IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社半導体エネルギー研究所の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-05
(45)【発行日】2024-12-13
(54)【発明の名称】半導体装置の作製方法
(51)【国際特許分類】
   H01L 29/786 20060101AFI20241206BHJP
   H01L 21/336 20060101ALI20241206BHJP
   H01L 21/425 20060101ALI20241206BHJP
   H01L 21/8234 20060101ALI20241206BHJP
   H01L 27/06 20060101ALI20241206BHJP
   H01L 27/088 20060101ALI20241206BHJP
【FI】
H01L29/78 617N
H01L29/78 618B
H01L29/78 612Z
H01L21/425
H01L27/06 102A
H01L27/088 331E
【請求項の数】 12
(21)【出願番号】P 2022196939
(22)【出願日】2022-12-09
(62)【分割の表示】P 2019563712の分割
【原出願日】2018-12-19
(65)【公開番号】P2023017043
(43)【公開日】2023-02-02
【審査請求日】2022-12-12
(31)【優先権主張番号】P 2018000501
(32)【優先日】2018-01-05
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018021912
(32)【優先日】2018-02-09
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】肥塚 純一
(72)【発明者】
【氏名】生内 俊光
(72)【発明者】
【氏名】神長 正美
(72)【発明者】
【氏名】黒崎 大輔
【審査官】脇水 佳弘
(56)【参考文献】
【文献】特開2015-188079(JP,A)
【文献】特開2011-146694(JP,A)
【文献】特開2014-211621(JP,A)
【文献】特開2008-153644(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/786
H01L 21/336
H01L 21/425
H01L 21/8234
H01L 27/06
H01L 27/088
(57)【特許請求の範囲】
【請求項1】
酸化物半導体層を有する半導体装置の作製方法であって、
前記酸化物半導体層に接して酸化物膜を形成する工程と、
前記酸化物膜を介して、前記酸化物半導体層に不純物元素を添加する工程と、
前記添加する工程の後に、絶縁層を形成する工程と、
前記絶縁層を形成する工程の後に、加熱処理を行い前記酸化物膜から酸素を前記酸化物半導体層に放出させる工程と、を有し、
前記絶縁層は、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、又はハフニウムアルミネートを含む絶縁膜であり、
前記添加する前記不純物元素は、リン、ホウ素、マグネシウム、アルミニウム、またはシリコンであり、
前記添加を、前記酸化物半導体層中における前記不純物元素の濃度分布が前記酸化物膜に近いほど高くなる領域を有するように行う、半導体装置の作製方法。
【請求項2】
請求項において、
前記加熱処理を、200℃以上400℃以下の温度範囲で行う、半導体装置の作製方法。
【請求項3】
請求項または請求項において、
前記絶縁層の形成を、150℃以上400℃以下の温度範囲で行う、半導体装置の作製方法。
【請求項4】
請求項1乃至請求項のいずれか一において、
前記酸化物半導体層は、インジウムと、ガリウムと、亜鉛と、を含む半導体装置の作製方法。
【請求項5】
請求項において、
前記添加する工程の前に、前記酸化物膜に接して、前記酸化物半導体層よりもガリウムの割合が高く且つ前記酸化物半導体層よりもインジウムの割合が低い金属酸化物層を形成する工程を有する、半導体装置の作製方法。
【請求項6】
請求項1乃至請求項のいずれか一において、
前記添加する工程の前に、前記酸化物膜に接して金属酸化物層を形成する工程を有する、半導体装置の作製方法。
【請求項7】
請求項1乃至請求項のいずれか一において、
前記添加する工程の前に、前記酸化物膜に対して酸素を供給する処理を行う工程を有する、半導体装置の作製方法。
【請求項8】
請求項1乃至請求項のいずれか一において、
前記添加を、前記酸化物膜中における前記不純物元素の濃度分布が前記酸化物半導体層に近いほど高くなる領域を有するように行う、半導体装置の作製方法。
【請求項9】
請求項1乃至請求項のいずれか一において、
前記添加を、前記酸化物半導体層と前記酸化物膜との界面、前記酸化物半導体層中の前記酸化物膜に近い部分又は前記酸化物膜中の前記酸化物半導体層に近い部分で、前記不純物元素の濃度が最も高くなるように行う、半導体装置の作製方法。
【請求項10】
請求項1乃至請求項のいずれか一において、
前記添加を、プラズマイオンドーピング法またはイオン注入法によって行う、半導体装置の作製方法。
【請求項11】
第1の導電層と、
インジウムと、ガリウムと、を含む酸化物半導体層と、
酸化物層と、
前記酸化物層を介して前記酸化物半導体層と対向する領域を有し且つ前記酸化物半導体層よりもガリウムの割合が高く且つ前記酸化物半導体層よりもインジウムの割合が低い金属酸化物層と、
前記金属酸化物層及び前記酸化物層に設けられた開口を介して前記第1の導電層と接する第2の導電層と、
絶縁層と、
を有する半導体装置の作製方法であって、
前記酸化物半導体層に接して酸化物膜を形成する工程と、
前記酸化物膜を介して、前記酸化物半導体層に不純物元素を添加する工程と、
前記添加する工程の後に、前記絶縁層を形成する工程と、
前記絶縁層を形成する工程の後に、加熱処理を行い前記酸化物膜から酸素を前記酸化物半導体層に放出させる工程と、を有し、
前記絶縁層は、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、又はハフニウムアルミネートを含む絶縁膜であり、
前記添加する前記不純物元素は、リン、ホウ素、マグネシウム、アルミニウム、またはシリコンであり、
前記添加を、前記酸化物半導体層中における前記不純物元素の濃度分布が前記酸化物膜に近いほど高くなる領域を有するように行う、半導体装置の作製方法。
【請求項12】
第1の導電層と、
酸化物半導体層と、
酸化物層と、
前記酸化物層を介して前記酸化物半導体層と対向する領域を有する金属酸化物層と、
前記金属酸化物層及び前記酸化物層に設けられた開口を介して前記第1の導電層と接する第2の導電層と、
絶縁層と、を有する半導体装置の作製方法であって、
前記第1の導電層上に、インジウムと、ガリウムと、を含む前記酸化物半導体層を形成する工程と、
前記酸化物半導体層に接して酸化物膜を形成する工程と、
前記酸化物膜に接して、前記酸化物半導体層よりもガリウムの割合が高く且つ前記酸化物半導体層よりもインジウムの割合が低い前記金属酸化物層を形成する工程と、
前記金属酸化物層と前記酸化物膜とに、前記開口を形成する工程と、
前記金属酸化物層上に、前記第2の導電層を形成する工程と、
前記酸化物膜を介して、前記酸化物半導体層に不純物元素を添加する工程と、
前記添加する工程の後に、前記絶縁層を形成する工程と、
前記絶縁層を形成する工程の後に、加熱処理を行い前記酸化物膜から酸素を前記酸化物半導体層に放出させる工程と、を有し、
前記絶縁層は、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、又はハフニウムアルミネートを含む絶縁膜であり、
前記添加する前記不純物元素は、リン、ホウ素、マグネシウム、アルミニウム、またはシリコンであり、
前記添加を、前記酸化物半導体層中における前記不純物元素の濃度分布が前記酸化物膜に近いほど高くなる領域を有するように行う、半導体装置の作製方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、半導体装置に関する。本発明の一態様は、表示装置に関する。本発明の一態様は、半導体装置、または表示装置の作製方法に関する。
【0002】
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
【背景技術】
【0003】
トランジスタに適用可能な半導体材料として、金属酸化物を用いた酸化物半導体が注目されている。例えば、特許文献1では、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合をガリウムの割合よりも大きくすることで、電界効果移動度(単に移動度、またはμFEという場合がある)を高めた半導体装置が開示されている。
【0004】
半導体層に用いることのできる金属酸化物は、スパッタリング法などを用いて形成できるため、大型の表示装置を構成するトランジスタの半導体層に用いることができる。また、多結晶シリコンや非晶質シリコンを用いたトランジスタの生産設備の一部を改良して利用することが可能なため、設備投資を抑えられる。また、金属酸化物を用いたトランジスタは、非晶質シリコンを用いた場合に比べて高い電界効果移動度を有するため、駆動回路を設けた高性能の表示装置を実現できる。
【0005】
また、特許文献2には、ソース領域およびドレイン領域に、アルミニウム、ホウ素、ガリウム、インジウム、チタン、シリコン、ゲルマニウム、スズ、および鉛からなる群のうちの少なくとも一種をドーパントとして含む低抵抗領域を有する酸化物半導体膜が適用された薄膜トランジスタが開示されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2014-7399号公報
【文献】特開2011-228622号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の一態様は、電気特性の良好な半導体装置を提供することを課題の一とする。または、電気特性の安定した半導体装置を提供することを課題の一とする。または、信頼性の高い半導体装置を提供することを課題の一とする。
【0008】
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
【課題を解決するための手段】
【0009】
本発明の一態様は半導体層と、第1の絶縁層と、第1の導電層と、を有する半導体装置である。半導体層は、島状の上面形状を有する。第1の絶縁層は、半導体層の上面及び側面に接して設けられる。第1の導電層は、第1の絶縁層上に位置し、且つ、半導体層と重なる部分を有する。また、半導体層は、金属酸化物を含み、第1の絶縁層は、酸化物を含む。半導体層は、第1の導電層と重なる第1の領域と、第1の導電層と重ならない第2の領域と、を有する。第1の絶縁層は、第1の導電層と重なる第3の領域と、第1の導電層と重ならない第4の領域と、を有する。また、第2の領域、及び第4の領域は、第1の元素を含む。また、第1の元素は、リン、ホウ素、マグネシウム、アルミニウム、またはシリコンであることが好ましい。また、上記第1の元素は、酸素と結合した状態で存在することが好ましい。
【0010】
また、上記において、第2の領域、または第4の領域は、X線光電子分光法分析において、第1の元素の酸化状態に起因するピークが観測されることが好ましい。
【0011】
また、上記において、第2の領域は、第4の領域よりも第1の元素の濃度が高い領域を有することが好ましい。
【0012】
また、上記において、第2の領域において、第1の元素は、第1の絶縁層に近いほど濃度が高い濃度勾配を有することが好ましい。
【0013】
また、上記において、第4の領域において、第1の元素は、半導体層に近いほど濃度が高い濃度勾配を有することが好ましい。
【0014】
また、上記において、半導体層は、第1の元素の濃度が、1×1020atoms/cm以上、1×1022atoms/cm以下である領域を有することが好ましい。
【0015】
また、上記において、第2の絶縁層を有することが好ましい。このとき、半導体層は、第2の絶縁層上に接して設けられることが好ましい。また第1の絶縁層は、半導体層と重ならない領域において、第2の絶縁層と接する部分を有することが好ましい。また、第2の絶縁層は、半導体層と重ならず、且つ第1の元素を含む第5の領域を有することが好ましい。
【0016】
また、上記において、第2の導電層を有することが好ましい。このとき、第2の導電層は、第2の絶縁層よりも下側に位置し、且つ、半導体層及び第1の導電層と重なる領域を有することが好ましい。
【0017】
また、上記において、第1の絶縁層と、第1の導電層との間に、金属酸化物層を有することが好ましい。このとき、金属酸化物層は、半導体層と同一の元素を一以上含むことが好ましい。
【0018】
また、本発明の他の一態様は、金属酸化物を含む、島状の半導体層を形成する第1の工程と、島状の半導体層上に、酸化物を含む第1の絶縁層を形成する第2の工程と、第1の絶縁層上に、半導体層の一部と重なる第1の導電層を形成する第3の工程と、第1の導電層に覆われない領域において、第1の絶縁層及び半導体層中に第1の元素を供給する第4の工程と、を有する半導体装置の作製方法である。また、第1の元素は、リン、ホウ素、マグネシウム、アルミニウム、またはシリコンであることが好ましい。
【0019】
また、上記における第4の工程において、第1の元素は、半導体層中の濃度が、第1の絶縁層に近いほど高くなる濃度分布となるように、供給されることが好ましい。
【0020】
また、上記における第4の工程において、第1の元素は、プラズマイオンドーピング法またはイオン注入法を用いて供給されることが好ましい。
【0021】
また、上記において、第4の工程より後に、加熱処理を行う第5の工程を有することが好ましい。このとき、当該加熱処理は、200℃以上400℃以下の温度範囲で行われることが好ましい。
【発明の効果】
【0022】
本発明の一態様によれば、電気特性の良好な半導体装置を提供できる。または、電気特性の安定した半導体装置を提供できる。または、信頼性の高い表示装置を提供できる。
【0023】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
【図面の簡単な説明】
【0024】
図1】トランジスタの構成例。
図2】トランジスタの構成例。
図3】トランジスタの構成例。
図4】トランジスタの構成例。
図5】トランジスタの作製方法を説明する図。
図6】トランジスタの作製方法を説明する図。
図7】表示装置の上面図。
図8】表示装置の断面図。
図9】表示装置の断面図。
図10】表示装置の断面図。
図11】表示装置のブロック図及び回路図。
図12】表示装置の回路図。
図13】表示モジュールの構成例。
図14】電子機器の構成例。
図15】電子機器の構成例。
図16】電子機器の構成例。
図17】不純物濃度の計算結果。
図18】シート抵抗の測定結果。
図19】シート抵抗の測定結果。
図20】シート抵抗の測定結果。
図21】不純物濃度の測定結果。
図22】トランジスタの電気特性。
図23】トランジスタの電気特性。
図24】トランジスタの電気特性及び信頼性評価結果。
図25】TDS分析結果。
図26】TDS分析結果。
図27】XPS分析結果。
図28】XPS分析結果。
図29】トランジスタの電気特性。
【発明を実施するための形態】
【0025】
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
【0026】
また、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。
【0027】
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではない。
【0028】
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
【0029】
また、本明細書等において、トランジスタが有するソースとドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、ソースやドレインの用語は、入れ替えて用いることができるものとする。
【0030】
なお、本明細書等において、トランジスタのチャネル長方向とは、ソース領域とドレイン領域間を最短距離で結ぶ直線に平行な方向のうちの1つをいう。すなわち、チャネル長方向は、トランジスタがオン状態のときに半導体層を流れる電流の方向のうちの1つに相当する。また、チャネル幅方向とは、当該チャネル長方向に直交する方向をいう。なお、トランジスタの構造や形状によっては、チャネル長方向及びチャネル幅方向は1つに定まらない場合がある。
【0031】
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有する素子などが含まれる。
【0032】
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」や「絶縁層」という用語は、「導電膜」や「絶縁膜」という用語に相互に交換することが可能な場合がある。
【0033】
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い(pチャネル型トランジスタでは、Vthよりも高い)状態をいう。
【0034】
本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
【0035】
また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
【0036】
なお、本明細書等において、表示装置の一態様であるタッチパネルは表示面に画像等を表示する機能と、表示面に指やスタイラスなどの被検知体が触れる、押圧する、または近づくことなどを検出するタッチセンサとしての機能と、を有する。したがってタッチパネルは入出力装置の一態様である。
【0037】
タッチパネルは、例えばタッチセンサ付き表示パネル(または表示装置)、タッチセンサ機能つき表示パネル(または表示装置)とも呼ぶことができる。タッチパネルは、表示パネルとタッチセンサパネルとを有する構成とすることもできる。または、表示パネルの内部または表面にタッチセンサとしての機能を有する構成とすることもできる。
【0038】
また、本明細書等では、タッチパネルの基板に、コネクターやICが実装されたものを、タッチパネルモジュール、表示モジュール、または単にタッチパネルなどと呼ぶ場合がある。
【0039】
(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置、表示装置、およびその作製方法について説明する。
【0040】
本発明の一態様は、被形成面上に、チャネルが形成される半導体層と、半導体層上にゲート絶縁層(第1の絶縁層ともいう)と、ゲート絶縁層上にゲート電極として機能する導電層(第1の導電層ともいう)と、を有するトランジスタである。半導体層は、半導体特性を示す金属酸化物(以下、酸化物半導体ともいう)を含んで構成されることが好ましい。
【0041】
ゲート絶縁層は、島状に加工された半導体層の上面及び側面に接して設けられることが好ましい。また特に、半導体層に金属酸化物を適用した場合、ゲート絶縁層は酸化物を含むことが好ましい。
【0042】
半導体層は、チャネルが形成されうるチャネル形成領域と、ソース領域及びドレイン領域として機能する一対の低抵抗領域を有する。チャネル形成領域は、半導体層におけるゲート電極と重畳する領域である。また一対の低抵抗領域は、チャネル形成領域を挟んで設けられ、チャネル形成領域よりも低抵抗な領域である。
【0043】
一対の低抵抗領域は、不純物元素を含むことが好ましい。不純物元素としては、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、ヒ素、アルミニウム、マグネシウム、シリコン、または希ガスなどが挙げられる。なお、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。特に、ホウ素またはリンを含むことが好ましい。
【0044】
特に、一対の低抵抗領域は、酸素と結合しやすい不純物元素を含むことが好ましい。例えば、ホウ素、リン、アルミニウム、マグネシウム、シリコン等が挙げられる。
【0045】
一対の低抵抗領域に含まれる不純物元素は、ゲート絶縁層に近いほど濃度が高い濃度勾配を有することが好ましい。
【0046】
なお、作製工程中にかかる熱の影響などにより、チャネル形成領域に低抵抗領域に含まれる上記不純物元素の一部が拡散する場合もある。このような場合、チャネル形成領域中の不純物元素の濃度は、低抵抗領域中の濃度の10分の1以下、好ましくは100分の1以下であることが好ましい。
【0047】
また、ゲート絶縁層のうち、一対の低抵抗領域と接する部分、すなわち、ゲート電極と重畳しない部分にも、上記不純物元素が含まれることが好ましい。また、ゲート絶縁層のうち、チャネル形成領域と接する部分、すなわち、ゲート電極と重畳する部分には、上記不純物が添加されていないことが好ましい。
【0048】
半導体層の上面に接して酸化物を含むゲート絶縁層が設けられた状態で、加熱処理を行うことで、ゲート絶縁層から放出される酸素を半導体層に供給することができる。これにより、半導体層中の酸素欠損を補填することができ、信頼性の高いトランジスタを実現することができる。
【0049】
一方、低抵抗領域に酸素が供給されると、キャリア密度が低減し、電気抵抗が上昇してしまう場合がある。しかしながら本発明の一態様では、ゲート絶縁層の低抵抗領域に接する部分には上述した不純物元素が添加されている。加熱により酸素を放出しうる酸化物膜に、上述した不純物元素を添加することにより、放出される酸素の量を低減することができる。その結果、ゲート絶縁層から低抵抗領域に酸素が供給されることが抑制され、低抵抗領域は電気抵抗が低い状態を維持することができる。
【0050】
このような構成とすることで、酸素欠損が十分に低減され、キャリア密度の極めて低いチャネル形成領域と、電気抵抗の極めて低いソース領域及びドレイン領域と、を兼ね備え、電気特性に優れ、且つ信頼性の高い半導体装置を実現することができる。
【0051】
このようなトランジスタは、例えばゲート電極をマスクに用いて、ゲート絶縁層及び半導体層に対して、上述した不純物元素を供給する処理を行った後、加熱処理を行うことで作製することができる。
【0052】
このとき、不純物元素の供給は、プラズマイオンドーピング法またはイオン注入法により行うことがより好ましい。これらの方法は、イオンを添加する深さを調整しやすいため、ゲート絶縁層と半導体層とを含む領域を狙って、イオンを添加することが容易となる。
【0053】
また、不純物元素を添加する際、半導体層のゲート絶縁層側の領域、または、半導体層とゲート絶縁層との界面近傍の不純物濃度が最も高くなるように、イオンの供給条件を設定することが好ましい。これにより、一度の工程で半導体層とゲート絶縁層の両方に適切な濃度の不純物元素を添加することができる。さらに、低抵抗領域の上部に高い濃度で不純物元素を添加し、低抵抗化することで、低抵抗領域とソース電極またはドレイン電極との接触抵抗をより低くすることが可能となる。また、ゲート絶縁層の低抵抗領域に近い部分に不純物元素の濃度の高い領域を形成することで、この部分の酸素の拡散性が効果的に低下し、ゲート絶縁層中の酸素が低抵抗領域側に拡散することをより効果的に抑制することができる。
【0054】
例えば、半導体層の低抵抗領域は、不純物濃度が、1×1019atoms/cm以上、1×1023atoms/cm以下、好ましくは1×1020atoms/cm以上、1×1022atoms/cm以下である領域を含むことが好ましい。また、半導体層の低抵抗領域は、ゲート絶縁層の低抵抗領域と接する領域よりも、不純物濃度が高い領域を有することが好ましい。これにより、極めて低抵抗な低抵抗領域とすることができる。
【0055】
また、ゲート絶縁層のゲート電極と重ならない領域は、不純物濃度が低抵抗領域よりも低く、且つゲート電極と重なる部分よりも高い領域を含むことが好ましい。
【0056】
また、不純物元素として酸素と結合しやすい元素を用いた場合、不純物元素は半導体中の酸素と結合した状態で存在する。すなわち、不純物元素が半導体層中の酸素を奪うことで、半導体層中に酸素欠損が生じ、当該酸素欠損と膜中の水素とが結合することでキャリアが生成される。さらに半導体層中の不純物元素は酸化した状態で安定に存在するため、工程中にかかる熱などで脱離することなく、安定して低抵抗な低抵抗領域を実現できる。例えば400℃以上、600℃以上、または800℃以上の温度が行程中にかかったとしても、安定な低抵抗領域を維持することができる。
【0057】
ここで、一般に半導体層としてシリコン膜を用いた場合では、不純物として、半導体に電子を供給するドナー、またはホール(正孔)を供給するアクセプタを用い、当該ドナーまたはアクセプタが、シリコン原子と置換することで、半導体層にN型またはP型の導電性を付与することができる。一方、上述のように、本発明の一態様においては、酸化物半導体に含まれる不純物元素は、酸化物半導体中の酸素を奪い、半導体層中に酸素欠損を生じさせる機能を有していればよく、不純物元素自体がキャリアを生成する機能を有している必要はない。この点で、本発明の一態様における半導体層の低抵抗化のメカニズムは、シリコンなどの場合とは全く異なるものであると言える。
【0058】
また、ゲート絶縁層として酸化物を含む絶縁膜を用いることが好ましい。さらに、ゲート絶縁層中には、加熱により脱離する酸素(過剰酸素ともいう)が含まれることが好ましい。このとき、ゲート絶縁層中の不純物元素は、ゲート絶縁層中の過剰酸素と結合した状態で存在する。過剰酸素と不純物元素とが結合して安定化することで、不純物元素が添加された領域では、加熱を行ってもほとんど酸素が脱離しない状態となる。また酸素が拡散しにくい状態となる。これにより、ゲート絶縁層から低抵抗領域に酸素が供給されることによる高抵抗化を防ぎつつ、チャネル形成領域には酸素が供給されることにより、酸素欠損を低減できる。その結果、電気特性が良好で、信頼性の高いトランジスタを実現できる。
【0059】
不純物元素は、半導体層中、及びゲート絶縁層中の酸素と結合して安定化する元素を用いることが好ましい。例えば酸化物が標準状態において固体で存在しうる元素を用いることが好ましい。特に好ましい元素としては、希ガス、水素以外の典型非金属元素、典型金属元素、及び遷移金属元素から選択することができる。特に、ホウ素、リン、アルミニウム、マグネシウム、シリコン等を用いることが好ましい。
【0060】
以下では、より具体的な例について、図面を参照して説明する。
【0061】
[構成例1]
図1(A)は、トランジスタ100の上面図であり、図1(B)は、図1(A)に示す一点鎖線A1-A2における切断面の断面図に相当し、図1(C)は、図1(A)に示す一点鎖線B1-B2における切断面の断面図に相当する。なお、図1(A)において、トランジスタ100の構成要素の一部(ゲート絶縁層等)を省略して図示している。また、一点鎖線A1-A2方向はチャネル長方向、一点鎖線B1-B2方向はチャネル幅方向に相当する。また、トランジスタの上面図については、以降の図面においても図1(A)と同様に、構成要素の一部を省略して図示するものとする。
【0062】
トランジスタ100は、基板102上に設けられ、絶縁層103、半導体層108、絶縁層110、金属酸化物層114、導電層112、絶縁層116、絶縁層118等を有する。島状の半導体層108は、絶縁層103上に設けられる。絶縁層110は、絶縁層103の上面、半導体層108の上面及び側面に接して設けられる。金属酸化物層114及び導電層112は、絶縁層110上にこの順に積層して設けられ、半導体層108と重畳する部分を有する。絶縁層116は、絶縁層110の上面、金属酸化物層114の側面、及び導電層112の上面を覆って設けられている。絶縁層118は、絶縁層116を覆って設けられている。
【0063】
導電層112の一部は、ゲート電極として機能する。絶縁層110の一部は、ゲート絶縁層として機能する。トランジスタ100は、半導体層108上にゲート電極が設けられる、いわゆるトップゲート型のトランジスタである。
【0064】
また、図1(A)、(B)に示すように、トランジスタ100は、絶縁層118上に導電層120a及び導電層120bを有していてもよい。導電層120a及び導電層120bはソース電極またはドレイン電極として機能する。導電層120a及び導電層120bは、それぞれ絶縁層118、絶縁層116、及び絶縁層110に設けられた開口部141aまたは開口部141bを介して、後述する領域108nに電気的に接続される。
【0065】
半導体層108は、金属酸化物を含むことが好ましい。
【0066】
例えば半導体層108は、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有すると好ましい。特にMはアルミニウム、ガリウム、イットリウム、またはスズから選ばれた一種または複数種とすることが好ましい。
【0067】
特に、半導体層108として、インジウム、ガリウム、及び亜鉛を含む酸化物を用いることが好ましい。
【0068】
半導体層108として、組成の異なる層、または結晶性の異なる層、または不純物濃度の異なる層を積層した積層構造としてもよい。
【0069】
導電層112、及び金属酸化物層114は、上面形状が互いに概略一致するように加工されている。
【0070】
なお、本明細書等において「上面形状が概略一致」とは、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置することや、上層が下層の外側に位置することもあり、この場合も「上面形状が概略一致」という。
【0071】
絶縁層110と導電層112との間に位置する金属酸化物層114は、絶縁層110に含まれる酸素が導電層112側に拡散することを防ぐバリア膜として機能する。さらに金属酸化物層114は、導電層112に含まれる水素や水が絶縁層110側に拡散することを防ぐバリア膜としても機能する。金属酸化物層114は、例えば少なくとも絶縁層110よりも酸素及び水素を透過しにくい材料を用いることができる。
【0072】
金属酸化物層114により、導電層112にアルミニウムや銅などの酸素を吸引しやすい金属材料を用いた場合であっても、絶縁層110から導電層112へ酸素が拡散することを防ぐことができる。また、導電層112が水素を含む場合であっても、導電層112から絶縁層110を介して半導体層108へ水素が拡散することを防ぐことができる。その結果、半導体層108のチャネル形成領域におけるキャリア密度を極めて低いものとすることができる。
【0073】
金属酸化物層114としては、絶縁性材料または導電性材料を用いることができる。金属酸化物層114が絶縁性を有する場合には、ゲート絶縁層の一部として機能する。一方、金属酸化物層114が導電性を有する場合には、ゲート電極の一部として機能する。
【0074】
金属酸化物層114として、酸化シリコンよりも誘電率の高い絶縁性材料を用いることが好ましい。特に、酸化アルミニウム膜、酸化ハフニウム膜、またはハフニウムアルミネート膜等を用いると、駆動電圧を低減できるため好ましい。
【0075】
金属酸化物層114として、例えば酸化インジウム、インジウムスズ酸化物(ITO)、またはシリコンを含有したインジウムスズ酸化物(ITSO)などの、導電性酸化物を用いることもできる。特にインジウムを含む導電性酸化物は、導電性が高いため好ましい。
【0076】
また、金属酸化物層114として、半導体層108と同一の元素を一以上含む酸化物材料を用いることが好ましい。特に、上記半導体層108に適用可能な酸化物半導体材料を用いることが好ましい。このとき、金属酸化物層114として、半導体層108と同じスパッタリングターゲットを用いて形成した金属酸化物膜を適用することで、装置を共通化できるため好ましい。
【0077】
または、半導体層108と金属酸化物層114の両方に、インジウム及びガリウムを含む金属酸化物材料を用いる場合、半導体層108よりもガリウムの組成(含有割合)が高い材料を用いると、酸素に対するブロッキング性をより高めることができるため好ましい。このとき、半導体層108には、金属酸化物層114よりもインジウムの組成が高い材料を用いることで、トランジスタ100の電界効果移動度を高めることができる。
【0078】
また、金属酸化物層114は、スパッタリング装置を用いて形成すると好ましい。例えば、スパッタリング装置を用いて酸化物膜を形成する場合、酸素ガスを含む雰囲気で形成することで、絶縁層110や半導体層108中に好適に酸素を添加することができる。
【0079】
半導体層108は、導電層112と重畳する領域と、当該領域を挟む一対の低抵抗な領域108nを有する。半導体層108の、導電層112と重畳する領域は、トランジスタ100のチャネル形成領域として機能する。一方、領域108nは、トランジスタ100のソース領域またはドレイン領域として機能する。
【0080】
また領域108nは、チャネル形成領域よりも低抵抗な領域、キャリア濃度が高い領域、酸素欠陥密度の高い領域、不純物濃度の高い領域、またはn型である領域ともいうことができる。
【0081】
半導体層108の領域108nは、不純物元素を含む領域である。当該不純物元素としては、例えば水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、ヒ素、アルミニウム、または希ガスなどが挙げられる。なお、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。特に、ホウ素またはリンを含むことが好ましい。またこれら元素を2以上含んでいてもよい。
【0082】
絶縁層110は、半導体層108のチャネル形成領域と接する領域、すなわち導電層112と重畳する領域を有する。また、絶縁層110は、半導体層108の低抵抗な領域108nと接し、且つ導電層112と重畳しない領域を有する。
【0083】
また、半導体層108のチャネル形成領域に接する絶縁層103と絶縁層110には、酸化物膜を用いることが好ましい。例えば、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜などの酸化物膜を用いることができる。これにより、トランジスタ100の作製工程における熱処理などで、絶縁層103や絶縁層110から脱離した酸素を半導体層108のチャネル形成領域に供給し、半導体層108中の酸素欠損を低減することができる。
【0084】
図2に、図1(B)中の一点鎖線で囲った領域Pを拡大した断面図を示している。
【0085】
絶縁層110は、上述した不純物元素を含む領域110dを有する。領域110dは、少なくとも領域108nとの界面近傍に位置している。また領域110dは、半導体層108が設けられず、且つ導電層112と重畳しない領域において、少なくとも絶縁層103との界面近傍にも位置している。また、図1(B)、(C)、及び図2に示すように、領域110dは、半導体層108のチャネル形成領域と接する部分には設けられていないことが好ましい。
【0086】
また、絶縁層103は、絶縁層110と接する界面近傍に、上述した不純物元素を含む領域103dを有している。また図2に示すように、領域103dは、領域108nと接する界面近傍にも設けられていてもよい。このとき、領域108nと重畳する部分の不純物濃度は、絶縁層110と接する部分よりも低い濃度となる。
【0087】
ここで、領域108nにおける不純物濃度は、絶縁層110に近いほど濃度が高くなるような濃度勾配を有することが好ましい。これにより、領域108nの上部ほど低抵抗となるため、導電層120a(または導電層120b)との接触抵抗をより効果的に低減することができる。また、領域108n全体に亘って均一な濃度とした場合に比べて、領域108n内の不純物元素の総量を低くできるため、作製工程中の熱などの影響によりチャネル形成領域に拡散しうる不純物の量を低く保つことができる。
【0088】
また、領域110dにおける不純物濃度は、半導体層108に近いほど濃度が高くなるような濃度勾配を有することが好ましい。加熱により酸素を放出可能な酸化物膜を適用した絶縁層110において、上述した不純物元素が添加された領域110dでは、他の領域に比べて酸素の放出を抑えることができる。そのため、絶縁層110の領域108nとの界面近傍に位置する領域110dは、酸素に対するブロッキング層として機能し、領域108nに供給される酸素を効果的に低減することができる。
【0089】
後述するように、領域108n及び領域110dに不純物元素を添加する処理は、導電層112をマスクとして行うことができる。これにより、領域108nの形成と同時に、領域110dを自己整合的に形成することができる。
【0090】
なお、図2等では、絶縁層110の不純物濃度の高い部分が、半導体層108との界面近傍に位置することを誇張して示すために、領域110dを絶縁層110中の半導体層108の近傍にのみハッチングパターンを付して図示しているが、実際には絶縁層110の厚さ方向全体に亘って上記不純物元素が含まれうる。
【0091】
領域108n及び領域110dはそれぞれ、不純物濃度が、1×1019atoms/cm以上、1×1023atoms/cm以下、好ましくは5×1019atoms/cm以上、5×1022atoms/cm以下、より好ましくは1×1020atoms/cm以上、1×1022atoms/cm以下である領域を含むことが好ましい。また、領域108nは、絶縁層110の領域110dよりも、不純物濃度が高い部分を有すると、領域108nの電気抵抗をより効果的に低抵抗化できるため好ましい。
【0092】
領域108n及び領域110dに含まれる不純物の濃度は、例えば二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)や、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)等の分析法により分析することができる。XPS分析を用いる場合には、表面側または裏面側からのイオンスパッタリングとXPS分析を組み合わせることで、深さ方向の濃度分布を知ることができる。
【0093】
また、領域108nにおいて、不純物元素は酸化した状態で存在していることが好ましい。例えば不純物元素としてホウ素、リン、マグネシウム、アルミニウム、シリコンなどの酸化しやすい元素を用いることが好ましい。このような酸化しやすい元素は、半導体層108中の酸素と結合して酸化した状態で安定に存在しうるため、後の工程で高い温度(例えば400℃以上、600℃以上、または800℃以上)がかかった場合であっても、脱離することが抑制される。また、不純物元素が半導体層108中の酸素を奪うことで、領域108n中に多くの酸素欠損が生成される。この酸素欠損と、膜中の水素とが結合することでキャリア供給源となるため、領域108nは極めて低抵抗な状態となる。
【0094】
なお、後の工程で高い温度がかかる処理を行なう際、外部や領域108nの近傍の膜から多量の酸素が領域108nに供給されてしまうと、抵抗が上昇してしまう場合がある。そのため、高い温度のかかる処理を行なう際には、酸素に対するバリア性の高い絶縁層116で覆った状態で処理することが好ましい。
【0095】
また、領域110dにおいても、不純物元素は酸化した状態で存在していることが好ましい。このような酸化しやすい元素は、絶縁層110中の酸素と結合して酸化した状態で安定に存在しうるため、後の工程で高い温度がかかった場合でも脱離することが抑制される。また特に絶縁層110中に加熱により脱離しうる酸素(過剰酸素ともいう)が含まれる場合には、当該過剰酸素と不純物元素とが結合して安定化するため、領域110dから領域108nへ酸素が供給されることを抑制することができる。また、酸化した状態の不純物元素が含まれる領域110dは、酸素が拡散しにくい状態となるため、領域110dよりも上部から当該領域110dを介して領域108nに酸素が供給されることも防ぐことができる。
【0096】
例えば、不純物元素としてホウ素を用いた場合、領域108n及び領域110dに含まれるホウ素は酸素と結合した状態で存在しうる。このことは、XPS分析において、B結合に起因するスペクトルピークが観測されることで確認できる。また、XPS分析において、ホウ素元素が単体で存在する状態に起因するスペクトルピークが観測されない、または測定下限のバックグラウンドノイズに埋もれる程度にまでピーク強度が極めて小さくなる。
【0097】
絶縁層116及び絶縁層118は、トランジスタ100を保護する保護層として機能する。また絶縁層116及び絶縁層118のいずれか一方は、絶縁層110から放出されうる酸素が外部に拡散することを防ぐ機能を有することが好ましい。例えば、酸化物または窒化物などの無機絶縁材料を用いることができる。より具体的な例としては、窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化アルミニウム、酸化ハフニウム、ハフニウムアルミネートなどの無機絶縁材料を用いることができる。
【0098】
なお、ここでは保護層として絶縁層116と絶縁層118の積層構造とする場合を示したが、絶縁層116及び絶縁層118のいずれか一方は、不要であれば設けなくてもよい。
【0099】
ここで、半導体層108、及び半導体層108中に形成されうる酸素欠損について説明する。
【0100】
半導体層108に形成される酸素欠損は、トランジスタ特性に影響を与えるため問題となる。例えば、半導体層108中に酸素欠損が形成されると、該酸素欠損に水素が結合し、キャリア供給源となりうる。半導体層108中にキャリア供給源が生成されると、トランジスタ100の電気特性の変動、代表的にはしきい値電圧のシフトが生じる。したがって、半導体層108においては、酸素欠損が少ないほど好ましい。
【0101】
そこで、本発明の一態様においては、半導体層108近傍の絶縁膜、具体的には、半導体層108の上方に位置する絶縁層110、及び下方に位置する絶縁層103が、酸化物膜を含む構成である。作製工程中の熱などにより絶縁層103及び絶縁層110から半導体層108へ酸素を移動させることで、半導体層108中の酸素欠損を低減することが可能となる。
【0102】
また、半導体層108は、Inの原子数比がMの原子数比より多い領域を有すると好ましい。Inの原子数比が多いほど、トランジスタの電界効果移動度を向上させることができる。
【0103】
ここで、In、Ga、Znを含む金属酸化物の場合、Inと酸素の結合力は、Gaと酸素の結合力よりも弱いため、Inの原子数比が大きい場合には、金属酸化物膜中に酸素欠損が形成されやすい。また、Gaに代えて、上記Mで示す金属元素を用いた場合でも同様の傾向がある。金属酸化物膜中に酸素欠損が多く存在すると、トランジスタの電気特性の低下や、信頼性の低下が生じる。
【0104】
しかしながら本発明の一態様では、金属酸化物を含む半導体層108中に極めて多くの酸素を供給できるため、Inの原子数比の大きな金属酸化物材料を用いることが可能となる。これにより、極めて高い電界効果移動度と、安定した電気特性と、高い信頼性とを兼ね備えたトランジスタを実現することができる。
【0105】
例えば、Inの原子数比が、Mの原子数比に対して1.5倍以上、または2倍以上、または3倍以上、または3.5倍以上、または4倍以上である金属酸化物を、好適に用いることができる。
【0106】
特に、半導体層108のIn、M、及びZnの原子数の比を、In:M:Zn=5:1:6またはその近傍(Inが5の場合、Mが0.5以上1.5以下であり、且つZnが5以上7以下を含む)とすることが好ましい。または、In、M、及びZnの原子数の比を、In:M:Zn=4:2:3またはその近傍とすると好ましい。また、半導体層108の組成として、半導体層108のIn、M、及びZnの原子数の比を概略等しくしてもよい。すなわち、In、M、及びZnの原子数の比が、In:M:Zn=1:1:1またはその近傍の材料を含んでいてもよい。
【0107】
例えば、上記の電界効果移動度が高いトランジスタを、ゲート信号を生成するゲートドライバに用いることで、額縁幅の狭い(狭額縁ともいう)表示装置を提供することができる。また、上記の電界効果移動度が高いトランジスタを、ソースドライバ(特に、ソースドライバが有するシフトレジスタの出力端子に接続されるデマルチプレクサ)に用いることで、表示装置に接続される配線数が少ない表示装置を提供することができる。
【0108】
なお、半導体層108が、Inの原子数比がMの原子数比より多い領域を有していても、半導体層108の結晶性が高い場合、電界効果移動度が低くなる場合がある。半導体層108の結晶性としては、例えば、X線回折(XRD:X-Ray Diffraction)を用いて分析する、あるいは、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて分析することで解析できる。
【0109】
ここで、半導体層108に混入する水素または水分などの不純物は、トランジスタ特性に影響を与えるため問題となる。したがって、半導体層108においては、水素または水分などの不純物が少ないほど好ましい。不純物濃度が低く、欠陥準位密度の低い金属酸化物膜を用いることで、優れた電気特性を有するトランジスタを作製することができ好ましい。不純物濃度が低く、欠陥準位密度を低く(酸素欠損を少なく)することで、膜中のキャリア密度を低くすることができる。このような金属酸化物膜を半導体層に用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、このような金属酸化物膜を用いたトランジスタは、オフ電流が著しく小さい特性を得ることができる。
【0110】
また、半導体層108が、2層以上の積層構造を有していてもよい。
【0111】
例えば、組成の異なる2以上の金属酸化物膜を積層した半導体層108を用いることができる。例えば、In-M-Zn酸化物を用いた場合に、In、M、及びZnの原子数の比が、In:M:Zn=5:1:6、In:M:Zn=4:2:3、In:M:Zn=1:1:1、In:M:Zn=2:2:1、In:M:Zn=1:3:4、In:M:Zn=1:3:2、またはそれらの近傍であるスパッタリングターゲットで形成する膜のうち、2以上を積層して用いることが好ましい。
【0112】
また、結晶性の異なる2以上の金属酸化物膜を積層した半導体層108を用いることができる。その場合、同じ酸化物ターゲットを用い、成膜条件を異ならせることで、大気に触れることなく連続して形成されることが好ましい。
【0113】
例えば、先に形成する第1の金属酸化物膜の成膜時の酸素流量比を、後に形成する第2の金属酸化物膜の成膜時の酸素流量比よりも小さくする。または、第1の金属酸化物膜の成膜時に、酸素を流さない条件とする。これにより、第2の金属酸化物膜の成膜時に、酸素を効果的に供給することができる。また、第1の金属酸化物膜は第2の金属酸化物膜よりも結晶性が低く、電気伝導性の高い膜とすることができる。一方、上部に設けられる第2の金属酸化物膜を第1の金属酸化物膜よりも結晶性の高い膜とすることで、半導体層108の加工時や、絶縁層110の成膜時のダメージを抑制することができる。
【0114】
より具体的には、第1の金属酸化物膜の成膜時の酸素流量比を、0%以上50%未満、好ましくは0%以上30%以下、より好ましくは0%以上20%以下、代表的には10%とする。また第2の金属酸化物膜の成膜時の酸素流量比を、50%以上100%以下、好ましくは60%以上100%以下、より好ましくは80%以上100%以下、さらに好ましくは90%以上100%以下、代表的には100%とする。また、第1の金属酸化物膜と第2の金属酸化物膜とで、成膜時の圧力、温度、電力等の条件を異ならせてもよいが、酸素流量比以外の条件を同じとすることで、成膜工程にかかる時間を短縮することができるため好ましい。
【0115】
このような構成とすることで、電気特性に優れ、且つ信頼性の高いトランジスタ100を実現できる。
【0116】
以上が構成例1についての説明である。
【0117】
[構成例2]
以下では、上記構成例1と一部の構成が異なるトランジスタの構成例について説明する。なお、以下では、上記構成例1と重複する部分は説明を省略する場合がある。また、以下で示す図面において、上記構成例1と同様の機能を有する部分についてはハッチングパターンを同じくし、符号を付さない場合もある。
【0118】
図3(A)は、トランジスタ100Aの上面図であり、図3(B)はトランジスタ100Aのチャネル長方向の断面図であり、図3(C)はトランジスタ100Aのチャネル幅方向の断面図である。
【0119】
トランジスタ100Aは、基板102と絶縁層103との間に導電層106を有する点で、構成例1と主に相違している。導電層106は半導体層108及び導電層112と重畳する領域を有する。
【0120】
トランジスタ100Aにおいて、導電層106は、第1のゲート電極(ボトムゲート電極ともいう)としての機能を有し、導電層112は、第2のゲート電極(トップゲート電極ともいう)としての機能を有する。また、絶縁層103の一部は第1のゲート絶縁層として機能し、絶縁層110の一部は、第2のゲート絶縁層として機能する。
【0121】
半導体層108の、導電層112及び導電層106の少なくとも一方と重畳する部分は、チャネル形成領域として機能する。なお以下では説明を容易にするため、半導体層108の導電層112と重畳する部分をチャネル形成領域と呼ぶ場合があるが、実際には導電層112と重畳せずに、導電層106と重畳する部分(領域108nを含む部分)にもチャネルが形成しうる。
【0122】
また、図3(C)に示すように、導電層106は、金属酸化物層114、絶縁層110、及び絶縁層103に設けられた開口部142を介して、導電層112と電気的に接続されていてもよい。これにより、導電層106と導電層112には、同じ電位を与えることができる。
【0123】
導電層106は、導電層112、導電層120a、または導電層120bと同様の材料を用いることができる。特に導電層106に銅を含む材料を用いると、配線抵抗を低減できるため好ましい。
【0124】
また、図3(A)、(C)に示すように、チャネル幅方向において、導電層112及び導電層106が、半導体層108の端部よりも外側に突出していることが好ましい。このとき、図3(C)に示すように、半導体層108のチャネル幅方向の全体が、絶縁層110と絶縁層103を介して、導電層112と導電層106に覆われた構成となる。
【0125】
このような構成とすることで、半導体層108を一対のゲート電極によって生じる電界で、電気的に取り囲むことができる。このとき特に、導電層106と導電層112に同じ電位を与えることが好ましい。これにより、半導体層108にチャネルを誘起させるための電界を効果的に印加できるため、トランジスタ100Aのオン電流を増大させることができる。そのため、トランジスタ100Aを微細化することも可能となる。
【0126】
なお、導電層112と導電層106とを接続しない構成としてもよい。このとき、一対のゲート電極の一方に定電位を与え、他方にトランジスタ100Aを駆動するための信号を与えてもよい。このとき、一方の電極に与える電位により、トランジスタ100Aを他方の電極で駆動する際のしきい値電圧を制御することもできる。
【0127】
以上が、構成例2についての説明である。
【0128】
[応用例]
以下では、不純物を含む半導体膜を容量素子の一方の電極として用い、トランジスタと容量素子とを同一面上に形成する例について説明する。
【0129】
図4(A)に示す断面図では、構成例1で例示したトランジスタ100に並べて、容量素子130Aが設けられている。
【0130】
また、図4(B)に示す断面図では、構成例2で例示したトランジスタ100Aに並べて、容量素子130Aが設けられている。
【0131】
容量素子130Aは、半導体層108cと、導電層120bとの間に、誘電体として機能する絶縁層110、絶縁層116、及び絶縁層118が設けられた構成を有する。
【0132】
半導体層108cは、半導体層108と同一面上に設けられている。例えば半導体層108cは、半導体層108と同一の金属酸化物膜を加工した後に、領域108nと同じ不純物元素を添加することにより形成することができる。
【0133】
このような構成とすることで、工程を増やすことなく容量素子130Aを作製することができる。
【0134】
図4(C)に示す容量素子130Bは、導電層106cと、半導体層108cとの間に、誘電体として機能する絶縁層103が設けられた構成を有する。
【0135】
導電層106cは、導電層106と同一面上に設けられている。導電層106cは、導電層106と同一の導電膜を加工して形成することができる。
【0136】
容量素子130Bは、容量素子130Aに比べて誘電体の厚さを薄くできるため、より大容量の容量素子とすることができる。
【0137】
以上が応用例についての説明である。
【0138】
[半導体装置の構成要素]
次に、本実施の形態の半導体装置に含まれる構成要素について、詳細に説明する。
【0139】
〔基板〕
基板102の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有している必要がある。例えば、シリコンや炭化シリコンを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板、ガラス基板、セラミック基板、石英基板、サファイア基板等を、基板102として用いてもよい。また、これらの基板上に半導体素子が設けられたものを、基板102として用いてもよい。
【0140】
また、基板102として、可撓性基板を用い、可撓性基板上に直接、トランジスタ100等を形成してもよい。または、基板102とトランジスタ100等の間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板102より分離し、他の基板に転載するのに用いることができる。その際、トランジスタ100等は耐熱性の劣る基板や可撓性の基板にも転載できる。
【0141】
〔絶縁層103〕
絶縁層103としては、スパッタリング法、CVD法、蒸着法、パルスレーザー堆積(PLD)法等を適宜用いて形成することができる。また、絶縁層103としては、例えば、酸化物絶縁膜または窒化物絶縁膜を単層または積層して形成することができる。なお、半導体層108との界面特性を向上させるため、絶縁層103において少なくとも半導体層108と接する領域は酸化物絶縁膜で形成することが好ましい。また、絶縁層103には、加熱により酸素を放出する膜を用いることが好ましい。
【0142】
絶縁層103として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa-Zn酸化物などを用いればよく、単層または積層で設けることができる。
【0143】
また、絶縁層103の半導体層108に接する側に窒化シリコン膜などの酸化物膜以外の膜を用いた場合、半導体層108と接する表面に対して酸素プラズマ処理などの前処理を行い、当該表面、または表面近傍を酸化することが好ましい。
【0144】
〔導電膜〕
ゲート電極として機能する導電層112及び導電層106、ソース電極として機能する導電層120a、ドレイン電極として機能する導電層120bとしては、クロム、銅、アルミニウム、金、銀、亜鉛、モリブデン、タンタル、チタン、タングステン、マンガン、ニッケル、鉄、コバルトから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いてそれぞれ形成することができる。
【0145】
また、導電層112、導電層106、導電層120a、及び導電層120bには、In-Sn酸化物、In-W酸化物、In-W-Zn酸化物、In-Ti酸化物、In-Ti-Sn酸化物、In-Zn酸化物、In-Sn-Si酸化物、In-Ga-Zn酸化物等の酸化物導電体または金属酸化物膜を適用することもできる。
【0146】
ここで、酸化物導電体(OC:OxideConductor)について説明を行う。例えば、半導体特性を有する金属酸化物に酸素欠損を形成し、該酸素欠損に水素を添加すると、伝導帯近傍にドナー準位が形成される。この結果、金属酸化物は、導電性が高くなり導電体化する。導電体化された金属酸化物を、酸化物導電体ということができる。
【0147】
また、導電層112等として、上記酸化物導電体(金属酸化物)を含む導電膜と、金属または合金を含む導電膜の積層構造としてもよい。金属または合金を含む導電膜を用いることで、配線抵抗を小さくすることができる。このとき、ゲート絶縁膜として機能する絶縁層と接する側には酸化物導電体を含む導電膜を適用することが好ましい。
【0148】
また、導電層112、導電層106、導電層120a、導電層120bには、上述の金属元素の中でも、特にチタン、タングステン、タンタル、及びモリブデンの中から選ばれるいずれか一つまたは複数を有すると好適である。特に、窒化タンタル膜を用いると好適である。当該窒化タンタル膜は、導電性を有し、且つ、銅、酸素、または水素に対して、高いバリア性を有し、且つそれ自身からの水素の放出が少ないため、半導体層108と接する導電膜、または半導体層108の近傍の導電膜として、好適に用いることができる。
【0149】
〔絶縁層110〕
トランジスタ100等のゲート絶縁膜として機能する絶縁層110は、PECVD法、スパッタリング法等により形成できる。絶縁層110としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜および酸化ネオジム膜を一種以上含む絶縁層を用いることができる。なお、絶縁層110を、2層の積層構造または3層以上の積層構造としてもよい。
【0150】
また、半導体層108と接する絶縁層110は、酸化物絶縁膜であることが好ましく、化学量論的組成よりも過剰に酸素を含有する領域を有することがより好ましい。別言すると、絶縁層110は、酸素を放出することが可能な絶縁膜である。例えば、酸素雰囲気下にて絶縁層110を形成すること、成膜後の絶縁層110に対して酸素雰囲気下での熱処理、プラズマ処理等を行うこと、または、絶縁層110上に酸素雰囲気下で酸化物膜を成膜することなどにより、絶縁層110中に酸素を供給することもできる。
【0151】
また、絶縁層110として、酸化シリコンや酸化窒化シリコンと比べて比誘電率の高い酸化ハフニウム等の材料を用いることもできる。これにより絶縁層110の膜厚を厚くしトンネル電流によるリーク電流を抑制できる。特に結晶性を有する酸化ハフニウムは、非晶質の酸化ハフニウムと比べて高い比誘電率を備えるため好ましい。
【0152】
〔半導体層〕
半導体層108がIn-M-Zn酸化物の場合、In-M-Zn酸化物を成膜するために用いるスパッタリングターゲットは、Inの原子数比がMの原子数比以上であることが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が挙げられる。
【0153】
また、スパッタリングターゲットとしては、多結晶の酸化物を含むターゲットを用いると、結晶性を有する半導体層108を形成しやすくなるため好ましい。なお、成膜される半導体層108の原子数比は、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。例えば、半導体層108に用いるスパッタリングターゲットの組成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される半導体層108の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。
【0154】
なお、原子数比がIn:Ga:Zn=4:2:3またはその近傍と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍であると記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍であると記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
【0155】
また、半導体層108は、エネルギーギャップが2eV以上、好ましくは2.5eV以上である。このように、シリコンよりもエネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
【0156】
また、半導体層108は、非単結晶構造であると好ましい。非単結晶構造は、例えば、後述するCAAC構造、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC構造は最も欠陥準位密度が低い。
【0157】
以下では、CAAC(c-axis aligned crystal)について説明する。CAACは結晶構造の一例を表す。
【0158】
CAAC構造とは、複数のナノ結晶(最大径が10nm未満である結晶領域)を有する薄膜などの結晶構造の一つであり、各ナノ結晶はc軸が特定の方向に配向し、かつa軸及びb軸は配向性を有さずに、ナノ結晶同士が粒界を形成することなく連続的に連結しているといった特徴を有する結晶構造である。特にCAAC構造を有する薄膜は、各ナノ結晶のc軸が、薄膜の厚さ方向、被形成面の法線方向、または薄膜の表面の法線方向に配向しやすいといった特徴を有する。
【0159】
CAAC-OS(Oxide Semiconductor)は結晶性の高い酸化物半導体である。一方、CAAC-OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC-OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC-OSを有する酸化物半導体は熱に強く、信頼性が高い。
【0160】
ここで、結晶学において、単位格子を構成するa軸、b軸、及びc軸の3つの軸(結晶軸)について、特異的な軸をc軸とした単位格子を取ることが一般的である。特に層状構造を有する結晶では、層の面方向に平行な2つの軸をa軸及びb軸とし、層に交差する軸をc軸とすることが一般的である。このような層状構造を有する結晶の代表的な例として、六方晶系に分類されるグラファイトがあり、その単位格子のa軸及びb軸は劈開面に平行であり、c軸は劈開面に直交する。例えば層状構造であるYbFe型の結晶構造をとるInGaZnOの結晶は六方晶系に分類することができ、その単位格子のa軸及びb軸は層の面方向に平行となり、c軸は層(すなわちa軸及びb軸)に直交する。
【0161】
金属酸化物の結晶構造の一例について説明する。なお、以下では、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリング法にて成膜された金属酸化物を一例として説明する。上記ターゲットを用いて、基板温度を100℃以上130℃以下として、スパッタリング法により形成した金属酸化物は、nc(nano crystal)構造及びCAAC構造のいずれか一方の結晶構造、またはこれらが混在した構造をとりやすい。一方、基板温度を室温(R.T.)として、スパッタリング法により形成した金属酸化物は、ncの結晶構造をとりやすい。なお、ここでいう室温(R.T.)とは、基板を意図的に加熱しない場合の温度を含む。
【0162】
[作製方法例]
以下では、本発明の一態様のトランジスタの作製方法の例について説明する。ここでは、構成例2で例示したトランジスタ100Aを例に挙げて説明する。
【0163】
なお、半導体装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulse Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法や、熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
【0164】
また、半導体装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
【0165】
また、半導体装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いて加工することができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
【0166】
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
【0167】
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra-violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
【0168】
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
【0169】
図5及び図6に示す各図には、トランジスタ100Aの作製工程の各段階におけるチャネル長方向及びチャネル幅方向の断面を並べて示している。
【0170】
〔導電層106の形成〕
基板102上に導電膜を成膜し、これをエッチングにより加工して、ゲート電極として機能する導電層106を形成する。
【0171】
〔絶縁層103の形成〕
続いて、基板102、導電層106を覆って絶縁層103を形成する(図5(A))。絶縁層103はPECVD法、ALD法、スパッタリング法などを用いて形成することができる。
【0172】
絶縁層103を形成した後に、絶縁層103に対して酸素を供給する処理を行ってもよい。例えば酸素雰囲気下でのプラズマ処理または加熱処理などを行うことができる。または、プラズマイオンドーピング法やイオン注入法により、絶縁層103に酸素を供給してもよい。
【0173】
〔半導体層108の形成〕
続いて、絶縁層103上に金属酸化物膜を成膜し、これを加工することにより島状の半導体層108を形成する(図5(B))。
【0174】
金属酸化物膜は、金属酸化物ターゲットを用いたスパッタリング法により形成することが好ましい。
【0175】
また、金属酸化物膜を成膜する際に、酸素ガスの他に、不活性ガス(例えば、ヘリウムガス、アルゴンガス、キセノンガスなど)を混合させてもよい。なお、金属酸化物膜を成膜する際の成膜ガス全体に占める酸素ガスの割合(以下、酸素流量比ともいう)が高いほど、金属酸化物膜の結晶性を高めることができ、信頼性の高いトランジスタを実現できる。一方、酸素流量比が低いほど、金属酸化物膜の結晶性が低くなり、オン電流が高められたトランジスタとすることができる。
【0176】
また、金属酸化物膜の成膜条件としては、基板温度を室温以上200℃以下、好ましくは基板温度を室温以上140℃以下とすればよい。例えば基板温度を、室温以上140℃未満とすると、生産性が高くなり好ましい。また、基板温度を室温とする、または意図的に加熱しない状態で、金属酸化物膜を成膜することで、結晶性を低くすることができる。
【0177】
また、金属酸化物膜を成膜する前に、絶縁層103の表面に吸着した水や水素、有機物等を脱離させるための処理や、絶縁層103中に酸素を供給する処理を行うことが好ましい。例えば、減圧雰囲気下にて70℃以上200℃以下の温度で加熱処理を行うことができる。または、酸素を含む雰囲気下におけるプラズマ処理を行ってもよい。また、一酸化窒素ガスを含む雰囲気下におけるプラズマ処理を行うと、絶縁層103の表面の有機物を好適に除去することができる。このような処理の後、絶縁層103の表面を大気に暴露することなく、連続して金属酸化物膜を成膜することが好ましい。
【0178】
金属酸化物膜の加工には、ウェットエッチング法及びドライエッチング法のいずれか一方または双方を用いればよい。このとき、半導体層108と重ならない絶縁層103の一部がエッチングされ、薄くなる場合がある。
【0179】
また、金属酸化物膜の成膜後、または半導体層108に加工した後、金属酸化物膜または半導体層108中の水素または水を除去するために加熱処理を行ってもよい。加熱処理の温度は、代表的には、150℃以上基板の歪み点未満、または250℃以上450℃以下、または300℃以上450℃以下とすることができる。
【0180】
加熱処理は、希ガス、または窒素を含む雰囲気で行うことができる。または、当該雰囲気で加熱した後、酸素を含む雰囲気で加熱してもよい。なお、上記加熱処理の雰囲気に水素、水などが含まれないことが好ましい。該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いることで、加熱処理時間を短縮することができる。
【0181】
〔絶縁層110、金属酸化物膜114fの形成〕
続いて、絶縁層103及び半導体層108を覆って、絶縁層110と金属酸化物膜114fを積層して成膜する(図5(C))。
【0182】
絶縁層110としては、例えば酸化シリコン膜または酸化窒化シリコン膜などの酸化物膜を、プラズマ化学気相堆積装置(PECVD装置、または単にプラズマCVD装置という)を用いて形成することが好ましい。また、マイクロ波を用いたPECVD法を用いて形成してもよい。
【0183】
金属酸化物膜114fは、例えば酸素を含む雰囲気下で成膜することが好ましい。特に、酸素を含む雰囲気下でスパッタリング法により形成することが好ましい。これにより、金属酸化物膜114fの成膜時に絶縁層110に酸素を供給することができる。
【0184】
金属酸化物膜114fを、上記半導体層108の場合と同様の金属酸化物を含む酸化物ターゲットを用いたスパッタリング法により形成する場合には、上記方法を援用することができる。
【0185】
例えば金属酸化物膜114fの成膜条件として、成膜ガスに酸素を用い、金属ターゲットを用いた反応性スパッタリング法により、金属酸化物膜を形成してもよい。金属ターゲットとして、例えばアルミニウムを用いた場合には、酸化アルミニウム膜を成膜することができる。
【0186】
金属酸化物膜114fの成膜時に、成膜装置の成膜室内に導入する成膜ガスの全流量に対する酸素流量の割合(酸素流量比)、または成膜室内の酸素分圧が高いほど、絶縁層110中に供給される酸素を増やすことができる。酸素流量比または酸素分圧は、例えば50%以上100%以下、好ましくは65%以上100%以下、より好ましくは80%以上100%以下、さらに好ましくは90%以上100%以下とする。特に、酸素流量比100%とし、酸素分圧を100%にできるだけ近づけることが好ましい。
【0187】
このように、酸素を含む雰囲気下でスパッタリング法により金属酸化物膜114fを形成することにより、金属酸化物膜114fの成膜時に、絶縁層110へ酸素を供給するとともに、絶縁層110から酸素が脱離することを防ぐことができる。その結果、絶縁層110に極めて多くの酸素を閉じ込めることができる。そして、後の加熱処理によって、半導体層108に多くの酸素を供給することができる。その結果、半導体層108中の酸素欠損を低減でき、信頼性の高いトランジスタを実現できる。
【0188】
また、金属酸化物膜114fの形成後に、加熱処理を行うことで、絶縁層110から半導体層108に酸素を供給してもよい。加熱処理は、窒素、酸素、希ガスのうち一以上を含む雰囲気下にて、200℃以上400℃以下の温度で行うことができる。
【0189】
続いて、金属酸化物膜114fの成膜後に、金属酸化物膜114f、絶縁層110、及び絶縁層103の一部をエッチングすることで、導電層106に達する開口を形成する。これにより、後に形成する導電層112と導電層106とを、当該開口を介して電気的に接続することができる。
【0190】
〔導電層112、金属酸化物層114の形成〕
続いて、金属酸化物膜114f上に、導電層112となる導電膜112fを成膜する(図5(D))。導電膜112fは、金属または合金のスパッタリングターゲットを用いたスパッタリング法により成膜することが好ましい。
【0191】
続いて、導電膜112f及び金属酸化物膜114fの一部をエッチングし、導電層112及び金属酸化物層114を形成する(図5(E))。導電膜112f及び金属酸化物膜114fは、それぞれ同じレジストマスクを用いて加工することが好ましい。または、エッチング後の導電層112をハードマスクとして用いて、金属酸化物膜114fをエッチングしてもよい。
【0192】
これにより、上面形状が概略一致した導電層112及び金属酸化物層114を形成することができる。
【0193】
このように、絶縁層110をエッチングせずに、半導体層108の上面及び側面、並びに絶縁層103を絶縁層110が覆った状態とすることで、導電層112等のエッチングの際に、半導体層108や絶縁層103の一部がエッチングされ、薄膜化することを防ぐことができる。
【0194】
〔不純物元素の供給処理〕
続いて、導電層112をマスクとして、絶縁層110及び半導体層108に不純物元素140を供給(添加、または注入ともいう)する処理を行い、領域108n、領域110d、及び領域103dを形成する(図6(A))。半導体層108及び絶縁層110のうち、導電層112と重畳する領域には、導電層112がマスクとなり不純物元素140は供給されない。
【0195】
不純物元素140の供給は、プラズマイオンドーピング法、またはイオン注入法を好適に用いることができる。これらの方法は、深さ方向の濃度プロファイルを、イオンの加速電圧とドーズ量等により、高い精度で制御することができる。プラズマイオンドーピング法を用いることで、生産性を高めることができる。また質量分離を用いたイオン注入法を用いることで、供給される不純物元素の純度を高めることができる。
【0196】
不純物元素140の供給処理において、半導体層108と絶縁層110との界面、または半導体層108中の界面に近い部分、または絶縁層110中の当該界面に近い部分が、最も高い濃度となるように、処理条件を制御することが好ましい。これにより、一度の処理で半導体層108と絶縁層110の両方に、最適な濃度の不純物元素140を供給することができる。
【0197】
不純物元素140としては、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、ヒ素、アルミニウム、マグネシウム、シリコン、または希ガスなどが挙げられる。なお、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。特に、ホウ素、リン、アルミニウム、マグネシウム、またはシリコンを用いることが好ましい。
【0198】
不純物元素140の原料ガスとしては、上記不純物元素を含むガスを用いることができる。ホウ素を供給する場合、代表的にはBガスやBFガスなどを用いることができる。またリンを供給する場合には、代表的にはPHガスを用いることができる。また、これらの原料ガスを希ガスで希釈した混合ガスを用いてもよい。
【0199】
その他、原料ガスとして、CH、N、NH、AlH、AlCl、SiH、Si、F、HF、H、(CMg、及び希ガス等を用いることができる。また、イオン源は気体に限られず、固体や液体を加熱して気化させたものを用いてもよい。
【0200】
不純物元素140の添加は、絶縁層110及び半導体層108の組成や密度、厚さなどを考慮して、加速電圧やドーズ量などの条件を設定することで制御することができる。
【0201】
例えば、イオン注入法またはプラズマイオンドーピング法でホウ素の添加を行う場合、加速電圧は例えば5kV以上100kV以下、好ましくは7kV以上70kV以下、より好ましくは10kV以上50kV以下の範囲とすることができる。またドーズ量は、例えば1×1013ions/cm以上1×1017ions/cm以下、好ましくは1×1014ions/cm以上5×1016ions/cm以下、より好ましくは1×1015ions/cm以上、3×1016ions/cm以下の範囲とすることができる。
【0202】
また、イオン注入法またはプラズマイオンドーピング法でリンイオンの添加を行う場合、加速電圧は、例えば10kV以上100kV以下、好ましくは30kV以上90kV以下、より好ましくは40kV以上80kV以下の範囲とすることができる。またドーズ量は、例えば1×1013ions/cm以上1×1017ions/cm以下、好ましくは1×1014ions/cm以上5×1016ions/cm以下、より好ましくは1×1015ions/cm以上、3×1016ions/cm以下の範囲とすることができる。
【0203】
なお、不純物元素140の供給方法としてはこれに限られず、例えばプラズマ処理や、加熱による熱拡散を利用した処理などを用いてもよい。プラズマ処理法の場合、添加する不純物元素を含むガス雰囲気にてプラズマを発生させて、プラズマ処理を行うことによって、不純物元素を添加することができる。上記プラズマを発生させる装置としては、ドライエッチング装置、アッシング装置、プラズマCVD装置、高密度プラズマCVD装置等を用いることができる。
【0204】
本発明の一態様では、絶縁層110を介して不純物元素140を半導体層108に供給することができる。そのため、半導体層108が結晶性を有する場合であっても、不純物元素140の供給の際に結晶性が損なわれてしまうことを抑制できる。そのため、結晶性の低下により電気抵抗が増大してしまうような場合には好適である。
【0205】
〔絶縁層116、絶縁層118の形成〕
続いて、絶縁層116及び絶縁層118を順に形成する(図6(B))。
【0206】
絶縁層116または絶縁層118をプラズマCVD法により形成する場合、成膜温度が高すぎると、領域108n等に含まれる不純物が、半導体層108のチャネル形成領域を含む周辺部に拡散することや、領域108nの電気抵抗が上昇してしまう恐れがある。絶縁層116または絶縁層118の成膜温度としては、例えば150℃以上400℃以下、好ましくは180℃以上360℃以下、より好ましくは200℃以上250℃以下とすることが好ましい。絶縁層116または絶縁層118を低温で成膜することにより、チャネル長の短いトランジスタであっても、良好な電気特性を付与することができる。
【0207】
〔加熱処理〕
絶縁層116または絶縁層118の形成後、加熱処理を行う。加熱処理は、窒素、酸素、希ガスのうち一以上を含む雰囲気下にて、150℃以上450℃以下、好ましくは200℃以上400℃以下の温度で行うことが好ましい。当該加熱処理により、より安定して低抵抗な領域108nとすることができる。例えば、上記温度で加熱処理を行うことにより、不純物元素140を適度に拡散して局所的に均一化され、理想的な不純物元素の濃度勾配を有する領域108n及び領域110dが形成されうる。なお、加熱処理の温度が高すぎる(例えば500℃以上)と、不純物元素140がチャネル形成領域内にまで拡散し、トランジスタの電気特性や信頼性の悪化を招く恐れがある。
【0208】
また、領域108nに不純物元素140を供給する際に、半導体層108や絶縁層110に生じた欠陥を、加熱処理によって修復できる場合もある。
【0209】
また、加熱処理により、絶縁層110から半導体層108のチャネル形成領域に酸素を供給することができる。このとき、絶縁層110には、領域108nとの界面近傍に、不純物元素140が供給された領域110dが形成されているため、絶縁層110から放出される酸素が領域108nに拡散することが抑制される。その結果、領域108nが再度高抵抗化してしまうことを効果的に防ぐことができる。さらにこのとき、絶縁層110の半導体層108のチャネル形成領域と重なる部分には、領域110dが形成されていないため、絶縁層110から放出される酸素を選択的に当該チャネル形成領域に供給することができる。
【0210】
また、領域108nはチャネル形成領域よりも酸素欠損が多く存在した状態であるため、加熱処理により、当該酸素欠損によってチャネル形成領域中に含まれる水素をゲッタリングする効果が期待できる。これによりチャネル形成領域中の水素濃度を低減することができ、より信頼性の高いトランジスタを実現できる。また、チャネル形成領域から供給された水素と、領域108n中の酸素欠損とが結合してキャリア生成源となるため、より低抵抗化した領域108nを実現できる。
【0211】
なお、加熱処理は、絶縁層116の形成前に行ってもよいが、絶縁層116または絶縁層118を形成した後に行うことがより好ましい。例えば絶縁層116または絶縁層118に、酸素を拡散しにくい絶縁膜を用いることで、加熱処理により絶縁層110から放出される酸素が外部に拡散することを防ぎ、半導体層108のチャネル形成領域に供給しうる酸素の量を多くすることができる。
【0212】
〔開口部141a、開口部141bの形成〕
続いて、絶縁層118の所望の位置にリソグラフィによりマスクを形成した後、絶縁層118、絶縁層116、及び絶縁層110の一部をエッチングすることで、領域108nに達する開口部141a及び開口部141bを形成する。
【0213】
〔導電層120a、導電層120bの形成〕
続いて、開口部141a及び開口部141bを覆うように、絶縁層118上に導電膜を成膜し、当該導電膜を所望の形状に加工することで、導電層120a及び導電層120bを形成する(図6(C))。
【0214】
以上の工程により、トランジスタ100Aを作製することができる。例えば、トランジスタ100Aを表示装置の画素に適用する場合には、この後に、保護絶縁層、平坦化層、画素電極、または配線のうち1以上を形成する工程を追加すればよい。
【0215】
以上が作製方法例についての説明である。
【0216】
本実施の形態で例示した構成例、作製方法例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、作製方法例、または図面等と適宜組み合わせて実施することができる。
【0217】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0218】
(実施の形態2)
本実施の形態では、先の実施の形態で例示したトランジスタを有する表示装置の一例について説明を行う。
【0219】
[構成例]
図7(A)に、表示装置700の上面図を示す。表示装置700は、シール材712により貼りあわされた第1の基板701と第2の基板705を有する。また第1の基板701、第2の基板705、及びシール材712で封止される領域において、第1の基板701上に画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706が設けられる。また画素部702には、複数の表示素子が設けられる。
【0220】
また、第1の基板701の第2の基板705と重ならない部分に、FPC716(FPC:Flexible printed circuit)が接続されるFPC端子部708が設けられている。FPC716によって、FPC端子部708及び信号線710を介して、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706のそれぞれに各種信号等が供給される。
【0221】
ゲートドライバ回路部706は、複数設けられていてもよい。また、ゲートドライバ回路部706及びソースドライバ回路部704は、それぞれ半導体基板等に別途形成され、パッケージされたICチップの形態であってもよい。当該ICチップは、第1の基板701上、またはFPC716に実装することができる。
【0222】
画素部702、ソースドライバ回路部704及びゲートドライバ回路部706が有するトランジスタに、本発明の一態様の半導体装置であるトランジスタを適用することができる。
【0223】
画素部702に設けられる表示素子としては、液晶素子、発光素子などが挙げられる。液晶素子としては、透過型の液晶素子、反射型の液晶素子、半透過型の液晶素子などを用いることができる。また、発光素子としては、LED(Light Emitting Diode)、OLED(Organic LED)、QLED(Quantum-dot LED)、半導体レーザなどの、自発光性の発光素子が挙げられる。また、シャッター方式または光干渉方式のMEMS(Micro Electro Mechanical Systems)素子や、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、または電子粉流体(登録商標)方式等を適用した表示素子などを用いることもできる。
【0224】
図7(B)に示す表示装置700Aは、大型の画面を有する電子機器に好適に用いることのできる表示装置である。表示装置700Aは、例えばテレビジョン装置、モニタ装置、パーソナルコンピュータ(ノート型またはデスクトップ型を含む)、タブレット端末、デジタルサイネージなどに好適に用いることができる。
【0225】
表示装置700Aは、複数のソースドライバIC721と、一対のゲートドライバ回路部722を有する。
【0226】
複数のソースドライバIC721は、それぞれFPC723に取り付けられている。また、複数のFPC723は、一方の端子が第1の基板701に、他方の端子がプリント基板724にそれぞれ接続されている。FPC723を折り曲げることで、プリント基板724を画素部702の裏側に配置して、電子機器に実装することができ、電子機器の省スペース化を図ることができる。
【0227】
一方、ゲートドライバ回路部722は、第1の基板701上に形成されている。これにより、狭額縁の電子機器を実現できる。
【0228】
このような構成とすることで、大型で且つ高解像度の表示装置を実現できる。例えば画面サイズが対角30インチ以上、40インチ以上、50インチ以上、または60インチ以上の表示装置にも適用することができる。また、解像度が4K2K、または8K4Kなどといった極めて高解像度の表示装置を実現することができる。
【0229】
[断面構成例]
以下では、表示素子として液晶素子及びEL素子を用いる構成について、図8乃至図10を用いて説明する。なお、図8乃至図10は、それぞれ図7(A)に示す一点鎖線Q-Rにおける断面図である。図8及び図9は、表示素子として液晶素子を用いた構成であり、図10は、EL素子を用いた構成である。
【0230】
〔表示装置の共通部分に関する説明〕
図8乃至図10に示す表示装置700は、引き回し配線部711と、画素部702と、ソースドライバ回路部704と、FPC端子部708と、を有する。引き回し配線部711は、信号線710を有する。画素部702は、トランジスタ750及び容量素子790を有する。ソースドライバ回路部704は、トランジスタ752を有する。図9では、容量素子790が無い場合を示している。
【0231】
トランジスタ750及びトランジスタ752は、実施の形態1で例示したトランジスタを適用できる。
【0232】
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体膜を有する。該トランジスタは、オフ電流を低くできる。よって、画像信号等の電気信号の保持時間を長くでき、電源オン状態では画像信号等の書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくできるため、消費電力を低減する効果を奏する。
【0233】
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを表示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる必要がないため、表示装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。
【0234】
図8及び図10に示す容量素子790は、トランジスタ750が有する半導体層と同一の膜を加工して形成され、低抵抗化された下部電極と、ソース電極またはドレイン電極と同一の導電膜を加工して形成される上部電極と、を有する。また、下部電極と上部電極との間には、トランジスタ750を覆う2層の絶縁膜が設けられる。すなわち、容量素子790は、一対の電極間に誘電体膜として機能する絶縁膜が挟持された積層型の構造である。
【0235】
また、トランジスタ750、トランジスタ752、及び容量素子790上には平坦化絶縁膜770が設けられている。
【0236】
画素部702が有するトランジスタ750と、ソースドライバ回路部704が有するトランジスタ752とは、異なる構造のトランジスタを用いてもよい。例えばいずれか一方にトップゲート型のトランジスタを適用し、他方にボトムゲート型のトランジスタを適用した構成としてもよい。なお、上記のソースドライバ回路部704を、ゲートドライバ回路部と読み替えてもよい。
【0237】
信号線710は、トランジスタ750、752のソース電極及びドレイン電極等と同じ導電膜で形成されている。このとき、銅元素を含む材料等の低抵抗な材料を用いると、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となるため好ましい。
【0238】
FPC端子部708は、接続電極760、異方性導電膜780、及びFPC716を有する。接続電極760は、FPC716が有する端子と異方性導電膜780を介して電気的に接続される。ここでは、接続電極760は、トランジスタ750、752のソース電極及びドレイン電極等と同じ導電膜で形成されている。
【0239】
第1の基板701及び第2の基板705としては、例えばガラス基板、またはプラスチック基板等の可撓性を有する基板を用いることができる。
【0240】
また、第2の基板705側には、遮光膜738と、着色膜736と、これらに接する絶縁膜734と、が設けられる。
【0241】
〔液晶素子を用いる表示装置の構成例〕
図8に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電層772、導電層774、及びこれらの間に液晶層776を有する。導電層774は、第2の基板705側に設けられ、共通電極としての機能を有する。また、導電層772は、トランジスタ750が有するソース電極またはドレイン電極と電気的に接続される。導電層772は、平坦化絶縁膜770上に形成され、画素電極として機能する。
【0242】
導電層772には、可視光に対して透光性の材料、または可視光に対して反射性の材料を用いることができる。透光性の材料としては、例えば、インジウム、亜鉛、スズ等を含む酸化物材料を用いるとよい。反射性の材料としては、例えば、アルミニウム、銀等を含む材料を用いるとよい。
【0243】
導電層772に反射性の材料を用いると、表示装置700は反射型の液晶表示装置となる。一方、導電層772に透光性の材料を用いると、透過型の液晶表示装置となる。反射型の液晶表示装置の場合、視認側に偏光板を設ける。一方、透過型の液晶表示装置の場合、液晶素子を挟むように一対の偏光板を設ける。
【0244】
図9に示す表示装置700は、横電界方式(例えば、FFSモード)の液晶素子775を用いる例を示す。導電層772上に絶縁層773を介して、共通電極として機能する導電層774が設けられる。導電層772と導電層774との間に生じる電界によって、液晶層776の配向状態を制御することができる。
【0245】
図9において、導電層774、絶縁層773、導電層772の積層構造により保持容量を構成することができる。そのため、別途容量素子を設ける必要がなく、開口率を高めることができる。
【0246】
また、図8及び図9において図示しないが、液晶層776と接する配向膜を設ける構成としてもよい。また、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)、及びバックライト、サイドライトなどの光源を適宜設けることができる。
【0247】
液晶層776には、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、高分子ネットワーク型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。
【0248】
また、液晶素子のモードとしては、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード、IPS(In-Plane-Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro-cell)モード、OCB(Optical Compensated Birefringence)モード、ECB(Electrically Controlled Birefringence)モード、ゲストホストモードなどを用いることができる。
【0249】
〔発光素子を用いる表示装置〕
図10に示す表示装置700は、発光素子782を有する。発光素子782は、導電層772、EL層786、及び導電膜788を有する。EL層786は、有機化合物、または量子ドットなどの無機化合物を有する。
【0250】
有機化合物に用いることのできる材料としては、蛍光性材料または燐光性材料などが挙げられる。また、量子ドットに用いることのできる材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料、などが挙げられる。
【0251】
図10に示す表示装置700には、平坦化絶縁膜770上に導電層772の一部を覆う絶縁膜730が設けられる。ここで、発光素子782は透光性の導電膜788有する、トップエミッション型の発光素子である。なお、発光素子782は、導電層772側に光を射出するボトムエミッション構造や、導電層772側及び導電膜788側の双方に光を射出するデュアルエミッション構造としてもよい。
【0252】
また、着色膜736は発光素子782と重なる位置に設けられ、遮光膜738は絶縁膜730と重なる位置、引き回し配線部711、及びソースドライバ回路部704に設けられている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。また、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、EL層786を画素毎に島状または画素列毎に縞状に形成する、すなわち塗り分けにより形成する場合においては、着色膜736を設けない構成としてもよい。
【0253】
〔表示装置に入力装置を設ける構成例〕
また、図8乃至図10に示す表示装置700に入力装置を設けてもよい。当該入力装置としては、例えば、タッチセンサ等が挙げられる。
【0254】
例えばセンサの方式としては、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式など様々な方式を用いることができる。または、これら2つ以上を組み合わせて用いてもよい。
【0255】
なお、タッチパネルの構成は、入力装置を一対の基板の内側に形成する、所謂インセル型のタッチパネル、入力装置を表示装置700上に形成する、所謂オンセル型のタッチパネル、または表示装置700に貼り合わせて用いる、所謂アウトセル型のタッチパネルなどがある。
【0256】
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
【0257】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0258】
(実施の形態3)
本実施の形態では、本発明の一態様の半導体装置を有する表示装置について、図11を用いて説明を行う。
【0259】
図11(A)に示す表示装置は、画素部502と、駆動回路部504と、保護回路506と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。
【0260】
画素部502や駆動回路部504が有するトランジスタに、本発明の一態様のトランジスタを適用することができる。また保護回路506にも、本発明の一態様のトランジスタを適用してもよい。
【0261】
画素部502は、X行Y列(X、Yはそれぞれ独立に2以上の自然数)に配置された複数の表示素子を駆動する複数の画素回路501を有する。
【0262】
駆動回路部504は、ゲート線GL_1乃至GL_Xに走査信号を出力するゲートドライバ504a、データ線DL_1乃至DL_Yにデータ信号を供給するソースドライバ504bなどの駆動回路を有する。ゲートドライバ504aは、少なくともシフトレジスタを有する構成とすればよい。またソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。また、シフトレジスタなどを用いてソースドライバ504bを構成してもよい。
【0263】
端子部507は、外部の回路から表示装置に電源、制御信号、及び画像信号等を入力するための端子が設けられた部分をいう。
【0264】
保護回路506は、それ自身が接続する配線に一定の範囲外の電位が与えられたときに、該配線と別の配線とを導通状態にする回路である。図11(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路501の間の配線である走査線GL、またはソースドライバ504bと画素回路501の間の配線であるデータ線DL等の各種配線に接続される。
【0265】
また、ゲートドライバ504aとソースドライバ504bは、それぞれ画素部502と同じ基板上に設けられていてもよいし、ゲートドライバ回路またはソースドライバ回路が別途形成された基板(例えば、単結晶半導体膜または多結晶半導体膜で形成された駆動回路基板)をCOGやTAB(Tape Automated Bonding)によって基板に実装する構成としてもよい。
【0266】
また、図11(A)に示す複数の画素回路501は、例えば、図11(B)、(C)に示す構成とすることができる。
【0267】
図11(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容量素子560と、を有する。また画素回路501には、データ線DL_n、走査線GL_m、電位供給線VL等が接続されている。
【0268】
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の電極の一方に異なる電位を与えてもよい。
【0269】
また、図11(C)に示す画素回路501は、トランジスタ552、554と、容量素子562と、発光素子572と、を有する。また画素回路501には、データ線DL_n、走査線GL_m、電位供給線VL_a、電源供給線VL_b等が接続されている。
【0270】
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。トランジスタ554のゲートに与えられる電位に応じて、発光素子572に流れる電流が制御されることにより、発光素子572からの発光輝度が制御される。
【0271】
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせて実施することができる。
【0272】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0273】
(実施の形態4)
以下では、画素に表示される階調を補正するためのメモリを備える画素回路と、これを有する表示装置について説明する。実施の形態1で例示したトランジスタは、以下で例示する画素回路に用いられるトランジスタに適用することができる。
【0274】
[回路構成]
図12(A)に、画素回路400の回路図を示す。画素回路400は、トランジスタM1、トランジスタM2、容量C1、及び回路401を有する。また画素回路400には、配線S1、配線S2、配線G1、及び配線G2が接続される。
【0275】
トランジスタM1は、ゲートが配線G1と、ソース及びドレインの一方が配線S1と、他方が容量C1の一方の電極と、それぞれ接続する。トランジスタM2は、ゲートが配線G2と、ソース及びドレインの一方が配線S2と、他方が容量C1の他方の電極、及び回路401と、それぞれ接続する。
【0276】
回路401は、少なくとも一の表示素子を含む回路である。表示素子としては様々な素子を用いることができるが、代表的には有機EL素子やLED素子などの発光素子、液晶素子、またはMEMS(Micro Electro Mechanical Systems)素子等を適用することができる。
【0277】
トランジスタM1と容量C1とを接続するノードをN1、トランジスタM2と回路401とを接続するノードをN2とする。
【0278】
画素回路400は、トランジスタM1をオフ状態とすることで、ノードN1の電位を保持することができる。また、トランジスタM2をオフ状態とすることで、ノードN2の電位を保持することができる。また、トランジスタM2をオフ状態とした状態で、トランジスタM1を介してノードN1に所定の電位を書き込むことで、容量C1を介した容量結合により、ノードN1の電位の変位に応じてノードN2の電位を変化させることができる。
【0279】
ここで、トランジスタM1、トランジスタM2のうちの一方または両方に、実施の形態1で例示した、酸化物半導体が適用されたトランジスタを適用することができる。そのため極めて低いオフ電流により、ノードN1及びノードN2の電位を長期間に亘って保持することができる。なお、各ノードの電位を保持する期間が短い場合(具体的には、フレーム周波数が30Hz以上である場合等)には、シリコン等の半導体を適用したトランジスタを用いてもよい。
【0280】
[駆動方法例]
続いて、図12(B)を用いて、画素回路400の動作方法の一例を説明する。図12(B)は、画素回路400の動作に係るタイミングチャートである。なおここでは説明を容易にするため、配線抵抗などの各種抵抗や、トランジスタや配線などの寄生容量、及びトランジスタのしきい値電圧などの影響は考慮しない。
【0281】
図12(B)に示す動作では、1フレーム期間を期間T1と期間T2とに分ける。期間T1はノードN2に電位を書き込む期間であり、期間T2はノードN1に電位を書き込む期間である。
【0282】
〔期間T1〕
期間T1では、配線G1と配線G2の両方に、トランジスタをオン状態にする電位を与える。また、配線S1には固定電位である電位Vrefを供給し、配線S2には第1データ電位Vを供給する。
【0283】
ノードN1には、トランジスタM1を介して配線S1から電位Vrefが与えられる。また、ノードN2には、トランジスタM2を介して第1データ電位Vが与えられる。したがって、容量C1には電位差V-Vrefが保持された状態となる。
【0284】
〔期間T2〕
続いて期間T2では、配線G1にはトランジスタM1をオン状態とする電位を与え、配線G2にはトランジスタM2をオフ状態とする電位を与える。また、配線S1には第2データ電位Vdataを供給する。配線S2には所定の定電位を与える、またはフローティング状態としてもよい。
【0285】
ノードN1には、トランジスタM1を介して第2データ電位Vdataが与えられる。このとき、容量C1による容量結合により、第2データ電位Vdataに応じてノードN2の電位が電位dVだけ変化する。すなわち、回路401には、第1データ電位Vwと電位dVを足した電位が入力されることとなる。なお、図12(B)ではdVが正の値であるように示しているが、負の値であってもよい。すなわち、電位Vdataが電位Vrefより低くてもよい。
【0286】
ここで、電位dVは、容量C1の容量値と、回路401の容量値によって概ね決定される。容量C1の容量値が回路401の容量値よりも十分に大きい場合、電位dVは第2データ電位Vdataに近い電位となる。
【0287】
このように、画素回路400は、2種類のデータ信号を組み合わせて表示素子を含む回路401に供給する電位を生成することができるため、画素回路400内で階調の補正を行うことが可能となる。
【0288】
また画素回路400は、配線S1及び配線S2に供給可能な最大電位を超える電位を生成することも可能となる。例えば発光素子を用いた場合では、ハイダイナミックレンジ(HDR)表示等を行うことができる。また、液晶素子を用いた場合では、オーバードライブ駆動等を実現できる。
【0289】
[適用例]
〔液晶素子を用いた例〕
図12(C)に示す画素回路400LCは、回路401LCを有する。回路401LCは、液晶素子LCと、容量C2とを有する。
【0290】
液晶素子LCは、一方の電極がノードN2及び容量C2の一方の電極と、他方の電極が電位Vcom2が与えられる配線と接続する。容量C2は、他方の電極が電位Vcom1が与えられる配線と接続する。
【0291】
容量C2は保持容量として機能する。なお、容量C2は不要であれば省略することができる。
【0292】
画素回路400LCは、液晶素子LCに高い電圧を供給することができるため、例えばオーバードライブ駆動により高速な表示を実現すること、駆動電圧の高い液晶材料を適用することなどができる。また、配線S1または配線S2に補正信号を供給することで、使用温度や液晶素子LCの劣化状態等に応じて階調を補正することもできる。
【0293】
〔発光素子を用いた例〕
図12(D)に示す画素回路400ELは、回路401ELを有する。回路401ELは、発光素子EL、トランジスタM3、及び容量C2を有する。
【0294】
トランジスタM3は、ゲートがノードN2及び容量C2の一方の電極と、ソース及びドレインの一方が電位VHが与えられる配線と、他方が発光素子ELの一方の電極と、それぞれ接続される。容量C2は、他方の電極が電位Vcomが与えられる配線と接続する。発光素子ELは、他方の電極が電位Vが与えられる配線と接続する。
【0295】
トランジスタM3は、発光素子ELに供給する電流を制御する機能を有する。容量C2は保持容量として機能する。容量C2は不要であれば省略することができる。
【0296】
なお、ここでは発光素子ELのアノード側がトランジスタM3と接続する構成を示しているが、カソード側にトランジスタM3を接続してもよい。そのとき、電位Vと電位Vの値を適宜変更することができる。
【0297】
画素回路400ELは、トランジスタM3のゲートに高い電位を与えることで、発光素子ELに大きな電流を流すことができるため、例えばHDR表示などを実現することができる。また、また、配線S1または配線S2に補正信号を供給することで、トランジスタM3や発光素子ELの電気特性のばらつきの補正を行うこともできる。
【0298】
なお、図12(C)、(D)で例示した回路に限られず、別途トランジスタや容量などを追加した構成としてもよい。
【0299】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0300】
(実施の形態5)
本実施の形態では、本発明の一態様を用いて作製することができる表示モジュールについて説明する。
【0301】
図13(A)に示す表示モジュール6000は、上部カバー6001と下部カバー6002との間に、FPC6005が接続された表示装置6006、フレーム6009、プリント基板6010、及びバッテリー6011を有する。
【0302】
例えば、本発明の一態様を用いて作製された表示装置を、表示装置6006に用いることができる。表示装置6006により、極めて消費電力の低い表示モジュールを実現することができる。
【0303】
上部カバー6001及び下部カバー6002は、表示装置6006のサイズに合わせて、形状や寸法を適宜変更することができる。
【0304】
表示装置6006はタッチパネルとしての機能を有していてもよい。
【0305】
フレーム6009は、表示装置6006の保護機能、プリント基板6010の動作により発生する電磁波を遮断する機能、放熱板としての機能等を有していてもよい。
【0306】
プリント基板6010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路、バッテリー制御回路等を有する。
【0307】
図13(B)は、光学式のタッチセンサを備える表示モジュール6000の断面概略図である。
【0308】
表示モジュール6000は、プリント基板6010に設けられた発光部6015及び受光部6016を有する。また、上部カバー6001と下部カバー6002により囲まれた領域に一対の導光部(導光部6017a、導光部6017b)を有する。
【0309】
表示装置6006は、フレーム6009を間に介してプリント基板6010やバッテリー6011と重ねて設けられている。表示装置6006とフレーム6009は、導光部6017a、導光部6017bに固定されている。
【0310】
発光部6015から発せられた光6018は、導光部6017aにより表示装置6006の上部を経由し、導光部6017bを通って受光部6016に達する。例えば指やスタイラスなどの被検知体により、光6018が遮られることにより、タッチ操作を検出することができる。
【0311】
発光部6015は、例えば表示装置6006の隣接する2辺に沿って複数設けられる。受光部6016は、発光部6015と対向する位置に複数設けられる。これにより、タッチ操作がなされた位置の情報を取得することができる。
【0312】
発光部6015は、例えばLED素子などの光源を用いることができ、特に、赤外線を発する光源を用いることが好ましい。受光部6016は、発光部6015が発する光を受光し、電気信号に変換する光電素子を用いることができる。好適には、赤外線を受光可能なフォトダイオードを用いることができる。
【0313】
光6018を透過する導光部6017a、導光部6017bにより、発光部6015と受光部6016とを表示装置6006の下側に配置することができ、外光が受光部6016に到達してタッチセンサが誤動作することを抑制できる。特に、可視光を吸収し、赤外線を透過する樹脂を用いると、タッチセンサの誤動作をより効果的に抑制できる。
【0314】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【0315】
(実施の形態6)
本実施の形態では、本発明の一態様を用いて作製された表示装置を備える電子機器について説明する。
【0316】
以下で例示する電子機器は、表示部に本発明の一態様の表示装置を備えるものである。したがって、高い解像度が実現された電子機器である。また高い解像度と、大きな画面が両立された電子機器とすることができる。
【0317】
本発明の一態様の電子機器の表示部には、例えばフルハイビジョン、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。
【0318】
電子機器としては、例えば、テレビジョン装置、ノート型のパーソナルコンピュータ、モニタ装置、デジタルサイネージ、パチンコ機、ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
【0319】
本発明の一態様が適用された電子機器は、家屋やビルの内壁または外壁、自動車等の内装または外装等が有する平面または曲面に沿って組み込むことができる。
【0320】
図14(A)は、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
【0321】
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。
【0322】
なおカメラ8000は、レンズ8006と筐体とが一体となっていてもよい。
【0323】
カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
【0324】
筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
【0325】
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
【0326】
筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
【0327】
ボタン8103は、電源ボタン等としての機能を有する。
【0328】
カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
【0329】
図14(B)は、ヘッドマウントディスプレイ8200の外観を示す図である。
【0330】
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリー8206が内蔵されている。
【0331】
ケーブル8205は、バッテリー8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球やまぶたの動きの情報を入力手段として用いることができる。
【0332】
また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能や、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能を有していてもよい。
【0333】
表示部8204に、本発明の一態様の表示装置を適用することができる。
【0334】
図14(C)(D)(E)は、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
【0335】
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
【0336】
なお、表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の半導体装置を有する表示装置は、極めて精細度が高いため、図14(E)のようにレンズ8305を用いて拡大したとしても、使用者に画素が視認されることなく、より現実感の高い映像を表示することができる。
【0337】
図15(A)乃至図15(G)に示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
【0338】
図15(A)乃至図15(G)に示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画や動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
【0339】
図15(A)乃至図15(G)に示す電子機器の詳細について、以下説明を行う。
【0340】
図15(A)は、テレビジョン装置9100を示す斜視図である。テレビジョン装置9100は、大画面、例えば、50インチ以上、または100インチ以上の表示部9001を組み込むことが可能である。
【0341】
図15(B)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。図15(B)では3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリーの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
【0342】
図15(C)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
【0343】
図15(D)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチとして用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200を、例えば無線通信可能なヘッドセットと相互通信させることによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
【0344】
図15(E)(F)(G)は、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図15(E)は携帯情報端末9201を展開した状態、図15(G)は折り畳んだ状態、図15(F)は図15(E)と図15(G)の一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径1mm以上150mm以下で曲げることができる。
【0345】
図16(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7500が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
【0346】
図16(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7500にタッチパネルを適用し、これに触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、操作ボタンの他に表示部を有していてもよい。
【0347】
なお、テレビジョン装置7100は、テレビ放送の受信機や、ネットワーク接続のための通信装置を有していてもよい。
【0348】
図16(B)に、ノート型パーソナルコンピュータ7200を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7500が組み込まれている。
【0349】
図16(C)、(D)に、デジタルサイネージ(Digital Signage:電子看板)の一例を示す。
【0350】
図16(C)に示すデジタルサイネージ7300は、筐体7301、表示部7500、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
【0351】
また、図16(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7500を有する。
【0352】
表示部7500が広いほど、一度に提供できる情報量を増やすことができ、また人の目につきやすいため、例えば広告の宣伝効果を高める効果を奏する。
【0353】
表示部7500にタッチパネルを適用し、使用者が操作できる構成とすると好ましい。これにより、広告用途だけでなく、路線情報や交通情報、商用施設の案内情報など、使用者が求める情報を提供するための用途にも用いることができる。
【0354】
また、図16(C)、(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311と無線通信により連携可能であることが好ましい。例えば、表示部7500に表示される広告の情報を情報端末機7311の画面に表示させることや、情報端末機7311を操作することで、表示部7500の表示を切り替えることができる。
【0355】
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
【0356】
図16(A)乃至(D)における表示部7500に、本発明の一態様の表示装置を適用することができる。
【0357】
本実施の形態の電子機器は表示部を有する構成としたが、表示部を有さない電子機器にも本発明の一態様を適用することができる。
【0358】
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
【実施例1】
【0359】
本実施例では、酸化物半導体膜に不純物を添加して低抵抗化させたものについて、シート抵抗を測定した。また、当該酸化物半導体膜に酸素を供給する処理を行い、シート抵抗の変化を評価した。
【0360】
[シミュレーション]
まず、不純物元素として用いるホウ素とリンについて、深さ方向における不純物元素の注入量を計算した。
【0361】
計算には、モンテカルロ法によってイオン注入過程の計算を行うためのソフトである、TRIM(Transport of Ion in Matter)を用いた。
【0362】
計算に用いた被注入膜は、第2の絶縁膜として厚さ100nmの酸化シリコン膜、酸化物半導体膜として厚さ40nmのInGaZnO膜、及び第1の絶縁膜として厚さ100nmの酸化シリコン膜を順に積層した積層膜とした。不純物元素として、ホウ素とリンの2種類について計算した。ドーズ量はそれぞれ5×1015cm-2とした。また、ホウ素については、ビームエネルギーを10keV、15keV、20keV、30keV、及び40keVの5条件とし、リンについては50keV、60keV、及び70keVの3条件とした。
【0363】
図17(A)にホウ素(11B)についての計算結果を、図17(B)にリン(31P)についての計算結果を示す。縦軸はホウ素またはリンの体積濃度(concentration)を示し、横軸は深さ(depth)を示す。
【0364】
図17(A)に示すように、ビームエネルギーが高いほど、酸化物半導体膜中の不純物濃度が高まることが確認できた。また、ビームエネルギーが高いほど、最も不純物濃度の高いピークの位置が深くなり、且つ、プロファイルがブロードになることが確認できた。また、ビームエネルギーが20keVの条件で、酸化物半導体膜(IGZO)と第1の絶縁膜(左側のSiO)との界面近傍が最も不純物濃度が高くなることが確認できた。
【0365】
図17(B)では、ビームエネルギーが高いほど、酸化物半導体膜中の不純物濃度が高くなることが確認できた。また計算した3条件のいずれも、酸化物半導体膜と第1の絶縁膜との界面近傍に最も不純物濃度の高い領域が形成できることが確認できた。
【0366】
[シート抵抗の評価]
以下では、酸化物半導体膜上に酸化物絶縁膜を積層した膜に対して不純物の添加を行い、シート抵抗を測定した結果について説明する。
【0367】
〔評価方法〕
評価は、以下のような手順で行った。
【0368】
まず、ガラス基板上に厚さ約40nm乃至50nmの酸化物半導体膜を成膜した。酸化物半導体膜は、原子数比がIn:Ga:Zn=1:1:1.2である金属酸化物ターゲットを用いたスパッタリング法により成膜した。
【0369】
続いて、酸化物半導体膜上に、厚さ約100nmの酸化シリコン膜を成膜した。酸化シリコン膜は、シランガスと一酸化二窒素ガスを成膜ガスとして用いたプラズマCVD法により成膜した。なお、成膜時の基板温度は350℃とした。
【0370】
続いて、酸化物半導体膜中に酸素を供給する処理を行った。酸素を供給する処理は、酸化シリコン膜上に酸素を含む雰囲気下におけるスパッタリング法により、金属酸化物膜を成膜し、酸化シリコン膜中に酸素を供給した後に、400℃、1時間の加熱処理を行い、酸化シリコン膜から酸化物半導体膜に酸素を供給した。その後、金属酸化物膜をエッチングにより除去した。金属酸化物膜は、上記酸化物半導体膜と同様の条件で形成した。
【0371】
続いて、不純物の添加を行った。不純物の添加は、質量分離機構を有さないプラズマイオンドーピング装置と、質量分離機構を有するイオン注入装置の2種類の装置を用いて行った。また、ホウ素を供給するためのガスとして、イオンドーピング装置ではBガスを、イオン注入装置ではBFガスを用いた。一方、リンを供給するためのガスにはPHガスを用いた。プラズマイオンドーピング装置では不純物のドーズ量及び加速電圧を、イオン注入装置ではドーズ量及びビームエネルギーを、それぞれ異ならせた複数の試料を作製した。また、比較として不純物の添加を行わない試料も作製した。
【0372】
続いて、上記で示した酸化物半導体膜中に酸素を供給する処理を再度行った。ここで、金属酸化物膜を成膜した後の加熱処理の温度を、250℃、350℃、400℃の3条件で異ならせた試料、及び加熱処理を行わなかった試料の4種類の試料を作製した。
【0373】
最後に、酸化シリコン膜を除去し、スパッタリング法によりチタン電極を形成した後にシート抵抗の測定を行った。
【0374】
〔シート抵抗〕
図18の各図に、プラズマドーピング法によりホウ素をドープした試料についてのシート抵抗の結果を示す。図18(A)は加速電圧20kV、図18(B)は加速電圧40kV、図18(C)は加速電圧60kVの結果である。また、各図において、ドーズ量を1×1015cm-2から1.5×1016cm-2までの各条件について示している。また、各ドーズ量について、加熱処理を行わないものと、各温度で加熱処理を行ったものについて、並べて表記している。
【0375】
図18(A)乃至(C)に示すように、ホウ素を添加することで酸化物半導体膜が低抵抗化していることが確認できる。また、加速電圧が20kVの条件と比較し、40kV及び60kVの条件では、ドーズ量が多くなるにつれシート抵抗が上昇する結果となった。したがって、図17(A)で示したTRIMでのシミュレーション結果と合わせると、酸化物半導体膜と、その上部の酸化物絶縁膜の界面近傍が最も不純物濃度が高くなるように、不純物を添加することで、安定して低抵抗な状態となることが確認できた。
【0376】
また、ドーズ量が最も低い条件(1×1015cm-2の条件)を除き、ホウ素を添加した試料では、加熱処理によって高抵抗化してしまう現象はほとんど見られておらず、加熱処理前後で低抵抗な状態を維持している。
【0377】
図19(A)、(B)は、プラズマドーピング法によりリンをドープした試料についてのシート抵抗の結果である。図19(A)は加速電圧60kV、図19(B)は加速電圧70kVの結果である。
【0378】
不純物元素としてリンを添加した場合でも、酸化物半導体膜が低抵抗化することが確認できた。また、ドーズ量が多いほど、抵抗が高くなる傾向がみられ、最適なドーズ量の範囲が存在することが確認できる。
【0379】
続いて、質量分離機構を有するイオン注入装置を用いて不純物元素を添加したときのシート抵抗の評価結果を示す。イオン注入法は質量分離機構により、プラズマドーピング法と比較して目的のイオン以外の不純物イオンの混入が少ないため、より精密な制御を行うことができる手法である。
【0380】
図20(A)にホウ素(11B)を、図20(B)にリン(31P)を、それぞれ添加したときの結果を示している。また図20(A)、(B)には、不純物元素の添加を行っていない試料についても併記している。
【0381】
イオン注入装置を用いた場合も、上記プラズマドーピング法と同様の傾向を示すことが確認できた。
【0382】
また、プラズマイオンドーピング法とイオン注入法とを比較すると、プラズマイオンドーピング法の方が、少ないドーズ量で抵抗値が低く安定しやすい傾向がみられている。これは、プラズマイオンドーピング装置が質量分析機構を有さないため、目的のイオン以外の不純物イオンが酸化物半導体膜の抵抗値に影響しているものと考えられる。
【0383】
[不純物濃度の評価]
以下では、上記で作製した試料を用いて、不純物元素の深さ方向の濃度分布を測定した結果について説明する。測定は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により行った。試料は、酸化物半導体膜にイオン注入装置によってホウ素(11B)を添加したものと、リン(31P)を添加したものの2種類を用いた。ホウ素の添加条件は、ビームエネルギーを20keV、ドーズ量を5×1015cm-2とした。リンの添加条件は、ビームエネルギーを60keV、ドーズ量を5×1015cm-2とした。
【0384】
図21(A)に、ホウ素を添加した試料のSIMS分析結果を、図21(B)に、リンを添加した試料のSIMS分析結果をそれぞれ示す。また、各図には酸化シリコン膜(SiO)を標準試料として定量したプロファイルと、酸化物半導体膜(IGZO)を用いて定量したプロファイルの2つを並べて示している。
【0385】
図21(A)から、酸化シリコン膜中では酸化物半導体膜との界面に近いほどホウ素の濃度が高くなる濃度勾配を有することが分かる。一方、酸化物半導体膜中では、酸化シリコン膜との界面に近いほどホウ素の濃度が高くなる濃度勾配を有することが分かる。すなわち、これらの界面近傍にホウ素の濃度の最も高い領域が位置することが確認できた。また、濃度勾配の傾きは酸化シリコン膜よりも酸化物半導体膜の方が大きいことが分かった。
【0386】
図21(B)に示すリンを添加した試料についても、図21(A)とほぼ同様の傾向が見られている。すなわち、リンを添加した試料でも、酸化シリコン膜と酸化物半導体膜との界面近傍に、リンの濃度の最も高い領域が位置していること、また濃度勾配の傾きが酸化シリコン膜よりも酸化物半導体膜の方が大きいことが分かった。
【0387】
以上の結果より、ホウ素やリンなどの不純物元素を酸化物絶縁膜越しに酸化物半導体層に添加することにより、極めて低抵抗で、安定した酸化物半導体膜を形成できることが確認できた。また、酸化物絶縁膜と酸化物半導体膜の界面近傍に最も濃度の高い領域を設けることで、酸化物半導体膜に酸素を供給する処理を行っても、抵抗値の上昇がみられないことが確認できた。この結果は、酸化物絶縁膜にホウ素やリンなどの不純物元素を添加することで、酸化物絶縁膜に酸素に対するブロッキング性が付与され、酸素が拡散しにくい状態となっていると推察できる。
【実施例2】
【0388】
以下では、本発明の一態様のトランジスタを作製し、電気特性を評価した。
【0389】
[試料の作製]
作製したトランジスタの構成は、実施の形態1及び図3で例示したトランジスタ100Aを援用できる。また、ここでは不純物元素としてホウ素とリンを用い、添加条件を異ならせた複数の試料を作製した。また比較として、不純物元素を添加しない試料も同様に作製した。
【0390】
まず、ガラス基板上に厚さ約100nmのタングステン膜をスパッタリング法により形成し、これを加工して第1のゲート電極を得た。続いて、第1のゲート絶縁層として厚さ約240nmの窒化シリコン膜と、厚さ約60nmの窒化シリコン膜と、厚さ約5nmの酸化窒化シリコン膜をプラズマCVD法により積層して形成した。
【0391】
続いて、第1のゲート絶縁層上に厚さ約40nmの金属酸化物膜を成膜し、これを加工して半導体層を得た。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1.2[原子数比])を用いたスパッタリング法により形成した。その後、窒素雰囲気下で温度400℃、1時間の加熱処理を行い、続けて酸素と窒素の混合雰囲気下にて、400℃、1時間の加熱処理を行った。
【0392】
続いて、第2のゲート絶縁層となる厚さ約100nmの酸化窒化シリコン膜をプラズマCVD法により形成した。その後、窒素雰囲気下、温度400℃、1時間の条件で、加熱処理を行った。続いて、酸素供給処理として、酸素を含む雰囲気下でプラズマ処理を行った。
【0393】
続いて、第2のゲート絶縁層上にスパッタリング法により厚さ約20nmの金属酸化物膜を成膜した。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=1:1:1.2[原子数比])を用いたスパッタリング法により形成した。
【0394】
続いて、金属酸化物膜上に厚さ約100nmのモリブデン膜をスパッタリング法により積層して成膜した。その後、モリブデン膜と金属酸化物膜の一部をエッチングにより除去し、第2のゲート電極と、金属酸化物層を得た。
【0395】
続いて、第2のゲート電極をマスクとして、不純物元素の添加処理を行った。不純物の添加はプラズマイオンドーピング装置を用いた。また、ホウ素を供給するためのガスにはBガスを、リンを供給するためのガスにはPHガスを用いた。不純物のドーズ量及び加速電圧を異ならせた複数の試料を作製した。また、比較として不純物の添加を行わない試料も作製した。
【0396】
続いて、トランジスタを覆う保護絶縁層として厚さ約300nmの酸化窒化シリコン膜をプラズマCVD法により成膜した。酸化窒化シリコン膜の成膜温度は220℃とした。その後、窒素雰囲気下、温度350℃、一時間の条件で、加熱処理を行った。続いて、トランジスタを覆う絶縁層及び第2のゲート絶縁層の一部を開口し、モリブデン膜をスパッタリング法により成膜した後、これを加工してソース電極及びドレイン電極を得た。その後、平坦化層として厚さ約1.5μmのアクリル膜を形成し、窒素雰囲気下、温度250℃、一時間の条件で加熱処理を行った。
【0397】
以上の工程によりガラス基板上に形成されたトランジスタを得た。
【0398】
[トランジスタのId-Vg特性]
続いて、上記で作製したトランジスタのId-Vg特性を測定した。
【0399】
トランジスタのId-Vg特性の測定条件としては、第1のゲート電極に印加する電圧(以下、ゲート電圧(Vg)ともいう)、及び第2のゲート電極に印加する電圧((Vbg)ともいう)を、-15Vから+20Vまで0.25Vのステップで印加した。また、ソース電極に印加する電圧(以下、ソース電圧(Vs)ともいう)を0V(comm)とし、ドレイン電極に印加する電圧(以下、ドレイン電圧(Vd)ともいう)を、0.1V及び20Vとした。
【0400】
図22にホウ素を添加した(B-Dope)トランジスタのId-Vg特性を、図23にリンを添加したトランジスタのId-Vg特性を、それぞれ示す。図22及び図23では、横方向に不純物の添加条件の異なる条件の結果を並べて示している。また、各図には、不純物の添加を行わない(Non Dope)トランジスタについても並べて示している。図22及び図23には、トランジスタのチャネル幅が50μm、チャネル長が2μm、3μm、6μmの3種類のトランジスタについて示している。
【0401】
図22に示すように、ホウ素を添加したトランジスタでは、不純物の添加を行わないトランジスタと比較して、大きな電流を流すことができることが分かった。これは、ソース領域及びドレイン領域の抵抗が十分に低くできていることを示している。また、加速電圧が20kVの条件では、ドーズ量によらず、チャネル長が2μmと短いトランジスタであっても良好な特性を示している。一方、加速電圧が60kVと高い条件では、他の条件に比べて電流値が低い傾向がみられている。この傾向は、上記実施例1のシート抵抗などの結果に見られた傾向と一致している。
【0402】
また、図23に示すように、リンを添加したトランジスタにおいても、ホウ素の場合と同様に良好な電気特性を示している。なお、ドーズ量が高い条件では、チャネル長の短いトランジスタでしきい値電圧がマイナス側にばらついたものが散見される。
【0403】
なお、ここでは不純物元素の添加に用いた装置として、質量分離機構を有さないプラズマイオンドーピング装置を用いたため、目的の元素の他に、水素も添加されている恐れがある。そのため、図22及び図23のチャネル長の短いトランジスタで見られたしきい値電圧のマイナスシフトは、当該水素の影響によるものである可能性がある。そのため、質量分離機構を有するイオン注入装置を用いることで、より良好な電気特性を示すトランジスタを作製できると推察される。
【実施例3】
【0404】
以下では、本発明の一態様のトランジスタを作製し、信頼性を評価した。
【0405】
信頼性の評価を行ったトランジスタは、上記実施例2で例示した作製工程を援用できる。不純物元素としてはホウ素を用い、不純物元素の添加は、プラズマイオンドーピング装置を用いて行った。加速電圧は20kV、ドーズ量は5×1015cm-2とした。また、保護層として機能する酸化窒化シリコン膜の成膜温度を350℃とした。
【0406】
作製したトランジスタのId-Vg特性を図24(A)に示す。トランジスタのサイズは、チャネル長が3μm、チャネル幅が50μmである。
【0407】
続いて、上記トランジスタを用いて信頼性の評価として、ゲートバイアスストレス試験(GBT試験)を行った。GBT試験は、トランジスタが形成されている基板を60℃に保持し、トランジスタのソースとドレインに0V、ゲートには20Vまたは-20Vの電圧を印加し、この状態を一時間保持した。ここで、試験環境を暗状態とし、ゲートに正の電圧を印加する試験をPBTS、負の電圧を印加する試験をNBTSと表記する。また、試料に光を照射した状態におけるPBTSをPBITS、NBTSをNBITSと表記する。光の照射は、約10000lxの白色LED光を用いた。
【0408】
図24(B)に、ゲートバイアスストレス試験前後での、しきい値電圧の変動値(ΔVth)を示す。図24(B)に示すように、作製したトランジスタのしきい値電圧の変動は極めて小さいことが確認できた。
【0409】
以上のことから、本発明の一態様のトランジスタは、良好な電気特性と、高い信頼性を備えることが確認できた。
【実施例4】
【0410】
本実施例では、不純物元素を添加した酸化物を含む絶縁膜について、昇温脱離ガス分析法(TDS:Thermal Desorption Spectroscopy)を用いて酸素のブロッキング性について評価した。
【0411】
[評価1]
ここでは、酸化物半導体膜上の酸化物絶縁膜に酸素を供給する処理を行なった後、不純物の供給を行った試料を作製し、TDS測定を行った。
【0412】
〔試料の作製〕
まず、ガラス基板上に厚さ約40nmの酸化物半導体膜を成膜した。酸化物半導体膜は、原子数比がIn:Ga:Zn=1:1:1.2である金属酸化物ターゲットを用いたスパッタリング法により成膜した。
【0413】
続いて、酸化物半導体膜上に、厚さ約100nmの酸化シリコン膜を成膜した。酸化シリコン膜は、シランガスと一酸化二窒素ガスを成膜ガスとして用いたプラズマCVD法により成膜した。なお、成膜時の基板温度は350℃とした。
【0414】
続いて、酸化物半導体膜中に酸素を供給する処理を行った。酸素を供給する処理は、酸化シリコン膜上に酸素を含む雰囲気下におけるスパッタリング法により、金属酸化物膜を成膜し、酸化シリコン膜中に酸素を供給した後に、400℃、1時間の加熱処理を行い、酸化シリコン膜から酸化物半導体膜に酸素を供給した。その後、金属酸化物膜をエッチングにより除去した。金属酸化物膜は、上記酸化物半導体膜と同様の条件で形成した。
【0415】
続いて、不純物の添加を行った。不純物の添加は、質量分離機構を有するイオン注入装置を用いて行った。ここでは、不純物として、ホウ素(11B)、リン(31P)、及びアルゴン(40Ar)をそれぞれ注入した試料を作製した。なお、比較試料として不純物の注入を行わない試料も作製した。
【0416】
不純物の注入は、酸化シリコン膜を介して酸化物半導体膜にイオンが到達するよう最適化した条件で行った。ホウ素の注入条件は、ビームエネルギーを20keVとし、ドーズ量を5×1015cm-2とした。リンの注入条件は、ビームエネルギーを60keVとし、ドーズ量を5×1015cm-2とした。アルゴンの注入条件は、ビームエネルギーを70keVとし、ドーズ量を5×1015cm-2とした。
【0417】
〔TDS分析結果〕
図25に、酸素分子(質量電荷比(M/z)32)に対する、TDS分析の結果を示す。各図において、縦軸は検出強度を示し、横軸は基板温度を示す。
【0418】
イオン注入を行わなかった試料では、基板温度150℃から300℃程度にかけて酸素が放出されていることが分かる。一方、ホウ素及びリンを注入した試料では、酸素の放出がほとんど見られないことが分かる。この結果から、ホウ素及びリンを注入することにより、酸化シリコン膜中の過剰酸素が安定化し、外方拡散を抑制できることが分かる。
【0419】
一方、アルゴンを注入した試料では、酸素の放出が顕著にみられ、酸素の外方拡散の抑制の効果が薄いことが確認できた。またここでは示さないが、アルゴンを注入した試料では、酸素の他にアルゴン(M/z=20及びM/z=40)が基板温度250℃から430℃程度の範囲で放出される結果が得られた。この結果から、希ガスであるアルゴンは酸化シリコン中の酸素との相互作用が小さく、過剰酸素を安定化させる作用はあまり期待できないことが推察される。
【0420】
[評価2]
ここでは、酸素を供給する処理を行なった第1の酸化物絶縁膜上に、第2の酸化物絶縁膜を形成し、第2の酸化物絶縁膜に対して不純物の供給を行った試料を作製し、TDS測定により第2の酸化物絶縁膜の酸素ブロック性を評価した。
【0421】
〔試料の作製〕
まず、ガラス基板上に第1の酸化物絶縁膜として、厚さ約150nmの酸化シリコン膜を成膜した。酸化シリコン膜は、上記評価1と同様の条件で成膜した。
【0422】
続いて、第1の酸化物絶縁膜に酸素を供給する処理を行った。酸素を供給する処理は、酸化シリコン膜上に酸素を含む雰囲気下におけるスパッタリング法により、金属酸化物膜を成膜し、酸化シリコン膜中に酸素を供給した。その後、金属酸化物膜をエッチングにより除去した。金属酸化物膜は、シリコンを含むインジウムスズ酸化物ターゲットを用いて成膜した。
【0423】
続いて、第2の酸化物絶縁膜として、厚さ約100nmの酸化シリコン膜を、上記と同様の方法により成膜した。
【0424】
続いて、不純物の添加を行った。不純物の添加は、質量分離機構を有するイオン注入装置を用いて行った。評価1と同様に、不純物として、ホウ素(11B)、リン(31P)、及びアルゴン(40Ar)をそれぞれ注入した試料を作製した。なお、比較試料として不純物の注入を行わない試料も作製した。
【0425】
不純物の注入は、第2の酸化シリコン膜のみにイオンが注入されるよう最適化した条件で行った。ホウ素の注入条件は、ビームエネルギーを5keVとし、ドーズ量を5×1015cm-2とした。リンの注入条件は、ビームエネルギーを10keVとし、ドーズ量を5×1015cm-2とした。アルゴンの注入条件は、ビームエネルギーを10keVとし、ドーズ量を5×1015cm-2とした。
【0426】
〔TDS分析結果〕
図26に、TDS分析の結果を示す。
【0427】
イオン注入を行わなかった試料では、基板温度250℃付近から450℃付近にかけて酸素が放出されていることが分かる。一方、ホウ素及びリンを注入した試料では、酸素の放出がほとんど見られないことが分かる。この結果から、ホウ素及びリンを注入することにより、酸化シリコン膜中の過剰酸素が安定化し、外方拡散を抑制できることが分かる。
【0428】
一方、アルゴンを注入した試料では、イオン注入を行わなかった試料よりも低温(150℃付近)から酸素が放出していることが確認できた。これは、イオン注入時に第2の酸化物絶縁膜にダメージが生じ、酸素の脱離や拡散が生じやすい状態となっていることに起因すると推察される。
【0429】
以上の結果から、酸化物絶縁膜にホウ素及びリンを注入することで、過剰酸素が脱離しにくい状態となることが分かった。さらに、ホウ素やリンを注入することで、酸化物絶縁膜に酸素の拡散をブロックする機能を付与できることが確認できた。
【実施例5】
【0430】
本実施例では、イオン注入を行った試料を作製し、XPS分析を行った結果について説明する。
【0431】
ここでは、以下の2種類の試料を作製し、分析を行った。1つ目は酸化物半導体膜に対して直接イオン注入した試料であり、2つ目は、酸化物半導体膜上に酸化物絶縁膜を積層した積層膜に対してイオン注入した試料である。
【0432】
〔試料の作製〕
まず、上記1つ目の試料について説明する。ガラス基板上に厚さ約40nmの酸化物半導体膜を成膜した。成膜方法は実施例4を援用できる。続いて、酸化物半導体膜に対してイオン注入法によりホウ素(11B)を注入した。ホウ素の注入条件は、ビームエネルギーを5keVとし、ドーズ量を1×1016cm-2とした。
【0433】
2つ目の試料は、イオン注入条件以外は実施例4の評価1の記載を援用できる。イオン注入は、イオン注入法により、ホウ素(11B)を酸化物半導体膜に到達するよう最適化した条件で行った。ホウ素の注入条件は、ビームエネルギーを20keVとし、ドーズ量を1×1016cm-2とした。
【0434】
〔XPS分析〕
上記で作製した2種類の試料について、XPS分析を行った。XPS測定のX線源には、Mg-Kα(1253.6eV)を用いた。XPS分析は、スパッタリングと組み合わせることで、深さ方向の分析を行った。スパッタリングにはアルゴンイオンを用い、加速電圧を2.0kVとした。スパッタ速度はSiOに換算して約5nm/minである。
【0435】
図27(A)は、酸化物半導体膜に直接イオン注入した試料における、XPS分析で得たデプスプロファイルである。横軸はスパッタ時間(sputter time)を示し、縦軸は原子数比(composition ratio)を示している。
【0436】
図27に示すように、ホウ素は酸化物半導体膜(IGZO)の表面近傍に、数原子%の濃度で検出されている。
【0437】
図27(B)は、酸化物半導体(IGZO)中における、ホウ素の1s軌道に関連したピークが得られるエネルギー範囲のXPSスペクトルを示している。横軸は束縛エネルギー(Binding Energy)であり、縦軸は光電子の強度(intensity)である。192eV付近にピークが観測され、且つ188eV付近にピークが観測されないことから、酸化物半導体膜中のホウ素は酸化状態で存在し、ホウ素単体ではほとんど存在していないことが分かった。
【0438】
図27(C)は、インジウムの3d5/2軌道に関連したピークが得られるエネルギー範囲におけるXPSスペクトルを示している。443eV近傍にピークがみられることから、金属の状態のインジウムが存在していることが分かる。このことから、ホウ素がインジウムと結合している酸素を奪い、酸素欠損を生じさせていることが推察される。
【0439】
図28(A)は、酸化物半導体膜上に酸化物絶縁膜を積層した積層膜に対してイオン注入した試料における、XPS分析で得たデプスプロファイルである。酸化物絶縁膜(SiON)と酸化物半導体膜(IGZO)の界面近傍に、数原子%の濃度でホウ素が検出されている。
【0440】
図28(B)は、酸化物絶縁膜(SiON)中における、ホウ素の1s軌道に関連したピークが得られるエネルギー範囲のXPSスペクトルを示している。酸化物絶縁膜中においても、酸化物半導体膜と同様に、ホウ素は酸化状態で存在し、ホウ素単体ではほとんど存在していないことが分かった。このことから、ホウ素が酸化物絶縁膜中の酸素と結合していることが確認できた。
【0441】
以上の結果から、酸化物半導体膜及び酸化物絶縁膜中に注入されたホウ素は、膜中の酸素と結合して酸化物の状態で存在することが確認できた。
【実施例6】
【0442】
本実施例では、本発明の一態様のトランジスタを作製し、電気特性を評価した。
【0443】
[試料の作製]
まず、実施例2で示した方法と同様の方法により、ガラス基板上に第1のゲート電極、第1のゲート絶縁層、半導体層、第2のゲート絶縁層を形成した。続いて第2のゲート絶縁層上にスパッタリング法により厚さ約10nmの酸化アルミニウム膜を成膜し、続いて厚さ約5nmのチタン膜、厚さ約300nmのアルミニウム膜、及び厚さ約50nmのチタン膜を順に成膜し、これら金属膜と酸化アルミニウム膜の一部をエッチングにより除去し、第2のゲート電極と金属酸化物層を得た。
【0444】
続いて、第2のゲート電極をマスクとして、イオン注入法により不純物元素を注入した。ここでは、ホウ素(11B)を注入した試料と、リン(31P)を注入した試料の2種類を作製した。ホウ素の注入条件は、ビームエネルギーを15keVとし、ドーズ量を3×1015cm-2とした。リンの注入条件は、ビームエネルギーを45keVとし、ドーズ量を1×1015cm-2とした。
【0445】
その後、実施例2と同様の方法により、保護絶縁層を形成し、加熱処理を行なった。ソース電極及びドレイン電極には、スパッタリング法により成膜した厚さ約50nmのタングステン膜、厚さ約400nmのアルミニウム膜、及び厚さ約100nmのチタン膜の積層膜を用いた。続いて、実施例2と同様に、平坦化層を形成し、加熱処理を行なった。
【0446】
以上の工程により、不純物元素としてホウ素またはリンを用いた2種類の試料を得た。
【0447】
[トランジスタのId-Vg特性]
続いて、上記で作製したトランジスタのId-Vg特性を測定した。測定条件は実施例2を援用できる。
【0448】
図29に、不純物元素としてホウ素を用いたトランジスタと、リンを用いたトランジスタのId-Vg特性を示す。図29では、トランジスタのチャネル幅が50μm、チャネル長が2μm、3μm、6μmの3種類のトランジスタについて示している。各トランジスタの測定数は20である。
【0449】
図29に示すように、ホウ素を添加したトランジスタ、及びリンを添加したトランジスタともに、極めて良好な電気特性を示すことが確認できた。
【符号の説明】
【0450】
100、100A:トランジスタ、102:基板、103、110、116、118:絶縁層、103d、108n、110d:領域、106、106c、112、120a、120b:導電層、108、108c:半導体層、112f:導電膜、114:金属酸化物層、114f:金属酸化物膜、130A、130B:容量素子、140:不純物元素、141a、141b、142:開口部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29