(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-05
(45)【発行日】2024-12-13
(54)【発明の名称】電源遮断装置、モータ駆動装置、および電動パワーステアリング装置
(51)【国際特許分類】
H02P 29/024 20160101AFI20241206BHJP
【FI】
H02P29/024
(21)【出願番号】P 2023555884
(86)(22)【出願日】2021-10-25
(86)【国際出願番号】 JP2021039245
(87)【国際公開番号】W WO2023073754
(87)【国際公開日】2023-05-04
【審査請求日】2023-11-15
(73)【特許権者】
【識別番号】324003048
【氏名又は名称】三菱電機モビリティ株式会社
(74)【代理人】
【識別番号】100161207
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100206081
【氏名又は名称】片岡 央
(74)【代理人】
【識別番号】100188673
【氏名又は名称】成田 友紀
(74)【代理人】
【識別番号】100188891
【氏名又は名称】丹野 拓人
(72)【発明者】
【氏名】永禮 俊樹
【審査官】島倉 理
(56)【参考文献】
【文献】特開2017-22828(JP,A)
【文献】国際公開第2010/032705(WO,A1)
【文献】特開2019-83393(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 29/024
(57)【特許請求の範囲】
【請求項1】
直列に接続された第1スイッチング素子および第2スイッチング素子を有し、バッテリから給電対象物に向けた電流の供給および停止を切り替える電源リレーと、
前記電源リレーに、前記電流の供給および停止を切り替えさせる駆動信号を入力する電源リレー駆動回路と、
前記第1スイッチング素子と前記第2スイッチング素子との間における中間電圧を測定するモニタと、
前記モニタによる前記中間電圧の測定結果を取得可能な演算装置と、を備え、
前記第1スイッチング素子は、前記第1スイッチング素子が前記バッテリから前記給電対象物に向けて電流を流す経路に対して並列に設けられた第1ダイオードを含み、
前記第2スイッチング素子は、前記第2スイッチング素子が前記バッテリから前記給電対象物に向けて電流を流す経路に対して並列に設けられた第2ダイオードを含み、
前記第1ダイオードおよび前記第2ダイオードは、前記モニタによる前記中間電圧の測定点に対して互いに同一の極が接続されるように、直列接続され、
前記演算装置は、
電流の供給を停止させる前記駆動信号が前記電源リレーに入力された後の、第1時刻における前記中間電圧を、第1閾値電圧と比較することで、前記電源リレーの故障の有無を判定し、
前記演算装置は、前記第1時刻における前記中間電圧が、前記第1閾値電圧以下であるとき、前記第1スイッチング素子および前記第2スイッチング素子が正常であると判定し、
前記演算装置は、前記第1時刻における前記中間電圧が、前記第1閾値電圧より大きいとき、前記第1スイッチング素子または前記第2スイッチング素子に故障が発生したと判定し、
前記演算装置は、前記第1時刻より後の第2時刻における前記中間電圧と、前記第1閾値電圧よりも大きい第2閾値電圧と、の比較に基づき、前記第1スイッチング素子および前記第2スイッチング素子のどちらに故障が発生したかを判定する、電源遮断装置。
【請求項2】
前記バッテリ、前記第1スイッチング素子、前記第2スイッチング素子、および前記給電対象物は、この順に接続され、
前記第2時刻において、前記中間電圧が前記第2閾値電圧より大きいとき、前記演算装置は前記第1スイッチング素子に故障が発生したと判定する、請求項
1に記載の電源遮断装置。
【請求項3】
前記バッテリ、前記第1スイッチング素子、前記第2スイッチング素子、および前記給電対象物は、この順に接続され、
前記第2スイッチング素子と前記給電対象物との間には、コンデンサの一方の端子が接続され、
前記第2時刻において、前記中間電圧が前記第2閾値電圧より小さいとき、前記演算装置は前記第2スイッチング素子に故障が発生したと判定する、請求項
1または2に記載の電源遮断装置。
【請求項4】
前記給電対象物であるモータと、
請求項1~
3のいずれか1項に記載の電源遮断装置と、を備える、モータ駆動装置。
【請求項5】
請求項
4に記載のモータ駆動装置を備える、電動パワーステアリング装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電源遮断装置、モータ駆動装置、および電動パワーステアリング装置に関する。
【背景技術】
【0002】
特許文献1には、スイッチング素子を用いた電源リレーにおいて、スイッチング素子に異常が発生したことを判定可能な装置が開示されている。この装置は、電源リレー、コンデンサ、充電回路、演算装置、第1のモニタ回路、第2のモニタ回路等を備えている。コンデンサは、電源リレーと駆動回路との間に接続されている。充電回路は、演算装置からの指令によってコンデンサを充電する。第2のモニタ回路は、コンデンサの電圧をモニタする。演算装置は、第2のモニタ回路によりモニタされた電圧等に基づいて、電源リレーの異常の有無を判定する。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1の構成では、電源リレーの異常の有無を判定するために、コンデンサを充電するための充電回路を用いている。このため、装置の本来の機能としては充電回路が不要な場合も、電源リレーの異常の有無を判定するために充電回路を設ける必要がある。したがって、部品点数の増加につながる場合があり、改良の余地があった。
【0005】
本開示は、上記の事情に鑑みて、電源リレーの異常の有無を判定するために部品の点数が増加することを抑制可能な、電源遮断装置、モータ駆動装置、および電動パワーステアリング装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示に係る電源遮断装置の一つの態様は、直列に接続された第1スイッチング素子および第2スイッチング素子を有し、バッテリから給電対象物に向けた電流の供給および停止を切り替える電源リレーと、前記電源リレーに、前記電流の供給および停止を切り替えさせる駆動信号を入力する電源リレー駆動回路と、前記第1スイッチング素子と前記第2スイッチング素子との間における中間電圧を測定するモニタと、前記モニタによる前記中間電圧の測定結果を取得可能な演算装置と、を備え、前記第1スイッチング素子は、前記第1スイッチング素子が前記バッテリから前記給電対象物に向けて電流を流す経路に対して並列に設けられた第1ダイオードを含み、前記第2スイッチング素子は、前記第2スイッチング素子が前記バッテリから前記給電対象物に向けて電流を流す経路に対して並列に設けられた第2ダイオードを含み、前記第1ダイオードおよび前記第2ダイオードは、前記モニタによる前記中間電圧の測定点に対して互いに同一の極が接続されるように、直列接続され、前記演算装置は、前記電源リレーに対して電流の供給を停止させる前記駆動信号が入力された後の前記中間電圧に基づいて、前記電源リレーの故障の有無を判定する。
【0007】
本開示に係るモータ駆動装置の一つの態様は、前記給電対象物であるモータと、前記電源遮断装置と、を備える。
【0008】
本開示に係る電動パワーステアリング装置の一つの態様は、前記モータ駆動装置を備える。
【発明の効果】
【0009】
本開示によれば、電源リレーの異常の有無を判定するために部品の点数が増加することを抑制可能な、電源遮断装置、モータ駆動装置、および電動パワーステアリング装置を提供できる。
【図面の簡単な説明】
【0010】
【
図1】実施の形態1における電動パワーステアリング装置の概略構成図である。
【
図2】実施の形態1における電源リレー周辺の詳細回路図である。
【
図3】(a)は駆動信号のタイミングチャートであり、(b)は中間電圧の測定結果の例である。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本開示の実施の形態について説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。
【0012】
実施の形態1.
図1は、実施の形態1に係る電動パワーステアリング装置20の概略構成図である。
図1に示す電動パワーステアリング装置20は、給電対象物であるモータ7と、モータ7を駆動させるモータ駆動装置1と、を備えている。電動パワーステアリング装置20は、例えば車両に搭載されて用いられる。以下の説明では、電動パワーステアリング装置20が車両に搭載される場合について説明する。ただし、本実施の形態に係るモータ駆動装置1は、車両用の電動パワーステアリング装置20以外の用途に用いられてもよい。
【0013】
モータ駆動装置1は、電源リレー2と、モニタ3と、演算装置4と、モータ駆動回路と、コンデンサ6と、抵抗9と、電源リレー駆動回路21と、を備えている。電源リレー2および演算装置4は、電源遮断装置1aを構成している。つまり、モータ駆動装置1には、電源遮断装置1aが含まれている。電源遮断装置1aに、電源リレー2および演算装置4以外の構成要素が含まれてもよい。また、本実施の形態に係る電源遮断装置1aは、モータ7以外の給電対象物に対する制御のために用いられてもよい。
【0014】
演算装置4は、車両に搭載されたイグニッションスイッチ22に接続されている。イグニッションスイッチ22は、車両の使用者の操作に基づいて、イグニッション信号12を発する。発せられたイグニッション信号12は、演算装置4に入力される。演算装置4は、モータ駆動回路5および電源リレー2を制御する。演算装置4はCPU(Central Processing Unit)等である。モニタ3は、電源リレー2の状態を診断するために用いられる。モニタ3は、後述の中間電圧Vsを測定することが可能である。モニタ3は、演算装置4に接続されている。演算装置4は、モニタ3による中間電圧Vsの測定結果を取得可能である。
【0015】
モータ駆動回路5は、演算装置4による指令に基づいて、モータ7を駆動させる。電源リレー2は、モータ駆動回路5に、モータ7を駆動させるための電力を供給したり遮断したりする。
モータ駆動回路5は、不図示のブリッジ回路を有している。ブリッジ回路は、モータ7のコイル群それぞれに電流を供給するための、ハイサイドスイッチング素子およびローサイドスイッチング素子によって構成されている。また、モータ駆動回路5は、モータ7への電流を遮断可能なモータリレー用スイッチング素子等を有している。
【0016】
電源リレー駆動回路21は、演算装置4から出力される指令信号に基づいて、駆動信号11を生成する。電源リレー駆動回路21は、駆動信号11を電源リレー2に入力する。電源リレー駆動回路21は、駆動信号11を用いて、電源リレー2に対してオン指令およびオフ指令を与えることができる。オン指令とは、電源リレー2に対して、バッテリ8からモータ駆動回路5へと電流を供給させるようにする指令である。オフ指令とは、電源リレー2に対して、バッテリ8からモータ駆動回路5へと電流を供給させないようにする指令である。言い換えると、オン指令が与えられた電源リレー2はモータ駆動回路5に電流を供給させ、オフ指令が与えられた電源リレー2はモータ駆動回路5への電流の供給を遮断する。
バッテリ8は、車両に搭載されて、モータ駆動装置1の電源として機能する。
【0017】
電源リレー2は、コンデンサ6の正極端子と、バッテリ8の正極端子と、の間に配置されている。
図2に示すように、電源リレー2は、第1スイッチング素子2Aと、第2スイッチング素子2Bと、リレー内抵抗10と、を有している。第1スイッチング素子2Aおよび第2スイッチング素子2Bは、直列に接続されている。本実施の形態では、第1スイッチング素子2Aおよび第2スイッチング素子2Bとして、MOSFET(metal-oxide-semiconductor field-effect transistor)を採用している。ただし、その他の種類の素子を、第1スイッチング素子2Aおよび第2スイッチング素子2Bとして用いてもよい。
【0018】
第1スイッチング素子2Aは、第1ゲート電極2Agと、第1ドレイン電極2Adと、を有している。第2スイッチング素子2Bは、第2ゲート電極2Bgと、第2ドレイン電極2Bdと、を有している。また、第1スイッチング素子2Aおよび第2スイッチング素子2Bは、共通のソース電極2sを有している。本実施の形態では、ソース電極2sにおける電圧を、中間電圧Vsと呼称する。中間電圧Vsは、モニタ3によって測定される。言い換えると、ソース電極2sは、モニタ3による中間電圧Vsの測定点である。第1スイッチング素子2Aは第1ダイオード2A1を内蔵し、第2スイッチング素子2Bは第2ダイオード2B1を内蔵している。第1ゲート電極2Agおよび第2ゲート電極2Bgは、それぞれ、電源リレー駆動回路21に接続されている。第1ドレイン電極2Adはバッテリ8に接続されている。第2ドレイン電極2Bdは抵抗9およびコンデンサ6に接続されている。
【0019】
第1スイッチング素子2Aおよび第2スイッチング素子2Bは、オン指令である駆動信号11が各ゲート電極2Ag、2Bgに与えられたとき、バッテリ8とモータ駆動回路5とを接続する。以下、この状態を、第1スイッチング素子2Aまたは第2スイッチング素子2Bが「オン状態」であるという。また、第1スイッチング素子2Aおよび第2スイッチング素子2Bは、オフ指令である駆動信号11が各ゲート電極2Ag、2Bgに与えられたとき、バッテリ8とモータ駆動回路5との接続を遮断する。以下、この状態を、第1スイッチング素子2Aまたは第2スイッチング素子2Bが「オフ状態」であるという。
【0020】
ここでバッテリ8は、モータ駆動装置1に正しく接続されるとは限らない。より具体的には、バッテリ8の極性が不適切な向きとなるように、バッテリ8がモータ駆動装置1に対して接続される場合がある。本明細書では、極性の向きが適切であるバッテリ8の接続状態を、「正接続状態」という。また、極性の向きが不適切であるバッテリ8の接続状態を、「逆接続状態」という。
【0021】
第1スイッチング素子2Aの第1ダイオード2A1は、第1スイッチング素子2Aがバッテリ8からモータ7に向けて電流を流す経路(第1ドレイン電極2Adとソース電極2sとの間の経路)に対して並列に設けられている。また、第2スイッチング素子2Bの第2ダイオード2B1は、第2スイッチング素子2Bがバッテリ8からモータ7に向けて電流を流す経路(ソース電極2sと第2ドレイン電極2Bdとの間の経路)に対して並列に設けられている。第1ダイオード2A1は、バッテリ8が正接続状態であるとき、第1スイッチング素子2Aがオフ状態であればバッテリ8とモータ駆動回路5との間を遮断するように設けられている。より具体的には、第1ダイオード2A1のカソード側がバッテリ8に接続され、アノード側がソース電極2sに接続されている。一方、第2ダイオード2B1は、バッテリ8が逆接続状態であるとき、第2スイッチング素子2Bがオフ状態であればバッテリ8とモータ駆動回路5との間を遮断するように設けられている。より具体的には、第2ダイオード2B1のカソード側が抵抗9、コンデンサ6等に接続され、アノード側がソース電極2sに接続されている。
【0022】
つまり、バッテリ8が正接続状態および逆接続状態のどちらであっても、オン指令である駆動信号11が各ゲート電極2Ag、2Bgに与えられない状態では、バッテリ8とモータ駆動回路5との間が遮断される。したがって、バッテリ8が逆接続状態のときに、オン指令である駆動信号11が入力されていないにも関わらず、バッテリ8とモータ駆動回路5とが通電してしまうことを回避できる。これにより、モータ駆動回路5を保護することができる。
【0023】
リレー内抵抗10の第1端部は、ソース電極2sに接続されている。リレー内抵抗10の第2端部は、第1ゲート電極2Agおよび第2ゲート電極2Bgに接続されている。リレー内抵抗10は、オン指令である駆動信号11が電源リレー2に入力されていないとき、第1ゲート電極2Agとソース電極2sとの間に充電された電荷、および、第2ゲート電極2Bgとソース電極2sとの間に充電された電荷を、放電させる役割を持つ。
【0024】
図1に示すように、コンデンサ6は、モータ駆動回路5の正極側入力端子5aと負極側入力端子5bとの間に接続されている。コンデンサ6は、バッテリ8からモータ駆動回路5に流れる電流が不足するときに放電し、モータ駆動回路5の電流リップルを吸収する。このような役割を果たすため、コンデンサ6の容量は大きいことが好ましい。例えば、コンデンサ6として、アルミ電解コンデンサを用いることができる。
【0025】
抵抗9はコンデンサ6と並列に接続されている。抵抗9は、電源リレー2のオフ時に、コンデンサ6に蓄積された電荷を放電させる役割を有している。また、抵抗9は、電源リレー2の下流側の電圧をモニタする際に、測定される電圧を安定させるための抵抗として用いてもよい。このような用途で抵抗9を用いる場合、抵抗9と電源リレー2との間における電圧をモニタするための第2のモニタ(不図示)が設けられる。なお、本明細書では、バッテリ8の正極端子から見て、モータ駆動回路5の正極側入力端子5aに向けて電流が流れる側を「下流側」という。
【0026】
ここで、本実施の形態に係るモータ駆動装置1は、モータ駆動装置1の動作完了後に、電源リレー2の故障の有無を判定できるように構成されている。より具体的には、駆動信号11がオフ指令であるにも関わらず、電源リレー2がバッテリ8からモータ駆動回路5への電流供給を継続していることを、演算装置4によって判定することができる。
以下、
図3を用いて説明する。
図3(a)は、駆動信号11におけるオン指令およびオフ指令の状態を示すタイミングチャートである。
図3(b)は、駆動信号11がオン指令からオフ指令に切り替わることに対応して、中間電圧Vsがどのように推移するかを示すグラフである。
図3(b)の縦軸は電圧であり、「Vb」はバッテリ8の電圧を表している。
図3(b)のグラフは、モニタ3によって測定される中間電圧Vsの値に基づいて作成される。
【0027】
モータ駆動装置1の動作が完了すると、演算装置4は電源リレー駆動回路21に対して命令を与える。この命令に基づき、電源リレー駆動回路21は電源リレー2に対してオフ指令である駆動信号11を出力する。
図3(a)、(b)において、時刻t0に、駆動信号11の状態がオン指令からオフ指令へと切り替わっている。本実施の形態における演算装置4は、モニタ3によって測定される中間電圧Vsを、第1時刻t1および第2時刻t2において、第1閾値電圧Vth1および第2閾値電圧Vth2と比較することで、電源リレー2の故障の有無を判定する。
【0028】
第1時刻t1は時刻t0の後の時点であり、第2時刻t2は第1時刻t1の後の時点である。時刻t0と第1時刻t1との間における時間間隔、および第1時刻t1と第2時刻t2との間における時間間隔は、電源リレー2の故障の有無を判定できるように、予め定められる。第1閾値電圧Vth1は、0Vよりも大きく、かつバッテリ電圧Vbよりも小さい値である。第2閾値電圧Vth2は、第1閾値電圧Vth1よりも大きく、かつバッテリ電圧Vbよりも小さい値である。第1閾値電圧Vth1および第2閾値電圧Vth2の具体的な数値は、電源リレー2の故障の有無を判定できるように、予め定められる。
【0029】
図3(b)における実線は、第1スイッチング素子2Aおよび第2スイッチング素子2Bのいずれにも故障が生じていない場合の、中間電圧Vsの推移を示す。
図3(b)の実線では、時刻t0の後、中間電圧Vsが一定の傾きで降下している。この傾きは、第1スイッチング素子2Aおよび第2スイッチング素子2Bのゲートソース間の寄生容量(不図示)と、リレー内抵抗10と、で決まる第1時定数τ1により定まる。より具体的には、上記寄生容量に蓄えられた電荷が、第1時定数τ1によって放電されることで、中間電圧Vsが降下していく。例えば、寄生容量が10nF、リレー内抵抗10の抵抗値が100kΩであれば、時定数τ1は1ms程度となる。
【0030】
ここで
図2に示すように、ソース電極2sには、第1ダイオード2A1および第2ダイオード2B1が直列に接続されている。ダイオード2A1、2B1はそれぞれ、第1スイッチング素子2Aおよび第2スイッチング素子2Bの寄生ダイオードである。第1ダイオード2A1および第2ダイオード2B1は、それぞれのアノード側がソース電極2sに接続されている。言い換えると、第1ダイオード2A1および第2ダイオード2B1は、ソース電極2sに対して互いに同一の極が接続されるように、直列接続されている。このため、第1スイッチング素子2Aおよび第2スイッチング素子2Bに故障が生じていない場合、時刻t0において駆動信号11がオフ指令に切り替わったとき、バッテリ8およびコンデンサ6からソース電極2sへと電荷は流入しない。中間電圧Vsの降下に伴い、第1スイッチング素子2Aおよび第2スイッチング素子2Bのゲートソース間電圧は低下する。ゲートソース間電圧が、第1スイッチング素子2Aおよび第2スイッチング素子2Bの各固有の閾値を下回ったとき、第1スイッチング素子2Aおよび第2スイッチング素子2Bはオフ状態となる。
【0031】
演算装置4は、第1時刻t1において中間電圧Vsの値が第1閾値電圧Vth1以下であるとき、電源リレー2が正常(故障が発生していない)と判定する。例えば、時定数τ1が1msである場合、電源リレー2に故障が発生していなければ、時刻t0の1秒後における中間電圧Vsは約0Vとなる。したがって、例えば時刻t0と第1時刻t1との間の時間間隔を1秒、第1閾値電圧Vth1の値を1Vと設定することができる。この場合、駆動信号11がオフ指令に切り替わった時点(時刻t0)から1秒後(第1時刻t1)における中間電圧Vsが1V以下であるとき、演算装置4は電源リレー2が正常であると判定できる。
【0032】
次に、第1スイッチング素子2Aが故障している場合について述べる。
図3(b)の二点鎖線は、時刻t0において駆動信号11がオフ指令に切り替わった後も、第1スイッチング素子2Aがオン状態のままである場合を示す。この場合、第1ドレイン電極2Adとソース電極2sとの間が正常に絶縁されず、時刻t0を過ぎても、中間電圧Vsはバッテリ電圧Vbとほぼ同じ値となる。このため、第1時刻t1において、中間電圧Vsは第1閾値電圧Vth1よりも大きくなる。また、詳細は後述するが、第2スイッチング素子2Bが故障している場合も、中間電圧Vsは第1閾値電圧Vth1より大きくなる。したがって、演算装置4は、第1時刻t1における中間電圧Vsと第1閾値電圧Vth1とを比較した結果、Vs>Vth1である場合に、第1スイッチング素子2Aおよび第2スイッチング素子2Bの少なくとも一方または第1スイッチング素子2Aおよび第2スイッチング素子2Bの両方が故障していると判定する。
【0033】
なお、バッテリ電圧Vbは一定であるとは限らず、多様な値を取り得る。本実施の形態では、モータ駆動装置1が動作可能であるバッテリ電圧Vbの下限値を、Vb_minと表す。そして、Vth1<Vb_minを満たすように、第1閾値電圧Vth1の値が設定される。これにより、第1スイッチング素子2Aが正常であるにも関わらず故障していると演算装置4が誤判定してしまうことを抑止することができる。
【0034】
次に、第2スイッチング素子2Bが故障している場合について述べる。
図3(b)の一点鎖線は、時刻t0において駆動信号11がオフ指令に切り替わった後も、第2スイッチング素子2Bがオン状態のままである場合を示す。この場合、第2ドレイン電極2Bdとソース電極2sとの間が正常に絶縁されず、コンデンサ6とソース電極2sとが導通した状態となる。第2ダイオード2B1の存在による電圧降下を無視すれば、中間電圧Vsとコンデンサ電圧Vcとが、略同じになる。なお、コンデンサ電圧Vcとは、コンデンサ6の電圧である。時刻t0以降、コンデンサ6に蓄えられた電荷は、コンデンサ6の容量および抵抗9の抵抗値により決まる第2時定数τ2によって放電される。このため、コンデンサ電圧Vcおよび中間電圧Vsも、第2時定数τ2で低下していく。
【0035】
コンデンサ6は、バッテリ8からモータ駆動回路5に流れる電流が不足するときに放電し、モータ駆動回路5の電流リップルを吸収する役割を有する。また、抵抗9は、モータ駆動装置1の動作中に、コンデンサ6に蓄えられる電荷量に及ぼす影響が小さいことが望ましい。これらのことから、例えばコンデンサ6の容量を1000uFとし、抵抗9の抵抗値100kΩとした場合、時定数τ2は10s程度となる。
【0036】
上記の条件において、コンデンサ電圧Vcが例えば10Vであり、第1時刻t1を時刻t0の1秒後と設定し、第1閾値電圧Vth1を1Vと設定した場合を考える。このとき、第1時刻t1におけるコンデンサ電圧Vcは、第1閾値電圧Vth1よりも大きくなる。そして、第2スイッチング素子2Bが故障している場合は、中間電圧Vsとコンデンサ電圧Vcとが略等しくなる。したがってこの場合、中間電圧Vsも第1閾値電圧Vth1より大きくなる。また、先述の通り、第1スイッチング素子2Aが故障している場合も、第1時刻t1における中間電圧Vsが第1閾値電圧Vth1より大きくなる。したがって、演算装置4は、第1時刻t1における中間電圧Vsと第1閾値電圧Vth1とを比較した結果、Vs>Vth1である場合に、第1スイッチング素子2Aおよび第2スイッチング素子2Bの少なくとも一方が故障していると判定する。
【0037】
ここで、本実施の形態に係る演算装置4は、第2閾値電圧Vth2を用いて、第1スイッチング素子2Aおよび第2スイッチング素子2Bのどちらに故障が発生しているかを判定する。第1スイッチング素子2Aが故障している場合は、
図3(b)の二点鎖線に示すように、中間電圧Vsはバッテリ電圧Vbのまま、ほぼ変化しない。一方、第2スイッチング素子2Bが故障している場合は、
図3(b)の一点鎖線に示すように、時定数τ2によって中間電圧Vsは低下していく。そこで、時定数τ2によって中間電圧Vsが低下したときに、第2時刻t2において中間電圧Vsが第2閾値電圧Vth2を下回るように、第2閾値電圧Vth2が設定される。これにより、第2時刻t2における中間電圧Vsと第2閾値電圧Vth2とを比較した結果に基づいて、第1スイッチング素子2Aおよび第2スイッチング素子2Bのどちらに故障が発生しているかを判別することができる。より具体的には、第2時刻t2における中間電圧Vsが第2閾値電圧Vth2より小さいとき、演算装置4は第2スイッチング素子2Bが故障していると判定する。
【0038】
時刻t0と第2時刻t2との間における時間間隔が大きいほど、
図3(b)における一点鎖線と二点鎖線との縦軸の値の差が大きくなり、第1スイッチング素子2Aおよび第2スイッチング素子2Bのどちらが故障しているかを判別しやすくなる。ただし、演算装置4は第2時刻t2における中間電圧Vsの値に基づいて故障の判別を行うため、時刻t0と第2時刻t2との間における時間間隔が大きいほど、判別が遅れる。したがって、第2時刻t2は、故障の判別が可能であり、かつ、なるべく時刻t0と近い時間に設定されるとよい。また、第2閾値電圧Vth2の具体的な数値は、コンデンサ6の容量および抵抗9の抵抗値によって定まる時定数τ2、第1時刻t1、および第2時刻t2等を考慮して設定されることが好ましい。
【0039】
なお、上記した第1時刻t1、第2時刻t2、第1閾値電圧Vth1、第2閾値電圧Vth2、コンデンサ6の容量、抵抗9の抵抗値等の具体的な数値は、あくまで一例である。それぞれの数値は、各部品の定数および温度特性バラつきを勘案して、適宜変更できる。
【0040】
以上説明したように、本開示に係る電源遮断装置1aは、直列に接続された第1スイッチング素子2Aおよび第2スイッチング素子2Bを有し、バッテリ8から給電対象物(モータ7)に向けた電流の供給および停止を切り替える電源リレー2と、電源リレー2に、電流の供給および停止を切り替えさせる駆動信号11を入力する電源リレー駆動回路21と、第1スイッチング素子2Aと第2スイッチング素子2Bとの間における中間電圧Vsを測定するモニタ3と、モニタ3による中間電圧Vsの測定結果を取得可能な演算装置4と、を備え、第1スイッチング素子2Aは、第1スイッチング素子2Aがバッテリ8から給電対象物に向けて電流を流す経路に対して並列に設けられた第1ダイオード2A1を含み、第2スイッチング素子2Bは、第2スイッチング素子2Bがバッテリ8から給電対象物に向けて電流を流す経路に対して並列に設けられた第2ダイオード2B1を含み、第1ダイオード2A1および第2ダイオード2B1は、モニタ3による中間電圧Vsの測定点に対して互いに同一の極が接続されるように、直列接続され、演算装置4は、電流の供給を停止させる駆動信号11が電源リレー2に入力された後の中間電圧Vsに基づいて、電源リレー2の故障の有無を判定する。
【0041】
上記構成の電源遮断装置1aによれば、例えばコンデンサ6をチャージするためのチャージ回路を設けなくても、電源リレー2の故障の有無を判定することができる。したがって、電源リレー2の故障の有無を判定するための部品点数の増加を抑えることができる。
【0042】
具体的には、演算装置4は、電源リレー2に対して電流の供給を停止させる駆動信号11が入力された後の、第1時刻t1における中間電圧Vsを、第1閾値電圧Vth1と比較することで、電源リレー2の故障の有無を判定する。
【0043】
また、第1時刻t1における中間電圧Vsが、第1閾値電圧Vth1以下であるとき、演算装置4は第1スイッチング素子2Aおよび第2スイッチング素子2Bが正常であると判定する。
【0044】
また、第1時刻t1における中間電圧Vsが、第1閾値電圧Vth1より大きいとき、演算装置4は第1スイッチング素子2Aまたは第2スイッチング素子2Bに故障が発生したと判定する。
【0045】
また、演算装置4は、第1時刻t1より後の第2時刻t2における中間電圧Vsと、第1閾値電圧Vth1よりも大きい第2閾値電圧Vth2と、の比較に基づき、第1スイッチング素子2Aおよび第2スイッチング素子2Bのどちらに故障が発生したかを判定する。
【0046】
また、バッテリ8、第1スイッチング素子2A、第2スイッチング素子2B、および給電対象物は、この順に接続され、第2時刻t2において、中間電圧Vsが第2閾値電圧Vth2より大きいとき、演算装置4は第1スイッチング素子2Aに故障が発生したと判定する。
【0047】
また、第2スイッチング素子2Bと給電対象物との間には、コンデンサ6の一方の端子が接続され、第1時刻t1より後の第2時刻t2において、中間電圧Vsが第2閾値電圧Vth2より小さいとき、演算装置4は第2スイッチング素子2Bに故障が発生したと判定する。
【0048】
これらの判定方法を採用することで、電源リレー2の故障の有無だけでなく、第1スイッチング素子2Aおよび第2スイッチング素子2Bのどちらに故障が発生したかを判定することが可能となる。
【0049】
なお、本開示の技術的範囲は前記実施の形態に限定されず、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
【0050】
例えば、
図1ではコンデンサ6の数が1つであるが、コンデンサ6は並列して複数設けられてもよい。コンデンサ6が複数設けられる場合、時定数τ2はコンデンサ6の数に応じた値を取る。したがってこの場合、第2閾値電圧Vth2は、コンデンサ6の数に対応した時定数τ2を考慮して決定されることが好ましい。さらに、複数設けたコンデンサ6のうち、一部に故障が生じる可能性もある。故障したコンデンサ6の数に応じて、時定数τ2が変化するから、中間電圧Vsをモニタすることで、コンデンサ6の一部が故障したことを検出することも可能である。
【0051】
また、前記実施の形態では、共通の駆動信号11によって、第1スイッチング素子2Aおよび第2スイッチング素子2Bのオン状態およびオフ状態を切り替えた。しかしながら、第1スイッチング素子2Aおよび第2スイッチング素子2Bに、それぞれ独立した駆動信号11を与えることで、個別にオン状態およびオフ状態を切り替えてもよい。この場合も、第1スイッチング素子2Aおよび第2スイッチング素子2Bの両方の故障を検出可能であり、どちらに故障が発生しているかを判別することも可能である。
【0052】
また、前記実施の形態におけるダイオード2A1、2B1はそれぞれ、スイッチング素子2A、2BであるMOSFETの寄生ダイオードである。しかしながら、スイッチング素子2A、2BはMOSFETでなくてもよく、ダイオード2A1、2B1はMOSFETの寄生ダイオードでなくてもよい。
【0053】
その他、上記した実施の形態あるいは変形例を、適宜組み合わせてもよい。
【符号の説明】
【0054】
1…モータ駆動装置 1a…電源遮断装置 2…電源リレー 2A…第1スイッチング素子 2A1…第1ダイオード 2B…第2スイッチング素子 2B1…第2ダイオード 3…モニタ 4…演算装置 6…コンデンサ 7…モータ 8…バッテリ 20…電動パワーステアリング装置 21…電源リレー駆動回路 t1…第1時刻 t2…第2時刻 Vs…中間電圧 Vth1…第1閾値電圧 Vth2…第2閾値電圧