IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヴァレオ ビジョンの特許一覧

<>
  • 特許-自動車用の光システム 図1
  • 特許-自動車用の光システム 図2
  • 特許-自動車用の光システム 図3
  • 特許-自動車用の光システム 図4
  • 特許-自動車用の光システム 図5
  • 特許-自動車用の光システム 図6
  • 特許-自動車用の光システム 図7
  • 特許-自動車用の光システム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-04
(45)【発行日】2024-12-12
(54)【発明の名称】自動車用の光システム
(51)【国際特許分類】
   H05B 45/325 20200101AFI20241205BHJP
   H05B 45/44 20200101ALI20241205BHJP
【FI】
H05B45/325
H05B45/44
【請求項の数】 13
(21)【出願番号】P 2023530052
(86)(22)【出願日】2021-11-17
(65)【公表番号】
(43)【公表日】2023-12-01
(86)【国際出願番号】 EP2021082052
(87)【国際公開番号】W WO2022106498
(87)【国際公開日】2022-05-27
【審査請求日】2023-06-21
(31)【優先権主張番号】2011843
(32)【優先日】2020-11-18
(33)【優先権主張国・地域又は機関】FR
(73)【特許権者】
【識別番号】391011607
【氏名又は名称】ヴァレオ ビジョン
【氏名又は名称原語表記】VALEO VISION
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100217940
【弁理士】
【氏名又は名称】三並 大悟
(72)【発明者】
【氏名】ラビーフ、タレブ
(72)【発明者】
【氏名】ハフィド、エル、イドリッシ
【審査官】塩治 雅也
(56)【参考文献】
【文献】特開2020-095963(JP,A)
【文献】特開2016-164996(JP,A)
【文献】特開2020-009613(JP,A)
【文献】特開2015-149307(JP,A)
【文献】特表2015-510246(JP,A)
【文献】特開2019-059265(JP,A)
【文献】米国特許出願公開第2018/0242413(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H05B 39/00-39/10
H05B 45/00-45/59
H05B 47/00-47/29
(57)【特許請求の範囲】
【請求項1】
第1の光源(12.1)と、
第2の光源(12.2)と、
前記第1の光源(12.1)に電力供給するための第1のパルス幅変調電流(C1;C5)を供給するように構成された第1の制御ユニット(20.1;220.1)であって、前記第1のパルス幅変調電流(C1;C5)が、第1のピーク強度(Ic1;Ic5)および第1のデューティサイクルを有する、第1の制御ユニット(20.1;220.1)と、を備える、自動車用の発光システム(2;202)であって、
前記発光システム(2;202)が、
前記第2の光源(12.2)に電力供給するための第2のパルス幅変調電流(C2;C6)を供給するように構成された第2の制御ユニット(20.2;220.2)であって、前記第2のパルス幅変調電流(C2;C6)が、第2のピーク強度(Ic2;Ic6)および第2のデューティサイクルを有する、第2の制御ユニット(20.2;220.2)と、
前記第1の制御ユニット(20.1;220.1)および第2の制御ユニット(20.2;220.2)を制御するためのドライバ(30;230)と、をさらに備え、
前記発光システム(2;202)が、
前記第1のピーク強度(Ic1;Ic5)が前記第2のピーク強度(Ic2;Ic6)よりも大きいように構成されるとともに、
前記第1のデューティサイクルが前記第2のデューティサイクルよりも低いように構成され、
前記発光システム(2;202)が、前記第1の制御ユニットに第1の信号(S1;SP)を、前記第2の制御ユニットに第2の信号(S2;S5;S6)を送信することによって、前記第1の制御ユニット(20.1;220.1)および前記第2の制御ユニット(20.2;220.2)を制御するように構成されたドライバ(30;230)であって、前記第1の信号および第2の信号の各々が、少なくとも1つのパルス幅変調信号(PWM)を含む、ドライバ(30;230)をさらに備え、
前記ドライバ(30;230)が、前記第1の光源および前記第2の光源の前記パルス幅変調信号の利用可能な補正マージンに応じて前記第1および第2の信号を規定することを特徴とする、自動車用の発光システム(2;202)。
【請求項2】
前記第1のパルス幅変調電流(C1;C5)が第1の平均強度(Im1)を有し、前記第2のパルス幅変調電流(C2;C6)が前記第1の平均強度(Im1)よりも小さいかまたは等しい第2の平均強度(Im2)を有するように、前記発光システム(2;202)が構成されることを特徴とする、請求項1に記載の発光システム(2;202)。
【請求項3】
前記発光システムが、前記第1の光源(12.1)が第1の光束を生成するように構成されるとともに、前記第2の光源(12.2)が前記第1の光束よりも小さいかまたは等しい第2の光束を生成するように構成されることを特徴とする、請求項1または2に記載の発光システム(2;202)。
【請求項4】
前記発光システム(2;202)が、少なくとも2つのセット(E1;E2)に分割された複数の基本光源を備えるマトリックス光源であって、前記第1の光源(12.1;112.1)および前記第2の光源(12.2)が、それぞれ前記マトリックス光源(10;210)の1つの基本光源を形成し、2つの異なるセットに属する、マトリックス光源を備えることを特徴とする、請求項1から3のいずれか一項に記載の発光システム(2;202)。
【請求項5】
第1の光源(112.1)と、
前記第1の光源(112.1)の第1の制御ユニット(120.1;220.2)と、
前記第1の制御ユニット(120.1)を制御するためのドライバ(130;230)と、を備える、自動車用の発光システム(102;202)であって、
前記ドライバ(130;230)が、
第1のパルス幅変調電流(C3;C5)を供給する、前記第1の制御ユニット(120.1)への第1の制御信号(S3;S5)であって、前記第1のパルス幅変調電流(C3;C5)が、第1のピーク強度(Ic3;Ic5)および第1のデューティサイクルを有する、第1の制御信号(S3;S5)と、
第2のパルス幅変調電流(C4;C6)を供給する、前記第1の制御ユニット(120.1)への第2の制御信号(S4;S6)であって、前記第2のパルス幅変調電流(C4;C6)が、第2のピーク強度(Ic4;Ic6)および第2のデューティサイクルを有する、第2の制御信号(S4;S6)と、
を選択的に送信するように構成され、
前記発光システム(102;202)が、
前記第1のピーク強度(Ic3;Ic5)が前記第2のピーク強度(Ic4;Ic6)よりも大きいように構成されるとともに、
前記第1のデューティサイクルが前記第2のデューティサイクルよりも低いように構成される、ことを特徴とする、自動車用の発光システム(102;202)。
【請求項6】
前記第1のパルス幅変調電流(C3;C5)が、第1の平均強度(Im3)を有し、前記第2のパルス幅変調電流(C4;C6)が、前記第1の平均強度(Im1)に等しい第2の平均強度(Im4)を有することを特徴とする、請求項に記載の発光システム(102;202)。
【請求項7】
前記発光システム(102;202)が、前記第1の制御信号(S3;S5)を用いて前記第1の光源(112.1)が第1の光束を生成し、前記第2の制御信号(S4;S6)を用いて前記第1の光源(112.1)が前記第1の光束に等しい第2の光束を生成するように構成されることを特徴とする、請求項またはに記載の発光システム(102;202)。
【請求項8】
前記ドライバ(130;230)が、前記第1のデューティサイクルまたは第2のデューティサイクルがしきい値に達したときに、前記第1の制御信号(S3;S5)と前記第2の制御信号(S4;S6)との間で変化するように構成されることを特徴とする、請求項からのいずれか一項に記載の発光システム(102;202)。
【請求項9】
前記発光システム(102)が、複数の基本光源から構成されるマトリックス光源(110)であり、前記第1の光源(12.1;112.1)が、前記マトリックス光源(10;110;210)の1つの基本光源を形成する、マトリックス光源(110)を備えることを特徴とする、請求項からのいずれか一項に記載の発光システム(102)。
【請求項10】
前記ドライバ(130)が、前記マトリックス光源の前記基本光源の各々の前記第1のデューティサイクルの利用可能な補正マージンに応じて前記第2の制御信号(S6)を規定し、前記利用可能な補正マージンが、前記しきい値と前記基本光源の各々の前記第1のデューティサイクルの値との間の差であることを特徴とする、請求項に従属する請求項に記載の発光システム(102)。
【請求項11】
前記第1のピーク強度(Ic1;Ic3;Ic5)が、前記第2のピーク強度(Ic2;Ic4;Ic6)の2倍よりも大きいかまたは等しく、前記第2のデューティサイクルが、前記第1のデューティサイクルの2倍よりも大きいかまたは等しいことを特徴とする、請求項1から1のいずれか一項に記載の発光システム(2;102;202)。
【請求項12】
前記発光システム(2;102;202)が、第3の光源および第4の光源をさらに備え、前記第1の光源(12.1;112.1)が、前記第3および第4の光源の間に配置され、前記第1から前記第4の光源が、光度のグラデーションを出射することを特徴とする、請求項1から1のいずれか一項に記載の発光システム(2;102;202)。
【請求項13】
発光システム(2;102;202)を備える自動車用の照明デバイスであって、前記発光システム(2;102;202)が、請求項1から1のいずれか一項に記載のものであるとともに、前記照明デバイスが、前記第1の光源(12.1;112.1)と熱的に相互作用する冷却手段を備えることを特徴とする、自動車用の照明デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パルス幅変調電流の供給によって光出射モジュールに電力供給する分野に関する。より正確には、本発明は、LED(光出射ダイオード)を形成するエレクトロルミネッセンス半導体素子を採用するマトリックス光源をもつ発光システムを提供する。
【背景技術】
【0002】
様々な車両照明機能を実行するために、光出射ダイオード(LED)など、半導体素子を採用する光源を使用することがますます一般的になりつつある。これらの機能は、例えば、昼間走行灯、位置標示灯、方向指示器またはロービーム灯を含み得る。これらの小型、高輝度、低電力の光源の使用はまた、コンパクトな低電力システムを使用して新たな発光形状が作り出されることを可能にする。一般に、多数の個々に駆動される光出射ダイオードを含むマトリックスの形態を取る、ピクセル化された光源は、さらに、極めて多様な機能が作り出されることを可能にし、選定された駆動モードに応じて、マトリックス光源は、例として、道路上に形状または図形を投影するか、ハイビーム(HB)とロービーム(LB)との組合せを生成するか、または動的および指向性の光を与え得る。
【0003】
知られているように、所与の照明機能を実行するLEDのセットに電力を供給するために、電力供給制御ユニットが必要とされる。そのような制御ユニットは、一般に、バッテリなど、車両の内部にある電源によって送達されるDC入力電圧に基づいて、LEDのグループに電力供給するために好適である値を有する出力電圧を生成することが可能である、電圧変換器を備える。LEDは、少なくとも順方向電圧と呼ばれるしきい値に等しい電圧がその端子に印加されたときに光を出射する。このしきい値強度を超えると、LEDによって出射される光の量は、一般に、LEDを流れる電流の強度に依存する。LEDは、少なくともしきい値強度に等しい強度を有する電流に通過されたときに、光を出射する。しきい値電流値を上回ると、LEDによって出射される光束の明るさは、一般に、LEDを流れる電流の平均強度とともに増加する。既知の変換器は、SEPIC変換器(SEPICはシングルエンド1次インダクタ変換器を表す)、フライバック変換器、ブースト変換器またはバック変換器を含む。そのような変換器は、トランジスタなど、その状態が開値と閉値との間で周期的に切り替えられるスイッチング素子を伴う。スイッチに印加されるスイッチング周波数は出力電圧の値と出力電流の平均値とに影響を及ぼす。
【0004】
このようにして電力供給される光源の光度を、所与のデューティサイクルと所与のピーク強度とを有するPWM信号(PWMはパルス幅変調を表す)をスイッチモード変換器に印加することによって調整することは、さらに知られている慣行である。パルス幅変調信号の周波数、デューティサイクルおよびピーク強度を調整することによって、変換器から所定の平均電流強度が、このようにして得られ得る。このことは、電力供給される光源に関して、光束の明るさが光源の強度に比例して増加することを暗示している。そのようなアーキテクチャは、したがって、PWM信号のパラメータを変更することによって、光源によって出射される光束の明るさを減少させることを可能にする。PWM信号の周波数は一般に高いので、出射された光束は同じ周波数でパルス化されることになり、パルスは人間の眼にとって知覚できない。人間の視覚系による知覚は積分型であるので、一定のパルス化されていない光束と比較して、一定であるがより低い光度の光束を知覚する。
【0005】
自動車のヘッドランプごとに必要とされるLEDの数は増加しているが、各LEDによって出射される光束は、依然として個々に管理される必要がある。このことは、多数のPWM信号を生成する必要があることを暗示している。知られているように、各PWM信号は、自動車ヘッドランプの窮屈な環境中に組み込むことが困難であるマイクロコントローラコンポーネントによって生成される。
【0006】
様々なLED間で光束を変動させるには、異なる供給電流が生成される必要があり、その機能は制御ユニットによって実行される。一般に、ヘッドライトは、その制御ユニットのうちの少なくとも1つが最適な条件下で動作するように設計される。しかしながら、これらの条件は必ずしもすべての制御ユニットに当てはまるとは限らず、したがって、そのうちの1つは不利になり得、準最適な条件下で作動することが必要とされ得る。例えば、この他の制御ユニットは、その場合、例えば著しく熱くなることによって、高い損失を生成することになる。その上、半導体素子の接合部温度は、反復使用による熱劣化と同様に、LEDの光出射性能に影響を及ぼす。発光システムにおいて、温度管理は、したがって、耐用年数と出射される光束の品質とを保つために考慮に入れられなければならない要因である。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の1つの目的は、従来技術の問題のうちの少なくとも1つを緩和することである。より正確には、本発明の目的は、発光システムの耐用年数を増加させることである。
【課題を解決するための手段】
【0008】
本発明の第1の態様によれば、自動車発光システムが提供され、この発光システムは、第1の光源と、第2の光源と、第1の光源に電力供給するために第1のパルス幅変調電流を供給するように構成された第1の制御ユニットであり、前記第1の電流が、第1のピーク強度および第1のデューティサイクルを有する、第1の制御ユニットとを備え、発光システムが、第2の光源に電力供給するための第2のパルス幅変調電流を供給するように構成された第2の制御ユニットであり、前記第2の電流が、第2のピーク強度および第2のデューティサイクルを有する、第2の制御ユニットと、第1の制御ユニットおよび第2の制御ユニットを制御するためのドライバとをさらに備え、発光システムは、第1のピーク強度が第2のピーク強度よりも大きいように、および、第1のデューティサイクルが第2のデューティサイクルよりも低いように構成されることに注目すべきである。
【0009】
好ましくは、発光システムは、第1の電流が第1の平均強度を有し、第2の電流が第1の平均強度よりも小さいかまたは等しい第2の平均強度を有するように構成される。
【0010】
好ましくは、発光システムは、第1の光源が第1の光束を生成するように、および、第2の光源が第1の光束よりも小さいかまたは等しい第2の光束を生成するように構成される。
【0011】
好ましくは、発光システムは、第1の制御ユニットに第1の信号を、第2の制御ユニットに第2の信号を送信することによって、第1の制御ユニットおよび第2の制御ユニットを制御するように構成されたドライバをさらに備え、第1の信号および第2の信号の各々が、少なくとも1つのパルス幅変調信号を含む。さらに、ドライバは、第1の光源および第2の光源のパルス幅変調信号の利用可能な補正マージンに応じて第1および第2の信号を規定する。
【0012】
本文書において、補正マージンが意味することは、問題の光源のパルス幅変調信号の値とパルス幅変調信号のしきい値との間の差である。しきい値はパルス幅変調信号の最大値または事前規定された値であり得る。しきい値は、例えばドライバ中に記憶される。
【0013】
好ましくは、発光システムは、少なくとも2つのセットに分割された複数の基本光源を備えるマトリックス光源を備え、第1の光源および第2の光源は、それぞれマトリックス光源の1つの基本光源を形成し、2つの異なるセットに属する。
【0014】
この場合、特に動作の一例では、発光システムは、補正マージンが利用可能であるセットに送られる制御信号のみを変更する。例えば光源のパルス幅変調信号の値がしきい値にほぼ等しいかまたはそれよりもわずかに低いときなど、可能な補正マージンがない他のセットに関しては、制御信号は、同じままである。別の例では、他のセットは、第1のセットよりも低い補正マージンを有し得る。
【0015】
このようにして、発光システムは、制御ユニットのいずれも、高い熱損失による準最適な条件の下で動作しないことを保証する。さらに、ドライバは、必要とされる以上にストレスを受けない。提供する発光システムは、このようにして、光源のより長いオン時間による熱散逸を減少させながら、素子、特にドライバおよび制御ユニットの最適動作を可能にする。
【0016】
本発明の別の態様によれば、自動車発光システムが提供され、この発光システムは、第1の光源と、第1の光源の第1の制御ユニットと、第1の制御ユニットを制御するためのドライバとを備え、ドライバが、それが第1のパルス幅変調電流を供給するような、制御ユニットへの第1の制御信号であり、第1の電流が、第1のピーク強度および第1のデューティサイクルを有する、第1の制御信号と、それが第2のパルス幅変調電流を供給するような、第1の制御ユニットへの第2の制御信号であり、前記第2の電流が、第2のピーク強度および第2のデューティサイクルを有する、第2の制御信号とを選択的に送信するように構成され、発光システムは、第1のピーク強度が第2のピーク強度よりも大きいように、および、第1のデューティサイクルが第2のデューティサイクルよりも低いように構成されることに注目すべきである。
【0017】
好ましくは、第1の電流は、第1の平均強度を有し、第2の電流は、第1の平均強度に等しい第2の平均強度を有する。
【0018】
好ましくは、発光システムは、第1の制御信号を用いて第1の光源が第1の光束を生成し、第2の制御信号を用いて第1の光源が第1の光束に等しい第2の光束を生成するように構成される。
【0019】
好ましくは、ドライバは、第1のデューティサイクルまたは第2のデューティサイクルがしきい値に達したときに、第1の信号と第2の信号との間で変化するように構成される。
【0020】
好ましくは、発光システムは、複数の基本光源から構成されるマトリックス光源を備え、第1の光源は、前記マトリックス光源の1つの基本光源を形成する。
【0021】
好ましくは、ドライバは、マトリックス光源の基本光源の各々の第1のデューティサイクルの利用可能な補正マージンに応じて第2の制御信号を規定し、利用可能な補正マージンは、しきい値と基本光源の各々の第1のデューティサイクルの値との間の差である。
【0022】
利用可能なマージンの探索は、光源が光源のマトリックス中のそれらの位置に応じて異なる光度を出射する、自動車照明のために特に好適である。したがって、デューティサイクルマージンは基本光源ごとに異なる。一般に、マトリックスが単一の制御ユニットによって駆動されるとき、単一の信号を用いてすべての光源のピーク強度とデューティサイクルに対する比を適用するために、最も低いマージンが選定される。このようにして、すべての光源は、発光システム中の熱放散を減少させるために、光源のオン時間が延長され得る。さらに、選定されたマージンは、ドライバが妥当な値を使用して駆動することを可能にし、このことがこの素子の最適で耐久性のある動作を保証する。同じことが第1の制御ユニットに当てはまる。
【0023】
好ましくは、第1のピーク強度は、第2のピーク強度の2倍よりも大きいかまたは等しく、第2のデューティサイクルは、第1のデューティサイクルの2倍よりも大きいかまたは等しい。
【0024】
好ましくは、第2のデューティサイクルは、端を含む50%と100%との間に含まれる。
【0025】
好ましくは、発光システムは、第3の光源および第4の光源をさらに備え、第1の光源は、第3の光源および第4の光源の間に配置され、第1から第4の光源は、光度のグラデーションを出射する。
【0026】
好ましくは、発光システムは、マトリックス光源を備え、第1の光源は、マトリックス光源の1つの基本光源を形成する。
【0027】
好ましくは、第1の光源は、エレクトロルミネッセンス半導体素子を採用し、第1の光源は、好ましくは、光出射ダイオードである。
【0028】
好ましくは、第1の電流と第2の電流とは、等しい周波数を有する。
【0029】
好ましくは、第1の電流は、第1のパルス幅を有し、第2の電流は、第1のパルス幅よりも大きい第2のパルス幅を有する。
【0030】
好ましくは、第1の制御ユニットは、第3の平均強度をもつ第3のパルス幅変調電流を供給するように構成され、第2の制御ユニットは、第4の平均強度をもつ第4のパルス幅変調電流を供給するように構成される。
【0031】
好ましくは、発光システムは、第1の制御ユニットによって電力供給される第3の光源をさらに備える。
【0032】
好ましくは、第1のピーク電流と第2のピーク電流とは、同じ周波数を有する。
【0033】
好ましくは、ドライバは、マイクロコントローラコンポーネントまたはコンピュータを備える。
【0034】
本発明の別の態様によれば、自動車照明デバイスが提供され、照明デバイスは、発光システムを備え、発光システムが、本発明によるものであること、および、照明デバイスは、第1の光源と熱的に相互作用する冷却手段を備えることに注目すべきである。
【発明の効果】
【0035】
本発明は、発光システムの温度が低下されることを可能にする。所与の制御ユニットが別の制御ユニットよりも低い光度を駆動しているときに、または、所与の制御ユニットがしきい値よりも低い可変光度を駆動しているときに、所与の制御ユニットについて温度の低下が観測される。本発明は、問題の制御ユニットのピーク強度を減少させ、光出射セットポイントを守るようにデューティサイクルを増加させることによってそれを補償する傾向がある。本発明は、制御ユニットのOFF段階を低減し、強度を減少させ、強度は、ジュール加熱による損失の原因である。本発明は、したがって、照明品質を維持しながら相乗効果を生じる。温度の低下は、光源の耐用年数、および近くにある任意の感熱素子の耐用年数を延長させる。最も重大な局面が回避されるので、温度管理がより制約的でなくなる。
【0036】
本発明の他の特徴および利点は、例の説明および図面から、より良く理解されよう。
【図面の簡単な説明】
【0037】
図1】本発明の第1の実施形態に係る発光システムを示す図である。
図2】本発明の第1の実施形態に係る発光システムについての第1の電流および第2の電流を示す図である。
図3】本発明の一実施形態に係る発光システムの温度変動を示す図である。
図4】本発明の第2の実施形態に係る第1の構成における発光システムを示す図である。
図5】本発明の第2の実施形態に係る第2の構成における発光システムを示す図である。
図6】本発明の第2の実施形態に係る発光システムについての第1の電流および第2の電流を示す図である。
図7】本発明の第3の実施形態に係る第1の構成における発光システムを示す図である。
図8】本発明の第3の実施形態に係る第2の構成における発光システムを示す図である。
【発明を実施するための形態】
【0038】
別段に規定されない限り、所与の実施形態に関して詳細に説明する技術的特徴は、例として非限定的に説明する他の実施形態の文脈において説明する技術的特徴と組み合わせられ得る。本発明の様々な実施形態では、同様の概念を指定するために同様の参照番号を使用する。第2の実施形態の参照番号は、100だけ増分された、第1の実施形態の参照番号に対応する。
【0039】
説明は、本システムまたは方法を従来技術において知られているシステムまたは方法と区別する特徴に集中する。マトリックス光源または光出射ダイオードがどのように動作するかまたは製造されるかについては、従来技術においてそれ自体知られているので、詳細に説明しない。例えば、数百個または数千個のマイクロLEDを備えるマトリックスを作り出すことが知られており、または実際、一般的な層堆積プロセス中にエレクトロルミネッセンス半導体素子を形成することによってモノリシックなピクセル化された光源を製造することが知られている。
【0040】
明るさという表現は光度を意味することが理解されるべきである。
【0041】
図1は、本発明の第1の実施形態に係る発光システム2を示す。自動車(図示せず)は、発光システム2を装備され得る。発光システム2は、乗員室中に配置されるか、または実際、それが規定の信号伝達および/または照明機能を実行し得る外部に配置され得る。発光システム2はヘッドランプ中にあり得る。
【0042】
発光システム2はマトリックス光源10を備える。マトリックス光源10は、複数の基本光源12を形成するエレクトロルミネッセンス半導体素子を備える。基本光源12はエレクトロルミネッセンス半導体素子を採用する。基本光源12は光出射ダイオードであり得る。本例では、マトリックス光源10は20個の基本光源12を備えるが、本発明は、より多くの基本光源12を備えるマトリックス光源10に適用可能である。例えば、マトリックス光源10は、少なくとも30個の基本光源12を備え、随意に少なくとも1千個の基本光源12を備え得る。本図では、基本光源12は2つの列中に配置されている。しかしながら、本発明は、他の配置、他の格子をカバーする。基本光源は、例えば正方形またはリングを形成し得る。
【0043】
各基本光源12は、0%から100%まで変動し得る1つのデューティサイクル値に関連づけられる。本実施形態では、いくつかの基本光源12は等しいデューティサイクル値を有する。基本光源12は、第1のセットE1と第2のセットE2とを含む複数のセット(E1;E2)を形成し得る。第1のセットE1は第2のセットE2と交わり得る。第1のセットは中央のセットであり得、第2のセットは縁部のセットまたは端部のセットであり得る。随意に、デューティサイクル値は各セット(E1;E2)内で徐々に変動する。これが、発光グラデーションを作成することを可能にする。
【0044】
説明を明確にするために、第1のセットE1から第1の光源12.1を選択し、第2のセットE2から第2の光源12.2を選択することとする。例として、第1の光源12.1は、第2の光束と呼ばれる第2の光源12.2によって生成される光束よりも大きい第1の光束を生成する。随意に、光源(12.1;12.2)のこのペアは隣接する光源のペアを形成する。このペアは第1のセットE1と第2のセットE2とにまたがり得る。
【0045】
発光システム2は、第1の制御ユニット20.1と第2の制御ユニット20.2とを含む駆動手段20を備える。より一般的には、パイロット手段20は複数の制御ユニット(20.1;20.2)を備え得る。各制御ユニット(20.1;20.2)は、少なくとも1つの基本光源12に関連づけられ得、随意に上記で規定されたセットなどの同じセット(E1;E2)からの、複数の基本光源12に随意に関連づけられ得る。
【0046】
各制御ユニット(20.1;20.2)は、基本光源12に電力供給するための、1つの供給電流、または随意に複数の供給電流を生成するように構成される。これらの供給電流はパルス幅変調される。各制御ユニット(20.1;20.2)はDC/DC変換器を備え得る。DC/DC変換器は、バック変換器、ブースト変換器、SEPIC変換器またはフライバック変換器、すなわち、DC電圧をより低い値またはより高い値の別のDC電圧に変換するスイッチモード電源であり得る。DC/DC変換器は、本質的に、インダクタ(シングル、デュアル、トランスフォーマなど)と、スイッチと、ダイオードとを備える。スイッチが閉じられると、入力電圧によって生成された電流がインダクタを流れ、直線的に増加する。他の変換器が考えられ得る。
【0047】
発光システム2はドライバ30をさらに備える。ドライバ30は、複数のマトリックス光源、例えば、同じ車両の複数の発光システムに関連づけられ得る。ドライバ30は、制御ユニット(20.1;20.2)を制御するように構成される。ドライバ30は、100%よりも小さいかまたは等しいデューティサイクルを有する少なくとも1つのパルス幅変調信号PWMを供給し、前記信号は制御ユニット(20.1;20.2)のうちの1つに印加される。本実施形態では、ドライバ30は、第1の制御ユニット20.1に第1の信号S1を送信し、第2の制御ユニット20.2に第2の信号S2を送信する。これらの信号は、各基本光源12が専用の発光光束セットポイントを生成し、守るために必要とされる情報を含んでいる。このようにして、各信号(S1;S2)が、関連づけられた制御ユニット(20.1;20.2)に、ピーク強度(Ic1;Ic2)によって規定された電流を使用して制御ユニット(20.1;20.2)の基本光源に供給することを可能にする。ドライバ30はマイクロコントローラコンポーネントの形態を取り得る。代替的に、ドライバ30はフィールドプログラマブルゲートアレイ(FPGA)の形態を取り得る。好ましくは、ドライバはコンピュータの形態を取り得る。コンピュータは、好ましくは、本発明の一態様による方法を実行するための好適なプログラミングコードによってプログラムされた、プログラマブルコンピュータであり得る。ドライバ30には、関連づけられた車両の内部電流源によって電流が供給される。ドライバ30は、そのデータ出力上に1次制御信号を生成するように構成される。さらに、ドライバ30は、そのクロック出力上に周期パルス化信号を生成する。ドライバ30は制御ユニットに組み込まれ得る。
【0048】
興味深いことには、各制御ユニット(20.1;20.2)は同じピーク強度(Ic1;Ic2)の電流を供給し得るが、各制御ユニット(20.1;20.2)が基本光源12に供給するデューティサイクルは変動する。この手段によって、所与の制御ユニットは、それに依存する基本光源12の光度を変調することが可能である。
【0049】
第1の制御ユニット20.1は第1の信号S1によって第1の電流C1を供給し、第1の電流C1の第1のピーク強度Ic1は、第2の制御ユニット20.2によって生成される第2の電流C2の第2のピーク強度Ic2よりも大きい。例えば、第1のピーク強度Ic1は第2のピーク強度Ic2の2倍よりも大きいかまたは等しい。第1の制御ユニット20.1に接続された第1の基本光源12は、第2の基本光源12の第2の光束よりも大きい第1の光束を生成するが、それらの光束は比較的近接し得る。光度の差はそれらのPWMデューティサイクルによって補償される。
【0050】
この手段によって、第2の制御ユニット20.2によって生成されるピーク強度Ic2は第1のものよりも低い。ピーク強度Ic2のこの調整によって、第2の制御ユニットIc2の加熱はより少なくなる。特に、第2の光源がオフである段階がより少なくなる。第2の制御ユニット20.2がエネルギーを放散する段階が短縮される。電力供給下の時間と放散時間との間の分布が第2の制御ユニット20.2に関して最適化される。発光システム2全体の加熱はより少なくなる。したがって、ドライバ30は、電力供給を調整し、基本光源12が受ける加熱を低減する。基本光源12の温度は数度だけ下げられる。基本光源12の耐用年数は、それらの信頼性と同様に増加する。基本光源12の出射される色は許容差範囲内のままである。ピーク強度Ic2の減少は、デューティサイクルの増加に関連づけられた補償の結果として、光束に影響を及ぼさない。
【0051】
発光システムは自動車(図示せず)の照明デバイス中に取り付けられ得る。照明デバイスは、有利には、マトリックス光源、特に第1の光源および第2の光源を冷却することが可能な冷却手段を備える。冷却手段は、熱交換器(図示せず)、例えばフィン付き熱交換器を備え得る。
【0052】
第1の実施形態は、ピーク強度とデューティサイクルとの局所化された補正を伴う静的電力供給を可能にする。
【0053】
図2は、本発明の第1の実施形態に係る発光システムに供給されることを意図された第1の電流C1および第2の電流C2を示す。発光システムは図1の発光システムと同様または同等であり得る。
【0054】
点線でプロットされた第1の電流C1は、第1のピーク強度Ic1と、第1の平均強度Im1と、第1のデューティサイクルとによって規定される。この場合、第1のデューティサイクルは33%である。第1のデューティサイクルは、第1のパルスの第1の幅L1を、第1の電流C1の連続するパルスの2つの立上り縁部間の周期PEによって除算したものに対応する。周期PEは、特に周波数の逆数である。この主題に関して、第1の電流と第2の電流とは同じ周波数、例えば10,000Hzを有することに留意することは興味深い。それらのパルスは同期しているかまたは交互に互い違いであり得る。平均強度Im1は第1のパルスの面積に対応する。平均強度Im1は、積分を使用して計算され得る。
【0055】
一点鎖線でプロットされた第2の電流C2は、第2のピーク強度Ic2と、第2の平均強度Im2と、第2のデューティサイクルとによって規定される。ここで、第2のデューティサイクルは66%に等しい。
【0056】
光源によって出射される明るさの強度は、光源を通る負荷電流の平均強度(Im1;Im2)に依存する。変換器回路に印加されるスイッチング周波数がこの強度を支配する。したがって、PWM制御信号(PWMはパルス幅変調を表す)を使用することによって、所与の値の発光セットポイントが達成され得る。特に、PWM制御信号のデューティサイクル、すなわち、信号(ONおよびOFF)の全周期PEの持続時間に対するON段階(L1;L2)の持続時間は、光源に電力供給することを意図された負荷電流の強度の平均値(Im1;Im2)に直接の影響を及ぼす。
【0057】
本図に見られ得るように、第1のピーク強度Ic1は第2のピーク強度Ic2よりも大きい。値Ic1は値Ic2の2倍よりも大きいかまたは等しくなり得る。例として、Ic1は500mAであり得、Ic2は200mAであり得る。他の値が選定され得る。第1のデューティサイクルは、第2のデューティサイクルよりも低く、例えば1/2以下である。また、本図から、第1の平均強度Im1は第2の平均強度Im2を超えることがわかり得る。したがって、同等のまたは同様の基本光源について、第1の電流C1が、第2の電流C2よりも強力な照明を生成することを可能にする。しかしながら、平均電流(Im1;Im2)は近接している。したがって、ピーク強度間の実質的な間隔にもかかわらず、光度も近接したままである。第2の制御ユニットの加熱は、特に電力が切断される段階「OFF」中に、より少なくなる。制御ユニットが電力を受け、この電力が光源に供給されないとき、制御ユニットはこの電力を放散しなければならないことが想起されよう。したがって、デューティサイクルを増加させることによって無効の段階「OFF」を低減することは、加熱を制限する。制御ユニットが放散器として働く期間はより短い。
【0058】
図3は、例えば図2に関して説明したものなど、発光システムが第2の電流によって電力供給されたときの、発光システムの温度の上昇を示す。発光システムは、図1に関して説明した発光システムと同等または同様であり得る。温度はマトリックス光源中でおよび/または制御ユニット中で測定され得る。
【0059】
実線の曲線は、上記で詳述したように、発光システムの第2の光源のピーク強度が調整されている、すなわち下げられている、発光システムについての温度を示す。参考として、破線の曲線は、第2の光源に第1の電流が供給された場合にそうなるであろう、第2の電流の調整なしの温度変動を示す。加熱を1000秒程度、好ましくは1500秒程度の時間にわたって分析した。
【0060】
本発明は、最大温度を著しく低下させることを可能にする。いくつかのマトリックス光源において、温度低下は2°Cと10°Cとの間に含まれる。いくつかの構成は、少なくとも6°Cの温度低下を達成する。
【0061】
この手段によって、マトリックス光源の耐用年数が延長される。冷却デバイスの必要性が減少する。
【0062】
図4は、第1の構成における、本発明の第2の実施形態に係る発光システム102を示す。
【0063】
発光システム102は第1の実施形態の発光システムと同様であるが、発光システム102は、それがドライバ130によって生成された第1の信号S3と第2の信号S4とを選択的に受信する第1の制御ユニット120.1を有する点が、第1の実施形態の発光システムとは異なる。ドライバ130は、100%よりも小さいかまたは等しいデューティサイクルを有する少なくとも1つのパルス幅変調信号PWMを供給する。第1の信号S3および第2の信号S4は、今度は、同じマトリックス光源110、例えば第1の光源112.1の供給に作用する。
【0064】
第1の信号S3によって指示された第1の動作モード、または第1の構成において、光源112は第1のピーク強度Ic3を受ける。このピーク強度は基準ピーク強度であり得る。並行して、光源への電力供給は、第1のデューティサイクルを使用して制御される。本図に見られ得るように、これらのデューティサイクルは20%と50%との間に含まれる。それらは本質的に低いと考えられるが、第1のピーク強度Ic3は高いと考えられる。以下で説明するように、この状況は次いで平衡させられる。
【0065】
図5は、それに固有である第2の構成における、本発明の第2の実施形態に係る発光システム102を示す。
【0066】
ここで、発光システム102は、その供給が切り替えられている。特に、光源112は、それらのデューティサイクルが増加しているが、それらに印加されるピーク強度Ic4は減少している。最初の構成に対して、第2のデューティサイクルには2が乗算されているが、それらのピーク強度は2で除算されている。したがって、第2のピーク強度Ic4は、第1の構成において受けられる第1のピーク強度Ic3の1/2に等しい。デューティサイクルの増加はピーク強度の低下を補償する。第2の平均強度は一定のままである。
【0067】
交互に、第1の信号S3と第2の信号S4とは、マトリックス光源110、特にその基本光源112が電力供給されることを可能にする。各基本光源112は、採用された構成に応じて2つのデューティサイクルに関連づけられる。
【0068】
第1の電流から第2の電流に切り替わることを可能にする遷移は、第1のデューティサイクルがしきい値、例えば50%に達したときに開始される。特に、第1のデューティサイクルが50%よりも小さいかまたは等しいときは、第1のデューティサイクルを増加させることが関連する。特に、パルスは、時間の1/2を超えて0電力を有する。例えば、第2のデューティサイクルは補正の後に100%に向かう傾向があり得る。引き換えに、第1のピーク強度は低減される必要がある。第2のデューティサイクルは第2のピーク強度を補償する。第2のデューティサイクルは、端を含む50%から100%まで、好ましくは80%から100%まで変動するように変更され得る。デューティサイクルが66%よりも小さいかまたは等しい構成では、本発明は、デューティサイクルに1.5を乗算し、ピーク強度を1.5で除算することによって構成を補正することを目指す。したがって、本発明は、様々な補正係数を採用し、様々なデューティサイクルしきい値に達したときに作用し得る。
【0069】
したがって、本発明は、少なくとも1つのデューティサイクルがデューティサイクルの範囲内のままであること、および/または所与の光源のピーク強度が最小化されることを保証する傾向がある。
【0070】
第2の実施形態は、ピーク強度とデューティサイクルとの動的補正を伴う電力供給を提供する。
【0071】
図6は、本発明の第2の実施形態に係る発光システムに供給されることを意図された第1の電流C3および第2の電流C4を示す。発光システムは、図4および図5に示された発光システムと同様または同等であり得る。
【0072】
この図は図2と実質的に同等である。しかしながら、図6は、第1の平均強度Im3が第2の平均強度Im4に等しい点が、図2とは異なる。
【0073】
この結果は、第2のデューティサイクルの正確な増加によって第2のピーク強度Ic4の減少を補償することによって達成される。特に、第2のピーク強度Ic4の除算と、第2のデューティサイクルの乗算とのために同じ係数が使用される。より具体的には、第2の幅L4は、同じ係数で乗算された第1の幅L3に等しい。第1のパルスは、第2の電流C4の第2のパルスに等しい面積を有する。本例では、この調整係数または補償係数は2に等しい。第1の電流C3と第2の電流C4とは同等の周期PEを有する。第2の電流C4によって、図3に関して説明したように、発光システムの温度、特に第2の制御ユニットの温度を低減することが可能である。この結果は、光源オン時間がより長く、したがって、専用の制御ユニットが電力を放散する必要がある時間が短縮されるので、達成される。
【0074】
図7は、第1の関連づけられた構成における、本発明の第3の実施形態に係る発光システム202を示す。
【0075】
本教示は図1の教示と同様である。発光システム202は、第1のセットE1と第2のセットE2とに分割された複数の基本光源212をもつマトリックス光源210を備える。第1のセットE1は第1の制御ユニット220.1に依存し、第2のセットE2は第2の制御ユニット220.2に依存する。これらのデバイス(220.1;220.2)は、それらに専用の信号(S5;S6;SP)を送信するドライバ230に依存する。
【0076】
この第1の構成では、ドライバ230は1次信号SPを送達する。第1のセットE1の光源212は、次いで、1次パルス幅変調電流によって電力供給される。この1次電流は第1のピーク強度Ic5と第1のデューティサイクルとによって規定される。これらの第1のデューティサイクルは50%から100%まで変動する。
【0077】
ドライバ230からの第1の信号S5によって、第2のセットE2の光源212は第1のパルス幅変調電流C5によって電力供給される。この電流C5は、第1のピーク強度Ic5に等しいピーク強度Ic5と、デューティサイクルとによって規定される。これらのデューティサイクルは20%から33%まで変化する。それらは、したがって、100%からかなり離れており、これが補正マージンを以下で説明するようなものにする。
【0078】
図8は、第2の関連づけられた構成における、本発明の第3の実施形態に係る発光システム202を示す。
【0079】
第2のセットE2の補正マージンを活用するために、ドライバ230は第2の信号S6を供給し、場合によっては補助の第1の信号S5と置き換える。第2の信号S6は、第2のパルス幅変調電流C6を生成することを可能にする。この第2の電流C6は第2のピーク強度Ic6と第2のデューティサイクルとによって規定される。第1の構成に対して、第2のセットのデューティサイクルは3倍になっている。第2のセットのデューティサイクルは、端を含む60%から99%まで変動する。これが、100%に近づくこと、したがって、利用可能な補正マージンを活用することを可能にする。第2のピーク強度Ic6は、光源212の第1のセットE1に印加される第1のピーク強度Ic5の1/3に等しい。このことは、第1の構成に対してピーク強度を3で除算することを暗示している。比較として、第1のゾーンの基本光源の電力供給は変化されず、それらは、第1の信号S5によって制御される第1の電流C5によって引き続き電力供給される。したがって、ドライバ230は、1次信号SPに加えて、第2の信号S6または第1の信号S5を選択的に供給する。
【0080】
本発明の1つの変形形態によれば、ピーク強度が第2のセットE2内で切り替えられると、デューティサイクルはそれに応じて変化する。電圧は一定のままである。
【0081】
第3の実施形態は、第2のセット中のピーク強度とデューティサイクルとの動的で局所化された補正を伴う電力供給を可能にする。第3の実施形態はハイブリッド動作を提供する。
【0082】
様々な実施形態は互いに組み合わせられ得る。例えば、図1図7および図8の第1のセットは、デューティサイクルがそれを可能にするという条件で、図4および図5の教示に従って変更され得る。図7および図8の文脈において、第2の制御ユニットは、図4および図5の第2の実施形態の第1の制御ユニットのように作動することが理解されよう。
【0083】
保護の範囲は特許請求の範囲によって規定される。
図1
図2
図3
図4
図5
図6
図7
図8