(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-03
(45)【発行日】2024-12-11
(54)【発明の名称】化合物及びその製造方法、樹脂組成物、樹脂シート、多層プリント配線板、並びに半導体装置
(51)【国際特許分類】
C07C 69/75 20060101AFI20241204BHJP
C07C 67/08 20060101ALI20241204BHJP
C08L 79/08 20060101ALI20241204BHJP
C08K 5/10 20060101ALI20241204BHJP
C08K 5/3415 20060101ALI20241204BHJP
H05K 1/03 20060101ALI20241204BHJP
H01L 23/29 20060101ALI20241204BHJP
H01L 23/31 20060101ALI20241204BHJP
H01L 23/14 20060101ALI20241204BHJP
【FI】
C07C69/75 Z CSP
C07C67/08
C08L79/08 Z
C08K5/10
C08K5/3415
H05K1/03 610H
H05K1/03 610P
H01L23/30 R
H01L23/14 R
(21)【出願番号】P 2021563997
(86)(22)【出願日】2020-12-09
(86)【国際出願番号】 JP2020045848
(87)【国際公開番号】W WO2021117764
(87)【国際公開日】2021-06-17
【審査請求日】2023-11-01
(31)【優先権主張番号】P 2019223952
(32)【優先日】2019-12-11
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004466
【氏名又は名称】三菱瓦斯化学株式会社
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】片桐 俊介
(72)【発明者】
【氏名】鈴木 卓也
(72)【発明者】
【氏名】四家 誠司
(72)【発明者】
【氏名】熊沢 優音
【審査官】高森 ひとみ
(56)【参考文献】
【文献】特開2011-248354(JP,A)
【文献】特開2002-107918(JP,A)
【文献】中国特許出願公開第107099026(CN,A)
【文献】国際公開第2018/56466(WO,A1)
【文献】特開2015-229734(JP,A)
【文献】NOH,S.H. et al.,Synthesis and application of water-based urethane acrylate crosslinking agent containing unsaturated,Journal of Applied Polymer Science,2000年,Vol.78, No.6,pp.1216-1223
(58)【調査した分野】(Int.Cl.,DB名)
C07C
C07D
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1)で表される化合物(A)。
【化1】
(式(1)中、R
1は、各々独立に、下記式(2)で表される基、又は水素原子を示し、R
2は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。但し、R
1の少なくとも1つは、下記式(2)で表される基である。)。
【化2】
(式(2)中、-*は結合手を示す。)。
【請求項2】
前記R
1の少なくとも1つが、下記式(3)で表される基である、請求項1に記載の化合物(A)。
【化3】
(式(3)中、-*は結合手を示す。)。
【請求項3】
下記式(4)で表されるアルコール化合物と、
下記式(5)で表される酸無水物と、を反応させる工程を含む、請求項1又は2に記載の化合物(A)の製造方法。
【化4】
(式(4)中、R
3は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。)。
【化5】
【請求項4】
前記式(5)で表される酸無水物が、下記式(6)で表される酸無水物を含む、請求項3に記載の製造方法。
【化6】
【請求項5】
請求項1又は2に記載の化合物(A)を含む、樹脂組成物。
【請求項6】
下記式(7)で表される構成単位と、分子鎖の両末端にマレイミド基と、を含む、ビスマレイミド化合物(B)を更に含む、請求項5に記載の樹脂組成物。
【化7】
(式(7)中、R
4は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R
5は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R
6は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。n
1は、各々独立に、1~10の整数を示す。)。
【請求項7】
下記式(8)で表される化合物、下記式(9)で表される化合物、下記式(10)で表される化合物、下記式(11)で表される化合物、下記式(12)で表される化合物、及び下記式(13)で表される化合物からなる群より選択される少なくとも1種のマレイミド化合物(C)を更に含む、請求項5又は6に記載の樹脂組成物。
【化8】
(式(8)中、R
7、R
8、及びR
9は、各々独立に、水素原子、又は置換基を有してもよい、炭素数1~8の直鎖状若しくは分岐状のアルキル基を示す。)。
【化9】
(式(9)中、R
10、R
11、及びR
12は、各々独立に、水素原子、ヒドロキシル基、又は置換基を有してもよい、炭素数1~6の直鎖状若しくは分岐状のアルキル基を示す。n
2は、1~10の整数を示す。)。
【化10】
(式(10)中、R
13は、各々独立に、水素原子、メチル基、又はエチル基を示し、R
14は、各々独立に、水素原子又はメチル基を示す。)。
【化11】
(式(11)中、
15は、各々独立に、水素原子又はメチル基を示す。n
3は、1~10の整数を示す。)。
【化12】
(式(12)中、R
16は、各々独立に、水素原子、メチル基、又はエチル基を示す。)。
【化13】
(式(13)中、R
17は、各々独立に、水素原子又はメチル基を示す。n
4は、1~10の整数を示す。)。
【請求項8】
光硬化開始剤(D)を更に含む、請求項5~7のいずれか一項に記載の樹脂組成物。
【請求項9】
前記光硬化開始剤(D)が、下記式(14)で表される化合物を含む、請求項8に記載の樹脂組成物。
【化14】
(式(14)中、R
18は、各々独立に、下記式(15)で表される基又はフェニル基を表す。)。
【化15】
(式(15)中、-*は結合手を示し、R
19は、各々独立に、水素原子又はメチル基を表す。)。
【請求項10】
支持体と、
前記支持体の片面又は両面に配された樹脂層と、を有し、
前記樹脂層が、請求項5~9のいずれか一項に記載の樹脂組成物を含む、
樹脂シート。
【請求項11】
前記樹脂層の厚さが1~50μmである、請求項10に記載の樹脂シート。
【請求項12】
絶縁層と、
前記絶縁層の片面又は両面に形成された導体層と、
を有し、
前記導体層が、請求項5~9のいずれか一項に記載の樹脂組成物を含む、多層プリント配線板。
【請求項13】
請求項5~9のいずれか一項に記載の樹脂組成物を含む、半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、化合物及びその製造方法、樹脂組成物、樹脂シート、多層プリント配線板、並びに半導体装置に関する。
【背景技術】
【0002】
多層プリント配線板の小型化、及び高密度化により、多層プリント配線板に用いられる積層板を薄型化する検討が盛んに行なわれている。薄型化に伴い、絶縁層についても薄型化が求められ、ガラスクロスを含まない樹脂シートが求められている。絶縁層の材料となる樹脂組成物は熱硬化性樹脂が主流であり、絶縁層間で導通を得るための穴あけは一般的にレーザー加工にて行われている。
【0003】
一方、レーザー加工による穴あけは、穴数が多い高密度基板になるほど加工時間が長くなるという問題がある。そのため、近年は光線等の照射により露光部が硬化(露光工程)し、未露光部は除去(現像工程)可能な樹脂組成物を用いることにより、露光、及び現像工程で一括穴あけ加工することが可能となる樹脂シートが求められている。
【0004】
露光の方法としては、水銀灯を光源としてフォトマスクを介して露光する方法が用いられており、この水銀灯の光源において好適に露光できる材料が求められている。この水銀灯を光源とした露光方法は、ghi混線(g線の波長436nm、h線の波長405nm、i線の波長365nm)などが用いられており、汎用の光硬化開始剤を選択することができる。また、近年、露光方法として、パターンのデジタルデータに基づいてフォトマスクを介さずに感光性樹脂組成物層に直接描画する直接描画露光法の導入も進んでいる。この直接描画露光法はフォトマスクを介した露光法よりも位置合わせ精度が良好であり、かつ高精細なパターンが得られることから、高密度な配線形成が必要となる基板において、特に導入が進んでいる。その光源はレーザー等の単色光を用いており、中でも高精細なレジストパターンを形成可能なDMD(Digital Micro mirror Device)方式の装置においては、波長405nm(h線)の光源が用いられている。
【0005】
現像方法としては、高精細なパターンが得られることから、アルカリ現像が用いられている。
【0006】
特許文献1には、積層板や樹脂シートに用いられる感光性の樹脂組成物として、ビスマレイミド化合物(硬化性樹脂)と、光ラジカル重合開始剤(硬化剤)とを含む樹脂組成物が記載されている。
【0007】
また、特許文献2には、ビスマレイミドとモノアミンを反応させた後、酸無水物を反応させて得られる多価カルボキシ基含有化合物と、エポキシ樹脂等の硬化性樹脂とを含む樹脂組成物についての記載がある。そして、特許文献2には、アルカリ現像性を有する硬化物を得ることができる多価カルボキシ基含有化合物についての記載がある。
【先行技術文献】
【特許文献】
【0008】
【文献】WO2018/56466A1
【文献】特開2015-229734公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1では、硬化性樹脂としてビスマレイミド化合物を用いているが、通常、マレイミド化合物は光透過性が悪いため、マレイミド化合物を含むと、光硬化開始剤まで十分に光が届かず、光硬化開始剤がラジカルを発生し難く、その反応性は非常に低い。そこで、特許文献1では、現像前に追加加熱を行うことでマレイミド化合物を硬化させているが、加熱を伴うので、高精細なレジストパターンが得られない。また、特許文献1に記載の樹脂組成物は、そもそもアルカリ現像性が十分ではないため、現像後にも未露光の樹脂組成物が残存する。そのため、この点からも、特許文献1では、高精細なレジストパターンが得られず、高密度プリント配線板の製造に使用できない。
【0010】
また、特許文献2に記載の多価カルボキシ基含有化合物は、ビスマレイミドとモノアミンとを反応させた後、酸無水物を反応させて得る必要があるため、工程が煩雑である。また、モノアミンとして、芳香族アミン化合物が用いられるため、この多価カルボキシ基含有化合物は、その構造中に、芳香環を有するアミド基を含む。そのため、この多価カルボキシ基含有化合物は、光透過性が悪く、光硬化反応を阻害するため、実際には、感光性樹脂組成物に用いることが難しい。
【0011】
そこで、本発明は、このような従来技術の課題に鑑みてなされたものであり、多層プリント配線板の作製に用いた際に、露光工程においては、光硬化反応を阻害せず、現像工程においては、優れたアルカリ現像性を付与できる化合物、及びその化合物、その化合物を含む樹脂組成物、樹脂シート、多層プリント配線板、並びに半導体装置を提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは、鋭意研究した結果、多層プリント配線板の作製における露光工程及び現像工程において、特定のカルボキシル基を含む化合物を用いることで、光硬化反応を阻害しないで好適に硬化物を得ることができ、かつ、樹脂組成物に優れたアルカリ現像性を付与できることを見出し、本発明を完成するに至った。
【0013】
すなわち、本発明は以下の内容を含む。
[1]下記式(1)で表される化合物(A)。
下記式(1)で表される化合物(A)。
【0014】
【0015】
(式(1)中、R1は、各々独立に、下記式(2)で表される基、又は水素原子を示し、R2は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。但し、R1の少なくとも1つは、下記式(2)で表される基である。)。
【0016】
【0017】
(式(2)中、-*は結合手を示す。)。
【0018】
[2]前記R1の少なくとも1つが、下記式(3)で表される基である、[1]に記載の化合物(A)。
【0019】
【0020】
(式(3)中、-*は結合手を示す。)。
【0021】
[3]下記式(4)で表されるアルコール化合物と、下記式(5)で表される酸無水物と、を反応させる工程を含む、[1]又は[2]に記載の化合物(A)の製造方法。
【0022】
【0023】
(式(4)中、R3は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。)。
【0024】
【0025】
[4]前記式(5)で表される酸無水物が、下記式(6)で表される酸無水物を含む、[3]に記載の製造方法。
【0026】
【0027】
[5][1]又は[2]に記載の化合物(A)を含む、樹脂組成物。
[6]下記式(7)で表される構成単位と、分子鎖の両末端にマレイミド基と、を含む、ビスマレイミド化合物(B)を更に含む、[5]に記載の樹脂組成物。
【0028】
【0029】
(式(7)中、R4は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R5は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R6は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。n1は、各々独立に、1~10の整数を示す。)。
【0030】
[7]下記式(8)で表される化合物、下記式(9)で表される化合物、下記式(10)で表される化合物、下記式(11)で表される化合物、下記式(12)で表される化合物、及び下記式(13)で表される化合物からなる群より選択される少なくとも1種のマレイミド化合物(C)を更に含む、[5]又は[6]に記載の樹脂組成物。
【0031】
【0032】
(式(8)中、R7、R8、及びR9は、各々独立に、水素原子、又は置換基を有してもよい、炭素数1~8の直鎖状若しくは分岐状のアルキル基を示す。)。
【0033】
【0034】
(式(9)中、R10、R11、及びR12は、各々独立に、水素原子、ヒドロキシル基、又は置換基を有してもよい、炭素数1~6の直鎖状若しくは分岐状のアルキル基を示す。n2は、1~10の整数を示す。)。
【0035】
【0036】
(式(10)中、R13は、各々独立に、水素原子、メチル基、又はエチル基を示し、R14は、各々独立に、水素原子又はメチル基を示す。)。
【0037】
【0038】
(式(11)中、R15は、各々独立に、水素原子又はメチル基を示す。n3は、1~10の整数を示す。)。
【0039】
【0040】
(式(12)中、R16は、各々独立に、水素原子、メチル基、又はエチル基を示す。)。
【0041】
【0042】
(式(13)中、R17は、各々独立に、水素原子又はメチル基を示す。n4は、1~10の整数を示す。)。
【0043】
[8]光硬化開始剤(D)を更に含む、[5]~[7]のいずれかに記載の樹脂組成物。
【0044】
[9]前記光硬化開始剤(D)が、下記式(14)で表される化合物を含む、[8]に記載の樹脂組成物。
【0045】
【0046】
(式(14)中、R18は、各々独立に、下記式(15)で表される基又はフェニル基を表す。)。
【0047】
【0048】
(式(15)中、-*は結合手を示し、R19は、各々独立に、水素原子又はメチル基を表す。)。
【0049】
[10]支持体と、前記支持体の片面又は両面に配された樹脂層と、を有し、前記樹脂層が、[5]~[9]のいずれかに記載の樹脂組成物を含む、樹脂シート。
[11]前記樹脂層の厚さが1~50μmである、[10]に記載の樹脂シート。
[12]絶縁層と、前記絶縁層の片面又は両面に形成された導体層と、を有し、前記導体層が、[5]~[9]のいずれかに記載の樹脂組成物を含む、多層プリント配線板。
[13][5]~[9]のいずれかに記載の樹脂組成物を含む、半導体装置。
【発明の効果】
【0050】
本発明によれば、多層プリント配線板の作製における露光工程及び現像工程において、特定のカルボキシル基を含む化合物を用いることで、光硬化反応を阻害しないで好適に硬化物を得ることができ、かつ、樹脂組成物に優れたアルカリ現像性を付与できる化合物、及びその化合物、その化合物を含む樹脂組成物、樹脂シート、多層プリント配線板、並びに半導体装置を提供することができる。
【図面の簡単な説明】
【0051】
【
図1】
図1は、アミド酸化合物(MA-TMDA)の
1H-NMRのチャートである。
【
図2】
図2は、マレイミド化合物(TMDM)の
1H-NMRのチャートである。
【
図3】
図3は、化合物(A-1)の
1H-NMRのチャートである。
【
図4】
図4は、化合物(A-2)の
1H-NMRのチャートである。
【
図5】
図5は、化合物(A-3)の
1H-NMRのチャートである。
【
図6】実施例4及び比較例1において、波長405nm(h線)を含む活性エネルギー線を用いて得られた樹脂シートを用いて行ったアルカリ現像後の写真である。
【発明を実施するための形態】
【0052】
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその要旨の範囲内で、適宜に変形して実施できる。
【0053】
なお、本明細書における「(メタ)アクリロキシ」とは「アクリロキシ」及びそれに対応する「メタクリロキシ」の両方を意味し、「(メタ)アクリル」とは「アクリル」及びそれに対応する「メタクリル」の両方を意味する。また、本実施形態において、「樹脂固形分」又は「樹脂組成物中の樹脂固形分」とは、特に断りのない限り、樹脂組成物における、化合物(A)、光硬化開始剤(D)、添加剤、溶剤、及び充填材を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における、化合物(A)、光硬化開始剤(D)、添加剤、溶剤、及び充填材を除いた成分の合計が100質量部であることをいう。
【0054】
本実施形態の化合物(A)について説明する。
【0055】
[化合物(A)]
本実施形態の化合物(A)(成分(A)とも称す)は、式(1)で表される。
【0056】
【0057】
式(1)中、R1は、各々独立に、式(2)で表される基、又は水素原子を示し、R2は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。但し、R1の少なくとも1つは、式(2)で表される基である。
【0058】
【0059】
式(2)中、-*は、式(1)中のR1に直結する酸素原子(O)との結合手を示す。
【0060】
本実施形態では、多層プリント配線板の作製における露光工程及び現像工程において、化合物(A)を用いることで、光硬化反応を阻害しないで好適に硬化物を得ることができ、かつ、露光後においても、未露光部における樹脂組成物に優れたアルカリ現像性を付与することができる。この理由は定かではないが、本発明者らは次のように推定している。すなわち、多層プリント配線板の作製における露光工程において、化合物(A)は、露光工程における光硬化反応に関与する官能基を有さず、光硬化反応を阻害しない。また、化合物(A)は、光透過性を阻害する骨格を有さず、非常に優れた光透過性も有する。そのため、化合物(A)を含んでも、光重合が進行し、硬化物を好適に得ることができる。そして、化合物(A)は光硬化反応に関与しないので、未露光部における樹脂組成物中に存在することができる。そのため、現像工程において、未露光部にアルカリ現像液が流入すると、アルカリ現像液中のアルカリ成分と、化合物(A)中のカルボキシ基とが、好適に塩を形成することができ、水溶性が向上するので、優れたアルカリ現像性が得られる。また、化合物(A)は、複数のカルボキシ基を有することからも、優れたアルカリ現像性を付与することができると推定している。
【0061】
化合物(A)は、1質量%で含まれるN-メチルピロリドン溶液を調製し、波長365nm(i線)を含む活性エネルギー線を用いて、化合物(A)が1質量%で含まれるN-メチルピロリドン溶液の透過率を測定した場合においては、その透過率は5%以上である。このように化合物(A)は非常に優れた光透過性を示す。また、波長405nm(h線)を含む活性エネルギー線を用いて、化合物(A)が1質量%で含まれるN-メチルピロリドン溶液の透過率を測定した場合においては、その透過率が5%以上である。この場合においても非常に優れた光透過性を示す。このように化合物(A)を用いると、例えば、直接描画露光法を用いて高密度で高精細な配線形成(パターン)を有するプリント配線板を製造するに際し、波長405nm(h線)を含む活性エネルギー線を用いた場合でも、例えば、マレイミドの光ラジカル反応が効率的に起こる。波長365nm(i線)における透過率は、光硬化性により優れる樹脂組成物を得ることができること、8%以上、10%以上、20%以上、30%以上、及び40%以上と、この順で好ましい範囲となる。波長405nm(h線)における透過率は、光硬化性により優れる樹脂組成物を得ることができることから、8%以上、10%以上、20%以上、30%以上、及び40%以上と、この順で好ましい範囲となる。なお、波長365nm(i線)における透過率、及び波長405nm(h線)における透過率において、それぞれの上限は、例えば、99.9%以下である。
【0062】
化合物(A)において、式(1)中、R1は、各々独立に、式(2)で表される基、又は水素原子を示す。R1は、より優れたアルカリ現像性を付与できることから、2つのR1が、式(2)で表される基であることが好ましい。式(2)で表される基は、シクロヘキサン環に対してカルボニル基の位置を1位とした場合、そのカルボニル基に対して2位の位置にカルボキシル基が結合されていれば、もう一つのカルボキシル基は、シクロヘキサン環における3~6位のいずれに結合されていてもよい。また、化合物(A)は、式(2)で表される基において、シクロヘキサン環に結合するカルボニル基と2つのカルボキシル基との構造が立体構造を有するため、シス体、トランス体、及びシス体とトランス体の混合物として存在する。すなわち、化合物(A)は、1種単独であってもよく、又は2種以上の異性体を含む混合物であってもよい。
【0063】
式(1)中、R1は、より優れたアルカリ現像性を付与できることから、R1の少なくとも1つが、式(3)で表される基であることが好ましい。すなわち、式(3)で表される基において、シクロヘキサン環の1位に結合するカルボニル基と、2位のカルボキシル基との立体構造が、シス体であることが好ましい。もう1つのカルボキシル基について、その立体構造は、シス体であっても、トランス体であってもよい。R1は、更により優れたアルカリ現像性を付与できることから、2つのR1が、式(3)で表される基であることが好ましい。R1の少なくとも1つが、式(3)で表される基であると、より優れたアルカリ現像性を付与できる点については定かではないが、本発明者らは、次のように推定している。すなわち、1位に結合するカルボニル基と、2位に結合するカルボキシル基がシス体であると、樹脂組成物中において、2位のカルボキシル基と、アルカリ現像液中のアルカリ成分とが、塩を形成しやすい立体構造をとることができ、そのため、より水溶性が向上し、樹脂組成物中にアルカリ現像液の流入がより促進されるためと推定している。
【0064】
【0065】
式(3)中、-*は、式(1)中のR1に直結する酸素原子(O)との結合手を示す。
【0066】
式(1)中、R2は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R2としては、溶剤に対する良好な溶解性を発現する観点から、直鎖状若しくは分岐状のアルキレン基であることが好ましく、溶剤に対する良好な溶解性を発現し、より優れたアルカリ現像性を付与でき、かつ、樹脂組成物とした際に他の樹脂との良好な相溶性を発現する観点から、直鎖状のアルキレン基であることがより好ましい。
【0067】
アルキレン基の炭素数としては、溶剤に対するより良好な溶解性を発現する観点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、2,2-ジメチルプロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、ウンデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ネオペンチレン基、ジメチルブチレン基、メチルヘキシレン基、エチルヘキシレン基、ジメチルヘキシレン基、トリメチルヘキシレン基、メチルヘプチレン基、ジメチルヘプチレン基、トリメチルヘプチレン基、テトラメチルヘプチレン基、エチルヘプチレン基、メチルオクチレン基、メチルノニレン基、メチルデシレン基、メチルドデシレン基、メチルウンデシレン基、メチルトリデシレン基、メチルテトラデシレン基、及びメチルペンタデシレン基が挙げられる。これらの中でも、溶剤に対する良好な溶解性を発現し、より優れたアルカリ現像性を付与でき、かつ、樹脂組成物とした際に他の樹脂との良好な相溶性を発現する観点から、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、及びウンデシレン基がより好ましい。
【0068】
アルケニレン基の炭素数としては、溶剤に対するより良好な溶解性を発現する観点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルケニレン基としては、例えば、ビニレン基、1-メチルビニレン基、アリレン基、プロペニレン基、イソプロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、イソペンチレン基、シクロペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、3-ヘキセニレン基、シクロヘキセニレン基、及びジシクロペンタジエニレン基等が挙げられる。これらの中でも、溶剤に対する良好な溶解性を発現し、より優れたアルカリ現像性を付与でき、かつ、樹脂組成物とした際に他の樹脂との良好な相溶性を発現する観点から、1-ヘキセニレン基、2-ヘキセニレン基、3-ヘキセニレン基、シクロヘキセニレン基、及びジシクロペンタジエニレン基がより好ましい。
【0069】
化合物(A)は、溶剤に対する良好な溶解性を発現し、更により優れたアルカリ現像性を付与でき、樹脂組成物とした際に他の樹脂との良好な相溶性をより発現する観点から、式(16)で表される化合物、式(17)で表される化合物、及び式(18)で表される化合物であることが好ましく、式(17)で表される化合物、及び式(18)で表される化合物であることがより好ましい。
【0070】
【0071】
【0072】
【0073】
〔化合物(A)の製造方法〕
化合物(A)は、公知の方法により製造することができ、例えば、式(4)で表されるアルコール化合物と式(5)で表される酸無水物(シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物)とをエステル化反応させる工程を含むことで得ることができる。なお、式(5)で表される酸無水物は、シクロヘキサン環に結合する2つのカルボニル基と1つのカルボキシル基との構造が立体構造を有するため、シス体、トランス体、及びシス体とトランス体の混合物として存在する。すなわち、式(5)で表される酸無水物は、1種単独であってもよく、又は2種以上の異性体を含む混合物であってもよい。
【0074】
【0075】
式(4)中、R3は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。
炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基としては、その好ましい態様も含めて、前記の式(1)におけるR2を参照できる。
【0076】
【0077】
式(4)で表されるアルコール化合物としては、例えば、メチレングリコール、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2-ヘキサンジオール、1,8-オクタンジオール、1,2-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,16-ヘキサデカンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2,2-イソアミル-1,3-プロパンジオール、2,2-ジイソブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、トランス-2-ブテン-1,4-ジオール、及びシス-2-ブテン-1,4-ジオール等が挙げられる。
【0078】
式(5)で表される酸無水物としては、化合物(A)を用いて硬化物を製造した際に、優れたアルカリ現像性を付与できることから、式(6)で表される酸無水物(シス,シス-シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物)を含むことが好ましい。すなわち、式(6)で表される酸無水物において、シクロヘキサン環に対してカルボニル基の位置を1位及び2位とした場合、そのカルボニル基に対して4位の位置に結合するカルボニル基と、2つのカルボニル基との立体構造が、シス体であることが好ましい。
【0079】
【0080】
エステル化反応は、溶媒中でも無溶媒でも行うことができる。溶媒としては、アルコール化合物と酸無水物とに反応しない溶媒であれば特に限定されない。
このような溶媒としては、例えば、ジクロロメタン、クロロホルム、ジクロロエタン、及びクロロベンゼン等のハロゲン溶媒;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、及びアセトニトリル等の非プロトン性極性溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、及びシクロヘキサノン等のケトン溶媒;2-エトキシエタノール、及びプロピレングリコールモノメチルエーテル等のセロソルブ溶媒;メタノール、エタノール、プロパノール、イソプロパノール、及びブタノール等の脂肪族アルコール溶媒;フェノール、及びクレゾール等の芳香族基含有フェノール溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル、γ-ブチロラクトン、及びプロピレングリコールモノメチルエーテルアセテート等のエステル溶媒;トルエン、及びキシレン等の芳香族炭化水素溶媒等が挙げられる。これらの溶媒は、1種単独又は2種以上を適宜混合して使用することができる。これらの中でも、アルコール化合物及び酸無水物を十分に溶解できる点から、ハロゲン溶媒、非プロトン性極性溶媒、ケトン溶媒、及びエステル溶媒が好ましい。また、溶媒を用いる場合の使用量は、アルコール化合物及び酸無水物の合計100質量部に対して、通常20~2000質量部である。
【0081】
エステル化反応は、無触媒でも、触媒を用いてもよい。
触媒を用いる場合、触媒としては、塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、及びトリクロロ酢酸等の酸性化合物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、及び水酸化マグネシウム等の金属水酸化物;トリエチルアミン、トリプロピルアミン、ジイソプロピルエチルアミン、及びトリブチルアミン等のアミン化合物;アニリン、N-メチルアニリン、N,N-ジメチルアニリン、及びベンジルアミン等の芳香環を有する脂肪族アミン類;ピリジン、4-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、及びテトラゾール等の複素環式化合物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、及びトリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩;オルトチタン酸テトラエチル、及びオルトチタン酸テトラメチル等のオルトチタン酸類;オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、及びオクチル酸カリウム等の金属石鹸類が挙げられる。これらの触媒は、1種単独又は2種以上を適宜混合して使用することができる。これらの中でも、反応性が良好である点から、アミン化合物、芳香環を有する脂肪族アミン類、及び複素環式化合物が好ましく、トリエチルアミン、及び4-ジメチルアミノピリジンがより好ましい。また、触媒を用いる場合の使用量は、アルコール化合物及び酸無水物の合計100質量部に対して、通常0.001~1000質量部である。
【0082】
触媒の添加方法は、例えば、直接、アルコール化合物及び/又は酸無水物に添加する方法や、可溶性の溶剤等に溶解させた溶液を、アルコール化合物、酸無水物、及び/又はこれらの含む溶媒に添加する方法が挙げられる。
【0083】
エステル化反応における反応温度は、触媒量、及び使用溶剤にもより特に限定されないが、通常-20~150℃である。また、反応時間も特に限定されないが、通常0.5~100時間である。反応は、1段階で完結しても、2段階以上で行ってもよい。
【0084】
化合物(A)を含む反応混合物から、目的物である化合物(A)を単離する方法は、目的物が反応溶媒から析出した場合には、ろ取もしくは遠心分離によって単離することができる。また、目的物が反応溶媒に溶解している場合は、減圧下溶媒を留去したり、反応混合物中に適当な貧溶媒を加えたり、反応混合物を貧溶媒に排出するなどして析出させ、ろ取もしくは遠心分離によって単離することができる。なお、貧溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、トルエン、及びキシレン等の炭化水素が挙げられる。これらの溶媒は、1種単独又は2種以上を適宜混合して使用することができる。
単離した化合物(A)を更に精製する必要がある場合には、公知方法を採用して精製すればよい。このような方法としては、例えば、蒸留精製法、再結晶法、カラムクロマトグラフィー法、スラッジ処理、及び活性炭処理などが挙げられる。
【0085】
得られた化合物(A)は、NMR(核磁気共鳴分析)等の公知の方法により同定することができる。化合物(A)の純度は、例えば、GPC、液体クロマトグラフィー、及びIRスペクトル法等で分析することができる。化合物(A)中の副生物及び残存溶媒等の揮発成分は、例えば、GPC、及びガスクロマトグラフィーで定量分析することができる。化合物(A)中に残存するハロゲン化合物は、例えば、液体クロマトグラフ質量分析計で同定することができる。また、化合物(A)中に残存するハロゲン化合物は、硝酸銀溶液を用いた電位差滴定又は燃焼法による分解後、イオンクロマトグラフィーで定量することもできる。
【0086】
[樹脂組成物]
本実施形態の樹脂組成物は、化合物(A)を含み、多層プリント配線板の作製に好適に用いられる。樹脂組成物を用いることで、多層プリント配線板の作製における露光工程及び現像工程において、光硬化反応を阻害しないで好適に硬化物を得ることができ、露光後においては優れたアルカリ現像性を付与することができる。
【0087】
樹脂組成物において、化合物(A)の含有量は、より優れたアルカリ現像性を付与でき、樹脂組成物において光硬化反応を阻害せずに良好な硬化性を発現させることができることから、樹脂組成物中の樹脂固形分100質量部に対して、0.1~30質量部であることが好ましく、0.5~15質量部であることがより好ましく、1~15質量部であることが更に好ましい。
【0088】
また、樹脂組成物において、後述のビスマレイミド化合物(B)と、後述のマレイミド化合物(C)を含む場合には、化合物(A)の含有量は、より優れたアルカリ現像性を付与でき、樹脂組成物において光硬化反応を阻害せずに良好な硬化性を発現させることができることから、後述のビスマレイミド化合物(B)及び後述のマレイミド化合物(C)の合計100質量部に対して、0.1~30質量部であることが好ましく、0.5~15質量部であることがより好ましく、1~15質量部であることが更に好ましい。
【0089】
〔ビスマレイミド化合物(B)〕
本実施形態の樹脂組成物は、ビスマレイミド化合物(B)(成分(B)とも称す)を更に含むことが好ましい。ビスマレイミド化合物(B)は、式(7)で表される構成単位と、分子鎖の両末端にマレイミド基と、を含む。
【0090】
【0091】
式(7)中、R4は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R5は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R6は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。n1は、各々独立に、1~10の整数を示す。
【0092】
通常、マレイミド化合物は、水溶性が極めて低く、アルカリ現像液中のアルカリ成分との反応性を持たないことから、アルカリ現像性が得られ難い。しかし、樹脂組成物は、化合物(A)と共に、ビスマレイミド化合物(B)を含むことで、優れた光硬化性を有しながら、非常に良好なアルカリ現像性を有する。この理由は定かではないが、本発明者らは次のように推定している。
【0093】
すなわち、樹脂組成物には、光硬化反応を阻害せず、樹脂組成物に対して優れたアルカリ現像性を付与できる化合物(A)を含む。そして、ビスマレイミド化合物(B)は、比較的長鎖で、柔軟な構造を有し、その上で、アルカリ現像液中のアルカリ成分と相互作用を引き起こすような構造を有しない。そのため、ビスマレイミド化合物(B)は、アルカリ現像液中において、化合物(A)の構造を保持したまま、化合物(A)のアルカリ現像液への溶解に伴って、アルカリ現像液に溶解することができる。それゆえ、現像工程において、未露光部(樹脂組成物)にアルカリ現像液が流入すると、ビスマレイミド化合物(B)に阻害されずに、アルカリ現像液中のアルカリ成分と、化合物(A)におけるカルボキシ基とが、素早く、好適に塩を形成することができ、水溶性が向上する。そのため、樹脂組成物は、優れたアルカリ現像性を有すると推定している。
【0094】
そして、本発明者らは、化合物(A)と共に、ビスマレイミド化合物(B)を含むことで、樹脂組成物が優れた光硬化反応性を有することについては、次の理由によると推定している。
通常、マレイミド化合物は光透過性が悪いため、樹脂組成物がマレイミド化合物を含むと、樹脂組成物中に分散している光硬化開始剤まで十分に光が届かず、光硬化開始剤がラジカルを発生し難い。そのため、一般的にマレイミド化合物の光ラジカル反応は進行し難く、仮にマレイミド単体のラジカル重合や二量化反応が進行しても、その反応性は非常に低い。しかし、ビスマレイミド化合物(B)は、式(7)で表される構成単位、すなわち、脂環骨格を有するので、光透過性に非常に優れる。また、化合物(A)も非常に優れた光透過性を有する。そのため、光硬化開始剤まで十分に光が届き、マレイミドの光ラジカル反応が効率的に起き、化合物(A)及びビスマレイミド化合物(B)と、必要に応じて配合される、後述のマレイミド化合物(C)及び後述の光硬化開始剤(D)と共に、種々の活性エネルギー線を用いて光硬化させることができる。
【0095】
ビスマレイミド化合物(B)は、1質量%で含まれるクロロホルム溶液を調製し、波長365nm(i線)を含む活性エネルギー線を用いて、ビスマレイミド化合物(B)が1質量%で含まれるクロロホルム溶液の透過率を測定した場合においては、その透過率は5%以上と、非常に優れた光透過性を示す。また、波長405nm(h線)を含む活性エネルギー線を用いて、ビスマレイミド化合物(B)が1質量%で含まれるクロロホルム溶液の透過率を測定した場合においては、その透過率が5%以上と、非常に優れた光透過性を示す。そのため、例えば、直接描画露光法を用いて高密度で高精細な配線形成(パターン)を有するプリント配線板を製造するに際し、波長405nm(h線)を含む活性エネルギー線を用いた場合でも、マレイミドの光ラジカル反応が効率的に起こる。波長365nm(i線)における透過率は、より優れた光透過性を示す点から、8%以上であることが好ましく、10%以上であることがより好ましい。波長405nm(h線)における透過率は、より高密度で高精細な配線形成(パターン)を有するプリント配線板を製造する点から、8%以上であることが好ましく、10%以上であることがより好ましい。なお、波長365nm(i線)における透過率、及び波長405nm(h線)における透過率において、それぞれの上限は、例えば、99.9%以下である。
【0096】
通常、光硬化開始剤は、長波長領域の光に対して、吸光度が低くなる傾向にある。例えば、波長405nm(h線)を含む活性エネルギー線(光線)を用いる場合には、この波長の光は比較的長波長であるため、通常の光硬化開始剤では吸収せず、この光を好適に吸収してラジカルを発生できる光硬化開始剤を用いなければ、重合は進行しない。それゆえ、後述の光硬化開始剤(D)としては、光硬化開始剤(D)が0.01質量%で含まれるクロロホルム溶液の吸光度を測定した場合において、波長405nm(h線)の光に対して、その吸光度が0.1以上と、非常に優れた吸収性を示す光硬化開始剤を用いることが好ましい。
【0097】
ビスマレイミド化合物(B)は、前記したように光透過性に優れるため、例えば、波長365nmを含む活性エネルギー線、又は405nmを含む活性エネルギー線を用いた場合でも、光が光硬化開始剤まで十分に届き、光硬化開始剤から発生したラジカルを用いたラジカル反応が進行し、ビスマレイミド化合物(B)が多く配合されている組成物においても光硬化が可能となる。
そして、樹脂組成物は、アルカリ現像性及び光硬化性に優れる。また、得られる硬化物は、耐熱性、絶縁信頼性、及び熱安定性に優れる。そのため、本実施形態によれば、多層プリント配線板及び半導体装置における、保護膜、及び絶縁層を好適に形成することができる。
【0098】
ビスマレイミド化合物(B)は、本発明の効果を奏する限り特に限定されないが、好適な粘度が得られ、ワニスの粘度上昇が抑制できる点から、質量平均分子量が、100~5000であることが好ましく、300~4500であることがより好ましい。なお、本実施形態において、「質量平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)法による、ポリスチレンスタンダード換算の質量平均分子量を意味する。
【0099】
次いで、ビスマレイミド化合物(B)の構造について説明する。
ビスマレイミド化合物(B)の式(7)中、R4は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R4としては、好適な粘度が得られ、ワニスの粘度上昇が制御できる点から、直鎖状若しくは分岐状のアルキレン基であることが好ましく、直鎖状のアルキレン基であることがより好ましい。
【0100】
アルキレン基の炭素数としては、より好適な粘度が得られ、ワニスの粘度上昇をより制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルキレン基としては、前記の式(1)におけるR2を参照できる。
【0101】
アルケニレン基の炭素数としては、より好適な粘度が得られ、ワニスの粘度上昇をより制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルケニレン基としては、前記の式(1)におけるR2を参照できる。
【0102】
式(7)中、R5は、炭素数1~16の直鎖状若しくは分岐状のアルキレン基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニレン基を示す。R5としては、好適な粘度が得られ、ワニスの粘度上昇が制御できる点から、直鎖状若しくは分岐状のアルキレン基であることが好ましく、直鎖状のアルキレン基であることがより好ましい。
【0103】
アルキレン基の炭素数としては、より好適な粘度が得られ、ワニスの粘度上昇をより制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルキレン基としては、前記の式(1)におけるR2が参照できる。
【0104】
アルケニレン基の炭素数としては、より好適な粘度が得られ、ワニスの粘度上昇をより制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルケニレン基としては、前記の式(1)におけるR2が参照できる。
【0105】
式(7)において、R4と、R5とは、同一であっても異なっていてもよいが、ビスマレイミド化合物(B)をより容易に合成できる点から、同一であることが好ましい。
【0106】
式(7)中、R6は、各々独立に、水素原子、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は炭素数2~16の直鎖状若しくは分岐状のアルケニル基を示す。R6は、好適な粘度が得られ、ワニスの粘度上昇が制御できる点から、各々独立に、水素原子、又は炭素数1~16の直鎖状若しくは分岐状のアルキル基であることが好ましく、R6のうち、1~5の基(R6)が炭素数1~16の直鎖状若しくは分岐状のアルキル基であり、残りの基(R6)が水素原子であることがより好ましく、R6のうち、1~3の基(R6)が炭素数1~16の直鎖状若しくは分岐状のアルキル基であり、残りの基(R6)が水素原子であることが更に好ましい。
【0107】
アルキル基の炭素数としては、より好適な粘度が得られ、ワニスの粘度上昇がより制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、1-エチルプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、n-へプチル基、n-オクチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、及びn-ノニル基が挙げられる。
【0108】
アルケニル基の炭素数としては、より好適な粘度が得られ、ワニスの粘度上昇がより制御できる点から、2~14であることが好ましく、4~12であることがより好ましい。
直鎖状若しくは分岐状のアルケニル基としては、例えば、ビニル基、アリル基、4-ペンテニル基、イソプロペニル基、イソペンテニル基、2-ヘプテニル基、2-オクテニル基、及び2-ノネニル基が挙げられる。
【0109】
式(7)中、n1は、各々独立に、1~10の整数を示す。
【0110】
ビスマレイミド化合物(B)は、分子鎖の両末端にマレイミド基を有する。両末端とは、ビスマレイミド化合物(B)の分子鎖において両方の末端を意味し、例えば、式(7)で表される構造単位が、ビスマレイミド化合物(B)の分子鎖の末端にある場合には、マレイミド基は、R4の分子鎖の末端に有するか、マレイミド環のN原子における分子鎖の末端に有するか、又は両方の末端に有することを意味する。ビスマレイミド化合物(B)は、分子鎖の両末端以外に、マレイミド基を有していてもよい。
マレイミド基は、式(19)で表され、N原子がビスマレイミド化合物(B)の分子鎖に結合している。また、ビスマレイミド化合物(B)に結合されるマレイミド基は、全て同一であっても異なっていてもよいが、分子鎖の両末端のマレイミド基は同一であることが好ましい。
【0111】
【0112】
式(19)中、R20は、各々独立に、水素原子、又は炭素数1~4の直鎖状若しくは分岐状のアルキル基を示す。R20は、好適に光硬化する点から、両方ともに水素原子であることが好ましい。
アルキル基の炭素数としては、好適に光硬化する点から、1~3であることが好ましく、1~2であることがより好ましい。
直鎖状若しくは分岐状のアルキル基としては、前記のR6が参照できる。
【0113】
このようなビスマレイミド化合物(B)としては、例えば、式(20)で表されるマレイミド化合物が挙げられる。これらは、1種単独又は2種以上を適宜混合して使用することも可能である。
【0114】
【0115】
式(20)中、aは、1~10の整数を示す。aは、より好適な粘度が得られ、ワニスの粘度上昇がより制御できる点から、1~6の整数であることが好ましい。
【0116】
ビスマレイミド化合物(B)は、市販品を利用することもできる。市販品としては、例えば、日本化薬(株)製MIZ-001(商品名、式(20)のマレイミド化合物を含む)が挙げられる。
【0117】
樹脂組成物において、ビスマレイミド化合物(B)の含有量は、ビスマレイミド化合物を主成分とした硬化物を得ることが可能となり、光硬化性を向上させることができ、より優れた耐熱性及び熱安定性が得られるという観点から、樹脂固形分100質量部中に、10~90質量部含まれることが好ましく、30~80質量部含まれることがより好ましく、40~70質量部含まれることが更に好ましい。
【0118】
また、樹脂組成物において、ビスマレイミド化合物(B)と、後述のマレイミド化合物(C)を含む場合には、ビスマレイミド化合物(B)の含有量は、ビスマレイミド化合物を主成分とした硬化物を得ることが可能となり、光硬化性を向上させることができ、より優れた耐熱性及び熱安定性が得られるという観点から、ビスマレイミド化合物(B)及び後述のマレイミド化合物(C)の合計100質量部に対して、10~90質量部含まれることが好ましく、30~80質量部含まれることがより好ましく、40~70質量部含まれることが更に好ましい。
【0119】
ビスマレイミド化合物(B)は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0120】
(ビスマレイミド化合物(B)の製造方法)
ビスマレイミド化合物(B)は、公知の方法により製造することができる。例えば、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物と、ダイマージアミン等を含むジアミンを含むモノマーと、無水マレイン酸とを、通常80~250℃程度、好ましくは100~200℃程度の温度において、通常0.5~50時間程度、好ましくは1~20時間程度、重付加反応させて重付加物を得る。その後、通常60~120℃程度、好ましくは80~100℃程度の温度において、通常0.1~2時間程度、好ましくは0.1~0.5時間程度、重付加物をイミド化反応、すなわち、脱水閉環反応させることで、ビスマレイミド化合物(B)を得ることができる。
【0121】
ダイマージアミンは、例えば、ダイマー酸の還元的アミノ化反応によって得られ、アミン化反応は、例えば、アンモニア及び触媒を使用する還元法等、公知の方法(例えば、特開平9-12712号公報に記載の方法)によって行うことができる。ダイマー酸とは、不飽和脂肪酸が分子間重合反応等によって二量化して得られる二塩基酸である。合成条件及び精製条件にもよるが、通常はダイマー酸の他、モノマー酸やトリマー酸等も少量含まれる。反応後には得られた分子内に二重結合が残存するが、本実施形態では、水素添加反応により、分子内に存在する二重結合が還元されて飽和二塩基酸となったものもダイマー酸に含める。ダイマー酸は、例えば、ルイス酸及びブレンステッド酸を触媒として用いて、不飽和脂肪酸の重合を行うことによって得られる。ダイマー酸は、公知の方法(例えば、特開平9-12712号公報に記載の方法)によって製造することができる。不飽和脂肪酸としては、例えば、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸、リノール酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸、ボセオペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸、ドコサヘキサエン酸、及びニシン酸が挙げられる。不飽和脂肪酸の炭素数は、通常4~24であり、好ましくは14~20である。
【0122】
ビスマレイミド化合物(B)の製造において、ジアミンを含むモノマーは、予め、例えば、アルゴン、窒素等の不活性雰囲気中において、有機溶媒中に溶解又はスラリー状に分散させて、ジアミンを含むモノマー溶液とすることが好ましい。そして、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物は、有機溶媒に溶解又はスラリー状に分散させた後、あるいは固体の状態で、上記ジアミンを含むモノマー溶液中に添加することが好ましい。
1,2,4,5-シクロヘキサンテトラカルボン酸二無水物のモル数と、ジアミンを含むモノマー及びマレイミド化合物との全量のモル数とを調製することで、任意のビスマレイミド化合物(B)を得ることができる。
【0123】
重付加反応及びイミド化反応に際しては、種々公知の溶媒を使用することができる。溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチル-2-ピロリドン等のアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、及びイソホロン等のケトン類;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン、乳酸エチル、酢酸メチル、酢酸エチル、及び酢酸ブチル等のエステル類;メタノール、エタノール、及びプロパノール等の炭素数1~10の脂肪族アルコール類;フェノール、及びクレゾール等の芳香族基含有フェノール類;ベンジルアルコール等の芳香族基含有アルコール類;エチレングリコール、及びプロピレングリコール等のグリコール類、又はそれらのグリコール類と、メタノール、エタノール、ブタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、及びクレゾール等とのモノエーテルもしくはジエーテル、又はこれらのモノエーテルのエステル類等のグリコールエーテル類;ジオキサン、及びテトラヒドロフラン等の環状エーテル類;エチレンカーボネート、及びプロピレンカーボネート等の環状カーボネート類;脂肪族及びトルエン、及びキシレン等の芳香族炭化水素類;ジメチルスルホキシド等の非プロトン性極性溶媒が挙げられる。これらの溶媒は、必要に応じて、1種類を単独で又は2種類以上を組み合わせて用いることができる。
【0124】
また、イミド化反応においては、触媒を用いることが好ましい。触媒としては、例えば、3級アミン、及び脱水触媒を用いることができる。3級アミンとしては、複素環式の3級アミンが好ましく、例えば、ピリジン、ピコリン、キノリン、及びイソキノリンなどを挙げられる。脱水触媒としては、例えば、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、及びトリフルオロ酢酸無水物等が挙げられる。
触媒の添加量は、例えば、イミド化剤を、アミド基に対して、0.5~5.0倍モル当量程度、脱水触媒を、アミド基に対して、0.5~10.0倍モル当量とすることが好ましい。
【0125】
イミド化反応が完結した後、この溶液をビスマレイミド化合物(B)溶液として使用してもよいし、反応溶媒中に、貧溶媒を投入し、ビスマレイミド化合物(B)を固形物としてもよい。貧溶媒としては、例えば、水、メチルアルコール、エチルアルコール、2-プロピルアルコール、エチレングリコール、トリエチレングリコール、2-ブチルアルコール、2-ペンチルアルコール、2-ヘキシルアルコール、シクロペンチルアルコール、シクロヘキシルアルコール、フェノール、及びt-ブチルアルコールなどが挙げられる。
【0126】
<マレイミド化合物(C)>
本実施形態の樹脂組成物は、本実施形態に係るビスマレイミド化合物(B)以外のマレイミド化合物(C)(成分(C)とも称す)を更に含むことが好ましい。マレイミド化合物(C)は、式(8)で表される化合物、式(9)で表される化合物、式(10)で表される化合物、式(11)で表される化合物、式(12)で表される化合物、及び式(13)で表される化合物からなる群より選択される少なくとも1種である。マレイミド化合物(C)は、1種単独又は2種以上を適宜混合して使用することができる。マレイミド化合物(C)としては、耐熱性及び熱安定性により優れ、並びに溶剤に対する良好な溶解性、低融点、低吸水性、及び他の樹脂との良好な相溶性を発現する観点から、式(8)で表される化合物、式(9)で表される化合物、及び式(10)で表される化合物であることが好ましく、式(8)で表される化合物、及び式(9)で表される化合物であることがより好ましい。
【0127】
前記のとおり、通常、マレイミド化合物の光ラジカルの反応性は非常に低い。しかし、ビスマレイミド化合物(B)は、前記のとおり、光透過性に非常に優れる。また、化合物(A)も非常に優れた光透過性を有するため、化合物(A)と、マレイミド化合物(C)と、必要に応じて配合される後述の光硬化開始剤(D)と共に、ビスマレイミド化合物(A)を用いることで、光硬化開始剤まで十分に光が届き、マレイミドの光ラジカル反応が効率的に起き、種々の活性エネルギー線を用いて光硬化させることができる。
【0128】
化合物(A)及びビスマレイミド化合物(B)は、光透過性に優れるため、例えば、波長365nmを含む活性エネルギー線、又は405nmを含む活性エネルギー線を用いても、光が光硬化開始剤まで十分に届き、光硬化開始剤から発生したラジカルを用いたラジカル反応が進行し、マレイミド化合物(C)が配合されている組成物においても光硬化が可能となる。
そして、樹脂組成物は、アルカリ現像性及び光硬化性に優れる。また、得られる硬化物は、耐熱性、絶縁信頼性、及び熱安定性に優れるため、保護膜、及び絶縁層を好適に形成することができる。
【0129】
次いで、マレイミド化合物(C)に含まれる、式(8)~式(13)で表される化合物について説明する。
【0130】
(式(8)で表される化合物)
式(8)で表される化合物は、次の化合物である。
【0131】
【0132】
式(8)中、R7、R8、及びR9は、各々独立に、水素原子、又は置換基を有してもよい、炭素数1~8の直鎖状若しくは分岐状のアルキル基を示す。
置換基を有してもよい、炭素数1~8の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、及びヘプチル基等が挙げられる。これらのアルキル基中の水素原子は、フッ素原子、及び塩素原子等のハロゲン原子、並びにシアノ基等で置換されていてもよい。これらのアルキル基の中でも、光硬化性、耐熱性、及び熱安定性により優れ、並びに溶剤に対する良好な溶解性、低融点、低吸水性、及び他の樹脂との良好な相溶性を発現する観点から、メチル基、エチル基、イソプロピル基、及びtert-ブチル基であることが好ましく、メチル基、エチル基、及びイソプロピル基であることがより好ましく、メチル基であることが更に好ましい。
【0133】
式(8)で表される化合物としては、更に優れた、光硬化性、耐熱性、及び熱安定性、溶剤に対する溶解性、低融点、低吸水性、及び他の樹脂との相溶性を発現する観点から、式(21)で表される化合物(本実施形態では、TMDMとも称す)であることが更により好ましい。
【0134】
【0135】
(式(9)で表される化合物)
式(9)で表される化合物は、次の化合物である。
【0136】
【0137】
式(9)中、R10、R11、及びR12は、各々独立に、水素原子、ヒドロキシル基、又は置換基を有してもよい、炭素数1~6の直鎖状若しくは分岐状のアルキル基を示す。n2は、1~10の整数を示す。
炭素数1~6の直鎖状若しくは分岐状のアルキル基としては、前記の式(7)中におけるR6が参照できる。アルキル基としては、溶剤に対する良好な溶解性、低融点、低吸水性、及び他の樹脂との良好な相溶性を発現する観点から、メチル基、エチル基、n-プロピル基、イソプロピル基が好ましく、メチル基であることがより好ましい。
また、R10、R11、及びR12においては、より優れた溶剤に対する溶解性を発現する観点から、R9及びR12が、炭素数1~6の直鎖状若しくは分岐状のアルキル基であり、かつ、R11が、水素原子であることが好ましい。なお、好ましいアルキル基については、前記のとおりである。
n2は、溶剤に対する溶解性に優れ、より好適な粘度が得られ、かつ、ワニスの粘度上昇がより制御できる点から、1~10の整数であることが好ましく、1~6の整数であることがより好ましい。
【0138】
式(9)で表される化合物としては、市販品を用いてもよく、例えば、式(22)で表される群栄化学工業(株)製BCPH13(商品名)、群栄化学工業(株)製BCPH01(商品名)、及び式(23)で表される群栄化学工業(株)製BMCX426(商品名)が挙げられる。
【0139】
【0140】
式(22)中、n21は、1~5の整数である。
【0141】
【0142】
式(23)中、n22は、1~10の整数である。
【0143】
(式(10)で表される化合物)
式(10)で表される化合物は、次の化合物である。
【0144】
【0145】
式(10)中、R13は、各々独立に、水素原子、メチル基、又はエチル基を示し、R14は、各々独立に、水素原子又はメチル基を示す。
R13としては、溶剤に対する良好な溶解性、低融点、低吸水性、及び他の樹脂との良好な相溶性を発現する観点から、メチル基、又はエチル基であることが好ましい。
R14としては、溶剤に対する良好な溶解性、低融点、低吸水性、及び他の樹脂との良好な相溶性を発現する観点から、水素原子であることが好ましい。
【0146】
式(10)で表されるマレイミド化合物としては、市販品を用いてもよく、例えば、式(24)で表されるケイ・アイ化成(株)製BMI-70(商品名)が挙げられる。
【0147】
【0148】
(式(11)で表される化合物)
式(11)で表される化合物は、次の化合物である。
【0149】
【0150】
式(11)中、R15は、各々独立に、水素原子又はメチル基を表す。n3は、1~10の整数を表す。
式(11)で表されるマレイミド化合物としては、市販品を用いてもよく、例えば、式(25)で表される日本化薬(株)製MIR-3000(商品名)が挙げられる。
【0151】
【0152】
式(25)中、n31は1~10の整数である。
【0153】
(式(12)で表される化合物)
式(12)で表される化合物は、次の化合物である。
【0154】
【0155】
式(12)中、R16は、各々独立に、水素原子、メチル基、又はエチル基を示す。
R16としては、溶剤に対する良好な溶解性、低融点、低吸水性、及び他の樹脂との良好な相溶性を発現する観点の点から、メチル基、又はエチル基であることが好ましい。
式(12)で表されるマレイミド化合物としては、市販品を用いてもよく、例えば、式(26)で表されケイ・アイ化成(株)製BMI-80(商品名)が挙げられる。
【0156】
【0157】
(式(13)で表される化合物)
式(13)で表される化合物は、次の化合物である。
【0158】
【0159】
式(13)中、R17は、各々独立に、水素原子又はメチル基を表す。n4は、1~10の整数を表す。
R17としては、溶剤に対する良好な溶解性、低融点、低吸水性、及び他の樹脂との良好な相溶性を発現する観点の点から、水素原子であることが好ましい。
n4としては、溶剤に対する溶解性に優れ、より好適な粘度が得られ、ワニスの粘度上昇がより制御できる点の点から、1~5の整数であることがより好ましい。
【0160】
式(13)で表されるマレイミド化合物としては、市販品を用いてもよく、例えば、式(27)で表される大和化成工業(株)製BMI-2300(商品名)が挙げられる。
【0161】
【0162】
式(27)中、n41は、1~5の整数である。
【0163】
樹脂組成物において、マレイミド化合物(C)の含有量は、より優れた耐熱性及び熱安定性が得られるという観点から、樹脂固形分100質量部中に、10~90質量部含まれることが好ましく、20~70質量部含まれることがより好ましく、30~60質量部含まれることが更に好ましい。
【0164】
また、樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、マレイミド化合物(C)の含有量は、より優れた耐熱性及び熱安定性が得られるという観点から、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、10~90質量部含まれることが好ましく、20~70質量部含まれることがより好ましく、30~60質量部含まれることが更に好ましい。
【0165】
〔光硬化開始剤(D)〕
本実施形態の樹脂組成物は、光硬化開始剤(D)(成分(D)とも称す)を更に含むことが好ましい。光硬化開始剤(D)は、特に限定されず、一般に光硬化性樹脂組成物で用いられる分野で公知のものを使用することができる。光硬化開始剤(D)は、化合物(A)と、必要に応じて配合される、ビスマレイミド化合物(B)、及びマレイミド化合物(C)等と共に、種々の活性エネルギー線を用いて光硬化させるために用いられる。
【0166】
光硬化開始剤(D)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、及びベンゾインイソブチルエーテル等のベンゾイン類;過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、及びジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ベンゾイル-ジフェニル-フォスフィンオキサイド、及びビスベンゾイル-フェニルフォスフィンオキサイド等のフォスフィンオキサイド類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシンクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、及び2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のアセトフェノン類;2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、及び2-アミルアントラキノン等のアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、及び2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、及びベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、及び4,4'-ビスメチルアミノベンゾフェノン等のベンゾフェノン類;1,2-オクタンジオン、1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、及びエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類等のラジカル型光硬化開始剤や、
p-メトキシフェニルジアゾニウムフロロホスホネート、及びN,N-ジエチルアミノフェニルジアゾニウムヘキサフロロホスホネート等のルイス酸のジアゾニウム塩;ジフェニルヨードニウムヘキサフロロホスホネート、及びジフェニルヨードニウムヘキサフロロアンチモネート等のルイス酸のヨードニウム塩;トリフェニルスルホニウムヘキサフロロホスホネート、及びトリフェニルスルホニウムヘキサフロロアンチモネート等のルイス酸のスルホニウム塩;トリフェニルホスホニウムヘキサフロロアンチモネート等のルイス酸のホスホニウム塩;その他のハロゲン化物;トリアジン系開始剤;ボーレート系開始剤;その他の光酸発生剤等のカチオン系光重合開始剤が挙げられる。
【0167】
光硬化開始剤(D)は、市販品を利用することもでき、例えば、IGM Resins B.V.社製Omnirad(登録商標)369(商品名)、IGM Resins B.V.社製Omnirad(登録商標)819(商品名)、IGM Resins B.V.社製Omnirad(登録商標)819DW(商品名)、IGM Resins B.V.社製Omnirad(登録商標)907(商品名)、IGM Resins B.V.社製Omnirad(登録商標)TPO(商品名)、IGM Resins B.V.社製Omnirad(登録商標)TPO-G(商品名)、IGM Resins B.V.社製Omnirad(登録商標)784(商品名)、BASFジャパン(株)製Irgacure(登録商標)OXE01(商品名)、BASFジャパン(株)製Irgacure(登録商標)OXE02(商品名)、BASFジャパン(株)製Irgacure(登録商標)OXE03(商品名)、及びBASFジャパン(株)製Irgacure(登録商標)OXE04(商品名)等が挙げられる。
これらの光硬化開始剤(D)は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0168】
光硬化開始剤(D)は、0.01質量%で含まれるクロロホルム溶液を調製し、波長365nm(i線)を含む活性エネルギー線を用いて、光硬化開始剤(D)が0.01質量%で含まれるクロロホルム溶液の吸光度を測定した場合においては、その吸光度は0.1以上であることが好ましく、この光硬化開始剤(D)は非常に優れた吸光性を示す。また、波長405nm(h線)を含む活性エネルギー線を用いて、光硬化開始剤(D)が0.01質量%で含まれるクロロホルム溶液の吸光度を測定した場合においては、その吸光度が0.1以上であることが好ましく、この場合においても非常に優れた吸光性を示す。このような光硬化開始剤(D)を用いると、例えば、直接描画露光法を用いて高密度で高精細な配線形成(パターン)を有するプリント配線板を製造するに際し、波長405nm(h線)を含む活性エネルギー線を用いた場合でも、マレイミドの光ラジカル反応が効率的に起こる。なお、波長365nm(i線)における吸光度は、光硬化性により優れる樹脂組成物を得ることができることから、0.15以上であることがより好ましい。波長405nm(h線)における吸光度は、光硬化性により優れる樹脂組成物を得ることができることから、0.15以上であることがより好ましい。なお、波長365(i線)における吸光度、及び波長405nm(h線)における吸光度において、それぞれの上限は、例えば、99.9以下である。
【0169】
このような光硬化開始剤(D)としては、式(14)で表される化合物が好ましい。
【0170】
【0171】
式(14)中、R18は、各々独立に、式(15)で表される置換基又はフェニル基を表す。
【0172】
【0173】
式(15)中、R19は、各々独立に、水素原子又はメチル基を表す。式(15)中、-*は、式(14)中のR18に直結するリン原子(P)との結合手を示す。
【0174】
式(14)で表される化合物は、この化合物が0.01質量%で含まれるクロロホルム溶液を調製し、波長365nm(i線)を含む活性エネルギー線を用いてこのクロロホルム溶液の吸光度を測定した場合に、吸光度が0.1以上と、波長365nm(i線)の光に対して非常に優れた吸収性を示す。そのため、この化合物は、波長365nm(i線)の光に対して好適にラジカルを発生する。吸光度は、0.15以上であることが好ましい。上限値は、例えば、10.0以下であり、5.0以下であっても、2.0以下であってもよい。
【0175】
式(14)で表される化合物は、この化合物が0.01質量%で含まれるクロロホルム溶液を調製し、波長405nm(h線)を含む活性エネルギー線を用いてこのクロロホルム溶液の吸光度を測定した場合に、吸光度が0.1以上と、波長405nm(h線)の光に対して非常に優れた吸収性を示す。そのため、この化合物は、波長405nm(h線)の光に対して好適にラジカルを発生する。吸光度は、0.15以上であることがより好ましい。上限値は、例えば、10.0以下であり、5.0以下であってもよく、2.0以下であってもよい。
【0176】
式(14)中、R18は、各々独立に、式(15)で表される置換基又はフェニル基を表す。R18のうち、1つ以上が式(15)で表される置換基であることが好ましい。
式(15)中、R19は、各々独立に、水素原子又はメチル基を表す。R19のうち、1つ以上がメチル基であることが好ましく、全てメチル基であることがより好ましい。
【0177】
式(14)で表される化合物としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド類が挙げられる。これらの中でも、優れた光透過性を有することから、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが好ましい。これらの化合物は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0178】
アシルフォスフィンオキサイド類は、波長405nm(h線)を含む活性エネルギー線に対して非常に優れた吸収性を示し、例えば、波長405nm(h線)にて、ビスマレイミド化合物(B)及びマレイミド化合物(C)を好適にラジカル重合させることができる。そのため、本実施形態によれば、特に多層プリント配線板に用いた際に、露光工程においては、光硬化反応を阻害せず、優れた光硬化性を有し、現像工程においては、優れたアルカリ現像性を付与できる樹脂組成物、それを用いた樹脂シート、多層プリント配線板、及び半導体装置を好適に製造することが可能となる。
【0179】
樹脂組成物において、光硬化開始剤(D)の含有量は樹脂組成物において光硬化反応を阻害せずに光硬化を十分に進行させ、アルカリ現像性において露光部を十分に不溶化させるという観点から、樹脂固形分100質量部中に、0.1~50質量部であることが好ましく、0.2~30質量部であることがより好ましく、0.3~10質量部であることが更に好ましい。
【0180】
また、樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、光硬化開始剤(D)の含有量は、樹脂組成物において光硬化反応を阻害せずに光硬化を十分に進行させ、アルカリ現像性において露光部を十分に不溶化させるという観点から、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、0.1~50質量部であることが好ましく、0.2~30質量部であることがより好ましく、0.3~10質量部であることが更に好ましい。
【0181】
〔ビスマレイミド化合物(B)及びマレイミド化合物(C)以外のマレイミド化合物(E)〕
本実施形態の樹脂組成物には、本発明の効果を奏する限り、ビスマレイミド化合物(B)及びマレイミド化合物(C)以外のマレイミド化合物(E)(成分(E)とも称す)を用いることができる。化合物(A)及びビスマレイミド化合物(B)は、前記のとおり、光透過性に非常に優れるため、マレイミド化合物(E)を用いても、光硬化開始剤まで十分に光が届き、マレイミドの光ラジカル反応が効率的に起き、種々の活性エネルギー線を用いて光硬化させることができる。そのため、例えば、波長365nmを含む活性エネルギー線、又は405nmを含む活性エネルギー線を用いても、光が光硬化開始剤まで十分に届き、光硬化開始剤から発生したラジカルを用いたラジカル反応が進行し、マレイミド化合物(E)が配合されている組成物においても光硬化が可能となる。
【0182】
マレイミド化合物(E)としては、ビスマレイミド化合物(B)及びマレイミド化合物(C)以外であり、分子中に一個以上のマレイミド基を有する化合物であれば、特に限定されない。例えば、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ヒドロキシフェニルマレイミド、N-アニリノフェニルマレイミド、N-カルボキシフェニルマレイミド、N-(4-カルボキシ-3-ヒドロキシフェニル)マレイミド、6-マレイミドヘキサン酸、4-マレイミド酪酸、ビス(4-マレイミドフェニル)メタン、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、4,4-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、フェニルメタンマレイミド、o-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、o-フェニレンビスシトラコンイミド、m-フェニレンビスシトラコンイミド、p-フェニレンビスシトラコンイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,2-ビスマレイミドエタン、1,4-ビスマレイミドブタン、1,5-ビスマレイミドペンタン、1,5-ビスマレイミド-2-メチルペンタン、1,6-ビスマレイミドヘキサン、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、1,8-ビスマレイミド-3,6-ジオキサオクタン、1,11-ビスマレイミド-3,6,9-トリオキサウンデカン、1,3-ビス(マレイミドメチル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、4,4-ジフェニルメタンビスシトラコンイミド、2,2-ビス[4-(4-シトラコンイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-シトラコンイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-シトラコンイミドフェニル)メタン、ビス(3,5-ジエチル-4-シトラコンイミドフェニル)メタン、ポリフェニルメタンマレイミド、フルオレセイン-5-マレイミド、及びこれらマレイミド化合物のプレポリマー、並びにマレイミド化合物とアミン化合物のプレポリマー等が挙げられる。これらのマレイミド化合物(E)は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0183】
樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、マレイミド化合物(E)の含有量は、優れた光硬化性を発現する観点から、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、1~50質量部含まれることが好ましく、1~40質量部含まれることがより好ましく、1~30質量部含まれることが更に好ましい。
【0184】
〔充填材(F)〕
本実施形態の樹脂組成物には、塗膜性や耐熱性等の諸特性を向上させるために、充填材(F)(成分(F)とも称す)を用いることができる。充填材(F)としては、絶縁性を有し、光硬化に用いる種々の活性エネルギー線に対する透過性を阻害しないものであることが好ましく、波長365nm(i線)、及び/又は波長405nm(h線)を含む活性エネルギー線に対する透過性を阻害しないものであることがより好ましい。
【0185】
充填材(F)としては、例えば、シリカ(例えば、天然シリカ、溶融シリカ、アモルファスシリカ、及び中空シリカ等)、アルミニウム化合物(例えば、ベーマイト、水酸化アルミニウム、アルミナ、及び窒化アルミニウム等)、ホウ素化合物(例えば、窒化ホウ素等)、マグネシウム化合物(例えば、酸化マグネシウム、及び水酸化マグネシウム等)、カルシウム化合物(例えば、炭酸カルシウム等)、モリブデン化合物(例えば、酸化モリブデン、及びモリブデン酸亜鉛等)、バリウム化合物(例えば、硫酸バリウム、及びケイ酸バリウム等)、タルク(例えば、天然タルク、及び焼成タルク等)、マイカ、ガラス(例えば、短繊維状ガラス、球状ガラス、微粉末ガラス、Eガラス、Tガラス、及びDガラス等)、シリコーンパウダー、フッ素樹脂系充填材、ウレタン樹脂系充填材、(メタ)アクリル樹脂系充填材、ポリエチレン系充填材、スチレン・ブタジエンゴム、並びにシリコーンゴム等が挙げられる。これらの充填材(F)は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0186】
これらの中でも、シリカ、ベーマイト、硫酸バリウム、シリコーンパウダー、フッ素樹脂系充填材、ウレタン樹脂系充填材、(メタ)アクリル樹脂系充填材、ポリエチレン系充填材、スチレン・ブタジエンゴム、及びシリコーンゴムからなる群から選択される一種以上であることが好ましい。
これらの充填材(F)は、後述のシランカップリング剤等で表面処理されていてもよい。
【0187】
硬化物の耐熱性を向上させ、また良好な塗膜性が得られるという観点から、シリカが好ましく、溶融シリカがより好ましい。シリカの具体例としては、デンカ(株)製のSFP-130MC(商品名)、(株)アドマテックス製のSC2050―MB(商品名)、SC1050-MLE(商品名)、YA010C-MFN(商品名)、及びYA050C-MJA(商品名)が挙げられる。
【0188】
充填材(F)の粒径は、特に限定されないが、樹脂組成物の紫外光透過性という観点から、通常0.005~10μmであり、好ましくは0.01~1.0μmである。
【0189】
樹脂組成物において、充填材(F)の含有量は、樹脂組成物の紫外光透過性や、硬化物の耐熱性を良好にするという観点から、通常、樹脂組成物中の樹脂固形分100質量部に対して、300質量部以下とすることが好ましく、200質量部以下とすることがより好ましく、100質量部以下とすることが更に好ましい。なお、充填材を含有する場合、下限値は、塗膜性や耐熱性等の諸特性を向上させる効果が得られる観点から、樹脂組成物中の樹脂固形分100質量部に対して、通常1質量部である。
【0190】
〔シランカップリング剤及び湿潤分散剤〕
本実施形態の樹脂組成物には、充填材の分散性、ポリマー及び/又は樹脂と、充填材との接着強度を向上させるために、シランカップリング剤及び/又は湿潤分散剤を併用することできる。
これらのシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されない。例えば、3-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルジエトキシメチルシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシラン、N-(2-アミノエチル)-3-アミノプロピルジエトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、[3-(6-アミノヘキシルアミノ)プロピル]トリメトキシシラン、及び[3-(N,N-ジメチルアミノ)-プロピル]トリメトキシシランなどのアミノシラン系;γ-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルジエトキシメチルシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、及び[8-(グリシジルオキシ)-n-オクチル]トリメトキシシランなどのエポキシシラン系;ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、トリメトキシ(7-オクテン-1-イル)シラン、及びトリメトキシ(4-ビニルフェニル)シランなどのビニルシラン系;3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルジエトキシメチルシランなどのメタクリルシラン系;3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシランなどのアクリルシラン系;3-イソシアネートプロピルトリメトキシシラン、及び3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシラン系;トリス-(トリメトキシシリルプロピル)イソシアヌレートなどのイソシアヌレートシラン系;3-メルカプトプロピルトリメトキシシラン、及び3-メルカプトプロピルジメトキシメチルシランなどのメルカプトシラン系;3-ウレイドプロピルトリエトキシシランなどのウレイドシラン系;p-スチリルトリメトキシシランなどのスチリルシラン系;N-β-(N-ビニルベンジルアミノエチル-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系;[3-(トリメトキシシリル)プロピル]コハク酸無水物などの酸無水物系;フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシメチルフェニルシラン、ジエトキシメチルフェニルシラン、及びp-トリルトリメトキシシランなどのフェニルシラン系;トリメトキシ(1-ナフチル)シランなどのアリールシラン系が挙げられる。これらのシランカップリング剤は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0191】
樹脂組成物において、シランカップリング剤の含有量は、通常、樹脂組成物中の樹脂固形分100質量部に対して、0.1~10質量部である。
【0192】
湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されない。具体例としては、例えば、ビッグケミー・ジャパン(株)製のDISPERBYK(登録商標)-110(商品名)、111(商品名)、118(商品名)、180(商品名)、161(商品名)、BYK(登録商標)-W996(商品名)、W9010(商品名)、及びW903(商品名)が挙げられる。これらの湿潤分散剤は、1種単独又は2種以上を適宜混合して使用することも可能である。
樹脂組成物において、湿潤分散剤の含有量は、通常、樹脂組成物中の樹脂固形分100質量部に対して、0.1~10質量部である。
【0193】
〔シアン酸エステル化合物、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、エポキシ樹脂、及びその他の化合物〕
本実施形態では、本発明の効果を奏する限り、硬化した硬化物の難燃性、耐熱性、及び熱膨張特性等の特性に応じて、化合物(A)、ビスマレイミド化合物(B)、マレイミド化合物(C)、光硬化開始剤(D)、及びマレイミド化合物(E)以外の、シアン酸エステル化合物、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、エポキシ樹脂、及びその他の化合物等、様々な種類の化合物及び樹脂を用いることができる。また、これらの化合物及び樹脂は、波長365nm(i線)を含む活性エネルギー線、及び/又は405nm(h線)を含む活性エネルギー線で露光した場合に、樹脂組成物が感光して、光硬化することが好ましい。
これらの化合物及び樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0194】
<シアン酸エステル化合物>
シアン酸エステル化合物としては、シアナト基(シアン酸エステル基)が少なくとも1個置換された芳香族部分を分子内に有する樹脂であれば特に限定されない。
【0195】
例えば、式(28)で表されるものが挙げられる。
【0196】
【0197】
式(28)中、Ar1は、ベンゼン環、ナフタレン環又は2つのベンゼン環が単結合したものを表す。複数ある場合は互いに同一であっても異なっていても良い。Raは、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、及び炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合された基を示す。Raにおける芳香環は置換基を有していてもよく、Ar1及びRaにおける置換基は任意の位置を選択できる。pはAr1に結合するシアナト基の数を示し、各々独立に1~3の整数である。qはAr1に結合するRaの数を示し、Ar1がベンゼン環の時は4-p、ナフタレン環の時は6-p、2つのベンゼン環が単結合したものの時は8-pである。tは平均繰り返し数を示し、0~50の整数であり、シアン酸エステル化合物は、tが異なる化合物の混合物であってもよい。Xは、複数ある場合は、各々独立に、単結合、炭素数1~50の2価の有機基(水素原子がヘテロ原子に置換されていてもよい。)、窒素数1~10の2価の有機基(例えば、-N-R-N-、ここでRは有機基を示す)、カルボニル基(-CO-)、カルボキシ基(-C(=O)O-)、カルボニルジオキサイド基(-OC(=O)O-)、スルホニル基(-SO2-)、2価の硫黄原子、又は2価の酸素原子のいずれかを示す。
【0198】
式(28)のRaにおけるアルキル基は、直鎖もしくは分枝の鎖状構造、及び、環状構造(例えば、シクロアルキル基等)いずれを有していてもよい。
また、式(28)におけるアルキル基及びRaにおけるアリール基中の水素原子は、フッ素原子、及び塩素原子等のハロゲン原子、メトキシ基、及びフェノキシ基等のアルコキシル基、又はシアノ基等で置換されていてもよい。
【0199】
アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、及びトリフルオロメチル基等が挙げられる。
アルケニル基の具体例としては、ビニル基、(メタ)アリル基、イソプロペニル基、1-プロペニル基、2-ブテニル基、3-ブテニル基、1,3-ブタンジエニル基、2-メチル-2-プロペニル、2-ペンテニル基、及び2-ヘキセニル基等が挙げられる。
アリール基の具体例としては、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o-,m-又はp-フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、及びo-,m-又はp-トリル基等が挙げられる。
アルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、及びtert-ブトキシ基等が挙げられる。
【0200】
式(28)のXにおける炭素数1~50の2価の有機基の具体例としては、メチレン基、エチレン基、トリメチレン基、シクロペンチレン基、シクロヘキシレン基、トリメチルシクロヘキシレン基、ビフェニルイルメチレン基、ジメチルメチレン-フェニレン-ジメチルメチレン基、フルオレンジイル基、及びフタリドジイル基等が挙げられる。2価の有機基中の水素原子は、フッ素原子、及び塩素原子等のハロゲン原子、メトキシ基、及びフェノキシ基等のアルコキシル基、並びにシアノ基等で置換されていてもよい。
式(28)のXにおける窒素数1~10の2価の有機基としては、イミノ基、並びにポリイミド基等が挙げられる。
【0201】
また、式(28)中のXの有機基として、例えば、式(29)で表される構造を有するもの、又は式(30)で表される構造を有するものが挙げられる。
【0202】
【0203】
式(29)中、Ar2はベンゼンジイル基、ナフタレンジイル基、又はビフェニルジイル基を示し、uが2以上の整数の場合、互いに同一であっても異なっていてもよい。Rb、Rc、Rf、及びRgは、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、トリフルオロメチル基、又はフェノール性ヒドロキシ基を少なくとも1個有するアリール基を示す。Rd、及びReは、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、又はヒドロキシ基のいずれか一種から選択される。uは、0~5の整数を示す。
【0204】
【0205】
式(30)中、Ar3はベンゼンジイル基、ナフタレンジイル基、又はビフェニルジイル基を示し、vが2以上の整数の場合、互いに同一であっても異なっていてもよい。Ri、及びRjは、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、ベンジル基、炭素数1~4のアルコキシル基、ヒドロキシ基、トリフルオロメチル基、又はシアナト基が少なくとも1個置換されたアリール基を示す。vは0~5の整数を示すが、vが異なる化合物の混合物であってもよい。
【0206】
さらに、式(28)中のXとしては、下記式で表される2価の基が挙げられる。
【0207】
【0208】
ここで式中、zは4~7の整数を示す。Rkは各々独立に、水素原子又は炭素数1~6のアルキル基を示す。
式(29)のAr2及び式(30)のAr3の具体例としては、式(29)に示す2個の炭素原子、又は式(30)に示す2個の酸素原子が、1,4位又は1,3位に結合するベンゼンジイル基、2個の炭素原子又は2個の酸素原子が4,4'位、2,4'位、2,2'位、2,3'位、3,3'位、又は3,4'位に結合するビフェニルジイル基、及び、2個の炭素原子又は2個の酸素原子が、2,6位、1,5位、1,6位、1,8位、1,3位、1,4位、又は2,7位に結合するナフタレンジイル基が挙げられる。
式(29)のRb、Rc、Rd、Re、Rf、及びRg、並びに式(30)のRi、及びRjにおけるアルキル基及びアリール基は、式(28)におけるものと同義である。
【0209】
式(28)で表されるシアナト置換芳香族化合物の具体例としては、シアナトベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メチルベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メトキシベンゼン、1-シアナト-2,3-,1-シアナト-2,4-,1-シアナト-2,5-,1-シアナト-2,6-,1-シアナト-3,4-又は1-シアナト-3,5-ジメチルベンゼン、シアナトエチルベンゼン、シアナトブチルベンゼン、シアナトオクチルベンゼン、シアナトノニルベンゼン、2-(4-シアナトフェニル)-2-フェニルプロパン(4-α-クミルフェノールのシアネート)、1-シアナト-4-シクロヘキシルベンゼン、1-シアナト-4-ビニルベンゼン、1-シアナト-2-又は1-シアナト-3-クロロベンゼン、1-シアナト-2,6-ジクロロベンゼン、1-シアナト-2-メチル-3-クロロベンゼン、シアナトニトロベンゼン、1-シアナト-4-ニトロ-2-エチルベンゼン、1-シアナト-2-メトキシ-4-アリルベンゼン(オイゲノールのシアネート)、メチル(4-シアナトフェニル)スルフィド、1-シアナト-3-トリフルオロメチルベンゼン、4-シアナトビフェニル、1-シアナト-2-又は1-シアナト-4-アセチルベンゼン、4-シアナトベンズアルデヒド、4-シアナト安息香酸メチルエステル、4-シアナト安息香酸フェニルエステル、1-シアナト-4-アセトアミノベンゼン、4-シアナトベンゾフェノン、1-シアナト-2,6-ジ-tert-ブチルベンゼン、1,2-ジシアナトベンゼン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,4-ジシアナト-2-tert-ブチルベンゼン、1,4-ジシアナト-2,4-ジメチルベンゼン、1,4-ジシアナト-2,3,4-ジメチルベンゼン、1,3-ジシアナト-2,4,6-トリメチルベンゼン、1,3-ジシアナト-5-メチルベンゼン、1-シアナト又は2-シアナトナフタレン、1-シアナト-4-メトキシナフタレン、2-シアナト-6-メトキシナフタレン、2-シアナト-7-メトキシナフタレン、2,2'-ジシアナト-1,1'-ビナフチル、1,3-,1,4-,1,5-,1,6-,1,7-,2,3-,2,6-又は2,7-ジシアナトシナフタレン、2,2'-又は4,4'-ジシアナトビフェニル、4,4'-ジシアナトオクタフルオロビフェニル、2,4'-又は4,4'-ジシアナトジフェニルメタン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナト-3-メチルフェニル)プロパン、2,2-ビス(2-シアナト-5-ビフェニルイル)プロパン、2,2-ビス(4-シアナトフェニル)ヘキサフルオロプロパン、2,2-ビス(4-シアナト-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(4-シアナトフェニル)フェニルメタン、1,1-ビス(4-シアナトフェニル)-1-フェニルエタン、ビス(4-シアナトフェニル)ビフェニルメタン、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサン、2,2-ビス(4-シアナト-3-イソプロピルフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-シアナトフェニル)シクロヘキサン、ビス(4-シアナトフェニル)ジフェニルメタン、ビス(4-シアナトフェニル)-2,2-ジクロロエチレン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,1-ビス(4-シアナトフェニル)-3,3,5-トリメチルシクロヘキサン、4-[ビス(4-シアナトフェニル)メチル]ビフェニル、4,4-ジシアナトベンゾフェノン、1,3-ビス(4-シアナトフェニル)-2-プロペン-1-オン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、ビス(4-シアナトフェニル)スルホン、4-シアナト安息香酸-4-シアナトフェニルエステル(4-シアナトフェニル-4-シアナトベンゾエート)、ビス-(4-シアナトフェニル)カーボネート、1,3-ビス(4-シアナトフェニル)アダマンタン、1,3-ビス(4-シアナトフェニル)-5,7-ジメチルアダマンタン、3,3-ビス(4-シアナトフェニル)イソベンゾフラン-1(3H)-オン(フェノールフタレインのシアネート)、3,3-ビス(4-シアナト-3-メチルフェニル)イソベンゾフラン-1(3H)-オン(o-クレゾールフタレインのシアネート)、9,9'-ビス(4-シアナトフェニル)フルオレン、9,9-ビス(4-シアナト-3-メチルフェニル)フルオレン、9,9-ビス(2-シアナト-5-ビフェニルイル)フルオレン、トリス(4-シアナトフェニル)メタン、1,1,1-トリス(4-シアナトフェニル)エタン、1,1,3-トリス(4-シアナトフェニル)プロパン、α,α,α'-トリス(4-シアナトフェニル)-1-エチル-4-イソプロピルベンゼン、1,1,2,2-テトラキス(4-シアナトフェニル)エタン、テトラキス(4-シアナトフェニル)メタン、2,4,6-トリス(N-メチル-4-シアナトアニリノ)-1,3,5-トリアジン、2,4-ビス(N-メチル-4-シアナトアニリノ)-6-(N-メチルアニリノ)-1,3,5-トリアジン、ビス(N-4-シアナト-2-メチルフェニル)-4,4'-オキシジフタルイミド、ビス(N-3-シアナト-4-メチルフェニル)-4,4'-オキシジフタルイミド、ビス(N-4-シアナトフェニル)-4,4'-オキシジフタルイミド、ビス(N-4-シアナト-2-メチルフェニル)-4,4'-(ヘキサフルオロイソプロピリデン)ジフタルイミド、トリス(3,5-ジメチル-4-シアナトベンジル)イソシアヌレート、2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-(4-メチルフェニル)-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジン、1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、及び、2-フェニル-3,3-ビス(4-シアナトフェニル)インドリン-2-オンが挙げられる。
【0210】
これらのシアン酸エステル化合物は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0211】
式(28)で表されるシアン酸エステル化合物の別の具体例としては、フェノールノボラック樹脂及びクレゾールノボラック樹脂(公知の方法により、フェノール、アルキル置換フェノール又はハロゲン置換フェノールと、ホルマリンやパラホルムアルデヒド等のホルムアルデヒド化合物とを、酸性溶液中で反応させたもの)、トリスフェノールノボラック樹脂(ヒドロキシベンズアルデヒドとフェノールとを酸性触媒の存在下に反応させたもの)、フルオレンノボラック樹脂(フルオレノン化合物と9,9-ビス(ヒドロキシアリール)フルオレン類とを酸性触媒の存在下に反応させたもの)、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、及びビフェニルアラルキル樹脂(公知の方法により、Ar4-(CH2Y)2(Ar4はフェニル基を示し、Yはハロゲン原子を示す。以下、この段落において同様。)で表されるようなビスハロゲノメチル化合物とフェノール化合物とを酸性触媒若しくは無触媒で反応させたもの、Ar4-(CH2OR)2(Rはアルキル基を示す。)で表されるようなビス(アルコキシメチル)化合物とフェノール化合物とを酸性触媒の存在下に反応させたもの、又は、Ar4-(CH2OH)2で表されるようなビス(ヒドロキシメチル)化合物とフェノール化合物を酸性触媒の存在下に反応させたもの、あるいは、芳香族アルデヒド化合物とアラルキル化合物とフェノール化合物とを重縮合させたもの)、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物とを酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)、フェノール変性ジシクロペンタジエン樹脂、又はポリナフチレンエーテル構造を有するフェノール樹脂(公知の方法により、フェノール性ヒドロキシ基を1分子中に2つ以上有する多価ヒドロキシナフタレン化合物を、塩基性触媒の存在下に脱水縮合させたもの)等のフェノール樹脂を、前記と同様の方法によりシアネート化したもの等、並びにこれらのプレポリマー等が挙げられる。これらのシアン酸エステル化合物は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0212】
これらのシアン酸エステル化合物の製造方法としては、特に限定されず、公知の方法を用いることができる。具体例としては、所望の骨格を有するヒドロキシ基含有化合物を入手又は合成し、ヒドロキシ基を公知の手法により修飾してシアネート化する方法が挙げられる。ヒドロキシ基をシアネート化する手法としては、例えば、Ian Hamerton,"Chemistry and Technology of Cyanate Ester Resins,"Blackie Academic & Professionalに記載の手法が挙げられる。
【0213】
これらのシアン酸エステル化合物を用いた硬化物は、ガラス転移温度、低熱膨張性、及びめっき密着性等に優れた特性を有する。
【0214】
樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、シアン酸エステル化合物の含有量は、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、0.01~40質量部である。
【0215】
<フェノール樹脂>
フェノール樹脂としては、1分子中に2個以上のヒドロキシル基を有するフェノール樹脂であれば、一般に公知のものを使用できる。例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、重合性不飽和炭化水素基含有フェノール樹脂、及び水酸基含有シリコーン樹脂類等が挙げられる。これらのフェノール樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0216】
樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、フェノール樹脂の含有量は、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、0.01~40質量部である。
【0217】
<オキセタン樹脂>
オキセタン樹脂としては、一般に公知のものを使用できる。例えば、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3-ジ(トリフルオロメチル)パーフルオロオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成(株)製、商品名)、OXT-121(東亞合成(株)製、商品名)、及びOXT-221(東亞合成(株)製、商品名)等が挙げられる。これらのオキセタン樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0218】
樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、オキセタン樹脂の含有量は、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、0.01~40質量部である。
【0219】
<ベンゾオキサジン化合物>
ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができる。例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学工業(株)製、商品名)、ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学工業(株)製、商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学工業(株)製、商品名)、及びフェノールフタレイン型ベンゾオキサジン等が挙げられる。これらのベンゾオキサジン化合物は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0220】
樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、ベンゾオキサジン化合物の含有量は、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、0.01~40質量部である。
【0221】
<エポキシ樹脂>
エポキシ樹脂としては、特に限定されず、一般に公知のものを使用できる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジエン等の二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、及びこれらのハロゲン化物が挙げられる。これらのエポキシ樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0222】
エポキシ樹脂としては、市販品を利用することができ、例えば、式(31)で表されるエポキシ樹脂(日本化薬(株)製NC-3000FH(商品名)、式(31)中、n5は約4である)、及び式(32)で表されるナフタレン型エポキシ樹脂(DIC(株)製HP-4710(商品名))が挙げられる。
【0223】
【0224】
【0225】
これらのエポキシ樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0226】
樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、エポキシ樹脂の含有量は、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、0.01~40質量部である。
【0227】
<その他の化合物>
その他の化合物としては、エチルビニルエーテル、プロピルビニルエーテル、ヒドロキシエチルビニルエーテル、及びエチレングリコールジビニルエーテル等のビニルエーテル類;スチレン、メチルスチレン、エチルスチレン、及びジビニルベンゼン等のスチレン類;トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、及びビスアリルナジイミド等が挙げられる。これらの化合物は、1種単独又は2種以上を適宜混合して使用することも可能である。
樹脂組成物において、ビスマレイミド化合物(B)と、マレイミド化合物(C)を含む場合には、その他の化合物の含有量は、ビスマレイミド化合物(B)及びマレイミド化合物(C)の合計100質量部に対して、0.01~40質量部である。
【0228】
〔有機溶剤〕
本実施形態の樹脂組成物には、必要に応じて、有機溶剤を含有していてもよい。有機溶剤を用いると、樹脂組成物の調製時における粘度を調整することができる。有機溶剤の種類は、樹脂組成物中の樹脂の一部又は全部を溶解可能なものであれば、特に限定されない。有機溶剤としては、例えば、ジクロロメタン、クロロホルム、ジクロロエタン、及びクロロベンゼン等のハロゲン溶媒;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、及びアセトニトリル等の非プロトン性極性溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、及びシクロヘキサノン等のケトン溶媒;2-エトキシエタノール、及びプロピレングリコールモノメチルエーテル等のセロソルブ溶媒;メタノール、エタノール、プロパノール、イソプロパノール、及びブタノール等の脂肪族アルコール溶媒;フェノール、及びクレゾール等の芳香族基含有フェノール溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル、γ-ブチロラクトン、及びプロピレングリコールモノメチルエーテルアセテート等のエステル溶媒;トルエン、及びキシレン等の芳香族炭化水素溶媒等が挙げられる。
【0229】
これらの中でも、化合物(A)と、更に、その他の樹脂及び化合物に対しても、優れた溶解性を発現する観点から、メチルエチルケトン、プロピレングリコールモノメチルエーテルアセテート、及びジメチルアセトアミドが好ましい。これらの有機溶剤は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0230】
〔その他の成分〕
本実施形態の樹脂組成物には、本実施形態の特性が損なわれない範囲において、これまでに挙げられていない熱硬化性樹脂、熱可塑性樹脂、及びそのオリゴマー、並びにエラストマー類等の種々の高分子化合物;これまでに挙げられていない難燃性の化合物;添加剤等の併用も可能である。これらは一般に使用されているものであれば、特に限定されない。例えば、難燃性の化合物では、メラミンやベンゾグアナミン等の窒素含有化合物、オキサジン環含有化合物;リン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、及び含ハロゲン縮合リン酸エステル等のリン系化合物が挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、重合禁止剤、及び熱硬化促進剤等が挙げられる。これらの成分は、1種単独又は2種以上を適宜混合して使用することも可能である。
樹脂組成物において、その他の成分の含有量は、通常、樹脂組成物中の樹脂固形分100質量部に対して、それぞれ0.1~10質量部である。
【0231】
〔樹脂組成物及びワニスの製造方法〕
本実施形態の樹脂組成物は、化合物(A)、必要に応じて、ビスマレイミド化合物(B)、マレイミド化合物(C)、光硬化開始剤(D)、マレイミド化合物(E)、充填材(F)、及びその他の樹脂、その他の化合物、並びに添加剤等を適宜混合することにより調製することができる。樹脂組成物の製造方法は、例えば、前記した各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。
【0232】
樹脂組成物の製造時には、必要に応じて、各成分を均一に溶解又は分散させるための公知の処理(攪拌、混合、及び混練処理等)を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことにより、樹脂組成物における、化合物(A)など各成分の分散性を向上させることができる。攪拌、混合、及び混練処理は、例えば、超音波ホモジナイザー等の分散を目的とした攪拌装置、三本ロール、ボールミル、ビーズミル、及びサンドミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。また、樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されず、その具体例は、前記したとおりである。
【0233】
樹脂組成物は、後述する本実施形態の樹脂シートを作製する際のワニスとして、好適に使用することができる。ワニスは、公知の方法により得ることができる。例えば、ワニスは、樹脂組成物中の有機溶媒を除く成分100質量部に対して、有機溶剤を10~900質量部、好ましくは30~500質量部加えて、前記の公知の処理(攪拌、混合、及び混練処理等)を行うことで得ることができる。なお、ワニスの調製に使用する有機溶媒は、特に限定されず、その具体例は、前記したとおりである。
【0234】
[用途]
本実施形態の樹脂組成物は、多層プリント配線板の作製に好適に用いることができ、絶縁性の樹脂組成物が必要とされる用途に好ましく使用することができる。例えば、感光性フィルム、支持体付き感光性フィルム、プリプレグ、樹脂シート、回路基板(積層板用途、多層プリント配線板用途等)、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、及び部品埋め込み樹脂等に使用することができる。それらの中でも、樹脂組成物は、光硬化性及びアルカリ現像性に優れるため、多層プリント配線板の絶縁層用として、又はソルダーレジスト用として好適に使用することができる。
【0235】
[硬化物]
硬化物は、樹脂組成物を硬化させて得られる。硬化物は、例えば、樹脂組成物を溶融又は溶媒に溶解させた後、型内に流し込み、光を用いて通常の条件で硬化させることにより得ることができる。光の波長領域は、光重合開始剤等により効率的に硬化が進む100~500nmの範囲で硬化させることが好ましい。
【0236】
[樹脂シート]
本実施形態の樹脂シートは、支持体と、支持体の片面又は両面に配された樹脂層と、を有し、樹脂層が、本実施形態の樹脂組成物を含む、支持体付き樹脂シートである。樹脂シートは、樹脂組成物を支持体上に塗布、及び乾燥して製造することができる。樹脂シートにおける樹脂層は、優れた光硬化性及びアルカリ現像性を有する。
【0237】
支持体は、公知のものを使用することができ、特に限定されないが、樹脂フィルムであることが好ましい。樹脂フィルムとしては、例えば、ポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、ポリエチレンナフタレートフィルム、ポリビニルアルコールフィルム、及びトリアセチルアセテートフィルム等が挙げられる。それらの中でも、PETフィルムが好ましい。
【0238】
樹脂フィルムは、樹脂層からの剥離を容易にするため、剥離剤を表面に塗布してあることが好ましい。樹脂フィルムの厚さは、5~100μmの範囲であることが好ましく、10~50μmの範囲であることがより好ましい。この厚さが5μm未満では、アルカリ現像前に行う支持体剥離の際に支持体が破れやすくなる傾向があり、厚さが100μmを超えると、支持体上から露光する際の解像度が低下する傾向がある。
【0239】
また、露光時の光の散乱を低減するため、樹脂フィルムは透明性に優れるものが好ましい。
【0240】
さらに、樹脂シートにおいて、その樹脂層は、保護フィルムで保護されていてもよい。
樹脂層側を保護フィルムで保護することにより、樹脂層表面へのゴミ等の付着やキズを防止することができる。保護フィルムとしては、樹脂フィルムと同様の材料により構成されたフィルムを用いることができる。保護フィルムの厚さは、1~50μmの範囲であることが好ましく、5~40μmの範囲であることがより好ましい。厚さが1μm未満では、保護フィルムの取り扱い性が低下する傾向にあり、50μmを超えると廉価性に劣る傾向にある。なお、保護フィルムは、樹脂層と支持体との接着力に対して、樹脂層と保護フィルムとの接着力の方が小さいものが好ましい。
【0241】
樹脂シートの製造方法は、例えば、樹脂組成物をPETフィルム等の支持体に塗布して、乾燥することにより有機溶剤を除去することで、樹脂シートを製造する方法等が挙げられる。
塗布方法は、例えば、ロールコーター、コンマコーター、グラビアコーター、ダイコーター、バーコーター、リップコーター、ナイフコーター、及びスクイズコーター等を用いた公知の方法で行うことができる。乾燥は、例えば、60~200℃の乾燥機中で、1~60分加熱させる方法等により行うことができる。
【0242】
樹脂層中に残存する有機溶剤量は、後の工程での有機溶剤の拡散を防止する観点から、樹脂層の総質量に対して5質量%以下とすることが好ましい。樹脂層の厚さは、取り扱い性を向上させるという観点から、1~50μmとすることが好ましい。
【0243】
樹脂シートは、多層プリント配線板の絶縁層の製造用として好ましく使用することができる。
【0244】
[多層プリント配線板]
本実施形態の多層プリント配線板は、絶縁層と、絶縁層の片面又は両面に形成された導体層とを有し、絶縁層が、本実施形態の樹脂組成物を含む。絶縁層は、例えば、樹脂シートを1枚以上重ねて硬化して得ることもできる。絶縁層と導体層のそれぞれの積層数は、目的とする用途に応じて適宜積層数を設定することができる。また、絶縁層と導体層の順番も特に限定されない。導体層としては、各種プリント配線板材料に用いられる金属箔であってもよく、例えば、銅、及びアルミニウム等の金属箔が挙げられる。銅の金属箔としては、圧延銅箔、及び電解銅箔等の銅箔が挙げられる。導体層の厚みは、通常、1~100μmである。具体的には、以下の方法により製造することができる。
【0245】
(ラミネート工程)
ラミネート工程では、樹脂シートの樹脂層側を、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板としては、例えば、ガラスエポキシ基板、金属基板、セラミック基板、シリコン基板、半導体封止樹脂基板、ポリエステル基板、ポリイミド基板、BTレジン基板、及び熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、回路基板とは、前記のような基板の片面又は両面にパターン加工された導体層(回路)が形成された基板をいう。また、導体層と絶縁層とを交互に積層してなる多層プリント配線板において、多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっている基板も回路基板に含まれる。なお、多層プリント配線板に積層されている絶縁層は、本実施形態の樹脂シートを1枚以上重ねて硬化して得られた絶縁層であってもよく、本実施形態の樹脂シートと、本実施形態の樹脂シートと異なる公知の樹脂シートとをそれぞれ1枚以上重ねて得られた絶縁層であってもよい。なお、本実施形態の樹脂シートと、本実施形態の樹脂シートと異なる公知の樹脂シートとの重ね方は、特に限定されない。導体層表面には、黒化処理、及び/又は銅エッチング等により予め粗化処理が施されていてもよい。ラミネート工程において、樹脂シートが保護フィルムを有している場合には、保護フィルムを剥離除去した後、必要に応じて樹脂シート及び回路基板をプレヒートし、樹脂シートの樹脂層を加圧及び加熱しながら回路基板に圧着する。本実施形態においては、真空ラミネート法により減圧下で回路基板に樹脂シートの樹脂層をラミネートする方法が好適に用いられる。
【0246】
ラミネート工程の条件は、例えば、圧着温度(ラミネート温度)を50~140℃とし、圧着圧力を1~15kgf/cm2とし、圧着時間を5~300秒間とし、空気圧を20mmHg以下とする減圧下でラミネートすることが好ましい。また、ラミネート工程は、バッチ式であってもロールを用いる連続式であってもよい。真空ラミネート法は、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニッコー・マテリアルズ(株)製2ステージビルドアップラミネーター等を挙げることができる。
【0247】
(露光工程)
露光工程では、ラミネート工程により、回路基板上に樹脂層が設けられた後、樹脂層の所定部分に光源として、活性エネルギー線を照射し、照射部の樹脂層を硬化させる。化合物(A)は、露光工程において、光硬化反応を阻害しない。
照射は、マスクパターンを通してもよいし、直接照射する直接描画法を用いてもよい。活性エネルギー線としては、例えば、紫外線、可視光線、電子線、及びX線等が挙げられる。活性エネルギー線の波長としては、例えば、200~600nmの範囲である。紫外線を用いる場合、その照射量はおおむね10~1000mJ/cm2である。また、ステッパー露光法を用いて高密度で高精細な配線形成(パターン)を有するプリント配線板を製造するに際しては、活性エネルギー線として、例えば、波長365nm(i線)を含む活性エネルギー線を用いることが好ましい。波長365nm(i線)を含む活性エネルギー線を用いた場合、その照射量は、おおむね10~10,000mJ/cm2である。直接描画露光法を用いて高密度で高精細な配線形成(パターン)を有するプリント配線板を製造するに際しては、活性エネルギー線として、例えば、波長405nm(h線)を含む活性エネルギー線を用いることが好ましい。波長405nm(h線)を含む活性エネルギー線を用いた場合、その照射量は、おおむね10~10,000mJ/cm2である。
マスクパターンを通す露光方法には、マスクパターンを多層プリント配線板に密着させて行う接触露光法と、密着させずに平行光線を使用して露光する非接触露光法とがあるが、どちらを用いてもかまわない。また、樹脂層上に支持体が存在している場合は、支持体上から露光してもよいし、支持体を剥離後に露光してもよい。
【0248】
(アルカリ現像工程)
樹脂層上に支持体が存在していない場合には、露光工程後、直接アルカリ現像にて光硬化されていない部分(未露光部)を除去し、現像することにより、絶縁層のパターンを形成することができる。
また、樹脂層上に支持体が存在している場合には、露光工程後、その支持体を除去した後に、アルカリ現像にて光硬化されていない部分(未露光部)を除去し、現像することにより、絶縁層のパターンを形成することができる。
本実施形態の樹脂組成物を含む未露光の樹脂層は、化合物(A)が含まれているため、優れたアルカリ現像性を有し、速やかに未露光の樹脂組成物を除去することができる。そのため、高精細なパターンを有するプリント配線板を得ることができる。
【0249】
アルカリ現像の場合、現像液としては、未露光部分を選択的に溶出するものであれば、特に限定されないが、水酸化テトラメチルアンモニウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、水酸化ナトリウム水溶液、及び水酸化カリウム水溶液等のアルカリ現像液が用いられる。本実施形態においては、水酸化テトラメチルアンモニウム水溶液を用いることがより好ましい。これらのアルカリ現像液は、1種単独又は2種以上を適宜混合して使用することも可能である。
【0250】
また、アルカリ現像方法としては、例えば、ディップ、パドル、スプレー、揺動浸漬、ブラッシング、及びスクラッピング等の公知の方法で行うことができる。パターン形成においては、必要に応じて、これらの現像方法を併用して用いてもよい。また、現像方法としては、高圧スプレーを用いることが、解像度がより向上するため、好適である。スプレー方式を採用する場合のスプレー圧としては、0.02~0.5MPaが好ましい。
【0251】
(ポストベーク工程)
本実施形態では、アルカリ現像工程終了後、ポストベーク工程を行い、絶縁層(硬化物)を形成する。ポストベーク工程としては、高圧水銀ランプによる紫外線照射工程やクリーンオーブンを用いた加熱工程等が挙げられ、これらを併用することも可能である。紫外線を照射する場合は、必要に応じてその照射量を調整することができ、例えば、0.05~10J/cm2程度の照射量で照射を行うことができる。また加熱の条件は、必要に応じて適宜選択できるが、好ましくは150~220℃で20~180分間の範囲、より好ましくは160~200℃で30~150分間の範囲で選択される。
【0252】
(導体層形成工程)
絶縁層(硬化物)を形成後、乾式めっきにより絶縁層表面に導体層を形成する。
なお、導体層の形成に際して、乾式めっき前に、絶縁層表面に対して、表面改質処理を行ってもよい。表面改質処理としては、プラズマエッチング処理、逆スパッタ処理、及びコロナ処理等の公知の方法を使用することができる。
乾式めっきとしては、蒸着法、スパッタリング法、及びイオンプレーティング法等の公知の方法を使用することができる。蒸着法(真空蒸着法)は、例えば、多層プリント配線板を真空容器内に入れ、金属を加熱蒸発させることにより、絶縁層上に金属膜を形成することができる。スパッタリング法も、例えば、多層プリント配線板を真空容器内に入れ、アルゴン等の不活性ガスを導入し、直流電圧を印加して、イオン化した不活性ガスをターゲット金属に衝突させ、叩き出された金属により絶縁層上に金属膜を形成することができる。
【0253】
次いで、無電解めっきや電解めっきなどによって導体層を形成する。その後のパターン形成の方法としては、例えば、サブトラクティブ法、セミアディティブ法等を用いることができる。
【0254】
[半導体装置]
本実施形態の半導体装置は、本実施形態の樹脂組成物を含む。具体的には、以下の方法により製造することができる。多層プリント配線板の導通箇所に、半導体チップを実装することにより半導体装置を製造することができる。ここで、導通箇所とは、多層プリント配線板における電気信号を伝える箇所のことであって、その場所は表面であっても、埋め込まれた箇所であってもよい。また、半導体チップは、半導体を材料とする電気回路素子であれば特に限定されない。
【0255】
半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能すれば、特に限定されない。具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、及び非導電性フィルム(NCF)による実装方法等が挙げられる。
【0256】
また、半導体チップや半導体チップを搭載してある基板に樹脂組成物を含む絶縁層を形成することによっても、半導体装置を製造することができる。半導体チップを搭載してある基板の形状はウェハ状でもパネル状でも良い。形成後は前記の多層プリント配線板と同様の方法を用いて製造することができる。
【実施例】
【0257】
以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。
【0258】
〔マレイミド化合物(TMDM)の合成〕
[合成例1]
次のようにして、式(21)で表される化合物(TMDM)を合成した。
〔アミド酸化合物(以下、MA-TMDAと略記する。)の合成〕
まず、式(33)で表されるMA-TMDAを下記の方法にて合成した。
【0259】
【0260】
アルゴンの吹込み口、ディーンスターク装置、ジムロート冷却管、及び温度計を備えた100mL四ツ口フラスコに、無水マレイン酸5.2g(53mmol)と、N-メチルピロリドン(NMP)20mLと、トルエン20mLとを加え、アルゴン気流下で室温(25℃)にて攪拌して無水マレイン酸を完全に溶解させた。この溶液にTMDA(日本純良薬品(株)製、5-アミノ-1,3,3-トリメチル-1-(4-アミノフェニル)-インダンと、6-アミノ-1,3,3-トリメチル-1-(4-アミノフェニル)-インダンの混合物)5.0g(19mmol)と、NMP10mLとを加え、室温(25℃)で17時間攪拌した。
反応溶液を一部分取し、水と、酢酸エチルとを加えて振盪した。その後、有機層を取り出して、硫酸マグネシウムで乾燥した。上澄みを40℃で溶媒留去し、黄色オイルを得た。
1H-NMR測定を行い、式(33)で表されるMA-TMDAであることを確認した。
式(33)で表されるMA-TMDAの
1H-NMRの帰属を以下に示す。また、
1H-NMRチャートを
図1に示す。
【0261】
1H-NMR(300MHz、DMSO-d6)δ(ppm):10.40(m、2H、-COOH)、7.30(m、7H、ArH)、6.33(m、4H、=CH-)、2.11(m、2H、-CH2-)、1.48(d、3H、-CH3)、1.21(d、3H、-CH3)、0.92(d、3H、-CH3)
【0262】
〔TMDMの合成〕
前記の反応溶液に、p-トルエンスルホン酸一水和物0.67g(3.5mmol)を加え、127℃で2.5時間加熱還流した。室温(25℃)まで冷却した後、冷却後の反応溶液を、飽和炭酸水素ナトリウム水溶液50mLと、酢酸エチル100mLとの混合溶液に攪拌しながら注いだ。更に、水100mLと、酢酸エチル100mLとを加えて撹拌し、5分間静置した。その後、分液し、水層を酢酸エチル50mLで3回抽出した。有機層を全て合わせて、水100mLで1回、飽和食塩水10mLで1回、飽和食塩水5mLで2回洗浄した。硫酸マグネシウムで乾燥して、固体分を濾別した後、40℃で溶媒留去し、黄色固体を得た。
得られた黄色固体をアセトン6.5mLに溶解させ、アセトン溶液を水300mLに注いだ。析出した固体をろ取し、少量のイソプロピルアルコール(IPA)で洗浄した後、50℃で20時間減圧乾燥して黄色固体5.71質量部を得た。
1H-NMR測定を行い、式(21)で表されるマレイミド化合物(TMDM)であること確認した。
TMDMの
1H-NMRの帰属を以下に示す。また、
1H-NMRチャートを
図2に示す。
【0263】
1H-NMR(300MHz、DMSO-d6)δ(ppm):7.19(m、11H、ArH、-CH=CH-)、2.42(m、2H、-CH2-)、1.66(d、3H、-CH3)、1.32(d、3H、-CH3)、1.00(d、3H、-CH3)
【0264】
〔式(16)で表される化合物の合成〕
[実施例1]
次のようにして、式(16)で表される化合物(化合物(A-1)とも称す)を合成した。
200mLのフラスコに、1,10-デカンジオール(東京化成工業(株)製)6.56g(55.5mmol)と、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学(株)製、H-TMAn(商品名))23.10g(116.6mmol)と、4-ジメチルアミノピリジン6.77g(55.5mmol)と、トリエチルアミン12.35gと、ジクロロメタン60gとを加え、室温(25℃)で7時間攪拌した。
反応溶液に、水100mLと、ジクロロメタン50mLとを加えて、更に1時間攪拌した。更にジクロロメタン150mLと、1M塩酸50mLとを加えて分液し、水層を除いた。得られた有機層に、1M塩酸60mLを加え、攪拌した。分液して水層を除いた後、1M塩酸60mLで2回、水60mLで1回、飽和食塩水30mLで1回洗浄した後、硫酸マグネシウムで乾燥して溶媒留去した。80℃で真空乾燥することで白色固体10.96gを得た。
1H-NMR測定を行い、式(16)で表される化合物(A-1)であることを確認した。
化合物(A-1)の
1H-NMRの帰属を以下に示す。また、
1H-NMRチャートを
図3に示す。
【0265】
1H-NMR(500MHz、DMSO-d6)δ(ppm):12.30(s、4H、-COOH)、3.97(m、4H)、3.05(s、2H)、2.57(m、2H)、2.3-1.1(m、32H)
【0266】
〔式(17)で表される化合物の合成〕
[実施例2]
次のようにして、式(17)で表される化合物(化合物(A-2)とも称す)を合成した。
200mLのフラスコに、1,10-デカンジオール(東京化成工業(株)製)8.71g(50mmol)と、シス,シス-シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学(株)製、H-TMAn-S(商品名))20.81g(105mmol)と、4-ジメチルアミノピリジン6.10g(50mmol)と、トリエチルアミン11.13gと、ジクロロメタン60gとを加え、室温(25℃)で3時間攪拌した。
反応溶液に、水50mLと、メタノール6mLとを加えて、更に1時間攪拌した。1M塩酸100mLを加えて撹拌し、水層を除いた後に、更に1M塩酸100mLを加えて攪拌した。再度、水層を除き、1M塩酸100mLを加え、析出した白色固体を吸引ろ過で回収し、水200mLで3回洗浄した。40℃で真空乾燥することで白色固体18.84gを得た。
1H-NMR測定を行い、式(17)で表される化合物(A-2)であることを確認した。
化合物(A-2)の
1H-NMRの帰属を以下に示す。また、
1H-NMRチャートを
図4に示す。
【0267】
1H-NMR(500MHz、DMSO-d6)δ(ppm):12.23(s、4H、-COOH)、3.97(m、4H)、3.05(m、2H)、2.57(m、2H)、2.3-1.1(m、32H)
【0268】
〔式(18)で表される化合物の合成〕
[実施例3]
次のようにして、式(18)で表される化合物(化合物(A-3)とも称す)を合成した。
200mLのフラスコに、1,6-ヘキサンジオール(東京化成工業(株)製)5.91g(50mmol)と、シス,シス-シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学(株)製、H-TMAn-S(商品名))20.81g(105mmol)と、4-ジメチルアミノピリジン6.10g(50mmol)と、トリエチルアミン11.13gと、ジクロロメタン60gとを加え、室温(25℃)で8時間攪拌した。
反応溶液に、水50mLを加えて更に1時間攪拌した後、1M塩酸50mLを加えた。メチルイソブチルケトン100mLと、1M塩酸100mLとを加えて分液し、水層を除いた。得られた有機層に、1M塩酸200mLを加え、析出した白色固体を吸引ろ過で回収した。回収した固体を、1M塩酸70mLで2回、水100mLで2回洗浄し、50℃で真空乾燥することで白色固体18.40gを得た。
1H-NMR測定を行い、式(18)で表される化合物(A-3)であることを確認した。
化合物(A-3)の
1H-NMRの帰属を以下に示す。また、
1H-NMRチャートを
図5に示す。
【0269】
1H-NMR(500MHz、DMSO-d6)δ(ppm):12.24(s、4H、-COOH)、3.98(m、4H)、3.05(m、2H)、2.57(m、2H)、2.3-1.1(m、22H)
【0270】
[原料の評価]
〔透過率、及び吸光度〕
化合物(A)として、化合物(A-1)を用いて、この化合物(A-1)が1質量%で含まれるN-メチルピロリドン溶液を調製し、UV-vis測定装置((株)日立ハイテクノロジーズ製日立分光光度計 U-4100)を用いて、波長365nm、及び405nmにおけるそれぞれの透過率の測定を行った。
同様に、化合物(A)として、化合物(A-2)又は化合物(A-3)を用いて、波長365nm、及び405nmにおけるそれぞれの吸光度の測定を行った。
【0271】
ビスマレイミド化合物(B)として、日本化薬(株)製MIZ-001(商品名、質量平均分子量(Mw):3000)を用いて、このMIZ-001(商品名)が1質量%で含まれるクロロホルム溶液を調製し、UV-vis測定装置((株)日立ハイテクノロジーズ製日立分光光度計 U-4100(商品名))を用いて、波長365nm、及び405nmにおけるそれぞれの透過率の測定を行った。
【0272】
光硬化開始剤(D)として、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IGM Resins B.V.社製Omnirad(登録商標)819(商品名))を用いて、このOmnirad(登録商標)819(商品名)が0.01質量%で含まれるクロロホルム溶液を調製し、UV-vis測定装置(U-4100(商品名))を用いて、波長365nm、及び405nmにおけるそれぞれの吸光度の測定を行った。
結果を表1に示す。
【0273】
【0274】
[実施例4]
(樹脂組成物及び樹脂シートの作製)
化合物(A)として、化合物(A-1)を10質量部と、ビスマレイミド化合物(B)として、日本化薬(株)製MIZ-001(商品名、質量平均分子量(Mw):3000)60質量部と、マレイミド化合物(C)として、群栄化学工業(株)製BCPH13(商品名)25質量部と、マレイミド化合物(C)として、TMDM15質量部と、光硬化開始剤(D)として、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IGM Resins B.V.社製Omnirad(登録商標)819(商品名))5質量部とを混合し、メチルエチルケトン(出光興産(株)製)172.5質量部を加えて、70℃湯浴を用いて加熱攪拌してワニス(樹脂組成物)を得た。このワニスを厚さ38μmのPETフィルム(ユニチカ(株)製ユニピール(登録商標)TR1-38(商品名))上に滴下し、スピンコート(300rpmで10秒間、その後1000rpmで30秒間)により塗膜を形成した。得られた塗膜を90℃で5分間乾燥して、PETフィルムを支持体とし樹脂層の厚さが10μmである樹脂シートを得た。
【0275】
(評価用樹脂の作製)
得られた樹脂シートの樹脂面を張り合わせ、真空ラミネーター(ニッコー・マテリアルズ(株)製)を用いて、30秒間真空引き(5.0hPa以下)を行った後、圧力10kgf/cm2、温度70℃で30秒間の積層成形を行った。さらに圧力7kgf/cm2、温度70℃で60秒間の積層成形を行うことで、両面に支持体を有する評価用樹脂を得た。
【0276】
(内層回路基板の作成)
内層回路を形成したガラス布基材BT(ビスマレイミド・トリアジン)樹脂両面銅張積層板(銅箔厚さ18μm、厚み0.2mm、三菱ガス化学(株)製CCL(登録商標)-HL832NS(商品名))の両面をメック(株)製CZ8100(商品名)にて銅表面の粗化処理を行い、内層回路基板を得た。
【0277】
(評価用積層体の作製)
得られた樹脂シートの樹脂面を、前記内層回路基板の銅表面(片面)上に配置し、真空ラミネーター(ニッコー・マテリアルズ(株)製)を用いて、30秒間真空引き(5.0hPa以下)を行った後、圧力10kgf/cm2、温度70℃で30秒間の積層成形を行った。さらに圧力10kgf/cm2、温度70℃で60秒間の積層成形を行うことで内層回路基板と樹脂層と支持体が積層された評価用積層体を得た。
【0278】
[実施例5]
化合物(A-1)10質量部を化合物(A-1)7.5質量部用い、メチルエチルケトン172.5質量部をメチルエチルケトン168.8質量部用いた以外は、実施例4と同様にして、ワニス及び樹脂シートを得た。また、樹脂シートを用いて、実施例4と同様にして、評価用樹脂及び評価用積層体を得た。
【0279】
[実施例6]
化合物(A)として、化合物(A-1)10質量部の代わりに、化合物(A-2)7.5質量部を用い、メチルエチルケトン172.5質量部をメチルエチルケトン168.8質量部用いた以外は、実施例4と同様にして、ワニス及び樹脂シートを得た。また、樹脂シートを用いて、実施例4と同様にして、評価用樹脂及び評価用積層体を得た。
【0280】
[実施例7]
化合物(A)として、化合物(A-1)10質量部の代わりに、化合物(A-2)5質量部を用い、メチルエチルケトン172.5質量部をメチルエチルケトン165.0質量部用いた以外は、実施例4と同様にして、ワニス及び樹脂シートを得た。また、樹脂シートを用いて、実施例4と同様にして、評価用樹脂及び評価用積層体を得た。
【0281】
[実施例8]
化合物(A)として、化合物(A-1)10質量部の代わりに、化合物(A-3)7.5質量部を用い、メチルエチルケトン172.5質量部をメチルエチルケトン168.8質量部用いた以外は、実施例4と同様にして、ワニス及び樹脂シートを得た。また、樹脂シートを用いて、実施例4と同様にして、評価用樹脂及び評価用積層体を得た。
【0282】
[実施例9]
化合物(A)として、化合物(A-1)10質量部の代わりに、化合物(A-3)5質量部を用い、メチルエチルケトン172.5質量部をメチルエチルケトン165.0質量部用いた以外は、実施例4と同様にして、ワニス及び樹脂シートを得た。また、樹脂シートを用いて、実施例4と同様にして、評価用樹脂及び評価用積層体を得た。
【0283】
[比較例1]
化合物(A-1)10質量部の代わりに、1,10-デカンジオール(東京化成工業(株)製)10質量部用いた以外は、実施例4と同様にして、ワニス及び樹脂シートを得た。また、樹脂シートを用いて、実施例4と同様にして、評価用樹脂及び評価用積層体を得た。
【0284】
[比較例2]
化合物(A-1)10質量部の代わりに、1,6-ヘキサンジオール(東京化成工業(株)製)10質量部用いた以外は、実施例4と同様にして、ワニス及び樹脂シートを得た。また、樹脂シートを用いて、実施例4と同様にして、評価用樹脂及び評価用積層体を得た。
【0285】
〔評価〕
実施例及び比較例で得られた評価用樹脂、及び評価用積層体を、以下の方法により測定し、評価した。それらの結果を表2及び
図6に示す。
<光硬化性>
波長200~600nmを含む活性エネルギー線を照射可能な光源(ユーヴィックス(株)製Omnicure(登録商標)S2000(商品名))を付属したフォトDSC(ティー・エイ・インスツルメント・ジャパン(株)製DSC-2500(商標名))を用い、得られた評価用樹脂に、波長200~600nmを含む活性エネルギー線を、照度30mW、露光時間3.5分間照射して、横軸が時間(sec)、縦軸がヒートフロー(mW)のグラフを得た。
また、光源として、波長405nm(h線)フィルターを用いて、波長405nm(h線)を含む活性エネルギー線を用いたこと以外は、前記と同様の条件により、横軸が時間(sec)、縦軸がヒートフロー(mW)のグラフを得た。
それぞれのグラフにおいて、グラフの終点から、水平に線を引いた際のピーク面積をエンタルピー(J/g)とした。硬化性は、以下の基準に従って評価した。
「AA」:エンタルピーが1(J/g)以上であった。
「CC」:エンタルピーが1(J/g)未満であった。
なお、エンタルピーが1(J/g)以上とは、所定の波長における露光により、樹脂の硬化が十分に進行することを意味した。
【0286】
<アルカリ現像性>
得られた評価用積層体に、波長405nm(h線)を含む活性エネルギー線を照射可能な光源(ミカサ(株)製MA-20(商品名))を用いて、支持体の上から、照射量300mJ/cm
2にて照射し、樹脂層の半分を露光し、残りを未露光とした。その後、支持体(PETフィルム)を剥離し、2.38%TMAH(水酸化テトラメチルアンモニウム)水溶液(現像液、(株)トクヤマ製)中で180秒間振とうした。アルカリ現像性は、以下の基準に従って目視にて評価した。
「AA」:露光部は不溶であったが、未露光部は180秒間の振とうで溶解した。
「AB」:露光部は不溶であった。未露光部は180秒間の振とうで一部溶解したが、一部が溶け残った。
「CC」:露光部及び未露光部共に不溶であった。
また、実施例4及び比較例1で得られたそれぞれの樹脂シートを用いて行ったアルカリ現像後の写真を
図5に示した。
【0287】
【0288】
表2から明らかなように、本実施形態によれば、405nm(h線)を含む活性エネルギー線、及び波長200~600nmを含む活性エネルギー線のいずれの光線で露光した場合においても良好に感光し、光硬化が可能である。また、本実施形態によれば、優れたアルカリ現像性を有する硬化物が得られる。
【0289】
本出願は、2019月12月11日出願の日本特許出願(特願2019-223952)に基づくものであり、その内容はここに参照として取り込まれる。
【産業上の利用可能性】
【0290】
本実施形態の樹脂組成物は、多層プリント配線板の作製に好適に用いることができ、絶縁性の樹脂組成物が必要とされる用途に好ましく使用することができるため、工業的に有用である。具体的には、感光性フィルム、支持体付き感光性フィルム、プリプレグ、樹脂シート、回路基板(積層板用途、多層プリント配線板用途等)、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、及び部品埋め込み樹脂等に使用することができる。