は、1.0以上が好ましく、1.3以上がより好ましい。このようなハイドロタルサイト類化合物の例としては協和化学工業(株)DHT-4C、堺化学工業(株)STABIACE HT-9等が挙げられ、容易に入手可能である。
【0037】
C成分の含有量は、A成分およびB成分の合計100重量部に対し、0.1~30重量部であり、好ましくは0.5~20重量部、より好ましくは1~10重量部である。含有量が0.1重量部未満では、十分な低バリ性の効果が表れず、含有量が30重量部を超えると十分な低バリ性の効果が表れず、またポリカーボネート樹脂の分解が促進される。
【0038】
(D成分:ガラス繊維)
本発明において使用されるガラス繊維としては、Aガラス、Cガラス、Eガラス等のガラス組成を特に限定するものではなく、場合によりTiO、SO、P等の成分を含有するものであっても良い。但し、Eガラス(無アルカリガラス)が熱可塑性樹脂と配合する場合により好ましい。さらにはこれらガラス繊維を2種類以上併用することも可能である。ガラス繊維は溶融ガラスを種々の方法にて延伸しながら急冷し、所定の繊維状またはミルド状にしたものである。かかる場合の急冷および延伸条件についても特に限定されるものではない。また断面の形状は真円状の他に、楕円状、マユ型、三つ葉型などの真円以外の形状ものを使用しても良い。更に真円状ガラス繊維と真円以外の形状のガラス繊維が混合したものでもよい。この中でより好ましいものは真円状のガラス繊維である。また、これらガラス繊維をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で、膨潤性の層状珪酸塩では有機化オニウムイオンで予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。本発明で使用するガラス繊維は直径(D)が6~13μm、カット長(L)が30μm~9mm、L/Dが2.3~1500の範囲が好ましい。
【0039】
D成分の含有量は、A成分およびB成分の合計100重量部に対し、10~300重量部であり、好ましくは20~250重量部、より好ましくは30~200重量部である。D成分の含有量が10重量部未満では低バリ性が発現せず、300重量部を超えると押出混錬によるストランド引き取りができない。
【0040】
(その他の成分)
本発明における樹脂組成物中には本発明の効果を損なわない範囲で、D成分以外の充填材成分を含むことができる。好適な充填材成分としては、特に限定されるものではないが、繊維状、板状、粉末状、粒状などの強化材を使用することができる。具体的には、ワラストナイト、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの無機繊維および全芳香族ポリアミド繊維などの有機繊維などが挙げられ、ワラストナイト、炭素繊維、全芳香族ポリアミド繊維が好ましく用いられる。また、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスフレーク、ガラス・ビーズ、セラミックビ-ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどが挙げられ、ガラスフレーク、マイカ、タルク、ガラスビーズが好ましく用いられる。これらは中空であってもよく、さらにはこれら強化材を2種類以上併用することも可能である。
【0041】
また、これら強化材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で、膨潤性の層状珪酸塩では有機化オニウムイオンで予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
【0042】
本発明の樹脂組成物に導電性を付与するために強化材として、導電性フィラーが挙げられる。導電性フィラーは、通常樹脂の導電化に用いられる導電性フィラーであれば特に制限は無く、その具体例としては、金属粉、金属フレーク、金属リボン、金属繊維、金属酸化物、導電性物質で被覆された無機フィラー、カーボン粉末、黒鉛、炭素繊維、カーボンフレーク、鱗片状カーボンなどが挙げられる。金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。金属繊維の金属種の具体例としては鉄、銅、ステンレス、アルミニウム、黄銅などが例示できる。かかる金属粉、金属フレーク、金属リボン、金属繊維はチタネート系、アルミ系、シラン系などの表面処理剤で表面処理を施されていてもよい。
【0043】
金属酸化物の具体例としてはSnO(アンチモンドープ)、In(アンチモンドープ)、ZnO(アルミニウムドープ)などが例示でき、これらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
【0044】
導電性物質で被覆された無機フィラーにおける導電性物質の具体例としてはアルミニウム、ニッケル、銀、カーボン、SnO(アンチモンドープ)、In(アンチモンドープ)などが例示できる。また被覆される無機フィラーとしては、マイカ、ガラスビーズ、炭素繊維、チタン酸カリウムウィスカー、硫酸バリウム、酸化亜鉛、酸化チタン、ホウ酸アルミニウムウィスカー、酸化亜鉛系ウィスカー、チタン酸系ウィスカー、炭化珪素ウィスカーなどが例示できる。被覆方法としては真空蒸着法、スパッタリング法、無電解メッキ法、焼き付け法などが挙げられる。またこれらはチタネート系、アルミ系、シラン系カップリング剤などの表面処理剤で表面処理を施されていてもよい。
【0045】
カーボン粉末はその原料、製造法からアセチレンブラック、ガスブラック、オイルブラック、ナフタリンブラック、サーマルブラック、ファーネスブラック、ランプブラック、チャンネルブラック、ロールブラック、ディスクブラックなどに分類される。本発明で用いることのできるカーボン粉末は、その原料、製造法は特に限定されないが、アセチレンブラック、ファーネスブラックが特に好適に用いられる。
【0046】
本発明における樹脂組成物中には本発明の効果を損なわない範囲で、エラストマー成分を含むことができる。好適なエラストマー成分としては、アクリロニトリル・ブタジエン・スチレン系共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)およびシリコーン・アクリル複合ゴム系グラフト共重合体などのコア-シェルグラフト共重合体樹脂、あるいはシリコーン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーが挙げられる。
【0047】
本発明における樹脂組成物中は本発明の効果を損なわない範囲で、他の熱可塑性樹脂を含むことができる。他の熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、芳香族ポリエステル樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォンなどのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。
【0048】
本発明における樹脂組成物中は本発明の効果を損なわない範囲で、酸化防止剤や耐熱安
定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、各種ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン等)、結晶核剤(タルク、シリカ、カオリン、クレー等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(赤燐、リン酸エステル、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)および他の重合体を添加することができる。
【0049】
(樹脂組成物の製造)
本発明の樹脂組成物は上記各成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。好ましくは2軸押出機による溶融混練が好ましく、必要に応じて、任意の成分をサイドフィーダー等を用いて第2供給口より、溶融混合された他の成分中に供給することが好ましい。
【0050】
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1~5mm、より好ましくは1.5~4mm、さらに好ましくは2~3.5mmである。一方、円柱の長さは好ましくは1~30mm、より好ましくは2~5mm、さらに好ましくは2.5~4mmである。
【0051】
(成形品について)
本発明の樹脂組成物を用いてなる成形品は、上記の如く製造されたペレットを成形して得ることができる。好適には、射出成形、押出成形により得られる。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形等を挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また押出成形では、各種異形押出成形品、シート、フィルム等が得られる。シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法等も使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形等により成形品とすることも可能である。
【発明の効果】
【0052】
本発明の樹脂組成物は高い熱安定性を維持しつつ、低バリ性に優れる樹脂組成物であるため電気電子部品、車両部品等の用途に有用であり、その奏する産業上の効果は格別である。
【発明を実施するための形態】
【0053】
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
【実施例
【0054】
[樹脂組成物の評価]
(1)バリ評価
バリの評価は、上記のISO527-1およびISO527-2に準拠した試験片のガスベントに接触する部分のバリの長さを測定することにより実施した。なお、ガスベントの厚みは10μm、幅5mmとした。
【0055】
(2)ポリカーボネート樹脂の粘度平均分子量
得られた樹脂組成物を塩化メチレンで抽出し、得られたポリカーボネート樹脂の粘度平均分子量を測定した。ハイドロタルサイト類化合物を含有しない比較例1のポリカーボネート樹脂の粘度平均分子量に対する粘度平均分子量の低下率を下記の式により算出し、5%未満のものを良好(〇)5-20%のものを低下(△)、20%を超えるものを大きく低下(×)として評価した。
粘度平均分子量低下率(%)=[(各実施例および比較例における粘度平均分子量-比較例1における粘度平均分子量)/(比較例1における粘度平均分子量)]×100
【0056】
[実施例1~10、比較例1~9]
ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、ハイドロタルサイト類化合物およびガラス繊維を表1に記載の各配合量で、ベント式二軸押出機を用いて溶融混練してペレットを得た。ベント式二軸押出機は日本製鋼所(株)製:TEX30α‐38(完全かみ合い、同方向回転)を使用した。押出条件は吐出量20kg/h、スクリュー回転数200rpm、ベントの真空度3kPaであり、また押出温度は第一供給口からダイス部分まで320℃とした。なお、ガラス繊維は上記押出機のサイドフィーダーを使用し第二供給口から供給し、ポリアリーレンスルフィド樹脂、ポリカーボネート樹脂、ハイドロタルサイト類化合物は第一供給口から押出機に供給した。ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。
【0057】
表1中の記号表記の各成分は下記の通りである。
<A成分>
A-1:以下の製造方法で得られた末端にフェニル基を有するポリフェニレンスルフィド樹脂
[製造方法1]
反応器の内温測定が可能なサーモカップル、窒素充填および真空をかけられる真空ライン付き5L反応器に、パラジヨードベンゼン(p-DIB)5130g、硫黄450g、反応開始剤として1,3-ジヨード-4-ニトロベンゼンメルカプトベンゾチアゾール4gを含む反応物を、180℃に加熱して完全に溶融および混合した後、220℃および350Torrの初期反応条件から始まって、最終反応温度は300℃、圧力は1Torr以下まで段階的に温度上昇および圧力降下を行いながら、重合反応を進行させた。前記重合反応が80%進行した時、[重合反応の進行程度は、目標粘度に対する現在粘度の相対割合[(現在粘度/目標粘度)×100(%)]を測定することで判定した。なお、現在粘度は、重合進行中のサンプルを採取して粘度計で測定した。]、重合停止剤として2,2’-ジチオビスベンゾチアゾールを60g添加し、10分間窒素雰囲気下で反応を進行させた後、0.5Torr以下に徐々に真空を加えて目標粘度に到達した後、反応を終了して、フェニル基を主鎖末端に有するポリアリーレンスルフィド樹脂を合成した。反応が完了した樹脂を、小型ストランドカッター機を用いてペレット形態で製造した。重量平均分子量は72,000であった。
【0058】
A-2:以下の製造方法で得られた末端にカルボキシ基を有するポリフェニレンスルフィド樹脂
[製造方法2]
反応器の内温測定が可能なサーモカップル、窒素充填および真空をかけられる真空ライン付き5L反応器に、パラジヨードベンゼン(p-DIB)5130g、硫黄450g、反応開始剤として1,3-ジヨード-4-ニトロベンゼン4gを含む反応物を、180℃に加熱して完全に溶融および混合した後、220℃および350Torrの初期反応条件から始まって、最終反応温度は300℃、圧力は1Torr以下まで段階的に温度上昇および圧力降下を行いながら、重合反応を進行させた。前記重合反応が80%進行した時[重合反応の進行程度は、目標粘度に対する現在粘度の相対割合[(現在粘度/目標粘度)×100(%)]を測定することで判定した。なお、現在粘度は、重合進行中のサンプルを採取して粘度計で測定した。]、重合中止剤として2,2’-ジチオビスベンゾチアゾールを25g添加し、1時間反応を進行させた。次に、前記重合反応が90%進行した時、4-Iodobenzoic acid51gを添加し、10分間窒素雰囲気下で反応を進行させた後、0.5Torr以下に徐々に真空を加えて1時間反応を進行させた後、終了して、カルボキシ基を主鎖末端に有するポリアリーレンスルフィド樹脂を合成した。反応が完了した樹脂を、小型ストランドカッター機を用いてペレット形態で製造した。ポリアリーレンスルフィド樹脂をFT-IRで分析して、スペクトル上で、約1600~1800cm-1のカルボキシ基のピークの存在を確認した。また、前記FT-IRスペクトル上で、約1400~1600cm-1で現れるRing stretchピークの高さ強度を100%とした時、前記約1600~1800cm-1のピークの相対的高さ強度は約3.4%であった。また、重量平均分子量は71.000であった。
A-3:ポリフェニレンスルフィド樹脂(DIC製 DIC-PPS MA-510)
【0059】
<B成分>
B-1:ポリカーボネート樹脂(帝人(株)製 L-1225WS(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量20,900のポリカーボネート樹脂))
【0060】
<C成分>
C-1:ハイドロタルサイト(協和化学工業(株)製 DHT-4C、 M2+/M3+(モル比):2.08)
C-2:ハイドロタルサイト(堺化学工業(株)製 HT-9、M2+/M3+(モル比):2.3)
C-3:ハイドロタルサイト(協和化学工業(株)製 DHT-6、M2+/M3+(モル比):3.0)C-4:ハイドロタルサイト(協和化学工業(株)製 HT-6N、M2+/M3+(モル比):3.0)
C-5:タルク(IMI FABI製 Ultra5c)
【0061】
<D成分>
D-1:円形断面チョップドガラス繊維(日本電気硝子(株)製 T-732H 直径:10.5μm、カット長:3mm、エポキシ系集束剤)
D-2:円形断面チョップドガラス繊維(日本電気硝子(株)製 T-756H 直径:10.5μm、カット長:3mm、ウレタン系集束剤)
【0062】
【表1】