(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-10
(45)【発行日】2024-12-18
(54)【発明の名称】光センサ
(51)【国際特許分類】
H01L 31/107 20060101AFI20241211BHJP
H01L 27/146 20060101ALI20241211BHJP
【FI】
H01L31/10 B
H01L27/146 A
(21)【出願番号】P 2020173134
(22)【出願日】2020-10-14
【審査請求日】2023-05-16
(73)【特許権者】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【氏名又は名称】柴山 健一
(74)【代理人】
【識別番号】100177910
【氏名又は名称】木津 正晴
(72)【発明者】
【氏名】間瀬 光人
(72)【発明者】
【氏名】滝口 亮
(72)【発明者】
【氏名】石井 博明
(72)【発明者】
【氏名】中野 優
(72)【発明者】
【氏名】▲高▼木 慎一郎
【審査官】吉岡 一也
(56)【参考文献】
【文献】国際公開第2020/050362(WO,A1)
【文献】特開2019-117949(JP,A)
【文献】特開2004-200302(JP,A)
【文献】特開2015-090906(JP,A)
【文献】米国特許出願公開第2016/0218237(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/08-31/119
H01L 27/14-27/148
(57)【特許請求の範囲】
【請求項1】
入射光に応じて電荷を発生させる電荷発生領域と、
前記電荷発生領域で発生した電荷が転送される電荷収集領域と、
前記電荷発生領域と前記電荷収集領域との間の転送領域上に配置された少なくとも1つの転送ゲート電極と、を備え、
前記電荷発生領域は、
アバランシェ増倍を発生させるアバランシェ増倍領域と、
前記転送領域に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルを前記電荷発生領域に形成する傾斜ポテンシャル形成領域と、を含
み、
前記少なくとも1つの転送ゲート電極は、第1転送ゲート電極と、前記第1転送ゲート電極に対して前記電荷発生領域側に配置された第2転送ゲート電極と、を含み、
前記電荷発生領域で発生した電荷を前記電荷収集領域に転送する電荷転送処理においては、前記第1転送ゲート電極の直下の領域のポテンシャルである第1ポテンシャル、及び前記第2転送ゲート電極の直下の領域のポテンシャルである第2ポテンシャルが、前記電荷発生領域における前記転送領域との境界部のポテンシャル以下となった後に、前記境界部のポテンシャルよりも高くなるように、前記第1転送ゲート電極及び前記第2転送ゲート電極に電位が与えられ、
前記電荷転送処理においては、前記第1ポテンシャル及び前記第2ポテンシャルが前記境界部のポテンシャル以下である状態から、前記第1ポテンシャルを変化させずに前記第2ポテンシャルを前記境界部のポテンシャルよりも高くする処理が実行され、当該処理の完了後に、前記第1ポテンシャルを前記境界部のポテンシャルよりも高くする処理が実行される、光センサ。
【請求項2】
前記電荷転送処理においては、前記第2ポテンシャルが前記第1ポテンシャルよりも高くなるように、前記第1転送ゲート電極及び前記第2転送ゲート電極に電位が与えられる、請求項
1に記載の光センサ。
【請求項3】
前記第1転送ゲート電極の電位と前記第2転送ゲート電極の電位とが互いに等しい状態において、前記第2ポテンシャルは、前記第1ポテンシャルよりも高い、請求項
2に記載の光センサ。
【請求項4】
前記転送領域は、前記第2ポテンシャルを前記第1ポテンシャルよりも高くするためのポテンシャル調整層を含んでいる、請求項
3に記載の光センサ。
【請求項5】
前記電荷転送処理における前記第1ポテンシャル及び前記第2ポテンシャルが前記境界部のポテンシャル以下である状態においては、前記第2ポテンシャルが前記境界部のポテンシャルと等しく、前記第1ポテンシャルが前記境界部のポテンシャルよりも低い、請求項
1~
4のいずれか一項に記載の光センサ。
【請求項6】
前記アバランシェ増倍領域は、所定の平面に沿って層状に形成されており、
前記平面に垂直な方向において前記転送ゲート電極が前記アバランシェ増倍領域に対して位置する側を第1側とし、前記第1側とは反対側を第2側とすると、前記傾斜ポテンシャル形成領域は、前記アバランシェ増倍領域に対して前記第1側に位置している、請求項1~
5のいずれか一項に記載の光センサ。
【請求項7】
前記傾斜ポテンシャル形成領域は、前記転送領域に近づくにつれて不純物濃度が高くなるように配列された複数の半導体領域を含んでいる、請求項
6に記載の光センサ。
【請求項8】
前記傾斜ポテンシャル形成領域は、第1部分及び第2部分を含む第1半導体領域と、前記第1半導体領域よりも高い不純物濃度を有し、前記第1部分と前記第2部分との間に配置され、前記転送領域に近づくにつれて幅が拡大する第2半導体領域と、を含んでいる、請求項
6又は
7に記載の光センサ。
【請求項9】
前記アバランシェ増倍領域は、所定の平面に沿って層状に形成されており、
前記平面に垂直な方向において前記転送ゲート電極が前記アバランシェ増倍領域に対して位置する側を第1側とし、前記第1側とは反対側を第2側とすると、前記傾斜ポテンシャル形成領域は、前記アバランシェ増倍領域に対して前記第2側に位置している、請求項1~
5のいずれか一項に記載の光センサ。
【請求項10】
前記傾斜ポテンシャル形成領域は、第1半導体層と、前記第1半導体層に対して前記第2側に位置する第2半導体層と、を含み、
前記第1半導体層と前記第2半導体層との間に段差部が形成されていることにより、前記傾斜ポテンシャルが形成される、請求項
9に記載の光センサ。
【請求項11】
前記第1半導体層には貫通孔が形成されており、
前記貫通孔は、前記平面に垂直な方向において、前記電荷発生領域における前記転送領域との境界部と重なっている、請求項
10に記載の光センサ。
【請求項12】
入射光に応じて電荷を発生させる電荷発生領域と、
前記電荷発生領域で発生した電荷が転送される電荷収集領域と、
前記電荷発生領域と前記電荷収集領域との間の転送領域上に配置された少なくとも1つの転送ゲート電極と、を備え、
前記電荷発生領域は、
アバランシェ増倍を発生させるアバランシェ増倍領域と、
前記転送領域に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルを前記電荷発生領域に形成する傾斜ポテンシャル形成領域と、を含み、
前記アバランシェ増倍領域は、所定の平面に沿って層状に形成されており、
前記平面に垂直な方向において前記転送ゲート電極が前記アバランシェ増倍領域に対して位置する側を第1側とし、前記第1側とは反対側を第2側とすると、前記傾斜ポテンシャル形成領域は、前記アバランシェ増倍領域に対して前記第2側に位置している、光センサ。
【請求項13】
前記傾斜ポテンシャル形成領域は、第1半導体層と、前記第1半導体層に対して前記第2側に位置する第2半導体層と、を含み、
前記第1半導体層と前記第2半導体層との間に段差部が形成されていることにより、前記傾斜ポテンシャルが形成される、請求項12に記載の光センサ。
【請求項14】
前記第1半導体層には貫通孔が形成されており、
前記貫通孔は、前記平面に垂直な方向において、前記電荷発生領域における前記転送領域との境界部と重なっている、請求項13に記載の光センサ。
【請求項15】
前記電荷発生領域は、埋め込みフォトダイオード構造を有している、請求項1~14のいずれか一項に記載の光センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光センサに関する。
【背景技術】
【0002】
光センサとして、入射光に応じて電荷を発生させる電荷発生領域と、電荷発生領域で発生した電荷が転送される電荷収集領域と、電荷発生領域と電荷収集領域との間の領域上に配置された転送ゲート電極と、を備えるものが知られている。(例えば特許文献1参照)。このような光センサでは、電荷発生領域から電荷収集領域に電荷を高速に転送することができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したような光センサには、受光領域を広げるために電荷発生領域の面積を大きくすることが求められる場合がある。しかしながら、電荷発生領域の面積が大きい場合、電荷発生領域内での電荷の移動に時間がかかることで、電荷発生領域から電荷収集領域への電荷転送が遅くなるおそれがある。
【0005】
本発明は、受光領域の面積が大きい場合でも電荷を高速に転送することができる光センサを提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の光センサは、入射光に応じて電荷を発生させる電荷発生領域と、電荷発生領域で発生した電荷が転送される電荷収集領域と、電荷発生領域と電荷収集領域との間の転送領域上に配置された少なくとも1つの転送ゲート電極と、を備え、電荷発生領域は、アバランシェ増倍を発生させるアバランシェ増倍領域と、転送領域に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルを電荷発生領域に形成する傾斜ポテンシャル形成領域と、を含む。
【0007】
この光センサでは、電荷発生領域が、アバランシェ増倍を発生させるアバランシェ増倍領域を含んでいる。これにより、電荷発生領域においてアバランシェ増倍を発生させることができ、高感度化を図ることができる。また、電荷発生領域が、転送領域に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルを電荷発生領域に形成する傾斜ポテンシャル形成領域を含んでいる。これにより、転送領域に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルを電荷発生領域に形成することができ、電荷発生領域内における電荷の移動速度を速くすることができる。よって、この光センサによれば、受光領域の面積が大きい場合でも電荷を高速に転送することができる。
【0008】
少なくとも1つの転送ゲート電極は、第1転送ゲート電極と、第1転送ゲート電極に対して電荷発生領域側に配置された第2転送ゲート電極と、を含んでいてもよい。この場合、後述するように、ノイズ発生の抑制やダイナミックレンジの拡大が可能となる。
【0009】
電荷発生領域で発生した電荷を電荷収集領域に転送する電荷転送処理においては、第1転送ゲート電極の直下の領域のポテンシャルである第1ポテンシャル、及び第2転送ゲート電極の直下の領域のポテンシャルである第2ポテンシャルが、電荷発生領域における転送領域との境界部のポテンシャル以下となった後に、境界部のポテンシャルよりも高くなるように、第1転送ゲート電極及び第2転送ゲート電極に電位が与えられてもよい。この場合、第1転送ゲート電極及び第2転送ゲート電極を用いて電荷発生領域から電荷収集領域に電荷を高速に転送することができると共に、電荷転送後に電荷発生領域から電荷収集領域に電荷が移動するのを抑制することができる。
【0010】
電荷転送処理においては、第2ポテンシャルが第1ポテンシャルよりも高くなるように、第1転送ゲート電極及び第2転送ゲート電極に電位が与えられてもよい。この場合、電荷が第1転送ゲート電極の直下の領域から電荷発生領域に戻ってしまうことを抑制することができ、ノイズの発生を抑制することができる。また、第1転送ゲート電極の直下の領域の容量を利用して電荷の読出し量を増加させることができ、ダイナミックレンジを広げることができる。
【0011】
第1転送ゲート電極の電位と第2転送ゲート電極の電位とが互いに等しい状態において、第2ポテンシャルは、第1ポテンシャルよりも高くてもよい。この場合、第1転送ゲート電極及び第2転送ゲート電極に同一の電位を与えることによって第2ポテンシャルを第1ポテンシャルよりも高くすることができる。その結果、例えば、第1転送ゲート電極及び第2転送ゲート電極に異なる大きさの電位を与えることによって第2ポテンシャルを第1ポテンシャルよりも高くする場合と比べて、電位を与えるための構成を簡易化することができる。
【0012】
転送領域は、第2ポテンシャルを第1ポテンシャルよりも高くするためのポテンシャル調整層を含んでいてもよい。この場合、ポテンシャル調整層によって第2ポテンシャルを第1ポテンシャルよりも高くすることができる。
【0013】
電荷転送処理における第1ポテンシャル及び第2ポテンシャルが境界部のポテンシャル以下である状態においては、第2ポテンシャルが境界部のポテンシャルと等しく、第1ポテンシャルが境界部のポテンシャルよりも低くてもよい。この場合、第2転送ゲート電極の直下の領域に電荷が蓄積されるのを抑制することができ、第2転送ゲート電極の直下の領域から電荷発生領域に電荷が戻ってしまうことに起因するノイズの発生を抑制することができる。
【0014】
電荷転送処理においては、第1ポテンシャル及び第2ポテンシャルが境界部のポテンシャル以下である状態から、第2ポテンシャルが境界部のポテンシャルよりも高くなった後に、第1ポテンシャルが境界部のポテンシャルよりも高くなってもよい。この場合、電荷が第1転送ゲート電極の直下の領域から電荷発生領域に戻ってしまうことを確実に抑制することができ、ノイズの発生を確実に抑制することができる。
【0015】
アバランシェ増倍領域は、所定の平面に沿って層状に形成されており、平面に垂直な方向において転送ゲート電極がアバランシェ増倍領域に対して位置する側を第1側とし、第1側とは反対側を第2側とすると、傾斜ポテンシャル形成領域は、アバランシェ増倍領域に対して第1側に位置していてもよい。この場合、転送ゲート電極に近い領域に存在する電荷の割合が多くなり、電荷を一層高速に転送することが可能となる。また、傾斜ポテンシャルが転送ゲート電極の近くに形成されることによっても、電荷を一層高速に転送することが可能となる。
【0016】
傾斜ポテンシャル形成領域は、転送領域に近づくにつれて不純物濃度が高くなるように配列された複数の半導体領域を含んでいてもよい。この場合、傾斜ポテンシャルを電荷発生領域に好適に形成することができる。
【0017】
傾斜ポテンシャル形成領域は、第1部分及び第2部分を含む第1半導体領域と、第1半導体領域よりも高い不純物濃度を有し、第1部分と第2部分との間に配置され、転送領域に近づくにつれて幅が拡大する第2半導体領域と、を含んでいてもよい。この場合、傾斜ポテンシャルを電荷発生領域に好適に形成することができる。
【0018】
アバランシェ増倍領域は、所定の平面に沿って層状に形成されており、平面に垂直な方向において転送ゲート電極がアバランシェ増倍領域に対して位置する側を第1側とし、第1側とは反対側を第2側とすると、傾斜ポテンシャル形成領域は、アバランシェ増倍領域に対して第2側に位置していてもよい。この場合、傾斜ポテンシャルの傾斜高さに関する制限が生じ難いため、傾斜ポテンシャルの傾きを大きくすることができ、電荷を一層高速に転送することができる。また、傾斜ポテンシャルによって集められた電荷がアバランシェ増倍領域において増倍されるため、増倍の発生箇所を限定することができ、増倍の均一性を高めることができる。
【0019】
傾斜ポテンシャル形成領域は、第1半導体層と、第1半導体層に対して第2側に位置する第2半導体層と、を含み、第1半導体層と第2半導体層との間に段差部が形成されていることにより、傾斜ポテンシャルが形成されてもよい。この場合、傾斜ポテンシャルを電荷発生領域に好適に形成することができる。
【0020】
第1半導体層には貫通孔が形成されており、貫通孔は、平面に垂直な方向において、電荷発生領域における転送領域との境界部と重なっていてもよい。この場合、傾斜ポテンシャルにより案内された電荷を電荷発生領域における転送領域との境界部に集めることができる。
【0021】
電荷発生領域は、埋め込みフォトダイオード構造を有していてもよい。この場合、電荷発生領域における暗電流の発生を抑制することができる。
【発明の効果】
【0022】
本発明によれば、受光領域の面積が大きい場合でも電荷を高速に転送することができる光センサを提供することが可能となる。
【図面の簡単な説明】
【0023】
【
図2】
図1のII-II線に沿っての断面図である。
【
図3】(a)及び(b)は、光センサの動作例を説明するためのポテンシャル分布図である。
【
図4】(a)及び(b)は、光センサの動作例を説明するためのポテンシャル分布図である。
【
図5】第1変形例に係る光センサの動作例を説明するためのポテンシャル分布図である。
【発明を実施するための形態】
【0024】
以下、本発明の一実施形態について、図面を参照しつつ詳細に説明する。以下の説明において、同一又は相当要素には同一符号を用い、重複する説明を省略する。
[光検出装置]
【0025】
図1に示されるように、光検出装置100は、光センサ(イメージセンサ)1と、制御部70と、を備えている。制御部70は、光センサ1を制御する。制御部70は、例えば、光センサ1を構成する半導体基板上に搭載されたオンチップの集積回路によって構成されているが、光センサ1と別体に構成されてもよい。
【0026】
図1及び
図2に示されるように、光センサ1は、半導体層2、電極層4及び保護層6を備えている。半導体層2は、第1表面2a及び第2表面2bを有している。第2表面2bは、第1表面2aとは反対側の表面である。光センサ1は、第1表面2aに沿って配置された複数の画素10を含んでいる。複数の画素10は、例えば、第1表面2aに沿って2次元に配列されている。以下、半導体層2の厚さ方向をZ方向といい、Z方向に垂直な一方向をX方向といい、Z方向及びX方向の両方に垂直な方向をY方向という。また、Z方向における一方側を第1側といい、Z方向における他方側(第1側とは反対側)を第2側という。
図1では、一部の構成(電極層4の一部及び保護層6等)の図示が省略されている。
【0027】
各画素10は、半導体層2において、半導体領域21と、半導体領域22と、アバランシェ増倍領域23と、電荷蓄積領域24と、介在領域25と、ウェル領域31,32と、電荷収集領域33と、チャネル領域34と、を有している。各領域21~26,31~34は、半導体基板(例えばシリコン基板)に対して各種処理(例えば、エッチング、成膜、不純物注入等)を実施することにより形成される。
【0028】
半導体領域21は、p型(第1導電型)の領域であって、半導体層2において第2表面2bに沿って層状に形成されている。半導体領域21のキャリア濃度は、半導体領域22のキャリア濃度よりも高い。半導体領域21の厚さは、できるだけ薄いことが望ましい。一例として、半導体領域21は、1×1016cm-3以上のキャリア濃度(不純物濃度)を有するp型の領域であり、その厚さは、1μm程度である。なお、半導体領域21は、第2表面2b上に絶縁膜を介して形成された透明電極によるアキュムレーションによって形成されてもよい。
【0029】
半導体領域22は、p型の領域であって、半導体層2において層状に形成され、半導体領域21に対して第1側に位置している。一例として、半導体領域22は、1×1015cm-3以下のキャリア濃度を有するp型の領域であり、その厚さは、2μm以上であり、一例としては10μm程度である。
【0030】
アバランシェ増倍領域23は、第1増倍領域23a及び第2増倍領域23bを含んでいる。第1増倍領域23aは、p型の領域であって、半導体層2において層状に形成され、半導体領域22に対して第1側に位置している。一例として、第1増倍領域23aは、1×1016cm-3以上のキャリア濃度を有するp型の領域であり、その厚さは、1μm程度である。第2増倍領域23bは、n型(第2導電型)の領域であって、半導体層2において層状に形成され、第1増倍領域23aに対して第1側に位置している。一例として、第2増倍領域23bは、1×1016cm-3以上のキャリア濃度を有するn型の領域であり、その厚さは、1μm程度である。第1増倍領域23a及び第2増倍領域23bは、pn接合を形成している。アバランシェ増倍領域23は、アバランシェ増倍を引き起こす領域である。
【0031】
電荷蓄積領域24は、n型の領域であって、半導体層2において層状に形成され、アバランシェ増倍領域23に対して第1側に位置している。一例として、電荷蓄積領域24の厚さは、1μm程度である。電荷蓄積領域24の詳細については後述する。
【0032】
介在領域25は、p型の領域であって、半導体層2において第1表面2aに沿って層状に形成され、電荷蓄積領域24に対して第1側に位置している。すなわち、介在領域25は、電荷蓄積領域24とは異なる導電型を有している。半導体領域21、半導体領域22、第1増倍領域23a、第2増倍領域23b、電荷蓄積領域24及び介在領域25は、XY平面(Z方向に垂直な平面)に沿って層状に形成されており、Z方向に沿ってこの順に並んでいる。一例として、介在領域25は、1×1015cm-3以上のキャリア濃度を有するp型の領域であり、その厚さは、0.2μm程度である。
【0033】
電荷蓄積領域24及び介在領域25は、pn接合を形成しており、埋め込みフォトダイオードを構成している。すなわち、電荷発生領域29は、埋め込みフォトダイオード構造を有している。半導体領域21,22、アバランシェ増倍領域23、電荷蓄積領域24及び介在領域25は、入射光に応じて電荷を発生させる電荷発生領域(光吸収領域、光電変換領域)29として機能する。換言すれば、電荷発生領域29は、半導体領域21,22、アバランシェ増倍領域23、電荷蓄積領域24及び介在領域25を含んでいる。
【0034】
ウェル領域31,32は、p型の領域であって、半導体層2において第1表面2aに沿って層状に形成されている。ウェル領域31,32は、アバランシェ増倍領域23に対して第1側に位置している。ウェル領域31は、電荷蓄積領域24及び介在領域25とX方向において隣り合うように配置されている。ウェル領域32は、Z方向から見た場合に電荷蓄積領域24、介在領域25及びウェル領域31を囲むように配置されている。一例として、ウェル領域31,32は、1×1016~5×1017cm-3のキャリア濃度を有するp型の領域であり、その厚さは、1μm程度である。ウェル領域31,32は、複数の読出し回路(例えば、ソースフォロワアンプ、リセットトランジスタ等)を構成している。複数の読出し回路は、電荷収集領域33と電気的に接続されている。
【0035】
ウェル領域31,32には、電荷収集領域33及びチャネル領域34が形成されている。電荷収集領域33は、n型の領域であって、半導体層2において第1表面2aに沿って層状に形成され、ウェル領域31,32の間の境界部に配置されている。一例として、電荷収集領域33は、1×10
18cm
-3以上のキャリア濃度を有するn型の領域であり、その厚さは、0.2μm程度である。電荷収集領域33は、フローティングディフージョンとして機能する。チャネル領域34は、n型の領域であって、半導体層2において第1表面2aに沿って層状に形成され、ウェル領域32に配置されている。介在領域25、電荷収集領域33及びチャネル領域34は、X方向に沿ってこの順に並んでいる。
図1の例では電荷収集領域33の幅(Y方向に沿っての長さ)が第4領域54の幅(Y方向に沿っての長さ)よりも小さいが、電荷収集領域33の幅は第4領域54の幅と同程度であってもよい。この場合、同じ幅の転送経路によりスムーズに電荷転送が行われる。
【0036】
電極層4は、半導体層2の第1表面2a上に設けられている。各画素10は、電極層4において、転送ゲート電極41と、排出ゲート電極42と、を有している。転送ゲート電極41及び排出ゲート電極42は、電極層4に形成され、絶縁層49を介して半導体層2の第1表面2a上に配置されている。絶縁層49は、例えば、シリコン窒化膜、シリコン酸化膜等である。転送ゲート電極41及び排出ゲート電極42は、例えばポリシリコンによって形成されている。
【0037】
転送ゲート電極41は、ウェル領域31における介在領域25と電荷収集領域33との間の転送領域35上に配置されている。転送領域35は、転送ゲート電極41の直下の領域である。転送ゲート電極41は、第1転送ゲート電極43と、第2転送ゲート電極44と、を有している。第2転送ゲート電極44は、第1転送ゲート電極43に対して介在領域25側に配置されている。なお、本明細書において、「或る電極の直下の領域」とは、Z方向において当該電極と重なる領域を意味する。
【0038】
第2転送ゲート電極44は、第1転送ゲート電極43に乗り上げるように形成されており、第1転送ゲート電極43上に配置された乗上げ部分44aを有している。第1転送ゲート電極43の表面には絶縁層45が形成されており、第1転送ゲート電極43は、絶縁層45により第2転送ゲート電極44から電気的に分離されている。第1転送ゲート電極43及び第2転送ゲート電極44の各々は、Z方向から見た場合に、長辺がY方向に平行な長方形状を呈している。
【0039】
転送領域35には、ポテンシャル調整層36が形成されている。ポテンシャル調整層36は、Z方向において第2転送ゲート電極44と重なるように配置されており、X方向において介在領域25と隣り合っている。一例として、ポテンシャル調整層36は、1×1015~1×1018cm-3程度のキャリア濃度を有するP型の領域であり、その厚さは、0.1μm程度である。
【0040】
ポテンシャル調整層36が形成されていることにより、
図3(a)に示されるように、第2転送ゲート電極44の直下の領域のポテンシャルである第2ポテンシャルφ44は、第1転送ゲート電極43の直下の領域のポテンシャルである第1ポテンシャルφ43よりも高くなっている。
図3(a)には、X方向に沿ってのポテンシャル分布図が示されている。
図3(a)に示される状態において、第1転送ゲート電極43の電位と第2転送ゲート電極44の電位とは互いに等しい。
【0041】
排出ゲート電極42は、ウェル領域32における電荷収集領域33とチャネル領域34との間の領域上に配置されている。排出ゲート電極42は、例えば、X方向において向かい合う2辺、及びY方向において向かい合う2辺を有する矩形状を呈している。電極層4は、保護層6によって覆われている。保護層6は、例えばBPSG(Boro-phospho silicate glass)膜等の絶縁層である。
【0042】
図1及び
図2に示されるように、電荷蓄積領域24は、第1領域51、第2領域52、第3領域53及び第4領域54を有している。各領域51~54は、n型の領域である。領域51~54の不純物濃度は、第1領域51、第2領域52、第3領域53、第4領域54の順に高くなっている。すなわち、第2領域52は、第1領域51よりも高い不純物濃度を有し、第3領域53は、第2領域52よりも高い不純物濃度を有し、第4領域54は、第3領域53よりも高い不純物濃度を有する。第1領域51の不純物濃度は1×10
13~1×10
16cm
-3程度である。第2領域52、第3領域53及び第4領域54の不純物濃度は1×10
16~1×10
19cm
-3程度である。なお、第1領域51は、p型の領域であってもよい。この場合でも、第2領域52、第3領域53及び第4領域54との間で発生する空乏層によって第1領域51の一部においてポテンシャルが高くなり、電荷を蓄積することができる。
【0043】
第1領域51は、Z方向から見た場合に矩形状を呈している。第2領域52、第3領域53及び第4領域54は、X方向に沿ってこの順に並んでいる。第4領域54は、X方向において転送領域35と隣り合っている。すなわち、第2領域52、第3領域53及び第4領域54は、転送領域35に近づくにつれて不純物濃度が高くなるように配列されている。Z方向から見た場合に、第2領域52、第3領域53、第4領域54、第2転送ゲート電極44、第1転送ゲート電極43、電荷収集領域33は、X方向に沿ってこの順に並んでいる。第2領域52、第3領域53及び第4領域54は、Y方向において第1領域51の第1部分51aと第2部分51bとの間に配置されている。
【0044】
Z方向から見た場合に、第2領域52、第3領域53及び第4領域54により画定される領域の幅(Y方向に沿っての長さ)W1は、転送領域35に近づくにつれて連続的に増加している。第2領域52、第3領域53及び第4領域54の各々は、Z方向から見た場合に台形状を呈している。幅W1は、第2領域52、第3領域53及び第4領域54の各々において直線的に増加している。幅W1は、第2領域52と第3領域53との間の境界、及び第3領域53と第4領域54との間の境界の各々において連続している。
【0045】
電荷蓄積領域24が第1領域51、第2領域52、第3領域53及び第4領域54を有していることにより、
図3及び
図4に示されるように、電荷蓄積領域24には、転送領域35に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルAが形成されている。
図3及び
図4には、X方向に沿ってのポテンシャル分布図が示されている。この例では、電荷蓄積領域24のポテンシャルφ24は、転送領域35に近づくにつれて直線的に減少している。このように、第1領域51、第2領域52、第3領域53及び第4領域54(電荷蓄積領域24)は、傾斜ポテンシャルAを形成する傾斜ポテンシャル形成領域59として機能する。傾斜ポテンシャル形成領域59は、Z方向においてアバランシェ増倍領域23に対して第1側に位置している。第1側は、Z方向において転送ゲート電極41がアバランシェ増倍領域23に対して位置する側である。
[光検出方法]
【0046】
図3及び
図4を参照しつつ、光センサ1による光検出動作の例を説明する。以下の動作は、制御部70が光センサ1を制御することにより実現される。より具体的には、制御部70が転送ゲート電極41及び排出ゲート電極42に印加される電圧を制御することにより、光センサ1の動作が実現される。以下では、1つの画素10に着目して動作を説明するが、他の画素10の動作についても同様である。
【0047】
まず、電荷を電荷蓄積領域24に蓄積する電荷蓄積処理が実行される。電荷蓄積処理では、介在領域25の電位を基準として負の電圧(例えば-50V)が半導体領域21に印加される。つまり、アバランシェ増倍領域23に形成されたpn接合に逆方向バイアスが印加される。これにより、アバランシェ増倍領域23に3×105~4×105V/cmの電界強度が発生する。この状態において、第2表面2bから半導体層2に光が入射すると、半導体領域21,22において光の吸収により電子(電荷)が発生する。発生した電荷は、アバランシェ増倍領域23で増倍され、電荷蓄積領域24に移動する。光センサ1では、電荷発生領域29のうちZ方向において電荷蓄積領域24と重なる領域が受光領域として機能する。なお、介在領域25は、接地電極に電気的に接続されており、接地されている。
【0048】
図3(a)に示されるように、電荷蓄積領域24に移動した電荷は、電荷蓄積領域24に蓄積される。上述したように、電荷蓄積領域24には、転送領域35に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルAが形成されている。そのため、電荷は、電荷蓄積領域24内において転送領域35側に向けて高速で移動する。
【0049】
電荷蓄積処理中には、第1転送ゲート電極43の直下の領域の第1ポテンシャルφ43及び第2転送ゲート電極44の直下の領域の第2ポテンシャルφ44が、傾斜ポテンシャルAの下端のポテンシャルPaよりも高くなるように、第1転送ゲート電極43及び第2転送ゲート電極44に電位が与えられる。傾斜ポテンシャルAの下端のポテンシャルPaは、電荷蓄積領域24における転送領域35との境界部のポテンシャルに対応する。これにより、電荷が電荷蓄積領域24から電荷収集領域33に移動せず、電荷蓄積領域24に蓄積される。
【0050】
この例では、制御部70は、第1転送ゲート電極43及び第2転送ゲート電極44に印加する電圧をオンオフの2段階で制御する。電荷蓄積処理中には、第1転送ゲート電極43及び第2転送ゲート電極44に印加する電圧がオフとされている。第1転送ゲート電極43に印加するオフ電圧は、第2転送ゲート電極44に印加するオフ電圧と等しく、例えば0Vである。
図3(a)に示されるように、第1転送ゲート電極43及び第2転送ゲート電極44に印加される電圧がオフである状態において、第2ポテンシャルφ44は第1ポテンシャルφ43よりも高い。なお、
図3(a)に示されるように、電荷蓄積処理の開始時点において、電荷収集領域33及びチャネル領域34には一定量の電荷Bが残存している。電荷Bは、後述するリセット処理時に電荷収集領域33及びチャネル領域34に残存する電荷である。
【0051】
続いて、電荷を電荷収集領域33に転送する電荷転送処理が実行される。電荷転送処理では、第1ポテンシャルφ43及び第2ポテンシャルφ44が傾斜ポテンシャルAの下端のポテンシャルPa以下となった後にポテンシャルPaよりも高くなるように、第1転送ゲート電極43及び第2転送ゲート電極44に電位が与えられる。
【0052】
より具体的には、まず、
図3(b)に示されるように、第1転送ゲート電極43及び第2転送ゲート電極44に印加する電圧がオンとされ、第1ポテンシャルφ43及び第2ポテンシャルφ44が傾斜ポテンシャルAの下端のポテンシャルPa以下になる。この状態においては、第2ポテンシャルφ44はポテンシャルPaと等しく、第1ポテンシャルφ43はポテンシャルPaよりも低い。これにより、電荷蓄積領域24に蓄積されていた電荷が、第1転送ゲート電極43の直下の領域及び電荷収集領域33に移動する。第2転送ゲート電極44の直下の領域には電荷が蓄積されない。
図3(b)に示される状態において、第1ポテンシャルφ43は、電荷収集領域33のポテンシャルφ33と等しい。なお、電荷収集領域33のポテンシャルφ33及びチャネル領域34のポテンシャルφ34は、ポテンシャルPaよりも低くなっている。
【0053】
この例では、第1転送ゲート電極43及び第2転送ゲート電極44のオン電圧は、互いに等しい。
図3(b)に示されるように、第1転送ゲート電極43及び第2転送ゲート電極44に印加される電圧がオンである状態において、第2ポテンシャルφ44は第1ポテンシャルφ43よりも高い。
【0054】
続いて、
図4(a)に示されるように、第1転送ゲート電極43に印加する電圧がオンとされたまま、第2転送ゲート電極44に印加する電圧がオフとされ、第2ポテンシャルφ44が傾斜ポテンシャルAの下端のポテンシャルPaよりも高くなる。このとき、第2転送ゲート電極44の直下の領域には電荷が蓄積されていないので、電荷の移動は発生しない。
【0055】
続いて、
図4(b)に示されるように、第1転送ゲート電極43に印加する電圧がオフとされ、第1ポテンシャルφ43が傾斜ポテンシャルAの下端のポテンシャルPaよりも高くなる。これにより、第1転送ゲート電極43の直下の領域に蓄積されていた電荷が電荷収集領域33に移動する。このように、電荷転送処理では、第1ポテンシャルφ43及び第2ポテンシャルφ44がポテンシャルPa以下である状態(
図3(b))から、第2ポテンシャルφ44がポテンシャルPaよりも高くなった後に(
図4(a))、第1ポテンシャルφ43がポテンシャルPaよりも高くなる(
図4(b))。
【0056】
図3(b)、
図4(a)及び
図4(b)に示されるいずれの状態においても、第2ポテンシャルφ44は第1ポテンシャルφ43よりも高い。これにより、電荷が第1転送ゲート電極43の直下の領域から電荷蓄積領域24に戻ってしまうことを抑制することができる。
【0057】
続いて、電荷収集領域33に蓄積されている電荷を読み出す読出処理が実行される。電荷収集領域33に蓄積されている電荷は、上述した読出し回路により読み出される。続いて、電荷収集領域33をリセットするリセット処理が実行される。リセット処理では、排出ゲート電極42の直下の領域のポテンシャルφ42が低くなるように排出ゲート電極42の電位が制御される。これにより、電荷収集領域33内の電荷がチャネル領域34を介して外部に排出され、電荷収集領域33がリセットされる。リセット処理の完了後、ポテンシャルφ42は元に戻される。
[作用及び効果]
【0058】
光センサ1では、電荷発生領域29が、アバランシェ増倍を発生させるアバランシェ増倍領域23を含んでいる。これにより、電荷発生領域29においてアバランシェ増倍を発生させることができ、高感度化を図ることができる。また、電荷発生領域29が、転送領域35に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルAを電荷発生領域29に形成する傾斜ポテンシャル形成領域59を含んでいる。これにより、転送領域35に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルAを電荷発生領域29に形成することができ、電荷発生領域29内における電荷の移動速度を速くすることができる。よって、光センサ1によれば、受光領域の面積が大きい場合でも電荷を高速に転送することができる。
【0059】
光センサ1が、第1転送ゲート電極43と、第1転送ゲート電極43に対して電荷発生領域29側に配置された第2転送ゲート電極44と、を含んでいる。これにより、後述するように、ノイズ発生の抑制やダイナミックレンジの拡大が可能となる。
【0060】
電荷発生領域29で発生した電荷を電荷収集領域33に転送する電荷転送処理において、第1転送ゲート電極43の直下の領域のポテンシャルである第1ポテンシャルφ43、及び第2転送ゲート電極44の直下の領域のポテンシャルである第2ポテンシャルφ44が、傾斜ポテンシャルAの下端のポテンシャルPa(電荷発生領域29における転送領域35との境界部のポテンシャル)以下となった後に、ポテンシャルPaよりも高くなるように、第1転送ゲート電極43及び第2転送ゲート電極44に電位が与えられる。これにより、第1転送ゲート電極43及び第2転送ゲート電極44を用いて電荷発生領域29から電荷収集領域33に電荷を高速に転送することができると共に、電荷転送後に電荷発生領域29から電荷収集領域33に電荷が移動するのを抑制することができる。
【0061】
電荷転送処理においては、第2ポテンシャルφ44が第1ポテンシャルφ43よりも高くなるように、第1転送ゲート電極43及び第2転送ゲート電極44に電位が与えられる。これにより、電荷が第1転送ゲート電極43の直下の領域から電荷蓄積領域24(電荷発生領域29)に戻ってしまうことを抑制することができ、ノイズの発生を抑制することができる。また、第1転送ゲート電極43の直下の領域の容量を利用して電荷の読出し量を増加させることができ、ダイナミックレンジを広げることができる。
【0062】
この点について
図5を参照しつつ更に説明する。
図5は、第1変形例に係る光センサの動作例を説明するためのポテンシャル分布図である。第1変形例の転送ゲート電極41Aは、単一の電極のみにより構成されている。第1変形例においても、転送ゲート電極41Aの直下の領域のポテンシャルであるポテンシャルφ41Aが傾斜ポテンシャルAの下端のポテンシャルPa以下となった後にポテンシャルPaよりも高くなるように転送ゲート電極41Aに電位を与えることで、電荷転送を行うことができる。したがって、上記実施形態と同様に、高感度化を図ると共に、受光領域の面積が大きい場合でも電荷を高速に転送することができる。
【0063】
ただし、第1変形例では、
図5に示されるように、電荷の読出し量は、傾斜ポテンシャルAの下端のポテンシャルPaと電荷収集領域33のポテンシャルφ33との間の差DFに対応した量となる。一方、上記実施形態では、第1転送ゲート電極43の直下の領域の容量を電荷の読出し量として利用することができるため、
図4(a)及び
図4(b)に矢印ARで示されるように、電荷の読出し量は、第1変形例の場合と比べて、第1転送ゲート電極43の直下の領域の容量の分だけ大きくなる。このように、上記実施形態によれば、第1転送ゲート電極43の直下の領域の容量を利用して電荷の読出し量を増加させることができ、ダイナミックレンジを広げることができる。
【0064】
第1転送ゲート電極43の電位と第2転送ゲート電極44の電位とが互いに等しい状態において、第2ポテンシャルφ44が、第1ポテンシャルφ43よりも高い。これにより、第1転送ゲート電極43及び第2転送ゲート電極44に同一の電位を与えることによって第2ポテンシャルφ44を第1ポテンシャルφ43よりも高くすることができる。その結果、例えば、第1転送ゲート電極43及び第2転送ゲート電極44に異なる大きさの電位を与えることによって第2ポテンシャルφ44を第1ポテンシャルφ43よりも高くする場合と比べて、電位を与えるための構成を簡易化することができる。
【0065】
転送領域35が、第2ポテンシャルφ44を第1ポテンシャルφ43よりも高くするためのポテンシャル調整層36を含んでいる。これにより、ポテンシャル調整層36によって第2ポテンシャルφ44を第1ポテンシャルφ43よりも高くすることができる。
【0066】
電荷転送処理における第1ポテンシャルφ43及び第2ポテンシャルφ44が傾斜ポテンシャルAの下端のポテンシャルPa以下である状態においては、第2ポテンシャルφ44がポテンシャルPaと等しく、第1ポテンシャルφ43がポテンシャルPaよりも低い。これにより、第2転送ゲート電極44の直下の領域に電荷が蓄積されるのを抑制することができ、第2転送ゲート電極44の直下の領域から電荷蓄積領域24(電荷発生領域29)に電荷が戻ってしまうことに起因するノイズの発生を抑制することができる。
【0067】
電荷転送処理においては、第1ポテンシャルφ43及び第2ポテンシャルφ44が傾斜ポテンシャルAの下端のポテンシャルPa以下である状態から、第2ポテンシャルφ44がポテンシャルPaよりも高くなった後に、第1ポテンシャルφ43がポテンシャルPaよりも高くなる。これにより、電荷が第1転送ゲート電極43の直下の領域から電荷蓄積領域24(電荷発生領域29)に戻ってしまうことを確実に抑制することができ、ノイズの発生を確実に抑制することができる。これは、第1ポテンシャルφ43及び第2ポテンシャルφ44を同時に高くする場合と比べて、第1転送ゲート電極43の直下の領域と電荷蓄積領域24との間の電位障壁を高くすることができるためである。
【0068】
電荷発生領域29がアバランシェ増倍領域23を含む構成において電荷発生領域29に傾斜ポテンシャルAを形成する場合、以下の理由により、傾斜ポテンシャルAの傾斜高さを確保することは難しい。第1に、傾斜高さを高くするためには、傾斜ポテンシャルAの上端のポテンシャルPbを高くすることが考えられる。しかしながら、介在領域25と半導体領域21との間に短絡が発生しないようにするためには、ポテンシャルPbを
図5に示されるパンチスルーラインPLよりも低くする必要がある。また、ポテンシャルPbを高くするためには傾斜ポテンシャルAの上端の電位を低くする必要があるが、その場合、傾斜ポテンシャルAの上端において介在領域25と半導体領域21との間にリーク電流が発生するおそれがある。そのため、ポテンシャルPbを高くすることには制限がある。また、電位が低い傾斜ポテンシャルAの上端においては逆バイアス電圧が低くなるため、アバランシェ増倍領域23のうち傾斜ポテンシャルAの上端に対応する部分において増倍率が低下するおそれがある。
【0069】
第2に、傾斜高さを高くするためには、傾斜ポテンシャルAの下端のポテンシャルPa(空乏化電位)を低くすることが考えられる。しかしながら、ポテンシャルPaを低くすると、ポテンシャルPaと電荷収集領域33のポテンシャルφ33との間の差DF(
図5)が小さくなり、電荷の読出し量が低下する。そのため、ポテンシャルPaを低くすることにも制限がある。
【0070】
これに対して、上記実施形態の光センサ1では、上述したとおり、第1転送ゲート電極43及び第2転送ゲート電極44を用いて電荷を電荷収集領域33に転送するため、ノイズの発生を抑制することができると共に、第1転送ゲート電極43の直下の領域の容量を利用して電荷の読出し量を増加させることができ、ダイナミックレンジを広げることができる。その結果、ダイナミックレンジを大きく確保しつつ、傾斜ポテンシャルAの傾斜高さを大きく確保することができる。
【0071】
傾斜ポテンシャル形成領域59が、アバランシェ増倍領域23に対して第1側に位置している。これにより、転送ゲート電極41に近い領域に存在する電荷の割合が多くなり、電荷を一層高速に転送することが可能となる。また、傾斜ポテンシャルAが転送ゲート電極41の近くに形成されることによっても、電荷を一層高速に転送することが可能となる。
【0072】
傾斜ポテンシャル形成領域59が、転送領域35に近づくにつれて不純物濃度が高くなるように配列された第2領域52、第3領域53及び第4領域54を含んでいる。これにより、傾斜ポテンシャルAを電荷発生領域29に好適に形成することができる。
【0073】
電荷発生領域29が、埋め込みフォトダイオード構造を有している。これにより、電荷発生領域29における暗電流の発生を抑制することができる。
[変形例]
【0074】
図6に示される第2変形例の電荷蓄積領域24Aは、第1領域(第1半導体領域)55と、第2領域(第2半導体領域)56と、を含んでいる。第1領域55は、第1部分55a及び第2部分55bを含んでいる。第2領域56は、Y方向において第1部分55aと第2部分55bとの間に配置されている。第1領域55及び第2領域56は、n型の領域である。第2領域56は、第1領域55よりも高い不純物濃度を有している。第1領域55の不純物濃度は1×10
13~1×10
16cm
-3程度であり、第2領域56の不純物濃度は1×10
16~1×10
19cm
-3程度である。第1領域55は、p型の領域であってもよい。
【0075】
第2領域56は、X方向において転送領域35と隣り合っている。第2領域56の幅(Y方向に沿っての長さ)W2は、転送領域35に近づくにつれて増加している。第1領域55及び第2領域56を有する電荷蓄積領域24Aは、転送領域35に近づくにつれてポテンシャルが低くなるように傾斜した傾斜ポテンシャルAを形成する傾斜ポテンシャル形成領域59Aとして機能する。傾斜ポテンシャル形成領域59Aは、Z方向においてアバランシェ増倍領域23に対して第1側に位置している。第2変形例によっても、上記実施形態と同様に、高感度化を図ると共に、受光領域の面積が大きい場合でも電荷を高速に転送することができる。
【0076】
図7に示される第3変形例の光センサ1Bでは、傾斜ポテンシャル形成領域59Bがアバランシェ増倍領域23に対して第2側に位置している。傾斜ポテンシャル形成領域59Bは、第1半導体層61と、第1半導体層61に対して第2側に位置する第2半導体層62と、を含んでいる。第1半導体層61には、Z方向に沿って第1半導体層61を貫通する貫通孔63が形成されている。
【0077】
第1半導体層61及び第2半導体層62は、p型の領域である。第1半導体層61及び第2半導体層62の不純物濃度は1×1014~1×1016cm-3程度である。第1半導体層61及び第2半導体層62は、アバランシェ増倍領域23の第1増倍領域23aを構成しているとみなすこともできる。換言すれば、アバランシェ増倍領域23が第1半導体層61及び第2半導体層62を有しているとみなすこともできる。
【0078】
第3変形例では、第1半導体層61と第2半導体層62との間に段差部64が形成されていることにより、傾斜ポテンシャルAが形成されている。段差部64は、第1半導体層61の表面の一部が第2半導体層62によって覆われていないことにより、当該一部と第2半導体層62との間に形成されている。この例では、段差部64は一対設けられており、それぞれY方向に沿って延在している。貫通孔63は、X方向において一対の段差部64の間に配置されている。
【0079】
電荷発生領域29は、傾斜ポテンシャル形成領域59Bに加えて、アバランシェ増倍領域23に対して第1側に設けられた電荷蓄積領域24Bを更に含んでいる。電荷蓄積領域24Bは、n型の領域である。電荷蓄積領域24Bの不純物濃度は1×1016~1×1019cm-3程度である。
【0080】
貫通孔63は、Z方向において、電荷発生領域29における転送領域35との境界部と重なっている。この例では、貫通孔63は、Z方向において電荷蓄積領域24Bと重なっている。第3変形例では、傾斜ポテンシャルAにより集められた電荷が貫通孔63を通ってアバランシェ増倍領域23に到達する。アバランシェ増倍領域23で増倍された電荷は、電荷蓄積領域24Bに蓄積される。電荷蓄積領域24Bに蓄積された電荷は、転送ゲート電極41を用いて電荷収集領域33に転送される。なお、
図7では転送ゲート電極41が単一の電極により構成されているように描かれているが、転送ゲート電極41は、上記実施形態と同様に、第1転送ゲート電極43及び第2転送ゲート電極44を有していてもよい。
図7では、電極層4の一部及び保護層6等の図示が省略されている。介在領域25上に配置された接地電極46が図示されている。
【0081】
第3変形例によっても、上記実施形態と同様に、高感度化を図ると共に、受光領域の面積が大きい場合でも電荷を高速に転送することができる。また、傾斜ポテンシャル形成領域59Bが、アバランシェ増倍領域23に対して第2側に位置している。このような構造では、上述したような傾斜ポテンシャルAの傾斜高さに関する制限が生じ難い。そのため、傾斜ポテンシャルAの傾きを大きくすることができ、電荷を一層高速に転送することができる。また、傾斜ポテンシャルAによって集められた電荷がアバランシェ増倍領域23において増倍されるため、増倍の発生箇所を限定することができ、増倍の均一性を高めることができる。
【0082】
傾斜ポテンシャル形成領域59Bでは、第1半導体層61と第2半導体層62との間に段差部64が形成されていることにより、傾斜ポテンシャルAが形成されている。これにより、傾斜ポテンシャルAを電荷発生領域29に好適に形成することができる。
【0083】
第1半導体層61に形成された貫通孔63が、Z方向において、電荷発生領域29における転送領域35との境界部と重なっている。これにより、傾斜ポテンシャルAにより案内された電荷を電荷発生領域29における転送領域35との境界部に集めることができる。
【0084】
本発明は、上記実施形態及び変形例に限られない。例えば、各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。
【0085】
上記実施形態では第1転送ゲート電極43及び第2転送ゲート電極44に同一の電位を与えることによって第2ポテンシャルφ44を第1ポテンシャルφ43よりも高くしたが、追加のバイアス回路を設け、第1転送ゲート電極43及び第2転送ゲート電極44に異なる大きさの電位を与えることによって第2ポテンシャルφ44を第1ポテンシャルφ43よりも高くしてもよい。この場合、電荷転送処理の開始時及び終了時には、第1ポテンシャルφ43と第2ポテンシャルφ44とは等しくてもよい。
【0086】
転送ゲート電極41は、単一の電極により構成されてもよい。この場合でも、上記実施形態のようにポテンシャル調整層36を形成することで、第2ポテンシャルφ44を第1ポテンシャルφ43よりも高くすることができる。例えば、単一の電極により構成された転送ゲート電極41のうち第2転送ゲート電極44に対応する部分の下側に、ポテンシャル調整層36が形成され得る。
【0087】
第1ポテンシャルφ43及び第2ポテンシャルφ44が傾斜ポテンシャルAの下端のポテンシャルPa以下である状態から、第1ポテンシャルφ43及び第2ポテンシャルφ44が同時にポテンシャルPaよりも高くなってもよい。p型及びn型の各導電型は、上述したものに対して逆であってもよい。複数の画素10は、半導体層2の第1表面2aに沿って1次元に配列されていてもよい。光センサ1は、単一の画素10のみを有していてもよい。光センサ1は、間接TOF方式を利用して対象物の距離画像(対象物までの距離dに関する情報を含む画像)を取得する測距センサであってもよい。光センサ1は、各画素10に2つ以上の電荷収集領域33を備えていてもよい。光センサ1は、各画素10に2つ以上の転送ゲート電極41を備えていてもよい。
【0088】
上記実施形態及び変形例において、アバランシェ増倍領域23が形成されていなくてもよい。すなわち、電荷発生領域29は、アバランシェ増倍領域23を含んでいなくてもよい。このような構成によっても、上記実施形態と同様に、受光領域の面積が大きい場合でも電荷を高速に転送することができる。
【符号の説明】
【0089】
1,1B…光センサ、23…アバランシェ増倍領域、29…電荷発生領域、33…電荷収集領域、35…転送領域、36…ポテンシャル調整層、41,41A…転送ゲート電極、43…第1転送ゲート電極、44…第2転送ゲート電極、52…第2領域(半導体領域)、53…第3領域(半導体領域)、54…第4領域(半導体領域)、55…第1領域(第1半導体領域)、55a…第1部分、55b…第2部分、56…第2領域(第2半導体領域)、59,59A,59B…傾斜ポテンシャル形成領域、61…第1半導体層、62…第2半導体層、63…貫通孔、64…段差部、A…傾斜ポテンシャル、Pa…傾斜ポテンシャルの下端のポテンシャル(電荷発生領域における転送領域との境界部のポテンシャル)、W2…幅、φ43…第1ポテンシャル、φ44…第2ポテンシャル。