IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーティカル ダイナミックス リミテッドの特許一覧

特許7601796脳活動を測定するための装置及びプロセス
<>
  • 特許-脳活動を測定するための装置及びプロセス 図1
  • 特許-脳活動を測定するための装置及びプロセス 図2
  • 特許-脳活動を測定するための装置及びプロセス 図3a
  • 特許-脳活動を測定するための装置及びプロセス 図3b
  • 特許-脳活動を測定するための装置及びプロセス 図4
  • 特許-脳活動を測定するための装置及びプロセス 図5
  • 特許-脳活動を測定するための装置及びプロセス 図6
  • 特許-脳活動を測定するための装置及びプロセス 図7
  • 特許-脳活動を測定するための装置及びプロセス 図8
  • 特許-脳活動を測定するための装置及びプロセス 図9
  • 特許-脳活動を測定するための装置及びプロセス 図10
  • 特許-脳活動を測定するための装置及びプロセス 図11
  • 特許-脳活動を測定するための装置及びプロセス 図12
  • 特許-脳活動を測定するための装置及びプロセス 図13
  • 特許-脳活動を測定するための装置及びプロセス 図14
  • 特許-脳活動を測定するための装置及びプロセス 図15
  • 特許-脳活動を測定するための装置及びプロセス 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-09
(45)【発行日】2024-12-17
(54)【発明の名称】脳活動を測定するための装置及びプロセス
(51)【国際特許分類】
   A61B 5/372 20210101AFI20241210BHJP
【FI】
A61B5/372
【請求項の数】 18
(21)【出願番号】P 2021570527
(86)(22)【出願日】2020-05-28
(65)【公表番号】
(43)【公表日】2022-07-28
(86)【国際出願番号】 AU2020050535
(87)【国際公開番号】W WO2020237311
(87)【国際公開日】2020-12-03
【審査請求日】2023-05-12
(31)【優先権主張番号】2019901839
(32)【優先日】2019-05-28
(33)【優先権主張国・地域又は機関】AU
(73)【特許権者】
【識別番号】505273349
【氏名又は名称】コーティカル ダイナミックス リミテッド
(74)【代理人】
【識別番号】100107456
【弁理士】
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100162352
【弁理士】
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100123995
【弁理士】
【氏名又は名称】野田 雅一
(72)【発明者】
【氏名】リリー, デイビッド ティボル ジュリアン
【審査官】磯野 光司
(56)【参考文献】
【文献】特表2006-518608(JP,A)
【文献】Levin KUHLMANN et al.,Neural mass model-based tracking of anesthetic brain states,NeuroImage,2016年06月,Vol. 133,p.438-456,DOI: 10.1016/j.neuroimage.2016.03.039
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/24-5/398
(57)【特許請求の範囲】
【請求項1】
被験者の脳活動を測定するためのコンピュータ実施プロセスであって、
(i)前記被験者の電気的脳活動の脳電図(EEG)測定値を表す脳電図データを受信するステップと、
(ii)神経細胞集団モデルのパラメータを前記脳電図データに当てはめて、抑制性シナプス後電位速度定数(γ)の1つ又は複数の値を含む、前記パラメータの対応する値を特定するステップと、
を含み、
前記神経細胞集団モデルに従って、γが、前記被験者の脳の応答性の状態を表し、基準値に対するγの増大が、脳の応答性の向上した状態を示し、前記基準値に対するγの減少が、脳の応答性の状態における低下を示し、
前記神経細胞集団モデルのパラメータを前記脳電図データに当てはめることが、
前記脳電図データに基づいて前記パラメータのパラメータ値を推定するステップ、
前記パラメータの各々の個々の同定可能性を表すデータを生成するために前記神経細胞集団モデルを処理するステップ、及び
γ が決定的モデルパラメータであることを同定するステップ、を含む、
コンピュータ実施プロセス。
【請求項2】
(iii)ステップ(i)及びステップ(ii)をリアルタイムで繰り返して、それぞれの時点のγの値を特定し、前記被験者の前記脳の応答性のリアルタイムモニタリングを提供するステップを更に含む、請求項1に記載のコンピュータ実施プロセス。
【請求項3】
前記脳電図の信号が、刺激されていない被験者の鎮静中に測定され、それぞれの時点のγの前記特定された値が、前記被験者の鎮静の深さを定量化し、前記基準値に対するγの減少が、前記刺激されていない被験者の脳の応答性の又は覚醒状態の低下を示す、請求項2に記載のコンピュータ実施プロセス。
【請求項4】
前記刺激されていない被験者が麻酔をかけられている、請求項3に記載のコンピュータ実施プロセス。
【請求項5】
前記刺激されていない被験者が外科手術を受けている、請求項に記載のコンピュータ実施プロセス。
【請求項6】
前記基準値が、1人又は複数人の対照被験者におけるγの所定の測定値である、請求項1~5のいずれか一項に記載のコンピュータ実施プロセス。
【請求項7】
前記基準値が、覚醒状態又は意識のある状態にある前記被験者の脳電図測定値に神経細胞集団モデルを当てはめることによって特定されるγの値である、請求項1~5のいずれか一項に記載のコンピュータ実施プロセス。
【請求項8】
前記基準値が、最小鎮静(段階I)、意識下鎮静(段階II)、深い鎮静(段階III)及び髄質低下(段階IV)からなる群から選択された鎮静レベルにおける1人又は複数人の対照被験者における脳活動を表すγの所定の値である、請求項3に記載のコンピュータ実施プロセス。
【請求項9】
前記被験者が外科手術を受けている、請求項8に記載のコンピュータ実施プロセス。
【請求項10】
前記基準値が、1人又は複数人の対照被験者における脳活動を表すγの所定の値である、請求項に記載のコンピュータ実施プロセス。
【請求項11】
前記基準値が、覚醒状態又は意識のある状態にある前記被験者の脳電図測定値に神経細胞集団モデルを当てはめることによって特定されるγの値である、請求項に記載のコンピュータ実施プロセス。
【請求項12】
前記基準値が、最小鎮静(段階I)、意識下鎮静(段階II)、深い鎮静(段階III)及び髄質低下(段階IV)からなる群から選択された鎮静レベルにおける1人又は複数人の対照被験者における脳活動を表すγの所定の値である、請求項に記載のコンピュータ実施プロセス。
【請求項13】
γの前記1つ又は複数の値が、前記被験者の前記脳活動のアルファリズム特徴を定量化する、請求項1~のいずれか一項に記載のコンピュータ実施プロセス。
【請求項14】
被験者における脳活動を測定するためのシステムであって、
通信ネットワークからデータを受信するように構成された少なくとも1つのネットワークインタフェースと、
少なくとも1つのコンピュータプロセッサと、
前記少なくとも1つのコンピュータプロセッサに結合され、前記少なくとも1つのコンピュータプロセッサによって実行されると、前記少なくとも1つのコンピュータプロセッサに、請求項1~13のいずれか一項に記載のプロセスを実行させる命令を記憶する、メモリと、
を備える、システム。
【請求項15】
被験者における脳活動を測定するための装置であって、
(i)前記被験者の電気的脳活動の脳電図測定値を表す脳電図データを受信し、
(ii)神経細胞集団モデルのパラメータを前記脳電図データに当てはめて、抑制性シナプス後電位速度定数(γ)の1つ又は複数の値を含む、前記パラメータの1つ又は複数の値を特定する、
ように構成された神経細胞集団モデル当てはめ構成要素を有する少なくとも1つのコンピューティングデバイスを備え、
前記神経細胞集団モデルに従って、γが、前記被験者の脳の応答性の状態を表し、基準値に対するγの増大が、脳の応答性の向上した状態を示し、前記基準値に対するγの減少が、脳の応答性の状態における低下を示し、
前記神経細胞集団モデルのパラメータを前記脳電図データに当てはめることが、
前記脳電図データに基づいて前記パラメータのパラメータ値を推定すること、
前記パラメータの各々の個々の同定可能性を表すデータを生成するために前記神経細胞集団モデルを処理すること、及び
γ が決定的モデルパラメータであることを同定すること、を含む、
装置。
【請求項16】
前記神経細胞集団モデル当てはめ構成要素が、請求項2~13のいずれか一項に記載のプロセスを実行するように構成される、請求項15に記載の装置。
【請求項17】
1つ又は複数の電極から取得された脳電図信号を処理することによって、前記脳電図データを生成し、
前記脳電図データを、前記神経細胞集団モデル当てはめ構成要素に送信する
ように構成された脳電図モニタリング構成要素を備える、請求項15又は16に記載の装置。
【請求項18】
コンピューティングシステム又はデバイスの少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに、請求項1~13のいずれか一項に記載のプロセスを実行させる命令を記憶した1つ又は複数のコンピュータ-可読ストレージ媒体。
【発明の詳細な説明】
【技術分野】
【0001】
[0001]本発明は、脳波記録法(EEG)信号に基づいて脳活動を測定するための装置及びプロセスに関する。
【背景技術】
【0002】
[0002]脳における電気的活性は、神経活動によって生じた電荷の流れの結果であり、刺激に応答して、隣接する脳領域にわたって特徴的パターン(「波」等)で変動する。ヒトの脳におけるニューロンの全体的な同期活動は、脳波記録法(EEG)を用いて記録することができる。これは、電極を用いて個人の頭皮の外側の電位を測定する(このため、神経機能を推測する)ことを伴う。
【0003】
[0003]EEGは、信号出力に現れる特定の特徴に基づいて脳活動を研究する単純で非侵襲的な方式を提供する。EEG信号は、多くの場合、特定の周波数帯において生じるリズム特徴を含み、これは、当該技術分野においてアルファ、ベータ、シータ及びデルタ帯として参照されるものを含む。アルファリズム特徴は、長い間、脳情報処理及び機能のインジケータであると考えられてきた。特に、8~13Hzにおけるアルファリズムの特性的振動は、認識中及び挙動時の脳電磁活動の現象論的記述において中心的役割を果たしてきた。
【0004】
[0004]EEG信号における特性的特徴の存在は、発作の診断及び治療(例えば、てんかん発作を他の発作と区別し、発作が生じた脳の領域を同定する)、並びに(例えば、手術中の)個人の麻酔の深さの判断を含む、脳機能モニタリング用途のためのEEG信号分析の使用の動機付けとなっている。
【0005】
[0005]EEG信号における特徴の生理学的解釈は、多くの場合、多数の相互作用するニューロンを巨視的システムとして表す、当該技術分野において「神経細胞集団モデル」と呼ばれる神経細胞集団の集合モデルの使用を伴ってきた。ヒトの脳の構造をモデル化することに関する神経生理学的モデル化は、個人から観測されたEEG信号の特徴と、個人の脳内の活動との間の関係を理解し特性化する試みにおいて、神経細胞集団モデルを利用してきた。
【0006】
[0006]特に、神経細胞集団モデルは、興奮性及び抑制性ニューロン集団を記述するパラメータのセットを含み、ここで、これらのパラメータの値は、特定の刺激及び入力に対しモデル化されたニューロンの予測電気応答を特定する。これらの神経細胞集団モデルによって生成された予測EEG信号は、例えば、アルファリズム等のEEGの顕著な特徴を再生することができる。
【0007】
[0007]脳活動測定を行うか、又は神経生理学的モデル化技術に基づいてモニタリングを行う従来の手段の利便性にもかかわらず、改善の余地が残っている。従来技術の1つ又は複数の難点を軽減するか、又は少なくとも有用な代替案を提供する脳活動評価装置及びプロセスを提供することが望ましい。
【発明の概要】
【0008】
[0008]本発明のいくつかの実施形態によれば、被験者の脳活動を測定するためのコンピュータ実施プロセスが提供され、このプロセスは被験者の電気的脳活動の脳電図(EEG)測定値を表すEEGデータを受信することと、神経細胞集団モデルのパラメータをEEGデータに当てはめて、抑制性シナプス後電位速度定数(γ)の1つ又は複数の値を含む、前記パラメータの対応する値を特定することとを含み、γは、脳の応答性の状態を表し、基準値に対するγの増大は、脳の応答性の向上した状態を示し、基準値に対するγの減少は、脳の応答性の状態における低下を示す。
【0009】
[0009]いくつかの実施形態では、被験者の脳活動を測定するためのプロセスのステップは、被験者の脳の応答性のリアルタイムモニタリングを提供するために、それぞれの時点についてγの値を特定するようにリアルタイムで繰り返される。
【0010】
[0010]いくつかの実施形態では、EEG信号は、刺激されていない被験者の鎮静中に測定され、それぞれの時点の特定された値γは、被験者の鎮静の深さを定量化し、基準値に対するγの減少は、刺激されていない被験者の脳の応答性又は覚醒状態の低下を示す。
【0011】
[0011]刺激されていない被験者は、麻酔をかけられているか、又は外科手術を受けている場合がある。
【0012】
[0012]いくつかの実施形態では、基準値は、1人又は複数人の対照被験者におけるγの所定の測定値である。
【0013】
[0013]いくつかの実施形態では、基準値は、覚醒状態又は意識のある状態にある被験者のEEG測定値に神経細胞集団モデルを当てはめることによって特定されるγの値である。
【0014】
[0014]いくつかの実施形態では、基準値は、最小鎮静(段階I)、意識下鎮静(段階II)、深い鎮静(段階III)及び髄質低下(段階IV)からなる群から選択された鎮静レベルにおける1人又は複数人の対照被験者における脳活動を表すγの所定の値である。
【0015】
[0015]いくつかの実施形態では、麻酔薬が被験者に投与され、上記のプロセスは、
(i)γの値を基準値と比較することと、
(ii)被験者が、前記比較に基づいて追加の麻酔を必要とするか否かを判断することと、
(iii)被験者が追加の麻酔を必要とすると判断される場合にのみ、追加の麻酔を被験者に投与することと、
を含む。
【0016】
[0016]被験者は外科手術を受けている場合がある。
【0017】
[0017]いくつかの実施形態では、追加の麻酔は、自動麻酔薬送達システムによって送達される。
【0018】
[0018]いくつかの実施形態では、γの1つ又は複数の値は、被験者の脳活動のアルファリズム特徴を定量化する。
【0019】
[0019]本発明のいくつかの実施形態によれば、被験者における脳活動を測定するためのシステムが提供され、このシステムは、
通信ネットワークからデータを受信するように構成された少なくとも1つのネットワークインタフェースと、
少なくとも1つのコンピュータプロセッサと、
少なくとも1つのコンピュータプロセッサに結合され、少なくとも1つのコンピュータプロセッサによって実行されると、少なくとも1つのコンピュータプロセッサに、上記の脳活動測定プロセスのうちの任意のものを実行させる命令を記憶する、メモリと、
を備える。
【0020】
[0020]本発明のいくつかの実施形態によれば、被験者における脳活動を測定するための装置が提供され、この装置は、
(i)被験者の電気的脳活動のEEG測定値を表すEEGデータを受信し、
(ii)神経細胞集団モデルのパラメータをEEGデータに当てはめて、抑制性シナプス後電位速度定数(γ)の1つ又は複数の値を含む、前記パラメータの1つ又は複数の値を特定する、
ように構成された神経細胞集団モデル当てはめ構成要素を有する少なくとも1つのコンピューティングデバイスを備え、
γは、脳の応答性の状態を表し、基準値に対するγの増大は、脳の応答性の向上した状態を示し、基準値に対するγの減少は、脳の応答性の状態における低下を示す。
【0021】
[0021]いくつかの実施形態では、神経細胞集団モデル当てはめ構成要素は、上記で説明した脳活動測定プロセスのうちの任意のものを実行するように構成される。
【0022】
[0022]いくつかの実施形態では、装置は、
1つ又は複数の電極から取得されたEEG信号を処理することによって、EEGデータを生成し、
EEGデータを、神経細胞集団モデル当てはめ構成要素に送信する
ように構成されたEEGモニタリング構成要素を備える。
【0023】
[0023]本発明のいくつかの実施形態によれば、コンピューティングシステム又はデバイスの少なくとも1つのプロセッサによって実行されると、少なくとも1つのプロセッサに、上記で説明した脳活動測定プロセスのうちの任意のものを実行させる命令を記憶した1つ又は複数のコンピュータ-可読ストレージ媒体が提供される。
【0024】
[0024]本明細書には、脳機能を評価するための生理学的パラメータを同定するためのプロセスも記載され、このプロセスは、1人又は複数人の個人の電気脳活動を表すEEGデータを受信することと、1つ又は複数のモデルパラメータを有する神経細胞集団モデルを表す神経細胞集団モデルデータにアクセスすることと、1つ又は複数のモデルパラメータをEEGデータに当てはめるモデル当てはめプロセスに従って、1つ又は複数のモデルパラメータのための推定パラメータ値を表す当てはめられたモデルパラメータデータを生成することと、当てはめられたモデルパラメータデータを処理して、少なくとも、各モデルパラメータの個々の同定可能性を表すパラメータ同定可能性データを生成することと、パラメータ同定可能性データを処理して、EEGデータの1つ又は複数の特徴を特性化する1つ又は複数の決定的パラメータのインジケーションを表す決定的パラメータデータを生成し、それによって、決定的パラメータの値が、評価された個人の対応する脳機能のインジケーションをもたらすようにすることとを含む。
【0025】
[0025]いくつかの実施態様では、パラメータ同定可能性データを生成することは、パラメータごとに、i)パラメータの周辺事後分布を推定することと、ii)事前分布と事後分布との間のパラメータの変動性の差を特定することとを含む。
【0026】
[0026]いくつかの実施態様では、カルバック-ライブラーダイバージェンスを用いて、パラメータの変動性の差が測定される。
【0027】
[0027]いくつかの実施態様では、パラメータ同定可能性データは、モデルパラメータの集合的同定可能性を更に表す。
【0028】
[0028]いくつかの実施態様では、モデルパラメータの集合的同定可能性は、パラメータから導出されたフィッシャー情報行列の固有分析から特定される。
【0029】
[0029]いくつかの実施態様では、モデルパラメータの同定可能性が処理され、1つ又は複数のモデルパラメータにわたる変動に対する神経細胞集団の予測の感度を表すモデルのスロッピー性(sloppiness)のインジケーションが生成される。
【0030】
[0030]いくつかの実施態様では、決定的パラメータデータが処理され、自由度が低減された新たな神経細胞集団モデルを表す最適化された神経細胞集団モデルデータが生成される。
【0031】
[0031]いくつかの実施態様では、神経細胞集団モデルは、一次及び二次常微分方程式の結合されたセットによって記述される。
【0032】
[0032]いくつかの実施態様では、神経細胞集団モデルは、生理学的パラメータのセットに基づいて、抑制性神経集団と興奮性神経集団との間の相互作用を定義する。
【0033】
[0033]いくつかの実施態様では、生理学的パラメータは、静止膜電位、膜電位、平均発火率、発火閾値、不動態膜減衰時定数、興奮性シナプス後電位速度定数、抑制性シナプス後電位速度定数、シナプス後電位振幅、いずれかの集団に対する興奮性又は抑制性入力の速度、及び興奮性ニューロン又は抑制性ニューロンが近傍の興奮性ニューロン又は抑制性ニューロンのいずれかから受ける接続の総数、のうちの1つ又は複数の尺度を含む。
【0034】
[0034]いくつかの実施態様では、決定的パラメータセットは、EEGデータのアルファリズム特徴を特性化するための、少なくとも1つのシナプス後抑制性速度定数パラメータによって表されるような1人又は複数人の個人の抑制性シナプス活性の動力学の尺度を含む。
【0035】
[0035]いくつかの実施態様では、モデル当てはめプロセスは、パラメータごとに想定された分布を記述する事前分布データにアクセスするステップと、少なくとも部分的にEEGデータに基づいて、候補パラメータを評価する推定判断基準関数を決定するステップと、当てはめアルゴリズム及び推定判断基準関数に従って、少なくとも推定パラメータ値を表すサンプル値データを生成するステップとを伴う。
【0036】
[0036]いくつかの実施態様では、当てはめアルゴリズムは、粒子群最適化(PSO)アルゴリズムであり、ここで、推定パラメータ値は、最小二乗コスト関数の最小化に少なくとも部分的に基づいて導出される。
【0037】
[0037]いくつかの実施態様では、当てはめアルゴリズムは、マルコフ連鎖モンテカルロ法(MCMC)アルゴリズムであり、ここで、推定パラメータは、パラメータの尤度関数を最大化することによって導出される。
【0038】
[0038]いくつかの実施態様では、EEGデータは、モデル当てはめプロセスを実行する前に処理され、少なくとも1つのEEGスペクトルが生成される。
【0039】
[0039]いくつかの実施態様では、1人又は複数人の個人の時系列のEEG信号を重ね合わせることによって導出されたスペクトルを平均化することによって、少なくとも1つのEEGスペクトルが生成される。
【0040】
[0040]いくつかの実施態様では、推定判断基準関数は、i)神経細胞集団モデルの予測モデルスペクトル関数と、ii)予測モデルスペクトル関数の対応する尤度関数とを含み、ここで、推定パラメータ値は、少なくとも1つのEEGスペクトル及び推定判断基準関数に基づいて導出される。
【0041】
[0041]本明細書において、(i)1人又は複数人の個人の電気脳活動を表すEEGデータを受信し、1つ又は複数のモデルパラメータを有する神経細胞集団モデルを表す神経細胞集団モデルデータにアクセスするためのデータハンドラと、(ii)1つ又は複数のモデルパラメータをEEGデータに当てはめるモデル当てはめプロセスに基づいて、1つ又は複数のモデルパラメータのための推定パラメータ値を表す当てはめられたモデルパラメータデータを生成するためのサンプリング及び推定ユニットと、(iii)当てはめられたモデルパラメータデータを処理して、少なくとも、各モデルパラメータの個々の同定可能性を表すパラメータ同定可能性データを生成し、パラメータ同定可能性データを処理して、EEGデータの1つ又は複数の特徴を特性化する1つ又は複数のモデルパラメータのインジケーションを表す決定的パラメータデータを生成するためのパラメータ分析器とを備える、神経生理学的評価を行うように構成されたシステムも記載される。
【0042】
[0042]本明細書には、患者に対し行われる外科手術中に脳機能を評価するためのプロセスも記載され、脳機能の評価は、神経生理学的モデルから特定された1つ又は複数のパラメータの値の生成に基づき、パラメータは、本明細書に記載の生理学的パラメータ同定のプロセスに従って特定される。
【0043】
[0043]患者への麻酔の投与中に脳機能を評価するためのプロセスも記載され、脳機能の評価は、少なくとも、神経生理学的モデルの抑制性シナプス後電位速度定数パラメータの値の生成に基づき、抑制性シナプス後電位速度定数パラメータは、ヒト個体の脳電図(EEG)データのアルファリズム特徴を特性化する。
【0044】
[0044]これより、本発明のいくつかの実施形態が、添付の図面を参照して、単なる例として説明される。
【図面の簡単な説明】
【0045】
図1】本発明のいくつかの実施形態による神経生理学的評価装置のブロック図である。
図2】神経生理学的評価装置のコンピューティングデバイスのブロック図である。
図3a】本発明のいくつかの実施形態による神経生理学的評価のためのパラメータ同定を行うためのプロセスの流れ図である。
図3b】本発明のいくつかの実施形態による神経生理学的評価のための脳機能を特定するためのプロセスの流れ図である。
図4図3の神経生理学的評価プロセスのモデル当てはめプロセスの流れ図である。
図5】神経生理学的評価プロセスのパラメータ同定データを生成するためのプロセスの流れ図である。
図6】神経生理学的評価プロセスのためのモデル当てはめ中に予測モデルスペクトルを生成するためのフィードバックシステムの概略ブロック図である。
図7】神経生理学的評価プロセスのための最小二乗ベースの推定を用いたモデルパラメータの最良当てはめを示す、6人の被験者についての周波数の関数としてのパワースペクトル密度のグラフのセットである。
図8】神経生理学的評価プロセスのための最大尤度ベースの推定を用いたモデルパラメータの最良当てはめを示す、6人の被験者についての周波数の関数としてのパワースペクトル密度のグラフのセットである。
図9】神経生理学的評価プロセスのための粒子群最適化(PSO)サンプリングに基づいて生成されるものとして7人の被験者のパラメータごとの事後分布を示すグラフのセットである。
図10】神経生理学的評価プロセスのためのマルコフ連鎖モンテカルロ法(MCMC)サンプリングに基づいて生成されるものとして7人の被験者のパラメータごとの事後分布を示すグラフのセットである。
図11】神経生理学的評価プロセスのための粒子群最適化(PSO)サンプリングに基づく当てはめから特定されたパラメータごとのカルバック-ライブラーダイバージェンスの値及び分布を示すプロットである。
図12】神経生理学的評価プロセスのためのマルコフ連鎖モンテカルロ法(MCMC)サンプリングに基づく当てはめから特定されたパラメータごとのカルバック-ライブラーダイバージェンスの値及び分布を示すプロットである。
図13】神経生理学的評価プロセスのための最小二乗ベースの推定を用いたモデルパラメータの最良当てはめに基づいて生成されたフィッシャー情報行列(FIM)固有スペクトルを示すグラフである。
図14】神経生理学的評価プロセスのための最大尤度ベースの推定を用いたモデルパラメータの最良当てはめに基づいて生成されたFIM固有スペクトルを示すグラフである。
図15】神経生理学的評価プロセスのための最小二乗ベースの推定を用いたモデルパラメータの最良当てはめに基づく、第1、第2及び第3の固有値に対応するFIM固有ベクトル成分のグラフである。
図16】神経生理学的評価プロセスのための最大尤度ベースの推定を用いたモデルパラメータの最良当てはめに基づく、第1、第2及び第3の固有値に対応するFIM固有ベクトル成分のグラフである。
【発明を実施するための形態】
【0046】
(概観)
[0045]被験者における脳活動を、特に、手術等の医療介入中にリアルタイムで測定し、手術中の麻酔レベルをモニタリングすることが可能であることの重要な臨床的必要性が存在する。ヒト個体からのEEG信号の特徴は、それらの脳活動に関係する。例えば、アルファリズムは、ヒトの安静時EEG信号を定義づける特徴であり、認知中の脳電磁活動の現象論的記述において中心的役割を果たした。アルファリズム等のEEG特徴の特性化による脳機能の評価(本明細書において「神経生理学的評価」と呼ばれる)に対する巨視的手法は、神経細胞集団モデルに基づく。従来、神経細胞集団モデルパラメータは、反復的調整方法によって特定され、ここで、最良のパラメータは、モデルが、観測されたEEG信号の特定の特徴(例えば、特定のアルファ振動)を呈するEEG信号を生成する(又は「予測する」)パラメータとして調整セットから選択される。予測されるEEG信号と観測されるEEG信号との間の特徴の一致が、神経活動を正確に、このため有意味に表すモデルパラメータ値を示すことが想定される。
【0047】
[0046]しかしながら、神経細胞集団モデルは、高次のマルチパラメータの動的システムであり、したがって、異なるモデルパラメータの組み合わせが、類似の予測のみでなく、多くの場合に、同一の予測を生成する可能性がある。すなわち、神経細胞集団モデルパラメータ値の組み合わせと、予測EEG信号における結果として得られる特徴との間に多対1のマッピングが存在する。パラメータ入力とモデル観測量との間のこの多対1のマッピングは、当該技術分野において、予測が厳密に同一である場合、構造的同定不可能性と呼ばれ、予測がほぼ同一である場合「事実上の同定不可能性」と呼ばれる。結果として、従来の神経細胞集団モデルパラメータ調整の欠点は、データに当てはめられたとき、結果として、パラメータ値に対し行われる変動について大きな相関するパラメータ不確実性が生じる、構造的に同定不可能なモデルを生成しやすいということである。
【0048】
[0047]モデル予測に敏感に影響を与えるパラメータは、「スティッフ(stiff)」と呼ばれるのに対し、予測に対する僅かな影響で変更され得るパラメータは、「スロッピー(sloppy)」と呼ばれる。調整ベースの手法の更なる欠点は、結果として得られる神経細胞集団モデルが多数の「スロッピー」パラメータを含む場合があることである。結果として、神経細胞集団モデルの予測の感度が望ましくない影響を受ける可能性があり、それによって、様々なパラメータ(又はパラメータの組み合わせ)の値を、様々な確信度、このため正確度で推定される可能性がある。
【0049】
[0048]従来のニューラルモデルパラメータ調整と比較して、より望ましい手法は、所与の個人のために観測されたEEGデータからモデルパラメータを直接取得することである。EEGデータへの直接当てはめによりこれらのパラメータを推定することが可能であることにより、脳機能の評価の目的等で様々な個人におけるニューロン特性を推測するリアルタイムの非侵襲的方法を提供することが見込まれる。この見込みにもかかわらず、パラメータの完全なセット及びそれらの不確実性を、EEGデータへの当てはめから直接推定する問題は、パラメータ調整と比較して解決するのがはるかに困難である。しかしながら、いずれのパラメータ(又はパラメータの組み合わせ)が「スティッフ」でありいずれが「スロッピー」であるかを判断することは、これらの非線形マルチパラメータニューラルモデルを実際のEEGデータに有用に当てはめるために有益であり得ることは従来認識されていない。
【0050】
[0049]本発明の説明される実施形態は、被験者における脳活動を測定するための装置及びプロセスを含み、ここで、神経細胞集団モデルは、被験者から収集されたEEGデータに対し当てはめられ、抑制性シナプス後電位速度定数(γ)の対応する値が特定され、これらの値は、被験者の脳活動の定量的尺度を構成する。説明される実施形態において、抑制性シナプス後電位速度定数(γ)が、モデルの特定のパラメータを得ることを伴うモデル当てはめプロセスによって同定された。これらのパラメータは、グループデータ(すなわち、トレーニング又は検証グループから取得されたデータ)に基づく当てはめプロセスを用いて神経集団モデルについて同定可能である。次に、被験者の脳機能の評価を、被験者からリアルタイムで取得されたEEGデータに基づいて実行することが可能である。
【0051】
[0050]特に、提示される装置は、1人又は複数人の個人の電気的脳活動を表すEEGデータを受信する神経生理学的評価構成要素を備える。神経細胞集団モデルデータがアクセスされ、ここで、データは、特定のパラメータを有する神経細胞集団モデルを表す。次に、受信されたEEGデータは、(例えば、データに鑑みて1つ又は複数のモデルパラメータについてパラメータ値を推定することによって、)神経集団モデルパラメータを特定するために処理される。次に、結果として得られるモデルが処理され、(例えば、事前分布と対応する事後分布との間の変動性に基づいて)各モデルパラメータの個々の同定可能性を表すデータが生成される。次に、パラメータ同定可能性データを用いて、「決定的」モデルパラメータを同定する。これらは、同定可能であり、かつEEGデータの1つ又は複数の特徴(例えば、アルファリズム)を特性化する意味において「スティッフ」であるパラメータである。
【0052】
[0051]決定的パラメータのインジケーションを所与として、神経生理学的評価構成要素は、被験者から測定されたEEGデータに基づいて、被験者(例えば、外科手術を受けている患者)の脳機能(又は「活動」)を特定する。決定的パラメータの値の推定値は、(関心の特徴に関するEEG信号の直接分析に依拠する従来の手法と異なり、)神経細胞集団モデルを測定されたEEGデータに当てはめることによって生成される。
【0053】
[0052]いくつかの実施形態では、神経生理学的評価構成要素は、測定されたEEGデータを受信し、神経細胞集団モデルをデータに当てはめて、決定的パラメータ値の推定値をリアルタイムで生成する。モデル当てはめに続いて、決定的パラメータの値を処理して、被験者の対応する脳活動のインジケーションを提供することができる。本明細書に記載の神経生理学的評価がモデル当てはめプロセスにより決定的パラメータを計算するが、他の実施形態では、神経生理学的評価構成要素は、決定的パラメータの事前知識に基づいて(すなわち、パラメータ同定サブプロセスを行うことなく)脳活動の測定を行うように構成されてもよい。
【0054】
[0053]シナプス後抑制性速度定数パラメータγが、EEG信号のアルファリズム特徴に決定的であると同定され、被験者から測定されたγの推定値が被験者の脳活動の機能インジケーションとして用いられることが可能になる、提示される装置の用途が説明される。この用途において、神経生理学的モデルは、82人のヒト被験者からの安静状態のEEG記録に対しアルファ振動を呈するEEGデータに当てはめられる。この装置を用いて同定された決定的パラメータは、(以下で説明するように)元のモデルパラメータ空間と比較して次元が大幅に低減したセットを形成する。例えば、特定のEEG特徴を特性化する決定的パラメータを同定することによって、提示される装置及びプロセスは、ヒト個体の脳活動を支持する生理学的特性のリアルタイムかつ非侵襲的な特性化を可能にする。
【0055】
[0054]説明される実施形態において、各パラメータの同定可能性は、パラメータの周辺事後分布を推定することによって特定される。カルバック-ライブラーダイバージェンス(KLD)を用いて、(以下で説明するように)データから得られた情報を、事前分布に既に存在していた情報と分離する。パラメータの個々の同定可能性の尺度は、事前分布と事後分布との間のパラメータの変動性の差を特定することによって生成される。例えば、EEG特徴(例えば、アルファリズム)の事前分布と比較して事後分布において大幅に低い変動性が存在することは、パラメータがその特徴(例えば、本明細書において以下に示すような抑制性シナプス活性に関連付けられた速度定数)に対し同定可能であることを示す。
【0056】
[0055]説明される実施形態において、周辺事後分布と周辺事前分布との差を用いて、パラメータに関する情報が個々に推測される。いくつかの実施形態において、装置及びプロセスは、モデルパラメータの集合的同定可能性を更に表すパラメータ同定可能性データを生成するように構成される。そのような実施形態において、モデルパラメータの集合的同定可能性は、パラメータから導出されたフィッシャー情報行列の固有分析から特定される。すなわち、装置は、モデルの二次挙動のインジケーションを用いて、パラメータ間の相互作用を推測し、ここで、これらの相互作用は、各パラメータの周辺事後分布のみを個々に検討することでは特定することができない。
【0057】
[0056]フィッシャー情報行列の固有分析は、同時事後分布(これは特に高次パラメータ空間の場合に過度に計算集約的になる可能性がある)の推定を必要とすることなくパラメータ間の相関が評価されることを可能にするという利点を有する。この手法を用いて、装置は、複数のモデルパラメータの組み合わせのための同定可能性の定量的尺度を生成することができる。いくつかの実施形態では、装置は、神経細胞集団モデルのスロッピー性の尺度も生成し、これは、モデルパラメータのそれぞれにおける神経細胞集団モデルの予測の感度を表す。
【0058】
[0057]パラメータ同定可能性及びスロッピー性の尺度の特定を用いて、モデルが過剰パラメータ化されている度合いを定量化することができる。特に、パラメータ推定値間の相関の存在は、モデルパラメータのサブセットを共にグループ化、削除又は平均化することによってモデル複雑度を低減することができることを示唆する。このようにして、低減された自由度で、ただし予測能力を損なうことなく、精緻化されたモデルを生成するために、装置は、決定的パラメータデータを処理して、神経細胞集団モデルを精緻化するように構成することができる。
【0059】
[0058]説明される実施形態において、1人又は複数人の異なる個人から取得されたEEG信号記録値を用いて神経生理学的評価が行われる。EEG信号記録値は、個人の脳活動機能に関連する振動脳活動の空間的位置を強調するように選択することができる。例えば、装置は、結果として得られる記録値から特定の特徴を強調する等のために特定の電極(例えば、Oz、Cz又はPz位置にある電極)から取得された信号を受信するように構成することができる。受信したEEGデータの時系列信号は、適切に分割されると、処理され、1つ又は複数の空間的頭皮位置における1人又は複数人の個人の各々の単一のEEG周波数スペクトルが生成される。しかしながら、個人ごとに単一のスペクトルを用いることにより、モデル当てはめ動作を実行する計算要件が低減するが、そのような制約は必須ではなく、複数の空間的位置及びスペクトルに対する本発明のプロセスの適用可能性をいかなる形においても限定しない。
【0060】
[0059]説明される実施形態において、EEGスペクトル信号表現は、一次及び二次常微分方程式の結合されたセットによって特性化された神経細胞集団モデルに当てはめられる。これにより、神経細胞集団モデルが、生理学的パラメータのセットに基づく抑制性神経集団及び興奮性神経集団(すなわち、シナプス後標的に対しそれぞれ抑制性及び興奮性の影響を有するニューロン)間の相互作用を定義することが可能になる。これらのパラメータは、限定ではないが、興奮性集団及び抑制性集団ごとに、静止膜電位、シナプス反転電位、平均発火率、発火閾値、不動態膜減衰時定数、シナプス後電位振幅、いずれかの集団に対する興奮性又は抑制性入力の速度を含むことができる。追加のパラメータは、興奮性シナプス後電位速度定数と、抑制性シナプス後電位速度定数と、興奮性又は抑制性ニューロンが近傍の興奮性又は抑制性ニューロンのいずれかから受ける接続の総数とを含むことができる。
【0061】
[0060]説明される実施形態において、当てはめられたモデルデータは、EEGデータに関する神経生理学的評価構成要素によって実行されるモデル当てはめプロセスを介して生成される。上記で説明したように、神経細胞集団モデルの当てはめに対する従来の手法に関する問題は、広範にわたるパラメータの組み合わせが、観測されるスペクトルと適合し得るというものである。サンプリングに基づく手法は、本明細書に記載の装置及びプロセスによって実施され、それぞれのパラメータの事前分布に基づいてパラメータ値の多くのインスタンスを生成することを伴う。サンプル値は、事前分布に従う当てはめプロセスによってパラメータごとに特定される。推定判断基準関数が、少なくともEEGデータに基づいて当てはめプロセス中に候補パラメータ値を評価するように特定される。結果として、当てはめアルゴリズムによって生成されたサンプル値データは、観測されたEEGデータに対する最良当てはめとなるパラメータ値分布推定値に向けて収束する。
【0062】
[0061]装置は、粒子群最適化(PSO)又はマルコフ連鎖モンテカルロ法(MCMC)当てはめアルゴリズムを利用して、(本明細書において以下に説明するように)サンプリングされたパラメータ値から周辺事後パラメータ分布を生成するように構成することができる。他の実施形態において、代替的な当てはめアルゴリズムを実施して、(例えば、パラメータごとに値のサンプルセットを生成し、サンプルセットからフィルタリング又は選択を行い、次に低減された値のセットから事後分布を推定することによって、)周辺事後パラメータ分布を生成することができる。
【0063】
[0062]本明細書に記載の装置及びプロセスは、リアルタイムで動的に観測されたEEFデータから所与の神経細胞集団モデルについてのパラメータ値を特定する、神経生理学的評価のためのプラットフォームを提供する。プラットフォームを利用して、臨床医に、EEG観測値の1つ又は複数の特性的特徴を決定する特定のパラメータ又はパラメータの組み合わせのインジケーションを提供することができる。結果として、関心の特定の特徴を含むEEGデータを利用する(又は、このデータを、処理中に受信したEEGデータのサブセットとして選択する)ことによって、いずれの特定のパラメータが関心の特徴を考慮に入れることが最も可能であるかの洞察を得ることができる。これらの決定的パラメータがわかると、臨床医は、装置を利用して、(例えば手術処置との関連において)被験者の脳機能のモニタリングを行うことができる。なぜなら、被験者から測定されたEEG記録値からリアルタイムで取得されたこれらの決定的パラメータの推定値を用いて、脳活動に関する推測を行うことができるためである。
【0064】
[0063]例えば、手術麻酔の状態を誘発するのに用いられる薬剤の大部分は、シナプス後阻害の時間経過を変更することによって機能すると考えられる。(本明細書において説明するように)ニューラルモデルをEEGデータに当てはめることによってシナプス後抑制性速度定数γを特定することによって、麻酔の機能的効果を定量化するためのリアルタイムプロセスを提供することができ、このため、脳動力学の基礎をなす理論に基づいて構築されていない神経生理学的評価の標準的な方法を改善することができる。また、本明細書に記載の装置及びプロセスは、最も同定可能なパラメータの特定に基づいて、元のモデルパラメータ空間と比較して神経細胞集団モデルの次元数を低減する方式を提供し、結果として、モデルの使用の実用性を増大させる(すなわち、指定されたEEG特徴を、正確度を損なうことなく、自由度を低減させて予測することができるため)という点で有利である。
(神経生理学的評価装置)
【0065】
[0064]図1は、本発明の実施形態による神経生理学的評価装置100のブロック図である。装置は、EEGモニタリング構成要素105と、神経生理学的評価構成要素102とを備える。EEGモニタリング構成要素105は、1人又は複数人の個人131~13Mの電気的脳活動のEEG信号を表すEEG信号データを生成するように構成される。
【0066】
[0065]いくつかの実施形態では、EEGモニタリング構成要素105は、1人又は複数人の個人の電気的脳活動を測定するための1つ又は複数の電極と、記録値の時間領域信号を表すEEG記録データを生成するための、1つ又は複数の関連するEEG信号処理構成要素(例えば、差動増幅器、アナログ/デジタル変換器、及びアンチエイリアシングフィルタ)とを備える。説明される実施形態において、EEGモニタリング構成要素105は、個人ごとにEEG記録値のセットを出力する。いくつかの実施形態では、装置100はEEGモニタリング構成要素105を備えず、EEG信号データは、外部デバイス(例えば、第三者EEGシステム等)から受信される。
【0067】
[0066]装置100の説明される実施形態において、神経生理学的評価構成要素(NAC)102は、ユーザインタフェース(UI)104と、制御ユニット106と、データハンドラ108と、サンプリング及び推定ユニット110と、パラメータ分析器112と、データストア114とを備える、モジュールを用いてソフトウェアアプリケーションを実行するように構成されたコンピューティングデバイスである。他の実施形態において、上述したモジュールは、デバイス102の1つ又は複数の専用ハードウェア構成要素によって実施することができる。
【0068】
[0067]NAC102は、例えば、個人の神経学的特性に関する診断情報を取得しようとする臨床医又は他の専門家等のユーザ103によって操作される。ユーザ103はUI104を介してNAC102とインタラクトする。UI104は、ユーザ入力を受け取るGUI要素を表すグラフィカルユーザインタフェース(GUI)データを生成し、対応する出力を(例えば、コンピューティングデバイスの1つ又は複数の周辺機器及びディスプレイを介して)表示するように構成される。
【0069】
[0068]コントローラ106は、論理制御及び構成機能をNAC102に提供する。コントローラ106は、ユーザ103によって構成要素102に提供された対応する入力及び構成命令に関してUI104から入力及び構成データを受信する。コントローラ106は、ユーザ103によって指定されたオプションに従って、データハンドラ108、サンプリング及び推定ユニット110、及びパラメータ分析器112と通信して、本明細書に記載の神経生理学的評価プロセス(プロセス300等)を制御する。
【0070】
[0069]また、コントローラ106は、EEGモニタリング構成要素105によって個人131~13Mから取得されたEEG記録値の時間領域表現を含むEEGデータにアクセスするように構成される。説明される実施形態において、EEGデータは、構成要素105とモデリング構成要素102との間のデータ送信を介してEEGモニタリング構成要素105から直接受信される。説明される実施形態において、NAC102は、セキュアな通信プロトコルを用いて通信ネットワーク120を通じた通信を介してEEGモニタリング構成要素105からEEGデータを受信する。他の実施形態において、モニタリング構成要素105は、直接接続(例えば、LANを通じたイーサネット(登録商標))を介して構成要素102にデータを転送するように構成される。
【0071】
[0070]また、コントローラ106は、データストア114から、1人又は複数人の個人131~13Mについて以前に記憶されたEEGデータを取り出すように構成することができる。コントローラ106は、受信したEEGデータを、データストア114に及びデータストア114から、並びに/又はデータハンドラ108、ユーザインタフェース104、及びサンプリング及び推定ユニット110に転送し、本明細書に記載の神経生理学的評価プロセスが実行されることを可能にする。
【0072】
[0071]データハンドラ108は、EEG信号及び/又はニューラルモデルデータに対し信号分析及び処理動作を行う。説明される実施形態において、データハンドラ108は、M人の個人131~13MについてのEEG記録値の時間領域表現(例えば、離散時系列信号等)の形態でEEGデータを受信する。データハンドラ108は、必ずしも限定ではないが、スペクトル推定、時間及び/又は周波数平均化、及びプレフィルタリング若しくはポストフィルタリングを含むことができる動作を実行する。
【0073】
[0072]サンプリング及び推定ユニット110は、モデルの特定のパラメータに対し、処理されたEEGデータ及び神経細胞集団モデル間の当てはめを実行するように構成される。ユニット110によって用いられる神経細胞集団モデル及び対応する当てはめアルゴリズムは、制御モジュール106によって提供される制御データに基づいて決定される。
【0074】
[0073]パラメータ分析器112は、当てはめられた神経細胞集団モデルデータから、パラメータ同定可能性及び/又はモデルスロッピー性の尺度を生成するように構成される。分析器112は、生成された尺度及び特定の決定的パラメータ判断基準に基づいて、特定の決定的パラメータ及び/又はパラメータの組み合わせを示すデータを生成するように構成される。決定的パラメータ判断基準は、(以下で説明するように)ユーザ103によって指定される構成オプションに従って変動する場合がある。
【0075】
[0074]データストア114は、構成データ、ニューラルモデルデータ及びEEGデータを含む、構成要素102によって利用されるデータを記憶するように構成される。構成データは、本明細書に記載のニューラルモデリング及び評価プロセスを実行するための構成要素102のオプション及び構成変数を指定する。いくつかの実施形態では、ニューラルモデルデータは、特定の神経細胞集団モデルの各々について、モデルのタイプ、モデルの構造要素(例えば、モデルを記述する式)、及びモデルのパラメータを指定する。また、ニューラルモデルデータは、モデルについて生成された、当てはめられたモデルパラメータデータ及びパラメータ同定可能性データのインスタンスを含む。いくつかの実施形態では、EEGデータは、少なくとも、NAC102によって受信された個人131~13Mに関するEEG記録値の時間領域表現と、時間領域データに対する分析及び処理動作の適用から結果として得られた処理済みEEGデータ(例えば、平均化表現及び/又はスペクトル表現)とを含む。
【0076】
[0075]装置100の説明される実施形態において、NAC102は、図2に示すように、例えばIntelアーキテクチャコンピュータシステム等の1つ又は複数のコンピュータシステム200として実施され、システム200によって実行されるプロセスは、コンピュータシステムと関連付けられた不揮発性(例えば、ハードディスク又はソリッドステートドライブ)ストレージ204に記憶された1つ又は複数のソフトウェアモジュール202のプログラミング命令として実施される。しかしながら、これらのプロセスの少なくとも1つ又は複数の部分を、代替的に、フィールドプログラマブルゲートアレイ(FPGA)の構成データとして、及び/又は例えば特定用途向け集積回路(ASIC)等の1つ又は複数の専用ハードウェアとして実施してもよいことが明らかであろう。
【0077】
[0076]システム200は、ランダムアクセスメモリ(RAM)206と、少なくとも1つのプロセッサ208と、外部インタフェース210、212、214とを備え、これらは全てバス216によって相互接続されている。外部インタフェースは、ユニバーサルシリアルバス(USB)インタフェース210を含み、そのうちの少なくとも1つが、キーボード218、及びマウス219等のポインティングデバイスと、システム200を、広域ネットワーク(インターネット等)とすることができる通信ネットワーク120に接続するネットワークインタフェースコネクタ(NIC)212と、LCD又はLEDパネルディスプレイ222等のディスプレイデバイスに接続されたディスプレイアダプタ214とに接続される。
【0078】
[0077]システム200は、Linux(登録商標)又はMicrosoft Windows(登録商標)等のオペレーティングシステム224を含む複数の標準的なソフトウェアモジュール226~230、http://www.apache.orgにおいて入手可能なApache等のウェブサーバソフトウェア226、http://www.php.netにおいて入手可能なPHP又はMicrosoft ASP等のスクリプト言語サポート228、及び、データがSQLデータベース232に記憶され、SQLデータベース232から取り出されることを可能にする、http://www.mysql.comから入手可能なMySQL等の構造化照会言語(SQL)サポート230も備える。
【0079】
[0078]説明される実施形態において、構成要素102は、データベース232がデータストア構成要素114によって管理されるローカルデータベースであるスタンドアローンコンピューティングデバイスとして動作する。データベース232は、SQLを用いて実装され、構成要素102のデータベース管理システム(DBMS)によってアクセスされる。他の実施形態において、データベース232は、データの分散処理及び記憶のための1つ又は複数の技法に従って、別個のコンピューティングデバイスにおいて、又は複数のコンピューティングデバイスにわたって実装されてもよい。
(神経生理学的評価プロセス)
【0080】
[0079]図3は、脳機能を評価するための生理学的パラメータを同定するために装置100によって実行される神経生理学的評価プロセス300を示す。ステップ301において、装置100を初期化及び/又は構成するために、モニタリング構成要素105及びモデリング構成要素102について予備構成動作が実行される。モニタリング構成要素105の構成は、個人131~13Mから電気活性信号を収集するための電極の配置と、電極読み値からEEGデータを生成するための(すなわち、臨床的EEG記録手順中の)処理デバイスのセットアップとを含むことができる。
【0081】
[0080]NAC102の構成はユーザ103によって行われる。コントローラ106は、ユーザ103から取得した入力に基づいて、UI104からユーザ入力及び構成データを受信する。NAC構成は、EEGデータの選択、選択されたEEGデータの分析及び処理、神経細胞集団モデル及びパラメータ事前分布及び/又は当てはめプロセス選択、決定的パラメータセットを生成するための同定可能性判断基準、及び決定的パラメータに基づく初期ニューラルモデルの任意の精緻化(例えば、モデル内のパラメータ数の低減)を含む、特定のシステム機能に関する情報をユーザ103が指定することを含むことができる。
【0082】
[0081]いくつかの実施形態では、モデリングのために用いられるEEGデータの選択は、データによって表されるEEG信号における関心の1つ又は複数の特定の特徴の存在に基づく。いくつかの実施形態では、UI104は、ユーザ103が、動作をモデリングするために特定の受信及び/又は記憶されたEEGデータの適切性を評価することを可能にする機能を(例えば、記録された信号におけるリズム成分等のEEG特徴の存在を示す視覚化又は表示機能の形態で)提供する。他の実施形態では、装置100は、モニタリング構成要素105(又は他のソース)から受信されるか又はデータストア114から取り出されたリアルタイムEEGデータに基づいて自動的に神経生理学的評価を行うように構成することができる。
【0083】
[0082]構成は、本明細書に論考される実施態様のための予備ステップとして記載されているが、他の実施態様では、装置100の様々な機能を、神経生理学的評価プロセス300中の他の時点に構成することができることに留意されたい。例えば、モデリングのために用いられるEEGデータの選択は、時間領域EEGデータの処理の少なくともいくらかに続いて(すなわち、スペクトル特性を評価し、その後、特定のスペクトル特徴の存在又は他の態様に従ってEEGデータを選択するように)実行することができる。
【0084】
[0083]ステップ302において、EEGデータはNAC102によって受信される。説明される実施形態において、EEGデータは、個人131~13Mごとに、モニタリング構成要素105の電極ごとの別個の時系列記録値を含む。ステップ304において、神経細胞集団モデルデータは、EEGデータに当てはめられた選択された神経細胞集団モデルに従ってデータストア114から取り出される。選択される神経細胞集団モデルは、ユーザ103によって(例えば、構成ステップ301中に)選択することができるか、又はコントローラ106によって(例えば、デフォルトモデル設定に従って)自動的に決定することができる。
【0085】
[0084]NAC102のデフォルトモデルに対応する神経細胞集団モデルについて以下で実施形態が説明される。デフォルトモデルは、Liley他(Liley DTJ, Cadusch PJ, Dafilis MP. A spatially continuous mean field theory of electrocortical activity. Network 2002;13:67)の神経細胞集団モデルである。このよく知られたモデル(Coombes S. Large-scale neural dynamics: Simple and complex. NeuroImage 2010;52:731を参照)は、式(1)~式(6)によって与えられる一次常微分方程式及び二次常微分方程式の結合されたセットによって記述され、ここで、変数の意味は以下の表1において与えられる。このモデルは、デフォルトモデルとして実施される。なぜなら、上記の式の半分析的解及び数値解は、哺乳類のアルファリズムの周波数範囲における駆動されたノイズ、リミットサイクル及び無秩序変動を含む、生理学的にもっともらしい活動の豊富なレパートリーを明らかにするためである。
【数1】

ここで、
【数2】

である。
【0086】
[0085]これらの式は、抑制性神経集団と興奮性神経集団との間の相互作用を記述する。特に、興奮性集団(h(t))及び抑制性集団(h(t))のための平均体細胞膜電位の時間的動力学が式(1)及び式(2)に記述されている。シナプス活性、Iee(t)、Iie(t)、Iei(t)及びIii(t)の時間的動力学が式(3)~式(6)に与えられている。平均集団発火率Sとそれぞれの集団の平均体細胞膜電位との間の関係が式(7)に与えられている。以前の研究により、EEGにおいて測定された局所電場電位が、興奮性集団h(t)の平均体細胞膜電位に線形比例することが示されている。
【0087】
[0086]神経細胞集団モデルデータは、1つ又は複数のニューラルモデルパラメータも含む。表1は、上記で説明した神経細胞集団モデルのためのモデルパラメータを、それらの対応する生理学的範囲と共に示す。
【表1】

【0088】
[0087]いくつかの実施形態では、データハンドラ108は、当てはめられたモデルデータの生成の前に、選択されたEEGデータ及び/又は神経細胞集団モデルデータを処理するように構成される(すなわち、ステップ305)。例えば、説明される実施形態において、データハンドラ108は、EEGデータにおける各時間領域信号のスペクトル周波数領域表現を生成するように構成される。Welchの平均化方法(Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics. 1967;15(2):70-73に記載されている)において、複数の重複する時間セグメントから導出されたスペクトルを用いて、特定の個人のための単一のスペクトルが推定される。この手法は、スペクトル分解能を幾分犠牲にすることによって、パワースペクトル密度(PSD)推定値の精度を改善する。データハンドラ108は、構成中に選択されるものとしてサンプリング周波数及び窓関数を用いてスペクトル推定を実行する。記載された実施形態について、EEGデータのスペクトル表現に基づいてモデルパラメータ当てはめが実行されたが、他の実施形態では、時間領域EEG信号を用いて当てはめが行われる。いくつかの実施形態では、データハンドラ108は、モデルデータ当てはめの前にパラメータ単純化動作を実行すること等のために、ニューラルモデル集団データを処理するように構成される。例えば、(以下で説明するように)パラメータのうちの1つ又は複数を同一視することによって、モデルの実効次元性が低減し、計算効率が改善する。
【0089】
[0088]ステップ306において、神経細胞集団モデルのパラメータについての推定値のセットを表す当てはめされたモデルパラメータを生成するためにモデル当てはめプロセスが実行される。図4は、サンプリング及び推定ユニット110によって実行される説明される実施形態のモデル当てはめプロセスの流れ図であり、これは、パラメータごとに推定分布を表す事前分布データにアクセスすることを伴う(すなわち、ステップ402)。ステップ404において、サンプリング及び推定ユニット110は、当てはめ手順において用いられる(すなわち、少なくとも部分的にEEGデータに基づいて候補値を評価するための)推定判断基準関数を特定する。説明される実施形態において、推定判断基準関数は、i)予測モデルスペクトル関数と、ii)対応する尤度関数とを含む。これらの機能を用いて、当てはめ中に検討される候補モデルパラメータのためのスペクトル値及び尤度値が生成される(すなわち、EEGスペクトルデータ及び推定判断基準関数に基づいて最良のパラメータ推定値が導出されるようになっている)。
【0090】
[0089]サンプリング及び推定ユニット110は、神経細胞集団モデルに基づいて、予測モデルスペクトル及び尤度関数を決定する。記載される実施形態のデフォルトニューラルモデルについて、完全なモデル方程式(すなわち、上記の式(1)~式(6))の空間的に同種のバージョンから、予測モデルスペクトル関数が計算される。説明される実施態様において、予測モデルスペクトルは、以下の推定の下で計算される。
i)システムは、特定の解(例えば、以下に論考される評価における安静時の開眼及び閉眼スペクトルに対応する解)の近傍において線形に安定している。
ii)興奮性速度定数γee及びγeiは等しく、これは抑制性速度定数γie及びγiiについても同様である。
iii)測定されたEEG信号は、興奮性平均体細胞膜電位、hに比例する。
iv)線形化系は、興奮性信号peeに対する外部興奮性におけるガウス白色雑音変動によって駆動される。
【0091】
[0090]これらの想定の下で、線形システム伝達関数T(s)は、図6に示すような単純なフィードバックシステム600のものであり、以下に従って2つの三次フィルタH(s)及びH(s)を伴うことを示すことができる。
【数3】
【0092】
[0091]多項式k11(s)及びk22(s)はsにおいて線形であり、k33(s)及びk55(s)はsにおいて二次である。θをモデルパラメータのベクトルとする。スペクトルがこの伝達関数によってフィルタリングされた白色雑音スペクトルから生じると仮定される場合、θを所与として、周波数wにおけるスペクトル推定値の予測値は以下の形態を有する。
【数4】
【0093】
[0092]ここで、定数αは、未知の駆動振幅を計上し、体積伝導及び他の(周波数と無関係の)影響を計上する。αの値は、測定されたスペクトル推定値に対する最小二乗当てはめを用いて得られる。分析結果は以下の通りである。
【数5】
【0094】
[0093]サンプリング及び推定ユニット110は、結果として得られる分布における窓の重複の影響及び不均一な窓形状を無視することによって、上記で説明した予測スペクトル関数の尤度関数を決定する。更に、十分に高いサンプリング速度及び無視可能な測定雑音を仮定すると、各サンプリング周波数2πf;n=1,2,...,NにおけるWelchペリオドグラムからのスペクトル推定値は、既知の分布を有する独立した確率変数として近似される。これらの単純化は、関数決定ステップ404の計算要件を改善するために行われる。しかしながら、他の実施形態では、上述した影響を考慮に入れることができる。
【0095】
[0094]これらの単純化を用いると、スペクトル推定値Sのための確率分布関数(pdf)がガンマ分布となる。
【数6】
【0096】
[0095]非ゼロ周波数の場合、形状パラメータKは、ペリオドグラムにおいて平均されたエポック数から得られる(ゼロ周波数の場合、変数KをK/2と置き換える)。スケールパラメータは以下によって与えられる。
【数7】
【0097】
[0096]このとき、パラメータ値θを所与としたスペクトル推定値のベクトル、S=[S...Sの尤度関数は、個々のスペクトル推定値の分布の積である。
【数8】
【0098】
[0097]定数αは、ターゲット実験スペクトルに対するモデルスペクトルの最大尤度当てはめを与えるように調整される。分析結果は以下の通りである。
【数9】
【0099】
[0098]このとき、モデルパラメータに基づく尤度関数は、以下の通りである。
【数10】
【0100】
[0099]ステップ406において、サンプリング及び推定ユニット110は、当てはめプロセス及び推定判断基準関数に従って、推定モデルパラメータ値を表すサンプルデータを生成する。当てはめプロセスは、構成中に選択することができるか、又はNAC102のデフォルト設定に従ってコントローラ106によって決定することができる。特に、説明された構成要素は、スペクトル周波数EEGデータに対しモデルパラメータを当てはめるための2つのプロセス、すなわち、最小二乗最小化に基づく粒子群最適化(PSO)と、最大尤度推定を用いたマルコフ連鎖モンテカルロ法(MCMC)方法を実施する。
【0101】
[0100]当業者に既知であるように、PSOは高次パラメータ空間
【数11】

における最適解を探索する過程で知識を処理するための本質的スウォーミング挙動によって動機付けされる最適化アルゴリズムである。個々のレベルにおいて、特定の反復における特定の粒子pは、別個の候補解
【数12】

を表し、その品質は、コスト関数によって定義される。連続的反復全体を通じて、粒子は、その局所的に最も知られた位置
【数13】

及び大域的に最も知られた位置
【数14】

によって誘導される方向及び速度において、任意の反復pについて、速度が以下の式によって与えられるように探索空間を動き回る。
【数15】
【0102】
[0101]ここで、ψは、Shi及びEberhartによって提案される所定の慣性重量であり(A modified particle swarm optimizer. In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. IEEE; 1998.p.69-73を参照)、
【数16】

及び
【数17】

は、それぞれ個人対社会の相互作用に与えられる重みである(ここで、rand(0,cmax)は、0とcmaxとの間のランダム値を表す)。アルゴリズムは、停止判断基準に達するまで、大域的に最も知られた位置Gを反復的に更新する。
【0103】
[0102]PSO当てはめプロセスを利用するとき、サンプリング及び推定ユニット110は、測定されたスペクトルSと正規化された(予測)モデルスペクトル
【数18】

との間の二乗残差の和によって与えられる最小二乗(LS)コスト関数Cを最小化するパラメータ
【数19】

のベクトルを得ることによってパラメータ推定を行う。
【数20】
【0104】
[0103]PSOの1000個の独立したインスタンス化を用いることを伴う初期サンプル生成プロセスが実行され、1000個の異なるパラメータ推定値が得られる。デフォルトで、アルゴリズムは群ごとに80個の粒子を用いる。パラメータ開始点は、表1に与えられるように、生理学的に関連する範囲にわたる一様分布からのランダムサンプリングによって選択される。パラメータ探索中、各パラメータは、これらの範囲外の値を有する粒子に高いコストを割り当てることによって、その生理学的に関連した範囲内に留まるように強制される。これは、受容可能なパラメータ範囲にわたって平坦であり、それ以外の場所でゼロであるベイズ事前分布を用いることに類似している。この結果、1000個のパラメータ推定値
【数21】

の予備セットが得られる。
【0105】
[0104]次に、上記で説明した初期サンプリングプロセスから生成されたサンプルはフィルタリングされ、受容可能な当てはめでないサンプルを除去するようにフィルタリングされる。サンプリング及び推定ユニット110は、最も低いコスト関数を有する推定値の10パーセントのみを受容するように構成される。他の実施形態において、代替的なフィルタリング戦略を実施することができる。
【0106】
[0105]
【数22】

のサンプルを選択すると、サンプリング及び推定ユニット110は、カーネル密度推定値の構築を伴って、パラメータの周辺事後分布を生成する。
【0107】
[0106]代替的に、サンプリング及び推定ユニット110は、MCMC方法を用いて当てはめ動作を行うことができる。このプロセスの下で、パラメータ推定及び事後分布決定ステップを統合するために、パラメータを確率変数として扱うことによって、明示的ベイズフレームワークが用いられる。PSOは、サンプル生成及びサンプル選択ステップの双方を伴う一方で、MCMCは、対数尤度比に基づく長いシーケンスのサンプル生成(バーンインを有する)を行うことと、適宜、再サンプリングを行って(KLD推定について)平均値を生成することとを伴う。既知の事前分布、p(θ)を所与として、以下の式によって、観測されたスペクトルSにおける事後分布条件を得ることが望ましい。
【数23】
【0108】
[0107]説明される実施形態において、計算は、観測されたスペクトルについて評価された(式(17)によって与えられる)尤度関数を最大にするMCMCサンプリングされたパラメータの近傍における局所最大値を探索することによって単純化される。サンプリング及び推定ユニット110は、既知の事前分布からランダムに値を取り出すことによってモンテカルロ推定を実行する。これらの値を得るために、以下のように、上記で説明した尤度関数から得られる対数尤度比に基づいてメトロポリス-ヘイスティングスマルコフ連鎖モンテカルロ法(MCMC)アルゴリズムが実施される。
【数24】
【0109】
[0108]各ターゲットスペクトルについて取得されたサンプリングされたセットは、長さ40000のバーンイン段階中に調整された(正規化パラメータ値の)ステップサイズを有する10個のMCMCサンプルからなり、近傍における0.25の受容率をもたらす。適宜、サンプリングされた長いシーケンスは再サンプリングされ、通常、長さ1000のシーケンスが得られ、平均値はこれに基づく。粒子群手法との一貫性のために、事前分布はそのサポートにわたって一様であると想定される。
【0110】
[0109]パラメータ分析器112は、最良当てはめモデルパラメータ
【数25】

を表すデータ、及び(ステップ306において決定されたような)対応する事後分布を受信する。図3の流れ図に戻ると、モデル当てはめ手順の結果として生成された当てはめられたモデルパラメータ及び対応する事後分布を所与として、ステップ308において、NAC102は、モデルパラメータ同定可能性の尺度を表すパラメータ同定可能性データを生成する。
【0111】
[0110]説明される実施形態において、同定可能性尺度は、モデルパラメータごとに個々に生成される(「個人の同定可能性」と呼ばれる)。いくつかの実施形態では、同定可能性も、特定のモデルパラメータの1つ又は複数の組み合わせについて評価され、結果的に(以下で説明するように)「集合的」同定可能性尺度が生成される。
【0112】
[0111]図5は、個々のパラメータ同定可能性の尺度を表すデータの生成を示す流れ図である。ステップ501において、特定のモデルパラメータが同定可能性評価のために選択される。選択されたパラメータは、(構成中等に)ユーザ103によって指定することができるか、又は(デフォルトオプション等に従って)NAC102によって自動的に選択することができる。
【0113】
[0112]ステップ502において、パラメータ分析器122は、選択されたパラメータごとに(コントローラ106を介して)分布データを取り出す。ステップ504において、各選択されたパラメータの個々の同定可能性を表す分布変動性データが生成される。説明される実施形態において、カルバック-ライブラーダイバージェンス(KLD)は、スペクトルの測定の結果として単一のパラメータについて得られる情報を測定するように計算される。パラメータ分析器112は、その周辺事前分布に対する各選択されたパラメータの周辺事後分布の変化を測定するようにKLDを計算する。
【数26】
【0114】
[0113]事後パラメータ推定値が、MCMCサンプルを用いて実行されるパラメータ当てはめのための前提となる(predicate)一様事前確率とどれだけ異なるかを測定するためにKLDが用いられるとき、所与のスペクトルのための完全なMCMCサンプリングされたパラメータセットから再サンプリングされた1000個のパラメータ値を用いてカーネル密度推定値によって近似された周辺分布を用いて積分が数値的に評価される。この実施態様において、事前分布は、それらのサポートにわたって一様であると想定される。一貫性のために、事後カーネル推定値は、同じサポートを有するようにトランケートされる。所与のパラメータのためのカーネル密度推定値は、そのサポート及び数値的に推定された積分にわたって100個の点においてサンプリングされる。PSOを用いて実行されるパラメータ当てはめの場合、独立したサンプルの数が限られていることに起因して、10ビンヒストグラム近似を用いて積分が推定される。
【0115】
[0114]いくつかの実施形態では、パラメータ分析器112は、モデルパラメータ(すなわち、「集合的」同定可能性の尺度と呼ばれる)及び/又はモデルのスロッピー性の組み合わせの同定可能性も表すパラメータ同定可能性データを生成するように構成される。(任意選択の)ステップ506において、集合的パラメータ同定可能性は、モデルのフィッシャー情報行列(FIM)に基づいて特定される。分布P(S|θ)のためのフィッシャー情報行列の固有値は以下によって与えられる。
【数27】
【0116】
[0115]パラメータ分析器112は、式(23)を評価し、結果として、所望のパラメータ値においてモデルスペクトル推定値の導関数のみを伴う式が得られる。
【数28】
【0117】
[0116]説明される実施形態において、パラメータ分析器112は、5点有限差近似を用いて式(24)を評価するように構成され、ここで、結果として得られる積は、サンプリングされた周波数にわたって合算される。代理行列を用いた数値実験は、計算された固有値が、数10桁の大きさにわたって信頼性を有し得ることを示唆する。説明される実施態様において、パラメータ分析器112は、FIMが半正定値であり、モデル化されたスペクトルの最大階数未満であることを想定する。したがって、負の固有値及び最大固有値の10-10倍未満の固有値は、ゼロとみなされる。
【0118】
[0117]分析器112によって生成されたパラメータ同定可能性データは、分布可変性データ、及び生成される場合、フィッシャー情報行列データを含む。いくつかの実施形態では、パラメータ同定可能性データは、最良当てはめ値の正確度及び/又は精度の1つ又は複数の尺度を表すパラメータ正確度データも含む。
【0119】
[0118]図3の流れ図を参照すると、パラメータ同定可能性データは、決定的モデルパラメータのセットを生成するように処理され、これらは、EEGデータの特徴を特性化するパラメータである。いくつかの実施形態では、決定的パラメータセットは、ユーザ103によって構成することができる同定可能性判断基準に基づいてパラメータ分析器112によって自動的に生成される(例えば、N個の最高KLD値を有するものとして同定可能パラメータを特定するN最良選択等)。
【0120】
[0119]他の実施形態において、NAC102は、決定的パラメータセットを生成するためのユーザ入力を受容するように構成される。例えば、パラメータ同定可能性データをユーザ103に表示し、ユーザ103が(例えば、ユーザがKLD及び/又はFIM値を独自に検討することに基づいて)特定のパラメータを選択して決定的セットを形成することを可能にすることができる。
【0121】
[0120]パラメータ分析器112は、パラメータ同定可能性データに基づいてモデルスロッピー性の尺度を生成するように構成することができる。モデルスロッピー性は、対数スケールにわたって概ね一様に離間されたフィッシャー情報行列(FIM)の固有値の存在によって定義される。FIMの固有値は、スロッピー及びスティッフパラメータ固有ベクトル方向を同定する。より大きなFIM固有値は、特定の同定可能パラメータの組み合わせに対応する固有ベクトル方向を定義する。各(同定可能な)固有ベクトルに最も寄与するパラメータを理解するために、各パラメータ方向と所与の固有ベクトルとの間の角度距離が計算される。角度距離が0°又は180°に近づくほど、パラメータはパラメータの組み合わせに寄与し、このためそのパラメータがより同定可能になる。いくつかの実施形態では、シミュレートされたスペクトルデータの分析を用いて、決定的パラメータセットを構成する目的でパラメータの正確度及び/又は精度を評価することもできる。
【0122】
[0121]生成された決定的パラメータデータは、コントローラ106によってアクセスされ、その後、ユーザ103に(すなわち、UI104を介して)利用可能にされる。次に、ユーザ103は、EEGデータ及びその関心の特性に鑑みて、特定されたパラメータをレビューし、いくつかの実施形態では、神経細胞集団モデルを単純化する命令をNAC102に提供することができる。そのような命令に応答して、決定的パラメータデータが処理され、(初期モデルに対する)自由度の低減により、新たな神経細胞集団モデルを表す最適化された神経細胞集団モデルデータが生成される。(新たな)最適化された神経細胞集団モデルを生成するためにパラメータ分析器によって実行される動作は、パラメータのサブセットを共にグループ化、削除又は平均化することを含むことができる。
【0123】
[0122]ステップ310において、NAC102は、決定的パラメータデータを利用して、特定の被験者(例えば、個人131~13Mのうちの1人、又は決定的パラメータを同定するためにEEGデータがステップ302において受信されていない別の個人)の脳機能(又は脳状態活動)の態様を特定するように構成される。図3bによって示されるように、被験者の脳機能を評価するプロセスは、被験者から取得されたEEG記録を表すEEGデータを受信すること(すなわち、ステップ312)を伴う。被験者のEEGデータは、時間領域信号の形態で受信される。この信号は、ステップ314において処理され、本明細書において上記で(すなわち、ステップ305について)説明したプロセスに従って周波数スペクトル表現を生成するように処理される。固定の最大長の重複する時間領域データセグメントについてスペクトル分析が行われるように(すなわち、信号定常性の想定を検証するために)、被験者EEGデータに対しセグメンテーションが行われる。
【0124】
[0123]ステップ316において、モデルパラメータデータは、神経細胞集団モデルを(ステップ314において生成される)各EEGスペクトルに当てはめることによって生成される。例えば、上記で説明した(すなわち、ステップ306における)PSO又はMCMCプロセスとして選択することができる当てはめプロセスに従ってモデル当てはめが進行する。当てはめられたモデルパラメータデータは、少なくとも、決定的モデルパラメータごとに、推定値の表現を含む(「決定的パラメータ推定値」と呼ばれる)。
【0125】
[0124]いくつかの実施形態では、決定的パラメータ推定値は、ステップ318において、特定の調節又は変換動作を値に適用するように処理される。例えば、特定の決定的パラメータの値は、各値がスケーリング範囲内に入ることを確実にするようにスケーリングすることができる。スケーリング範囲は、神経細胞集団モデル当てはめプロセスを、1人又は複数人の検証個人から収集されたデータに適用することによって実験的に特定することができる。代替的に、NAC102は、所定のスケーリング係数を各パラメータ値に適用することによって構成されてもよく、ここで、スケーリング係数は、本質的に定数(すなわち「グローバル」)であってもよく、又は、(例えばユーザ103によって指定される)被験者の特性に基づいて動的に変動してもよい。
【0126】
[0125]処理された決定的パラメータ推定値に基づいて、被験者について脳活動のインジケーションが特定される。決定的パラメータは、特定のEEG特徴の特性であるため、スケーリングされた(又は他の形で処理された)これらのパラメータの推定値は、特定のEEG特徴に関連付けられることが知られた脳機能の基礎をなす態様のインジケーションを提供する。NAC102によって出力された脳活動インジケーションは、その後、例えば、被験者のEEGデータの直接分析を必要とすることなく、特定の動作を行うか否かを判断すること等のために、臨床用途で用いることができる(すなわちステップ322)。
【0127】
[0126]NAC102によって生成された脳活動のインジケーションは、単一の値の形態の(例えば、被験者の分離したEEG記録値の場合、各決定的パラメータの固定数の推定値を集約することから得られる)測定値とすることができる。代替的に、脳活動のインジケーションは、連続して記録されたEEG信号から取得された決定的パラメータ推定値のシーケンスであってもよい。これは、臨床医に、処置の動作に応答して被験者の脳機能をモニタリングする(すなわち、連続時点において測定する)ために利用することができる脳活動の対応する時系列尺度を提供する。
【0128】
[0127]図3bに示すように、NAC102によって出力された脳活動のインジケーションを、閉ループフィードバックシステムの一部として利用することができる。特に、被験者のリアルタイムEEG記録値によって生成された決定的パラメータ推定値に基づく脳機能の評価を用いて、被験者に対し(ステップ322等の)特定の臨床的動作を行うか否かを判断することができる。
アルファリズムEEGデータのためのモデルパラメータ推定
【0129】
[0128]本明細書において上記で説明した神経生理学的評価プロセスは、i)アルファリズムを特性化するために上記で記載した神経細胞集団モデルのための決定的パラメータを生成し(このステップは、モデルの「評価」と呼ばれる)、ii)その後、決定的パラメータの推定値を利用して、外科手術中の脳機能(又は「活動」)の尺度を提供する目的で、アルファリズム特徴を含むEEGデータに適用された。
【0130】
[0129]評価は、安静状態の82人の個人から収集されたEEG信号を表す実験EEGデータを用いて進行した。NAC102によって、評価を行うために受信された実験EEGデータは、より大きなEEG評価データセットのサブセットであり、ここで、評価データセットは、109人の被験者によって行われた14個の実験タスクにわたって取得されたデータからなる。EEG記録は、国際10-10システムに従って64個の電極の使用により取得された。Schalk他によって(すなわち、Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system.IEEE Transactions on biomedical engineering. 2004;51(6):1034-1043において)BCI2000計測システムを用いて収集及び寄与された完全なEEG評価データセットは、公衆アクセス用にPhysioNet(https://www.physionet.org/pn4/eegmmidb/)において入手可能である。評価のために用いられるEEG記録値は、Oz電極、及びそのEEGスペクトルがアルファリズム特徴を呈する(すなわち、関連する閉眼タスク中に取得されたような明確なアルファピークの形態の)個人からの信号を含んでいた。(上記の評価におけるOz電極からのような)単一の電極から取得されたアルファ帯域活動は、複数の独立した空間的に分散したアルファリズム発生器の重ね合わせを表すことに留意されたい。複数の電極からの信号にモデルを同時に当てはめることによって、これらの異なるソース間を差別化することが可能であり得る。
【0131】
[0130]NAC102は、本明細書において上記で説明されたデフォルト神経細胞集団モデルを用いるように構成された。モデルは、評価の目的で26個の生理学的パラメータを規定するが(表1を参照)、データハンドラ108は、pie及びpiiを固定の定数に設定し、シナプス後電位速度をγee=γei≡γ及びγie=γii≡γとして設定することによってモデルの単純化を行うように構成された。結果として得られるニューラルモデルは、22個の有効なパラメータを有し、ここで、値は、当てはめプロセスを実験EEGデータに適用することによって計算された。
【0132】
[0131]EEGデータの処理は、50%の重複を有する4秒のハミング窓を用いて複数のセグメントに分割された、160Hzでサンプリングされた特定の個人と関連付けられた1分のEEG信号を生成することを伴った。データハンドラ108は、1分のEEG信号にわたって定常性を想定するように構成された。ここで、定常性とは、これが一定のパラメータであることを意味するのに対し、状態は、安定した固定点を中心に変動することを可能にされる。固定点からの状態の偏差は、モデルの線形化を可能にするのに十分小さいと想定された。
【0133】
[0132]パラメータは、所与のEEG信号内で一定であると想定されたが、これらは当然ながら異なる記録値(このため、個人)間で変動し得る。EEG記録値におけるよく知られた非線形性及び非定常性に起因して、2Hz~20Hzの周波数についてのみ、推測手順において線形化モデルが用いられた。安静時のM/EEFにおける95%をはるかに超えるスペクトルパワーが30Hz未満に降下すると想定することができる。実際に、安静時のM/EEGスペクトルエッジ周波数(SEF95)の一般的な測定値(すなわち、139周波数であり、139周波数未満に95%のスペクトルパワーが含まれる)は、24~26Hzの範囲内にある。
【0134】
[0133]推測方法の正確度を実証するために、パラメータはシミュレートされたスペクトルを用いて推定することができ、ここで、基礎をなすパラメータセットが既知である(グランドトゥルースと呼ばれる)。被験者77について得られた最大尤度推定値を用いて、この試験のための妥当なパラメータセットが選択された。シミュレートされたスペクトルは、ガンマ分布モデル予測から各周波数チャネルをサンプリングすることによって計算された。
【0135】
[0134]粒子群最適化(PSO)及びマルコフ連鎖モンテカルロ法(MCMC)に基づくパラメータ当てはめプロセスは、上記で説明したように適用された。22個の事後分布の推定が、82個の異なるEEGスペクトルの各々について双方のアルゴリズムを用いて行われた(すなわち、未知のモデルパラメータごと)。
【0136】
[0135]図7は、最小二乗(LS)を用いて最良パラメータ当てはめを得るためのPSOの使用を示す、6人の被験者の周波数の関数としてのパワースペクトル密度のグラフのセットである。各グラフは、被験者の選択されたセットについて、粒子群最適化を用いた最小二乗(LS)最小化による実験スペクトル(赤色の太線)に対するモデルスペクトル(青色の点線)当てはめの比較を示す。当てはめられたスペクトルのガンマ分布に対する16%及び84%分位点も示される(黒色の細線)。完全なデータセットに含まれるスペクトルの範囲を示す被験者が選択された。
【0137】
[0136]図8は、最大尤度(ML)推定に基づいて解をサンプリングする、最良パラメータ当てはめを得るためのMCMC法の使用を示す、6人の被験者の周波数の関数としてのパワースペクトル密度のグラフのセットである。図は、MCMCを用いた最大尤度(ML)推定による実験スペクトル(赤色の太線)に対するモデルスペクトル(青色の点線)当てはめの比較を示す。16%及び84%の分位点も示される(黒色の細線)。被験者は図7と同じである。LS及びMS当てはめは、この場合において異なることが予期されることに留意されたい。なぜなら、LS当てはめは、重み付けされていないスペクトルパワー(通常、より大きなパワーを有する領域内にある)における偏差に対しより感度が高いのに対し、ML当てはめは、スペクトルパワーの変動が小さい領域(通常、より低いスペクトルパワーの領域内にある)における偏差に対しより感度が高いためである。
【0138】
[0137]図7及び図8に示す当てはめは類似性を有するが、僅かな差を観測することができる。例えば、被験者72において、ML当てはめは、より低いパワーを有する領域においてより良好に機能するが、より高いパワーを有する領域においてはより良好でない。この差は、LSが重み付けされていないパワースペクトルにわたって計算されるのに対し、MLは、通常、より低いパワースペクトルを有する周波数である、より低い変動を有する周波数を選好するために予期される。
【0139】
[0138]図9及び図10は、それぞれ、PSO及びMCMCサンプリングについて、選択された被験者のための事後周辺分布(カラーの実線)及び事前周辺(緑線)分布の比較を示すグラフのセットを示す。シミュレートされたスペクトルの分析に対応する最上行は、グランドトゥルース値(赤)も示す。各パラメータは、正規化された座標においてプロットされ、ここで、-1は妥当なパラメータ間隔の下限に対応し、+1は上限に対応する(表1を参照)。
【0140】
[0139]PSOを用いるとき、分布は、被験者ごとの1000個のランダムシード粒子群最適化のうちの最良の100個からのカーネル密度推定値に基づく。シードは、許可されたパラメータ範囲にわたって一様に分布する。82人の被験者の完全なセットにわたって、パラメータγのみが大幅に制約されることが観測される。全ての他のパラメータは、事前分布とほぼ同じ不確実性を有する。
【0141】
[0140]MCMCを用いるとき、各分布は、(10個のMCMCサンプルからサブサンプリングされた)1000個のサンプルからのカーネル密度推定値に基づく。PSOサンプリングを用いることからの観測と一致して、全ての被験者にわたって見たとき、パラメータγのみが一貫して制約される。
【0142】
[0141]PSOサンプリングを用いて得られた事後分布は、通常、MCMCサンプリングを用いて得られたものよりも概ね広い。この挙動は、サンプリング方法間の差異から予期され、MCMCサンプリングは、大きなサブサンプリングを用いてもサンプリング間の相関を保持することができる一方で、異なるPSOサンプルは互いに独立している。これは、PSO手法が、少なくともここで用いられるサンプリング条件下で優れていることを実証する。それにもかかわらず、双方の方法が、異なる被験者にわたるデータによって一貫して制約されるのが、抑制性集団のシナプス後電位速度定数γであることを示す。
【0143】
[0142]実際のデータが、各パラメータの推定における不確実性を低減する程度を評価するために、パラメータごとの、82人全ての被験者からのカルバック-ライブラーダイバージェンス(KLD)値が、(PSOについて)図11に示すように、(MCMCについて)図12に示すように計算される。特に、図5は、一様事前分布に対し計算される周辺事後パラメータ分布のKLDを示す。事後分布は、粒子群最適化の1000個のランダムシードでの実行のうちの最良の100個に基づく(図9を参照)。ボックスは、25%及び75%分位点を表し、ひげは、5%及び95%分位点を表し、赤線は中央KLDを示し、円は82人の被験者の完全なセットにわたるKLDの分布の平均KLDを表す。
【0144】
[0143]結果は、パラメータγがデータによって最良に制約されることを確認する。ほとんどの他の事後分布は、それらの事前分布よりも僅かに狭いのみである。表2は、パラメータ推定値の正確度及び精度を評価するために実行される、シミュレートされたスペクトルの分析を示す。表に示すのは、パラメータの事前分布に対し正規化されたグランドトゥルース値からの推定値の偏差の平均である。サンプル推定値の標準偏差によって与えられる精度も示される。太字の値は、カテゴリごとの上位3つの最低値である。PSO及びMCMC双方のサンプリングについて、γの推定値は常に最も高い精度を有し、また、最高正確度のうちの1つを有する。
【表2】
【0145】
[0144]図13は、選択された被験者の対数スケールでのフィッシャー情報行列(FIM)の固有値を示す。FIMは、実験スペクトルへの最小二乗当てはめに対応するパラメータにおける次元なし増分を用いて計算される。22個の可能な固有値のうち、概ね7つがゼロに対応し、少なくとも固有値推定ルーチンの数値正確度に対応する。残りの15個のうち、通常7つは、信頼性をもって計算するには(最大固有値に対し)過度に小さい。対数スケールにおける固有値の概ね一様な分布は、スロッピーモデルの特性である。青い点線は、同定不能な(点線より下の)レジームからの同定可能な(点線より上の)レジームの分離を描く。このため、約5つのパラメータの組み合わせが、通例同定可能であり、これは、22パラメータモデルを、5つ又は6つの有効パラメータを用いて説明することができることを示唆する。
【0146】
[0145]図14は、MCMC方法のための対応する分析を示し、ここで、FIM固有スペクトルは、被験者のスペクトルごとに最大尤度最適化から得られる最良当てはめの周りで計算される。
【0147】
[0146]図13及び図14に示す事例において、固有値は、対数スケールにわたって概ね一様な間隔を有して、何十桁(many decades)にもわたって分散している。これは、神経細胞集団モデルがスロッピーであることを示す。異なる複数の被験者にわたってこれらの固有スペクトルを比較することにより、通例、被験者ごとに約5つの同定可能なパラメータの組み合わせが存在することが示唆される。
【0148】
[0147]より大きなFIM固有値は、同定可能パラメータの組み合わせに対応する固有ベクトル方向を定義する。各(同定可能な)固有ベクトルに最も寄与するパラメータを理解するために、各パラメータ方向と所与の固有ベクトルとの間の角度距離が計算される。角度距離が0°又は180°に近づくほど、パラメータはパラメータの組み合わせに寄与し、このためそのパラメータがより同定可能になる。
【0149】
[0148]図15は、LS最良当てはめに基づく第1、第2及び第3の固有値に対応する固有ベクトルの構成要素を示す。各パラメータに対する主要な固有ベクトルの位置合わせ。0°及び180°の値は、完全な位置合わせ(最大寄与)を表すのに対し、90°は直交性(寄与なし)を表す。82人の被験者を比較するために、結果は角度分布として提示される(赤線)。第1の行は、最大固有値に関するものであり、第2の行は2番目に大きい固有値に関するものである等である。青線は、22次元パラメータ空間におけるランダムに向いたベクトルの予測角度分布を示し、これらがどのように任意のパラメータ方向に対し直交する可能性が最も高いかを示す。角度は、ベクトルの方向余弦の逆余弦である。分布は、パラメータγ及び(より低い程度まで)γが、それ自体でスペクトル形態を特定する重大な役割を果たすことができることを示す。残りのパラメータは、大部分が複雑な組み合わせにおいて現れる。図16は、ML最良当てはめに基づく固有ベクトルの対応する分布を示す。
【0150】
[0149]図15及び図16に示す結果は、ここでもまた、γパラメータが大きいことを示す。これは、最もスティッフなパラメータ方向に対する最大の寄与を有し、これが同定可能であることを示す。興味深いことに、興奮性集団のシナプス後電位速度定数γは、第3の最もスティッフなパラメータ組み合わせを支配する。これは、γが、γよりも低い程度までであるが、システム動力学を駆動する際に同定可能な役割も果たすことができることを示す。
【0151】
[0150]上記で説明した評価において、装置100は、入力実験EEGデータのアルファピーク特徴を特性化する、同定可能な5つのモデルパラメータ組み合わせからなる決定的パラメータセットを生成した。これらのパラメータのうち、シナプス後電位速度定数γは、最も大きい(すなわち、同定可能である)と判断される。これは、上記で提示した定量的分析をサポートし、ここで、FIMスペクトルにおいて約5つの同定可能な固有値のみが存在する(本発明のモデルにおける有効パラメータ数は約5のみであることを示す)。
【0152】
[0151]決定的パラメータの役割へのいくらかの洞察は、フィッシャー情報行列の主要な固有ベクトルの方向におけるその導関数を検討すること等によりモデル化されたスペクトルを更に検査することによって得ることができる。広い意味では、ほとんどの被験者にとって、主要な固有ベクトル(有効には、速度パラメータγ)が、アルファピークの位置の変動に関係し、第2の固有ベクトルが、全体背景レベルと比較したアルファピークの高さに(幾分より緩く)関係し、第3の固有ベクトルがアルファピークの幅に関連付けられるようである。残りの組み合わせは、スペクトルの容易に同定可能な特徴に関係しないようである。重要なことに、各固有値は、全部で22個の元のパラメータからの寄与を有し得るが、主要な3つの固有ベクトルは、これらのうちの僅か数個によって影響を受けるようである。これは、γが明確に同定可能な唯一のパラメータにもかかわらず、他のパラメータのサブセットも制約されていることを示す。これは、アルファピークの重要なパラメータ、すなわち、その位置、高さ及び幅が、僅か数個のみの元のパラメータ、特にγによって特定されることを示唆する。
【0153】
[0152]シナプス後抑制性速度定数γを、脳機能を示すための決定的パラメータとして同定することは、手術麻酔の関連において臨床的重要性を有する。特に、手術麻酔の状態を誘導するのに用いられる薬剤の大部分は、シナプス後阻害の時間経過を変更することによって機能すると考えられる。γを特定することが可能であるため、モデルパラメータをEEGデータに当てはめることによって、シナプス後抑制性速度定数は、麻酔の機能的影響へのリアルタイムの生理学的洞察を提供する。すなわち、γをモニタリングすることによって、個人の脳機能の態様(例えば、手術麻酔の状態)を推測することができる。これは、そうでなければ、個人の直接観測EEG信号(及び後続のアルファリズム特徴の分析)から導出される必要があり、これは、(例えば、手術設定において)可能でない場合がある。
【0154】
[0153]上記に鑑みて、装置100は、麻酔薬が脳機能の構成的態様に対し有する影響を定量化するためにγの尺度を利用するように構成することができる。すなわち、所与の被験者のEEGデータからγの値を推定することによって、被験者の脳活動を臨床目的で測定又はモニタリングすることができる。
【0155】
[0154]いくつかの実施形態では、装置100は、被験者の電気的脳活動のEEG測定値を表すEEGデータを受信し、神経細胞集団モデルのパラメータをEEGデータに当てはめて、前記パラメータの対応する値を特定することによって、被験者における脳活動を測定するように構成される。この値は、脳の応答性の状態を表す抑制性シナプス後電位速度定数(γ)の1つ又は複数の値を示し、基準値に対するγの増大は、脳の応答性の状態の向上を示し、基準値に対するγの減少は、脳の応答性の状態の低下を示す。
【0156】
[0155]被験者における脳活動の連続リアルタイムモニタリングは、被験者から得られた受信したEEGデータに基づいて、γについて複数の値(すなわち、推定値)を繰り返し特定し、神経細胞集団モデルをEEGデータに当てはめるように(上記で説明した)当てはめプロセスを適用することによって達成することができる。
【0157】
[0156]基準値は、NAC102特定の構成に従って様々な方式で特定することができる。いくつかの構成において、基準値は、脳活動状態測定プロセスの適用に従って特定される単一の数値である。基準値は、定数とすることができるか、又は被験者に施される鎮静若しくは麻酔薬治療のタイプに従って変動することができる。γの値が基準値を上回っているか又は下回っているという判断は、用途に応じて異なる形で解釈することができる。例えば、刺激されていない鎮静の深さをモニタリングする目的では、基準値に対するγの減少は、被験者における脳活動又は覚醒状態の低下を示すことができる。
【0158】
[0157]いくつかの構成において、基準値は、1人又は複数人の対照被験者における脳活動を表す所定の値である。対照被験者セットは、(例えば、鎮静レベル等の外科手術の特定の特性及び/又は手術の対象を考慮に入れるために)、脳機能モニタリング又は測定プロセスの適用に基づいて特定することができる。他の構成において、基準値は、分類及び/又は数学的分析によって特定される。例えば、神経細胞集団モデルを、覚醒状態又は意識のある状態の被験者から取得されたEEGデータに対し当てはめて、後続の手術中の脳活動状態を測定するための関連する基準値を特定することができる。
【0159】
[0158]いくつかの構成において、基準値は、数値の範囲から取得される。例えば、基準間隔は、最小基準値及び最大基準値によって指定することができ、ここで、推定されたγは、最小基準値及び最大基準値の一方又は双方と比較され、被験者の測定された脳活動の対応するインジケーションが特定される。そのような構成において、推定されたγが特定の基準間隔(例えば、以下で説明するように、段階I~IVの鎮静レベルのための別個の間隔)内にあるか否かを示す目的で複数の基準値が存在し得る。
【0160】
[0159]装置100は、刺激されていない被験者における鎮静の深さをモニタリングするように脳活動を測定するために適用することができ、基準値に対するγの減少は、被験者における応答性又は覚醒状態の低下を示す。基準値は、装置の構成に従って上記で説明したように決定することができる。いくつかの構成において、基準値は、最小鎮静(段階I)、意識下鎮静(段階II);深い鎮静(段階III);及び髄質低下(段階IV)からなる群から選択された鎮静レベルにおける1人又は複数人の対照被験者の脳活動を表す。
【0161】
[0160]鎮静レベルは、通常、被験者の応答性、及び鎮静型薬剤の投与に応答した1つ又は複数のバイタル機能(気道反射、自発換気、及び心臓血管機能)の状態を定量化するのに用いられる。最小鎮静(段階I)の下では、被験者は、通常、口頭の指示に応答し、気道反射、並びに換気及び心臓血管機能は影響を受けない。中等度の鎮静(段階II、又は「意識下鎮静」)は、意識の低下であり、この間、被験者は、単独の又は僅かな触覚刺激を伴う口頭の指示に意図的に応答する。深い鎮静(段階III)は意識の低下であり、この間、被験者は、容易に覚醒することができないが、反復された又は痛みを伴う刺激に続いて意図的に応答することができ、換気機能を独立して維持することに困難がある場合があるが、通例、心臓血管機能を維持する。髄質低下(段階IV)は意識の消失であり、この間、被験者は、痛みを伴う刺激によっても覚醒可能でなく、呼吸機能を独立して維持することに困難がある場合があり(それによって、低下した自発換気又は神経筋機能の薬剤により引き起こされた低下に起因して、気道の陽圧換気が必要である場合がある)、心臓血管機能が損なわれる場合がある。
【0162】
[0161]装置100は、安静状態の被験者が外科手術を受けている間、及び/又は被験者が麻酔をかけられている場合の、鎮静の深さをモニタリングするように構成することができる。いくつかの用途において、装置100を用いて、初期量の麻酔薬を被験者に投与し、被験者からEEGデータを受信することによって被験者における脳活動を測定し、EEGデータを神経細胞集団モデルに当てはめることによってγの測定値を特定し、γが基準値に対し低下すると、被験者が追加の麻酔を必要としていると判断し、追加の麻酔を必要とする被験者に追加の麻酔を投与することによって、被験者に麻酔を投与することができる。
【0163】
[0162]例えば、上記で説明した鎮静レベルを参照すると、被験者を手術動作中、深い鎮静の状態に維持することが望ましい場合がある。深い鎮静の状態に対応する基準値(又は間隔)を上回る値へのγの増大は、被験者が覚醒していることを示すことができる。この場合、所望の鎮静を維持するために追加の麻酔が投与される。しかしながら、過度の麻酔が投与されている場合、被験者は、基準値に対するγの低下によって示されるように髄質低下に入る場合がある。したがって、麻酔をかけられている間の被験者の脳機能をリアルタイムでモニタリングすることができ、ここで、測定されたγ値を用いて、図3bのフィードバック送達プロセスに従って或る期間にわたる(例えば、外科手術の持続時間にわたる)麻酔薬の投与を制御する。
【0164】
[0163]本発明の範囲から逸脱することなく、多くの変更形態が当業者には明らかとなろう。
【0165】
[0164]本明細書全体通して、文脈上特に必要のない限り、「含む」及びこの変化形である「含んでなる」又は「含んでいる」等は、記載されている完全体若しくはステップ、又は完全体群若しくはステップ群を包含することを意味するが、任意の他の完全体若しくはステップ、又は完全体群若しくはステップ群を排除するものではないことが理解される。
【0166】
[0165]本明細書における任意の従来の刊行物(又はそこから導出された情報)又は任意の既知のものへの言及は、その従来の刊行物(又はそこから導出された情報)又は既知のものが、本明細書が関係する当該分野において共通の一般的な知識の一部をなすと認識するか若しくは認めるものでなく、又は何らかの形態の示唆をするものでなく、そのように解釈されるべきでない。
図1
図2
図3a
図3b
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16