IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本特殊陶業株式会社の特許一覧

<>
  • 特許-電波吸収体、筐体、および電力変換装置 図1
  • 特許-電波吸収体、筐体、および電力変換装置 図2
  • 特許-電波吸収体、筐体、および電力変換装置 図3
  • 特許-電波吸収体、筐体、および電力変換装置 図4
  • 特許-電波吸収体、筐体、および電力変換装置 図5
  • 特許-電波吸収体、筐体、および電力変換装置 図6
  • 特許-電波吸収体、筐体、および電力変換装置 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-11
(45)【発行日】2024-12-19
(54)【発明の名称】電波吸収体、筐体、および電力変換装置
(51)【国際特許分類】
   H05K 9/00 20060101AFI20241212BHJP
   B32B 7/025 20190101ALI20241212BHJP
   B32B 27/18 20060101ALI20241212BHJP
   B32B 27/00 20060101ALI20241212BHJP
   H02M 7/48 20070101ALI20241212BHJP
   H01L 23/36 20060101ALI20241212BHJP
   H01L 23/473 20060101ALI20241212BHJP
【FI】
H05K9/00 M
H05K9/00 U
H05K9/00 G
B32B7/025
B32B27/18 H
B32B27/00 101
H02M7/48 Z
H01L23/36 D
H01L23/46 Z
【請求項の数】 14
(21)【出願番号】P 2022194115
(22)【出願日】2022-12-05
(65)【公開番号】P2024080837
(43)【公開日】2024-06-17
【審査請求日】2023-07-28
(73)【特許権者】
【識別番号】000004547
【氏名又は名称】日本特殊陶業株式会社
(74)【代理人】
【識別番号】100160691
【弁理士】
【氏名又は名称】田邊 淳也
(74)【代理人】
【識別番号】100167232
【弁理士】
【氏名又は名称】川上 みな
(72)【発明者】
【氏名】森 智史
(72)【発明者】
【氏名】菊地 真史
【審査官】板澤 敏明
(56)【参考文献】
【文献】再公表特許第2018/088318(JP,A1)
【文献】特開2018-088510(JP,A)
【文献】特開2002-158484(JP,A)
【文献】特開2021-136447(JP,A)
【文献】登録実用新案第3230305(JP,U)
【文献】特開2022-126933(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 9/00
B32B 1/00-43/00
H02M 7/48
(57)【特許請求の範囲】
【請求項1】
電磁波を吸収する電波吸収体であって、
軟磁性材料とシリコーン樹脂とを備える電波吸収層と、
前記電波吸収層の一方の面上に配置され、セラミック粒子とシリコーン樹脂とを備え、前記電波吸収層よりも高い熱伝導率を有する熱伝導層と、
を備え、
熱伝導率が1.0W/(m・K)以上であることを特徴とする電波吸収体。
【請求項2】
電磁波を吸収する電波吸収体であって、
軟磁性材料とシリコーン樹脂とを備える電波吸収層と、
前記電波吸収層の一方の面上に配置され、セラミック粒子とシリコーン樹脂とを備え、前記電波吸収層よりも高い熱伝導率を有する熱伝導層と、
を備え、
ヤング率が10MPa以下であることを特徴とする電波吸収体。
【請求項3】
電磁波を吸収する電波吸収体であって、
軟磁性材料とシリコーン樹脂とを備える電波吸収層と、
前記電波吸収層の一方の面上に配置され、セラミック粒子とシリコーン樹脂とを備え、前記電波吸収層よりも高い熱伝導率を有する熱伝導層と、
を備え、
前記セラミック粒子において、粒子径が7μm以上である粒子の平均粒子径をr1、粒子径が7μm未満である粒子の平均粒子径をr2としたときに、r2/r1の値が0.10以上0.45以下であることを特徴とする電波吸収体。
【請求項4】
電磁波を吸収する電波吸収体であって、
軟磁性材料とシリコーン樹脂とを備える電波吸収層と、
前記電波吸収層の一方の面上に配置され、セラミック粒子とシリコーン樹脂とを備え、前記電波吸収層よりも高い熱伝導率を有する熱伝導層と、
を備え、
室温での伸び率が30%以上であることを特徴とする電波吸収体。
【請求項5】
請求項1に記載の電波吸収体であって、
複素比透磁率の実数成分が、1MHzから100MHzの範囲で3以上であることを特徴とする
電波吸収体。
【請求項6】
請求項2に記載の電波吸収体であって、
複素比透磁率の実数成分が、1MHzから100MHzの範囲で3以上であることを特徴とする
電波吸収体。
【請求項7】
請求項3に記載の電波吸収体であって、
複素比透磁率の実数成分が、1MHzから100MHzの範囲で3以上であることを特徴とする
電波吸収体。
【請求項8】
請求項4に記載の電波吸収体であって、
複素比透磁率の実数成分が、1MHzから100MHzの範囲で3以上であることを特徴とする
電波吸収体。
【請求項9】
請求項1に記載の電波吸収体であって、
前記セラミック粒子は、窒化アルミニウムと窒化ホウ素のうちの少なくとも一方を含有することを特徴とする
電波吸収体。
【請求項10】
請求項2に記載の電波吸収体であって、
前記セラミック粒子は、窒化アルミニウムと窒化ホウ素のうちの少なくとも一方を含有することを特徴とする
電波吸収体。
【請求項11】
請求項3に記載の電波吸収体であって、
前記セラミック粒子は、窒化アルミニウムと窒化ホウ素のうちの少なくとも一方を含有することを特徴とする
電波吸収体。
【請求項12】
請求項4に記載の電波吸収体であって、
前記セラミック粒子は、窒化アルミニウムと窒化ホウ素のうちの少なくとも一方を含有することを特徴とする
電波吸収体。
【請求項13】
電子部品モジュールを収納するための筐体であって、
請求項1から12までのいずれか一項に記載の電波吸収体を備え、
前記電子部品モジュールを冷却するための冷却構造を、前記筐体の外側から前記筐体に取り付けるための取り付け部が設けられており、
前記電波吸収体は、前記取り付け部と重なる位置において、前記電波吸収層が前記筐体の内壁面に対向し、前記熱伝導層が前記電子部品モジュールに対向する向きで、前記筐体の内壁面に取り付けられていることを特徴とする
筐体。
【請求項14】
半導体を有するパワーモジュールと、前記パワーモジュールを収納する筐体と、前記パワーモジュールを冷却するための冷却構造であって、前記筐体に設けられた取り付け部において前記筐体の外側から前記筐体に取り付けられた冷却構造と、を備える電力変換装置であって、
前記筐体は、請求項1から12までのいずれか一項に記載の電波吸収体を備え、
前記電波吸収体は、前記取り付け部と重なる位置において、前記電波吸収層が前記筐体の内壁面に対向し、前記熱伝導層が前記パワーモジュールに対向する向きで、前記筐体の内壁面に取り付けられていることを特徴とする
電力変換装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電波吸収体、筐体、および電力変換装置に関する。
【背景技術】
【0002】
従来、種々の電気回路や電子機器等から放出される電磁波の影響を抑えるために、電磁波を吸収する電波吸収体が用いられている。例えば、特許文献1には、電磁波を発生すると共に高温になり得る機器に近接して用いる電波吸収体として、軟磁性金属粉および電気絶縁性の熱伝導性充填剤をベースポリマー中に分散させた電磁波吸収性熱伝導層を備える電磁波吸収性熱伝導性シートが開示されている。このような電磁波吸収性熱伝導性シートでは、電磁波吸収性熱伝導層中に分散された軟磁性金属粉によって電磁波が吸収されると共に、電磁波吸収性熱伝導層中に分散された熱伝導性充填剤によって、電磁波吸収性熱伝導性シートにおける熱伝導性能が高められている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2004-200534号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記のような電磁波吸収性熱伝導性シートは、軟磁性金属粉および電気絶縁性の熱伝導性充填剤を含んでいても、電磁波吸収性能や熱伝導率が不十分になる場合があった。樹脂(ベースポリマー)中に軟磁性金属粉や熱伝導性充填剤などのフィラーを加える場合には、電磁波吸収性熱伝導性シートの柔軟性等を確保する観点から、フィラー全体の添加量には限度があり、例えば、電磁波吸収性能を確保するために軟磁性金属粉の添加量を確保すると、熱伝導性充填剤の添加量が抑えられてしまう。特に、樹脂中で分散する熱伝導性充填剤は、近接する熱伝導性充填剤間で熱が伝えられることにより伝熱が行われるため、熱伝導性充填剤の添加量をある程度以上確保して熱伝導性充填剤間の距離を縮めないと、熱伝導率を高め難いという性質を有している。したがって、上記のように熱伝導性充填剤の添加量が抑えられると、電波吸収体全体の熱伝導率が不十分になる場合があった。そのため、電磁波を吸収する電波吸収体において、電磁波吸収能を確保しつつ、熱伝導率を高める技術が望まれていた。
【課題を解決するための手段】
【0005】
本開示は、以下の形態として実現することが可能である。
(1)本開示の一形態によれば、電磁波を吸収する電波吸収体が提供される。この電磁波吸収体は、軟磁性材料とシリコーン樹脂とを備える電波吸収層と、前記電波吸収層の一方の面上に配置され、セラミック粒子とシリコーン樹脂とを備え、前記電波吸収層よりも高い熱伝導率を有する熱伝導層と、を備える。
この形態の電波吸収体によれば、電波吸収体が、電波吸収層と共に熱伝導層を備えるため、電磁波吸収能を確保しつつ電波吸収体の熱伝導率を高めることができる。
(2)上記形態の電波吸収体において、熱伝導率が1.0W/(m・K)以上であることとしてもよい。このような構成とすれば、電波吸収体の熱伝導率を、より十分に確保することができる。
(3)上記形態の電波吸収体において、複素比透磁率の実数成分が、1MHzから100MHzの範囲で3以上であることとしてもよい。このような構成とすれば、1MHzから100MHzの電磁波に対して、電波吸収体として機能することができる。
(4)上記形態の電波吸収体において、ヤング率が10MPa以下であることとしてもよい。このような構成とすれば、電波吸収体の柔軟性や可撓性を高めることができるため、電波吸収体を曲げることなどにより、任意の形状の部材表面に電波吸収体を配置することが容易になる。
(5)上記形態の電波吸収体において、大気中において100℃で1000時間処理した後のヤング率が、11MPa以下であることとしてもよい。このような構成とすれば、電波吸収体を、比較的高温になる装置内に配置して長時間用いた場合であっても、電波吸収体の柔軟性を確保することができ、電波吸収体の耐熱性および耐久性を高めることができる。
(6)上記形態の電波吸収体において、前記セラミック粒子は、窒化アルミニウムと窒化ホウ素のうちの少なくとも一方を含有することとしてもよい。このような構成とすれば、熱伝導層の熱伝導率を高め、その結果として、電波吸収体全体の熱伝導率を高めることが容易になる。
(7)上記形態の電波吸収体において、前記セラミック粒子において、粒子径が7μm以上である粒子の平均粒子径をr1、粒子径が7μm未満である粒子の平均粒子径をr2としたときに、r2/r1の値が0.10以上0.45以下であることとしてもよい。このような構成とすれば、熱伝導層内でセラミック粒子が密になる状態を確保して、熱伝導層および電波吸収体全体の熱伝導率を高めることが容易になる。
(8)上記形態の電波吸収体において、室温での伸び率が30%以上であることとしてもよい。このような構成とすれば、電波吸収体の柔軟性や可撓性を高めることができる。また、電波吸収体を、例えば発熱する機器を収納する筐体の内壁面に貼り付けたときに、電波吸収体と筐体との間の熱膨張差から生じるひずみを緩和することが容易になる。
(9)本開示の他の一形態によれば、電子部品モジュールを収納するための筐体が提供される。この筐体は、(1)から(8)までのいずれか一項に記載の電波吸収体を備え、前記電子部品モジュールを冷却するための冷却構造を、前記筐体の外側から前記筐体に取り付けるための取り付け部が設けられており、前記電波吸収体は、前記取り付け部と重なる位置において、前記電波吸収層が前記筐体の内壁面に対向し、前記熱伝導層が前記電子部品モジュールに対向する向きで、前記筐体の内壁面に取り付けられている。
この形態の筐体によれば、筐体の内壁面に上記電波吸収体が取り付けられることにより、電子部品モジュールに係る電磁波の影響を抑えると共に、筐体と電子部品モジュールとの間の熱伝導性を確保することができる。このとき、熱伝導層が電子部品モジュールに対向する向きとなるように、電波吸収体が筐体の内壁面に取り付けられるため、電子部品モジュールで発生した熱を熱伝導層によって直ちに除去することができる。
(10)本開示のさらに他の一形態によれば、半導体を有するパワーモジュールと、前記パワーモジュールを収納する筐体と、前記パワーモジュールを冷却するための冷却構造であって、前記筐体に設けられた取り付け部において前記筐体の外側から前記筐体に取り付けられた冷却構造と、を備える電力変換装置が提供される。この電力変換装置において、前記筐体は、請求項1から8までのいずれか一項に記載の電波吸収体を備え、前記電波吸収体は、前記取り付け部と重なる位置において、前記電波吸収層が前記筐体の内壁面に対向し、前記熱伝導層が前記パワーモジュールに対向する向きで、前記筐体の内壁面に取り付けられている。
この形態の電力変換装置によれば、筐体の内壁面に上記電波吸収体が取り付けられることにより、パワーモジュールに係る電磁波の影響を抑えると共に、筐体とパワーモジュールとの間の熱伝導性を確保することができる。このとき、熱伝導層がパワーモジュールに対向する向きとなるように、電波吸収体が筐体の内壁面に取り付けられるため、パワーモジュールで発生した熱を熱伝導層によって直ちに除去することができる。
本開示は、上記以外の種々の形態で実現可能であり、例えば、電波吸収シート、電波吸収体の製造方法、電子機器における電磁波の放出や侵入の防止方法、などの形態で実現することが可能である。
【図面の簡単な説明】
【0006】
図1】第1実施形態としての電波吸収体の概略構成を表す断面模式図。
図2】装置内での電波吸収体の配置箇所の様子を拡大して表す断面模式図。
図3】セラミック粒子が最も密になる場合のモデルの一例を表す説明図。
図4】粒子R1~R4の粒子径に応じてR5の粒子径を求めた結果を示す説明図。
図5】電波吸収体の具体的な構成をまとめて示す説明図。
図6】電波吸収体の性能に係る測定値をまとめて示す説明図。
図7】電波吸収体の評価結果をまとめて示す説明図。
【発明を実施するための形態】
【0007】
A.第1実施形態:
図1は、本開示の第1実施形態としての電波吸収体10の概略構成を表す断面模式図である。電波吸収体10は、電波吸収層12と、電波吸収層12の一方の面上に配置される熱伝導層14と、を備える。
【0008】
電波吸収層12は、軟磁性材料とシリコーン樹脂とを備える。電波吸収層12において軟磁性材料は、粉末粒子の状態でシリコーン樹脂中に分散されている。
【0009】
軟磁性材料は、例えば、軟磁性合金、あるいは金属酸化物のうちの少なくとも1種とすることができる。軟磁性合金としては、例えば、Fe-Si合金、Fe-Si-Cr合金、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)などが挙げられる。金属酸化物としては、Ni-Znフェライト(ニッケル亜鉛フェライト)やMn-Znフェライト(マンガン亜鉛フェライト)等のフェライト、あるいは、マグネタイトやマグヘマイト等の酸化鉄などが挙げられる。
【0010】
軟磁性材料は、電波吸収体10を用いて吸収すべき電磁波の周波数帯に応じて適宜選択すればよい。一般的な電子機器から放出される電磁波の周波数帯がkHz~MHzであるため、kHz~MHzまでの幅広い周波数帯で機能する軟磁性材料が好ましい。既述したNi-Znフェライト、Mn-Znフェライト、マグネタイト、Fe-Si合金、Fe-Si-Cr合金、センダスト、パーマロイ等は、このような周波数帯の電磁波に対して有用である。特に、Mn-ZnフェライトやNi-Znフェライト等のフェライトは、kHz~MHzにわたる周波数帯における透磁率が比較的高くいため好ましい。また、電波吸収体10を高電圧機器に近接して用いる場合には、軟磁性材料は、電気抵抗がより大きい材料であることが望ましい。電気抵抗が大きいという観点から、Ni-ZnフェライトやMn-Znフェライト等のフェライトが好ましい。電波吸収層12における軟磁性材料の添加量は、電波吸収体10における複素比透磁率の実数成分μ'を高める観点から、40体積%~60体積%であることが好ましい。
【0011】
熱伝導層14は、電波吸収体10全体の熱伝導率を高めるための層であり、セラミック粒子とシリコーン樹脂とを備える。以下では、熱伝導層14が備えるセラミック粒子のことを「高熱伝導セラミック粒子」とも呼び、セラミック粒子を構成するセラミックのことを「高熱伝導セラミック」とも呼ぶ。熱伝導層14は、高熱伝導セラミック粒子がシリコーン樹脂中に分散された状態で形成されている。そして、本実施形態の熱伝導層14は、電波吸収層12よりも高い熱伝導率を有している。
【0012】
熱伝導層14が備える高熱伝導セラミック粒子は、シリコーン樹脂を含む一般的な樹脂よりも大きな熱伝導率を示すセラミックによって構成されることが好ましい。このような高熱伝導セラミックとしては、例えば、アルミナ(Al)、ジルコニア(ZrO)、窒化ケイ素、窒化アルミニウム、窒化ホウ素、炭化ケイ素などが挙げられる。特に、熱伝導層14の熱伝導率を電波吸収層12の熱伝導率よりも高めて、電波吸収体10全体の熱伝導率を高める観点から、高熱伝導セラミックは、熱伝導率が100W/(m・K)を上回るセラミックであることが望ましい。熱伝導率が100W/(m・K)を上回る高熱伝導セラミックを用いて高熱伝導セラミック粒子を構成する観点から、高熱伝導セラミック粒子は、例えば、窒化アルミニウムと窒化ホウ素のうちの少なくとも一方を含有することが望ましい。
【0013】
熱伝導層14において十分な熱伝導性を実現するためには、熱伝導層14内の高熱伝導セラミック粒子は、シリコーン樹脂中で密な状態となっていることが要求される。このように高熱伝導セラミック粒子が密な状態となるためには、高熱伝導セラミック粒子の粒子径がある程度広い分布を持つことが望ましい。高熱伝導セラミック粒子の粒子径が比較的狭い場合であっても、異なる粒度分布を持つ粒子が混合されている場合には、セラミック粒子は、密にパッキングされた構造を容易に作ることができる。熱伝導層14における高熱伝導セラミック粒子の添加量は、40体積%~60体積%であることが好ましい。
【0014】
電波吸収体10において、電波吸収層12と熱伝導層14とを合わせた電波吸収体10全体の熱伝導率は、1.0W/(m・K)以上であることが望ましい。このようにすることで、電波吸収体10の伝熱性能を確保することができる。電波吸収体10における上記した熱伝導率は、特に、電波吸収層12と熱伝導層14の積層方向(電波吸収層12および熱伝導層14の面方向に垂直な方向であり、以下、単に「積層方向」とも呼ぶ)において実現されていることが望ましい。これにより、電波吸収体10において、熱伝導層14側の表面と電波吸収層12側の表面との間の熱抵抗を小さくして伝熱性能を確保することができる。後述する図2では、電波吸収体10において特に熱抵抗を抑えることが望まれる上記積層方向を、両矢印によって示している。なお、上記した電波吸収体10全体の熱伝導率の値としての1.0W/(m・K)は、シリコーン樹脂と共に用いるフィラーとして熱伝導率が5W/(m・K)程度であるフェライトを用いる場合にはほぼ達成不可能と考えられる値であり、熱伝導率が30W/(m・K)のアルミナをフィラーとして用いる場合であっても、達成が極めて困難な値である。
【0015】
電波吸収体10全体の熱伝導率は、電波吸収層12および熱伝導層14の各々の熱伝導率と厚さ分率とによって調節することができる。具体的には、熱伝導層14の熱伝導率を高めるだけでなく、熱伝導層14の厚さをある程度厚くして厚さ分率を高めることにより、電波吸収体10全体の熱伝導率を高めることが容易になる。ただし、極めて狭いスペースにも電波吸収体10を配置可能にする観点から、電波吸収体10全体の厚さは1mm以下であることが望ましい。電波吸収層12および熱伝導層14の各々における熱伝導率は、各層が含有するフィラー(電波吸収層12が含有する軟磁性材料や熱伝導層14が含有する高熱伝導セラミック粒子)の種類、添加量、およびパッキングの状態(フィラーがどの程度密であるか)によって調節することができる。
【0016】
電波吸収体10における複素比透磁率の実数成分μ'は、1MHzから100MHzの範囲で3以上であることが望ましい。このようにすることで、電波吸収体10は、上記周波数帯の電磁波に対して電波吸収体として良好に機能することが可能になる。電波吸収体10における複素比透磁率の実数成分μ'は、例えば、電波吸収層12に含まれる軟磁性材料の種類や添加量等によって調整することができる。軟磁性材料の添加量が多いほど、複素比透磁率の実数成分μ'は大きくなる。また、電波吸収層12と熱伝導層14とが積層された電波吸収体10における電波吸収層12の厚さ分率も、上記実数成分μ'に影響する。電波吸収層12の厚さ分率が大きい方が、電波吸収体10における複素比透磁率の実数成分μ'は大きくなる。
【0017】
上記複素比透磁率の実数成分μ'を3以上にするには、電波吸収層12が備える軟磁性材料として、Mn-Znフェライトを用いることが望ましい。Mn-Znフェライトは、kHz~MHzにわたる周波数帯における透磁率が比較的高いため、軟磁性材料としてMn-Znフェライトを用いることで、1MHzから100MHzの範囲で複素比透磁率の実数成分μ'を3以上にすることが容易になる。
【0018】
また、電波吸収体10のヤング率は、15MPa以下であることが好ましく、10MPa以下であることがより好ましい。これにより、電波吸収体10の柔軟性を確保することができる。電波吸収体10の柔軟性を確保することにより、電波吸収体10を、平坦面とは異なる形状に沿って取り付けることが容易になる。例えば、電磁波を放出し、あるいは電磁波の影響を受ける機器を収納する筐体の内壁面の少なくとも一部に電波吸収体10を貼り付けるときに、貼り付け部位が曲面であっても、電波吸収体10を容易に貼り付けることが可能になる。なお、電波吸収体10のヤング率は、0.5MPa以上であることが好ましく、1MPa以上であることがより好ましい。
【0019】
電波吸収体10のヤング率は、例えば、電波吸収層12および熱伝導層14を構成するシリコーン樹脂の分子量や架橋密度等により調整することができる。例えば、上記シリコーン樹脂の分子量が小さいと、架橋密度が高くなりやすく、ヤング率は大きくなりやすい。また、電波吸収体10のヤング率は、電波吸収層12における軟磁性材料の種類や含有率、あるいは、熱伝導層14における高熱伝導セラミック粒子の種類や含有率によって調整することができる。各層におけるフィラーの含有率を抑えるほど、電波吸収体10のヤング率を低くすることができる。電波吸収体10のヤング率においては、特にシリコーン樹脂の分子量の影響が大きく、主剤の分子量が1万以上であることが好ましい。
【0020】
さらに、電波吸収体10は、大気中において100℃で1000時間処理した後のヤング率が、15MPa以下であることが好ましく、11MPa以下であることがより好ましい。これにより、電波吸収体10を、比較的高温になる装置内に配置して長時間用いた場合であっても、電波吸収体10の柔軟性を確保することができ、電波吸収体の耐熱性および耐久性を高めることができる。上記した熱処理後の電波吸収体10のヤング率は、例えば、電波吸収層12および熱伝導層14を構成するシリコーン樹脂の分子量や架橋密度、あるいは、樹脂を硬化する際の温度等により調整することができる。例えば、官能基量が同一と仮定した場合、上記シリコーン樹脂の分子量が大きいほど、架橋密度が低くなりやすく、熱処理後のヤング率は小さくなりやすい。そのため、シリコーン樹脂の主剤の分子量は、2万以上とすることが好ましく、5万以上とすることがより好ましく、7万以上とすることがさらに好ましい。なお、上記した熱処理後の電波吸収体10のヤング率は、0.5MPa以上であることが好ましく、1MPa以上であることがより好ましい。また、シリコーン樹脂を比較的低温で硬化させた場合には、その後に高温環境下に配置したときに、電波吸収体10のヤング率が上昇して大きく変化し得るため、熱処理後のヤング率を抑えるためには、シリコーン樹脂は100℃以上の温度で硬化させることが好ましい。
【0021】
また、電波吸収体10は、室温での伸び率が30%以上であることが望ましい。これにより、電波吸収体10の柔軟性を確保することができる。そして、電波吸収体10が上記の伸び率を示すことにより、例えば、電磁波を放出し、あるいは電磁波の影響を受ける機器を収納する筐体の内壁面に電波吸収体10を貼り付けたときに、電波吸収体10と筐体との間の熱膨張差から生じるひずみを緩和することができる。電波吸収体10の伸び率は、上記したヤング率と同様に、電波吸収層12および熱伝導層14を構成するシリコーン樹脂の分子量や架橋密度等により調整することができる。上記したひずみを緩和する効果を確保する観点から、シリコーン樹脂の主剤は分子量1万以上であることが好ましい。
【0022】
図2は、本実施形態の電波吸収体10を備える装置の構成を示す説明図である。具体的には、図2は、電磁波を放出し、あるいは電磁波の影響を受ける機器40と、機器40を収納する筐体20と、機器40を冷却するための冷却構造30と、を備える装置50において、電波吸収体10が配置された箇所の様子を拡大して表す断面模式図である。なお、図2は、各部の寸法の比率を正確に表すものではない。
【0023】
筐体20は、筐体の外殻部22と電波吸収体10とを備えている。図2に示す装置50では、電波吸収体10は、電波吸収層12が筐体20の内壁面、すなわち、筐体の外殻部22の内壁面に対向し、熱伝導層14が機器40に対向する向きで、筐体20の内壁面に取り付けられている。
【0024】
冷却構造30は、空冷など種々の冷却方式を採用可能であるが、図2では、流路配管32を備え、冷媒が流れる冷媒流路34が内部に形成された構造(例えば水冷ジャケット)を示している。冷却構造30は、筐体に設けられた取り付け部24において、筐体20の外側から筐体20に取り付けられている。取り付け部24における取り付けの態様は、溶接やボルト締結等、種々の方法を採用可能である。図2では、一例として、取り付け部を構成する筐体の外殻部22の一部と、冷却構造30の流路配管32の一部とが、一体化された様子を示している。電波吸収体10は、上記した取り付け部24と、外殻部22の面方向に垂直な方向に重なる位置において、筐体20の内壁面に取り付けられている。
【0025】
装置50は、例えば、電気自動車の動力源となる電力変換装置、すなわちパワートレインとすることができる。そして、機器40は、例えば、半導体を有するパワーモジュールとすることができ、Si-IGBT等によって構成されるトランス(バッテリ電圧を昇圧する昇圧コンバータや、高電圧を降圧する降圧コンバータ)等とすることができる。本実施形態の電波吸収体10は、上記のパワーモジュールのような高電圧機器よりも使用電圧が低い電子部品モジュールを備える装置に用いてもよいが、パワーモジュールのように発熱量の多い機器40と共に用いることで、電波吸収体10に熱伝導層14を設けることによって機器40の冷却性能を高めるという後述する効果を顕著に得ることができる。
【0026】
本実施形態の電波吸収体10において、電波吸収体10の一方の面側(電波吸収層12における熱伝導層14と接する面とは異なる面であり、図1において接着面13として示す面側)に、接着層を設けることとしてもよい。この接着層は、図2に示した機器40を収納する筐体20の内壁面のように、電波吸収体10を配置したい箇所に電波吸収体10を貼り付けるための構造である。接着層は、例えば、シリコーン系樹脂やポリアミド系樹脂やアクリル系樹脂、エポキシ系樹脂等の接着剤もしくは粘着剤を塗布することにより構成することができる。電波吸収体10は、使用時に高温になり得る機器40に近接して用いるため、上記した接着剤や粘着剤としては、耐熱性が比較的高く、筐体の外殻部22との間の熱膨張差から生じるひずみを緩和する性能が比較的高いシリコーン系樹脂を用いることが望ましい。なお、電波吸収体10を、貼り付けではなく、例えば留め具などを用いて機械的に固定して配置する場合には、上記した接着層を設けないこととしてもよい。
【0027】
また、電波吸収体10を貼り付けにより配置する場合に、接着層を設けることなく、例えば、電波吸収層12を構成するシリコーン樹脂にシランカップリング剤等のアルコキシドを添加し、電波吸収体10を接着シートとして使用してもよい。この場合には、電波吸収層12を構成するシリコーン樹脂の一部分を硬化させた状態で電波吸収体10を用意した後に、所望の箇所(筐体の内壁面などの被着体)に電波吸収体10を貼り付けて熱硬化させることで、上記被着体に電波吸収体10を接合することができる。シリコーン樹脂に添加するシランカップリング剤としては、特に制限は無く、例えば、有機反応性基としてビニル基、エポキシ基、メタクリル基、アミノ基、メルカプト基、イソシアネート基のいずれかを有するものなど、従来知られるシランカップリング剤の中から適宜選択することができる。
【0028】
以上のように構成された本実施形態の電波吸収体10によれば、軟磁性材料とシリコーン樹脂とを備える電波吸収層12と、電波吸収層12の一方の面上に配置され、高熱伝導セラミック粒子とシリコーン樹脂とを備え、電波吸収層12よりも高い熱伝導率を有する熱伝導層14と、を備えている。このように、電波吸収体10が、電波吸収層12と共に熱伝導層14を備えるため、電磁波吸収能を確保しつつ電波吸収体10の熱伝導率を高めることができる。その結果、図2に示すようにして、パワーモジュールのような発熱量が比較的大きい機器40と共に電波吸収体10を用いる場合には、機器40等による電磁ノイズを減衰させつつ、機器40からの放熱を良好に行うことができる。
【0029】
また、パワーモジュールのように発熱する機器は、一般に、昇温することによって特性が低下するという性質を有する。そのため、図2に示すように、熱伝導層14が機器40に対向する向きで電波吸収体10を配置する場合には、機器40で発生した熱を熱伝導層14によって直ちに除去できて望ましい。熱伝導層14と機器40との間に、絶縁層などさらに他の層を設けることも可能であるが、機器40からの排熱性能を高めるためには、熱伝導層14と機器40とが接することが望ましい。また、電波吸収層12と筐体20の外殻部22との間に、絶縁層などさらに他の層を設けることも可能であるが、熱抵抗に係る構成は簡素であることが望ましく、電波吸収層12と外殻部22とが接することで、機器40において生じた熱を速やかに冷却構造30に伝えることができる。
【0030】
さらに、熱伝導層14が機器40に対向する向きで電波吸収体10を配置する場合には、熱伝導層14が、電波吸収層12に対して電気抵抗層として機能し得るため、機器40の使用電圧が比較的高い場合であっても、電波吸収層12を保護することができる。また、電波吸収層12に加えてさらに熱伝導層14を設けることにより、電波吸収体10の絶縁性を高めることができる。特に、本実施形態では、電波吸収体10全体の熱伝導率を高めるために熱伝導層14に加えるフィラーとしてセラミック粒子を用いているため、銅や銀などの金属粉末をフィラーとして用いて熱伝導性を高める場合に比べて、電波吸収体10全体の電気抵抗を高めることが容易になる。特に、水冷ジャケット等を構成する流路配管32を、電気抵抗が小さいアルミニウム等で形成する場合には、筐体20内部の機器40が、冷却構造30を介して外部と導通することを抑えるために、機器40と冷却構造30との間で絶縁性を確保することが重要となる。
【0031】
また、本実施形態の電波吸収体10は、電波吸収層12および熱伝導層14においてフィラーを分散させるベースポリマーとしてシリコーン樹脂を備えるため、電波吸収体10の耐熱性および耐久性を高めることができ、機器40の発熱により例えば100℃程度に昇温する場合であっても、支障なく電波吸収体10を用いることができる。さらに、上記ベースポリマーとしてシリコーン樹脂を備えるため、電波吸収体10の柔軟性を高めて、既述したように、電波吸収体10のヤング率や熱処理後のヤング率を低下させると共に、電波吸収体10の伸び率を確保することが容易になる。このように、電波吸収体10の柔軟性が高められて伸び率(変形量)が確保されることで、例えば、装置50を既述した電気自動車のパワートレインとする場合には、走行時の振動に起因する電波吸収体10の損傷や騒音の発生等の問題を抑えることができる。
【0032】
B.第2実施形態:
電波吸収体10の熱伝導層14における熱伝導率を高めるには、熱伝導層14がフィラーとして含むセラミック粒子は、比較的粒子径が大きい粒子と、比較的粒子径が小さい粒子とが、混合されたものであることが好ましい。以下に、第2実施形態として、比較的粒子径が大きい粒子Aと比較的粒子径が小さい粒子Bとが混合されたセラミック粒子を備える熱伝導層14における、粒子Aおよび粒子Bの好ましい粒子径の関係について説明する。なお、第2実施形態の電波吸収体10は、セラミック粒子に係る上記の構成以外は、第1実施形態の電波吸収体10と共通する構成を有している。
【0033】
第2実施形態の電波吸収体10の熱伝導層14は、セラミック粒子として、粒子径が7μm以上である粒子Aと、粒子径が7μm未満である粒子Bと、を含み、粒子Aの平均粒子径をr1、粒子Bの平均粒子径をr2としたときに、「r2/r1」の値を0.10以上0.45以下としている。第2実施形態では、セラミック粒子が粒子径に係る上記した数値範囲を満たすことで、熱伝導層14内でセラミック粒子が密になる状態を確保して、熱伝導層14の熱伝導性を高めている。熱伝導層14内でセラミック粒子が密であることを規定するための上記した数値範囲は、いわゆるパーコレーション理論に基づいて理解することができる。パーコレーション理論は、特定の系において、対象となる物質が系内でクラスタを形成することでどのようにつながっているのか、その結果、上記物質の有する性質により上記の系の性質がどのようになるのか、に関する理論として知られている。以下の説明では、粒子径の分布を単純化したモデルを用いて、セラミック粒子が最も密になる状態を把握している。
【0034】
図3は、粒子径が異なるセラミック粒子が混合されたときに、セラミック粒子が最も密になる場合を示すモデルの一例を表す説明図である。図3では、4つの粒子Aである粒子R1~R4の間に形成される空間に、粒子Bである粒子R5が配置される様子を示している。図3では、各粒子を真球と仮定して、モデルを単純化している。また、図3では、粒子R1~R3によって隠されている粒子R4および粒子R5を、破線で表している。
【0035】
図4は、図3に示すモデルにおいて、粒子R1~R4の粒子径を種々設定したときに、最も密になる状態を実現するための粒子R5の粒子径を算出して「r2/r1」を求めた結果を示す説明図である。ここでは、粒子R1の粒子径が粒子Aの平均粒子径r1と同じであるとすると共に、粒子R2~R4の粒子径を変更して、最も密になる状態を実現するための粒子R5の粒子径を算出した。具体的には、粒子R1~R4が作る空間に存在し得る真球の最大径を、粒子R5の粒子径として算出した。上記した平均粒子径の比である「r2/r1」が検討対象であるため、図3および図4に示すモデルでは、粒子R1の粒子径(平均粒子径r1)を1に設定した。また、粒子R2~R4の粒子径は同じであることとし、上記した最も密になる状態を実現するための粒子R5の粒子径が、粒子Bの平均粒子径r2に相当するものとして、「r2/r1」を算出した。
【0036】
図4に示すように、粒子R2~R4の粒子径が、いずれも粒子R1の粒子径(平均粒子径r1)と同じ1である場合(ケース1)と、いずれも0.5である場合(ケース2)と、いずれも2である場合(ケース3)と、について粒子R5の粒子径を算出し、「r2/r1」の値を求めた。ケース1は、粒子Aの平均粒子径r1に近い粒子径を有する粒子が集まった様子を表すモデルであり、ケース2は、平均粒子径r1に近い粒子径を有する粒子の周りに比較的小さい粒子が集まって、粒子Bが配置される空間を形成する様子を表すモデルであり、ケース3は、平均粒子径r1に近い粒子径を有する粒子の周りに比較的大きい粒子が集まって、粒子Bが配置される空間を形成する様子を表すモデルである。図4に示すように、平均粒子径r1に対する粒子Aの粒子径のばらつきが比較的大きい場合であっても、「r2/r1」の値を0.10以上0.45以下とすることで、セラミック粒子が緻密に配置される程度を高めることができることが理解される。セラミック粒子の粒子径のばらつきが大きすぎると、セラミック粒子を緻密に配置することが困難化する可能性があるため、「r2/r1」の値は、0.10以上とすることが望ましく、0.15以上とすることがより望ましく、0.2以上とすることがさらに望ましい。また、「r2/r1」の値は、0.45以下とすることが望ましく、0.35以下とすることがより望ましく、0.25以下とすることがさらに望ましい。
【0037】
なお、比較的粒子径が大きい粒子Aと比較的粒子径が小さい粒子Bとを含むセラミック粒子の粒径は、種々設定可能である。例えば、設ける熱伝導層14の厚さに応じて、粒径がより大きい粒子Aの粒径として設定可能な粒径の範囲や、そのような粒子Aの粒径に応じた粒子Bの望ましい粒径を設定することができる。ここでは、一例として、熱伝導層14の想定される厚さに基づいて、粒子Aの粒径を15~30μm程度とした場合に、粒子Bとして望ましい粒径を有する粒子が粒子Bとして分類されるように、粒子Aと粒子Bの境界となる粒子径の値を7μmに設定している。
【0038】
このような構成とすれば、熱伝導層14においてセラミック粒子が緻密に配置される程度を高めることができるため、熱伝導層14および電波吸収体10全体における熱伝導率をさらに高めることができる。なお、「r2/r1」の値を上記した範囲とすることで熱伝導層14および電波吸収体10全体の熱伝導率を高める効果を得るには、熱伝導層14におけるフィラーの含有割合は、粒子Aと粒子Bの合計を100wt%としたときに、粒子Bは35wt%以下であることが好ましく、10wt%以下であることがより好ましい。また、熱伝導層14における熱伝導率は、セラミック粒子の含有割合を高めるほど向上させることができるため、熱伝導層14におけるセラミック粒子の含有割合は、40体積%以上とすることが好ましく、50体積%以上とすることがより好ましく、60体積%以上とすることがさらに好ましい。ただし、熱伝導層14の柔軟性を確保する観点から、熱伝導層14におけるセラミック粒子の含有割合は、80体積%以下とすることが好ましく、75体積%以下とすることがより好ましい。
【0039】
C.他の実施形態:
上記した各実施形態では、電波吸収体はシート状に形成したが、異なる形状としてもよい。ただし、シート状にすることで、任意の形状の被着体の表面に沿って電波吸収体を配置することが容易になる。
【0040】
本開示は、上述の実施形態等に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
【実施例
【0041】
図5は、サンプルS1~サンプルS12までの12種類の電波吸収体の具体的な構成(構成材料や添加量や厚みなど)をまとめて示す説明図である。図6は、サンプルS1~サンプルS12の性能に係る測定値をまとめて示す説明図である。図7は、サンプルS1~サンプルS12の電波吸収体についての評価結果をまとめて示す説明図である。以下に、各サンプルの構成および製造方法と、性能を評価した結果について説明する。なお、サンプルS10は、電波吸収層がフィラーを含まないため「軟磁性材料とシリコーン樹脂とを備える電波吸収層12」を備えていない。また、サンプルS11は、熱伝導層がフィラーを含まないため「高熱伝導セラミック粒子とシリコーン樹脂とを備える熱伝導層14」を備えていない。また、サンプルS12は「電波吸収層12よりも熱伝導層14の方が高い熱伝導率を有する」を満たさない。そのため、これらのサンプルは比較例のサンプルである。
【0042】
<各サンプルの作製>
各サンプルは、図5に示す材料を用いて、図5に示す厚みとなるように電波吸収層および熱伝導層に対応する層を作製し、その後、これらの2層を一体化することにより作製した。
【0043】
電波吸収層は、以下のように作製した。すなわち、官能基としてビニル基を有するシリコーン樹脂(図5に示す分子量を有する)に、図5に示す電波吸収層用のフィラーを添加し、攪拌羽根を用いる攪拌機および3本ロールミルによって混合した。そこへ、シランカップリング剤と、架橋剤と、金属触媒とを添加し、十分に混合してペーストを得た。得られたペーストを、図5に示す厚みとなるようにドクターブレード法によってシート状に成形し、100℃以下の温度で熱硬化(半硬化)させて電波吸収層を得た。
【0044】
熱伝導層は、以下のように作製した。すなわち、官能基としてビニル基を有するシリコーン樹脂(図5に示す分子量を有する)に、図5に示す熱伝導層用のフィラーを添加し、攪拌羽根を用いる攪拌機および3本ロールミルによって混合した。そこへ、シランカップリング剤と、架橋剤と、金属触媒とを添加し、十分に混合してペーストを得た。得られたペーストを、図5に示す厚みとなるようにドクターブレード法によってシート状に成形し、100℃以下の温度で熱硬化(半硬化)させて熱伝導層を得た。
【0045】
上記のように作製した電波吸収層と電気抵抗層とを真空圧着、もしくはローラーによる圧着により積層体とし、100℃以上でさらに熱硬化を行うことで、各サンプルの電波吸収体を得た。
【0046】
<熱伝導率の測定>
電波吸収体としての各サンプル全体の熱伝導率と、各サンプルを構成する電波吸収層および熱伝導層の各々の熱伝導率は、熱伝導率測定装置 TRIDENT(株式会社リガク製)を使用して測定した。具体的には、電波吸収体の熱伝導率は、上記のようにして作製した各サンプルから、100mm角で切り出した被検体を得て、熱伝導層をプローブ面側に配置して熱伝導率を測定した。また、電波吸収層および熱伝導層の熱伝導率は、電波吸収層および熱伝導層の各々を単独で作製して、上記電波吸収体の熱伝導率と同様にして測定した。
【0047】
<複素比透磁率の導出>
複素比透磁率の実数成分μ'は、E4991Bインピーダンス・アナライザ(キーサイト・テクノロジー社製)を用いて測定した。測定の際には、各サンプルは、外径20mm、内径10mmのトロイダル形状となるように切り出して使用した。複素比透磁率の実数成分は、μ'の値が一定となる領域の値を読み取った。一般に、透磁率は、特定の周波数(共鳴周波数)に達するまでは一定で、それ以上周波数が高まると減少するという傾向を示す。測定対象のサンプルはいずれも、透磁率が減少を開始する周波数が100MHz以上であるため、上記のようにμ'の値が一定となる領域の値を読み取ることにより、1MHzから100MHzの範囲の複素比透磁率の実数成分μ'を求めることができる。
【0048】
<ヤング率、および伸び率の測定>
ヤング率と伸び率とは、引張試験機(島津製作所製オートグラフ(AG-IS))を使用して室温にて測定した。各サンプルを、幅1cm×長さ7cmの短冊状の試験片として切り出し、両端から2cmの位置を治具で保持して、中間の長さ3cmの部分で引張試験を行い、S-Sカーブ(応力-ひずみ曲線)からヤング率と伸び率とを得た。具体的には、各試験片を破断するまで引っ張りながら、サンプル長と荷重の変化を経時的に測定した。このとき、測定した荷重を試験片の引張試験前の断面積で除すことにより、引張応力を算出した。ヤング率は、以下の(1)式により算出される歪みを横軸とし、上記引張応力を縦軸とするグラフ(応力-ひずみ曲線)において、弾性変形領域における傾きとして算出した。また、伸び率は、各試験片が破断するまで引っ張り、破断したときのサンプル長から元のサンプル長(上記サンプルでは中間の長さ3cm)を引いた後、元のサンプル長で除すことにより算出した。伸び率を求める式を、以下に(2)式として示す。
【0049】
歪み(%)=[引っ張り中のサンプル長 - 元のサンプル長]/元のサンプル長 ・・・(1)
伸び率(%)=[破断したときのサンプル長 - 元のサンプル長]/元のサンプル長 ・・・(2)
【0050】
<耐熱試験>
各サンプルを、大気中100℃の乾燥機に投入し、1000時間の連続耐熱試験を行った。耐熱後の各サンプルについて、上記した「ヤング率の測定方法」と同様の手法により、ヤング率を測定した。
【0051】
<平均粒子径>
熱伝導層に含まれるフィラーとしてのセラミック粒子の粒度分布を測定するにあたり、電波吸収体としての各サンプルから、カッターを用いて熱伝導層を切り出した。得られた熱伝導層をシリコーン溶解剤に含侵し、シリコーン樹脂を溶解させた。溶液とフィラーとを分離した後、シリコーン溶解剤を用いてフィラーの洗浄を数度行い、測定用のフィラーを得た。測定用フィラー(セラミック粒子)の粒度分布は、粒子径分布測定装置Partica LA-960V2(株式会社堀場製作所製)を用いて分析した。得られた体積粒度分布のグラフから、粒子径が7μm以上である粒子Aと、粒子径が7μm未満である粒子Bに対して分布を再計算し、粒子径がそれぞれの範囲に属する粒子の体積粒度分布値を得た。そして、得られた体積粒度分布値から、平均粒子径(体積平均径MV)を得た。すなわち、粒子Aの平均粒子径r1と、粒子Bの平均粒子径r2とを算出した。
【0052】
<評価方法>
図7に示すように、各項目について、評価基準に基づいて評価を行った。「層間の熱伝導率の関係」は、各サンプルにおいて熱伝導層の方が電波吸収層よりも熱伝導率が高い場合には「○」、熱伝導層の熱伝導率が電波吸収層の熱伝導率以下の場合には「×」とした。「熱伝導率」は、各サンプルの熱伝導率が1.0W/(m・K)以上であれば「○」、1.0W/(m・K)未満であれば「×」とした。「μ'」は、各サンプルの1MHzから100MHzの範囲の複素比透磁率の実数成分μ'が3以上であれば「○」、3未満であれば「×」とした。「ヤング率」は、各サンプルのヤング率が10MPa以下であれば「○」、10MPaを超えていれば「×」とした。「耐熱後ヤング率」は、各サンプルの耐熱試験後のヤング率が11MPa以下であれば「○」、11MPaを超えていれば「×」とした。「高熱伝導セラミック」の項目は、各サンプルの熱伝導層が、熱伝導率に優れた窒化アルミニウム(AlN)または窒化ホウ素(BN)をフィラーとして含む場合には「○」、熱伝導層が上記フィラーを含まない場合には「×」とした。「r2/r1」は、各サンプルについて算出した「r2/r1」の値が0.10以上0.45以下の場合には「○」、0.1未満または0.45を超える場合には「×」とした。「伸び率」は、各サンプルの伸び率が30%以上であれば「○」、30%未満であれば「×」とした。
【0053】
図7では、さらに、総合評価の結果を示している。「総合評価」は、本開示の電波吸収体が奏する効果に係る基本性能に対応する評価項目、すなわち、「層間の熱伝導率の関係」と「熱伝導率」と「μ'」のうちの少なくとも一つが「×」の場合には「×」とした。また、総合評価が「×」以外の場合であって、残余の評価項目において「×」の評価項目が無い場合に「◎」、「×」の評価項目が1つの場合に「○」、「×」の評価項目が2つ以上の場合に「△」とした。
【0054】
<評価結果>
図7に示すように、「軟磁性材料とシリコーン樹脂とを備える電波吸収層」と、「電波吸収層の一方の面上に配置され、セラミック粒子とシリコーン樹脂とを備え、電波吸収層よりも高い熱伝導率を有する熱伝導層」と、を備えることで、1MHzから100MHzの範囲の電磁波に対する電波吸収能を確保しつつ、熱伝導率を高めることができることが確認された(サンプルS1~S9と、サンプルS10~S12の対比)。また、電波吸収層や熱伝導層を構成するシリコーン樹脂として、分子量がより大きい樹脂を用いることで、ヤング率および耐熱試験後のヤング率が小さくなり、電波吸収体の柔軟性および耐熱性が高まることが確認された(例えば、サンプルS1~S3とS4~S9との対比)。また、「r2/r1」に係る基準を満たすことで、熱伝導層においてセラミック粒子がシリコーン樹脂中で密な状態になり易くなるため、電波吸収体の熱伝導率が高まることが確認された(例えば、サンプルS4とS5の対比、サンプルS6、S7とS8、S9の対比)。また、熱伝導層のフィラーとして、熱伝導率の優れたAlNやBNを用いることで、電波吸収体の熱伝導率が高まることが確認された(例えば、サンプルS1~S5とS6~S9の対比)。
【0055】
本開示は、以下の形態としても実現することが可能である。
[適用例1]
電磁波を吸収する電波吸収体であって、
軟磁性材料とシリコーン樹脂とを備える電波吸収層と、
前記電波吸収層の一方の面上に配置され、セラミック粒子とシリコーン樹脂とを備え、前記電波吸収層よりも高い熱伝導率を有する熱伝導層と、
を備えることを特徴とする電波吸収体。
[適用例2]
適用例1に記載の電波吸収体であって、
熱伝導率が1.0W/(m・K)以上であることを特徴とする
電波吸収体。
[適用例3]
適用例1または2に記載の電波吸収体であって、
複素比透磁率の実数成分が、1MHzから100MHzの範囲で3以上であることを特徴とする
電波吸収体。
[適用例4]
適用例1から3までのいずれか一項に記載の電波吸収体であって、
ヤング率が10MPa以下であることを特徴とする
電波吸収体。
[適用例5]
適用例1から4までのいずれか一項に記載の電波吸収体であって、
大気中において100℃で1000時間処理した後のヤング率が、11MPa以下であることを特徴とする
電波吸収体。
[適用例6]
適用例1から5までのいずれか一項に記載の電波吸収体であって、
前記セラミック粒子は、窒化アルミニウムと窒化ホウ素のうちの少なくとも一方を含有することを特徴とする
電波吸収体。
[適用例7]
適用例1から6までのいずれか一項に記載の電波吸収体であって、
前記セラミック粒子において、粒子径が7μm以上である粒子の平均粒子径をr1、粒子径が7μm未満である粒子の平均粒子径をr2としたときに、r2/r1の値が0.10以上0.45以下であることを特徴とする
電波吸収体。
[適用例8]
適用例1から7までのいずれか一項に記載の電波吸収体であって、
室温での伸び率が30%以上であることを特徴とする
電波吸収体。
[適用例9]
電子部品モジュールを収納するための筐体であって、
適用例1から8までのいずれか一項に記載の電波吸収体を備え、
前記電子部品モジュールを冷却するための冷却構造を、前記筐体の外側から前記筐体に取り付けるための取り付け部が設けられており、
前記電波吸収体は、前記取り付け部と重なる位置において、前記電波吸収層が前記筐体の内壁面に対向し、前記熱伝導層が前記電子部品モジュールに対向する向きで、前記筐体の内壁面に取り付けられていることを特徴とする
筐体。
[適用例10]
半導体を有するパワーモジュールと、前記パワーモジュールを収納する筐体と、前記電子部品モジュールを冷却するための冷却構造であって、前記筐体に設けられた取り付け部において前記筐体の外側から前記筐体に取り付けられた冷却構造と、を備える電力変換装置であって、
前記筐体は、適用例1から8までのいずれか一項に記載の電波吸収体を備え、
前記電波吸収体は、前記取り付け部と重なる位置において、前記電波吸収層が前記筐体の内壁面に対向し、前記熱伝導層が前記電子部品モジュールに対向する向きで、前記筐体の内壁面に取り付けられていることを特徴とする
電力変換装置。
【符号の説明】
【0056】
10…電波吸収体
12…電波吸収層
13…接着面
14…熱伝導層
20…筐体
22…外殻部
24…取り付け部
30…冷却構造
32…流路配管
34…冷媒流路
40…機器
50…装置
図1
図2
図3
図4
図5
図6
図7