IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東海理化電機製作所の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-12
(45)【発行日】2024-12-20
(54)【発明の名称】制御装置、システムおよび制御方法
(51)【国際特許分類】
   G01S 3/48 20060101AFI20241213BHJP
   H04B 1/7163 20110101ALI20241213BHJP
【FI】
G01S3/48
H04B1/7163
【請求項の数】 18
(21)【出願番号】P 2021143139
(22)【出願日】2021-09-02
(65)【公開番号】P2023036222
(43)【公開日】2023-03-14
【審査請求日】2024-02-28
(73)【特許権者】
【識別番号】000003551
【氏名又は名称】株式会社東海理化電機製作所
(74)【代理人】
【識別番号】100140958
【弁理士】
【氏名又は名称】伊藤 学
(74)【代理人】
【識別番号】100137888
【弁理士】
【氏名又は名称】大山 夏子
(72)【発明者】
【氏名】大石 佳樹
(72)【発明者】
【氏名】古賀 健一
(72)【発明者】
【氏名】古池 竜也
(72)【発明者】
【氏名】森 惠
(72)【発明者】
【氏名】片岡 研人
【審査官】藤田 都志行
(56)【参考文献】
【文献】特開2010-043996(JP,A)
【文献】特開2012-185009(JP,A)
【文献】米国特許出願公開第2021/0258140(US,A1)
【文献】米国特許第7477192(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 3/00- 3/74
G01S 5/00- 5/14
G01S 11/02-11/10
G01S 13/74-13/84
H04B 1/7163
(57)【特許請求の範囲】
【請求項1】
少なくとも4以上のアンテナを有する通信装置と他の通信装置との間で送受信された信号に基づき、前記通信装置と前記他の通信装置との位置関係を推定する制御を行う制御部、
を備え、
前記制御部は、
前記通信装置が前記他の通信装置から受信した前記信号に基づき算出された前記通信装置と前記他の通信装置との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータに基づく重みパラメータを、前記通信装置が有する4以上のアンテナの隣接するアンテナ間の位相差に適用し、前記位置関係を推定する制御を行う、
制御装置。
【請求項2】
前記制御部は、
前記4以上のアンテナの平行方向にあるアンテナ間の位相差に対し、前記重みパラメータに基づく重み付け平均を行い、前記位置関係を推定する制御を行う、
請求項1に記載の制御装置。
【請求項3】
前記制御部は、
前記通信装置と前記他の通信装置との位置関係として前記通信装置が前記他の通信装置から受信した前記信号の到来角を推定する制御を行う、
請求項1または請求項2に記載の制御装置。
【請求項4】
前記制御部は、
前記信号の到来角に基づき、前記他の通信装置の二次元位置または三次元位置を推定する制御を行う、
請求項3に記載の制御装置。
【請求項5】
前記重みパラメータは、前記信頼性パラメータが示す値である、
請求項1から請求項4までのうちいずれか一項に記載の制御装置。
【請求項6】
前記重みパラメータは、前記信頼性パラメータが規定値以上であった際に、第1の値を示し、前記信頼性パラメータが前記規定値未満であった際に、第2の値を示す、
請求項1から請求項4までのうちいずれか一項に記載の制御装置。
【請求項7】
前記重みパラメータは、前記信頼性パラメータが第1の規定値以上であった際に、第1の値を示し、前記信頼性パラメータが前記第1の規定値より小さい第2の規定値未満であった際に、第2の値を示し、前記第2の規定値以上かつ前記第1の規定値未満であった際に、規定の関数により算出される第3の値を示す、
請求項1から請求項4までのうちいずれか一項に記載の制御装置。
【請求項8】
前記規定の関数は、単調増加または単調減少の関数である、
請求項7に記載の制御装置。
【請求項9】
前記規定の関数は、1次関数である、
請求項8に記載の制御装置。
【請求項10】
前記規定の関数は、三角関数である、
請求項8に記載の制御装置。
【請求項11】
前記規定の関数は、指数関数である、
請求項8に記載の制御装置。
【請求項12】
前記第1の値は、0または1のいずれか一方であり、
前記第2の値は、0または1の他方である、
請求項6から請求項11までのうちいずれか一項に記載の制御装置。
【請求項13】
前記信頼性パラメータは、前記通信装置または前記他の通信装置のうち少なくともいずれか一方が受信した信号のノイズの大きさを示す指標または前記信号が直接波によるものであることの妥当性を示す指標のうち、少なくともいずれか一方を含む、
請求項1から請求項12までのうちいずれか一項に記載の制御装置。
【請求項14】
前記通信装置は、移動体に搭載される、
請求項1から請求項13までのうちいずれか一項に記載の制御装置。
【請求項15】
前記他の通信装置は、前記移動体を利用するユーザに携帯される、
請求項14に記載の制御装置。
【請求項16】
前記信号は、超広帯域無線通信に準拠した無線信号を含む、
請求項1から請求項15までのうちいずれか一項に記載の制御装置。
【請求項17】
少なくとも4以上のアンテナを有する通信装置と、
少なくとも1以上のアンテナを有する他の通信装置と、
前記通信装置と前記他の通信装置との間で送受信された信号に基づき、前記通信装置と前記他の通信装置との位置関係を推定する制御を行う制御装置と、
を備え、
前記制御装置は、
前記通信装置が前記他の通信装置かから受信した前記信号に基づき算出された前記通信装置と前記他の通信装置との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータに基づく重みパラメータを、前記通信装置が有する前記4以上のアンテナの隣接するアンテナ間の位相差に適用し、前記位置関係を推定する制御をおこなう、
システム。
【請求項18】
少なくとも4以上のアンテナを有する通信装置と他の通信装置との間で信号を送受信することと、
前記送受信された信号に基づき、前記通信装置と前記他の通信装置との位置関係を推定する制御を行うことと、
を含み、
前記通信装置と前記他の通信装置との位置関係を推定する制御を行うことは、
前記通信装置が前記他の通信装置から受信した前記信号に基づき算出された前記通信装置と前記他の通信装置との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータに基づく重みパラメータを、前記通信装置が有する4以上のアンテナの隣接するアンテナ間の位相差に適用し、前記位置関係を推定する制御を行うこと、
を含む、コンピュータにより実行される制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、制御装置、システムおよび制御方法に関する。
【背景技術】
【0002】
近年、装置間で無線信号を送受信した結果に従って、装置間の位置関係を推定する技術が開示されている。例えば、特許文献1では、超広帯域(UWB:Ultra Wide Band)の信号を用いて、UWB受信機がUWB送信機からの信号の入射角を推定する技術が開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】国際公開第2015/176776号
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、上記特許文献1に記載の技術は、送受信間に遮蔽物が存在する等の環境下で信号の入射角の推定精度が低下する可能性があるにも関わらず、何ら対処がなされていないという問題があった。
【0005】
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、信号を送受信した装置間の位置関係をより高い精度で推定することが可能な、新規かつ改良された制御装置、システムおよび制御方法を提供することにある。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明のある観点によれば、少なくとも4以上のアンテナを有する通信装置と他の通信装置との間で送受信された信号に基づき、前記通信装置と前記他の通信装置との位置関係を推定する制御を行う制御部、を備え、前記制御部は、前記通信装置が前記他の通信装置から受信した前記信号に基づき算出された前記通信装置と前記他の通信装置との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータに基づく重みパラメータを、前記通信装置が有する4以上のアンテナの隣接するアンテナ間の位相差に適用し、前記位置関係を推定する制御を行う、制御装置が提供される。
【0007】
また、上記課題を解決するために、本発明の別の観点によれば、少なくとも4以上のアンテナを有する通信装置と、少なくとも1以上のアンテナを有する他の通信装置と、前記通信装置と前記他の通信装置との間で送受信された信号に基づき、前記通信装置と前記他の通信装置との位置関係を推定する制御を行う制御装置と、を備え、前記制御装置は、前記通信装置が前記他の通信装置かから受信した前記信号に基づき算出された前記通信装置と前記他の通信装置との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータに基づく重みパラメータを、前記通信装置が有する前記4以上のアンテナの隣接するアンテナ間の位相差に適用し、前記位置関係を推定する制御を行う、システムが提供される。
【0008】
また、上記課題を解決するために、本発明の別の観点によれば、少なくとも4以上のアンテナを有する通信装置と他の通信装置との間で信号を送受信することと、前記送受信された信号に基づき、前記通信装置と前記他の通信装置との位置関係を推定する制御を行うことと、を含み、前記通信装置と前記他の通信装置との位置関係を推定する制御を行うことは、前記通信装置が前記他の通信装置から受信した前記信号に基づき算出された前記通信装置と前記他の通信装置との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータに基づく重みパラメータを、前記通信装置が有する4以上のアンテナの隣接するアンテナ間の位相差に適用し、前記位置関係を推定する制御を行うこと、を含む、コンピュータにより実行される制御方法が提供される。
【発明の効果】
【0009】
以上説明したように本発明によれば、信号を送受信した装置間の位置関係をより高い精度で推定することが可能である。
【図面の簡単な説明】
【0010】
図1】本発明の一実施形態に係るシステム1の構成の一例を示すブロック図
図2】本実施形態に係るシステム1の概要例を説明するための説明図である。
図3】本実施形態に係る通信部220の通信処理ブロックの一例を示す図である。
図4】積算器229から出力された本実施形態に係るCIRの一例を示すグラフである。
図5】本実施形態に係る通信部220の通信処理ブロックの一例を示す図である。
図6A】第1の規定値に応じた重みパラメータの算出方法の一例を説明するための説明図である。
図6B】一次関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。
図6C】三角関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。
図6D】指数関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。
図7A】第1の規定値に応じた重みパラメータの算出方法の一例を説明するための説明図である。
図7B】一次関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。
図7C】三角関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。
図7D】指数関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。
図8】第1の実施例に係るシステム1の動作処理の一例を説明するための説明図である。
図9】第2の実施例および第3の実施例に係る車両20の構成例を示すブロック図である。
図10】第2の実施例に係るシステム1の制御例を説明するための説明図である。
図11】第2の実施例に係るシステム1の動作処理例を説明するための説明図である。
図12】第3の実施例に係るシステム1の制御例を説明するための説明図である。
図13】第3の実施例に係るシステム1の他の制御例を説明するための説明図である。
図14】第3の実施例に係るシステム1の動作処理例を説明するための説明図である。
【発明を実施するための形態】
【0011】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0012】
また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットや数字を付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて車載器200―1および200―2のように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、車載器200-1および200―2を特に区別する必要が無い場合には、単に車載器200と称する。
【0013】
<<1.構成例>>
図1は、本発明の一実施形態に係るシステム1の構成の一例を示すブロック図である。図1に示すように、本実施形態に係るシステム1は、携帯機100と、車載器200と、制御装置300と、動作装置400と、を備える。
【0014】
本実施形態に係る車載器200、制御装置300および動作装置400は、車両20に搭載される。車両20は、移動体の一例であり、例えば、ユーザが乗車を許諾された車両(例えば、ユーザが所有する車両や、ユーザに一時的に貸与された車両)である。なお、本実施形態に係る移動体は、車両20だけでなく、航空機または船舶等も含まれる。
【0015】
(携帯機100)
携帯機100は、他の通信装置の一例であり、車両20を利用するユーザにより形態される装置である。携帯機100は、電子キー、スマートフォン、タブレット端末およびウェアラブル端末等であってもよい。図1に示すように、携帯機100は、制御部110と、通信部120とを備える。
【0016】
制御部110は、携帯機100の動作全般を制御する。制御部110は、例えば、後述するPoll(Polling)信号を通信部120に送信させる。また、制御部110は、後述するFinal信号を通信部120に送信させる。制御部110は、例えばCPU(Central Processing Unit)及びマイクロプロセッサ等の電子回路によって構成される。
【0017】
通信部120は、車載器200が備える通信部220との間で、無線による通信を行う。例えば、通信部120は、制御部110の制御に従い、Poll信号を送信する。また、通信部120は、送信したPoll信号の応答として車載器200が備える通信部220から送信されたResp(Response)信号を受信する。また、通信部120は、制御部110の制御に従い、受信したResp信号の応答としてFianl信号を送信する。
【0018】
通信部120と、車載器200が備える通信部220との間の無線による通信は、例えば、超広帯域無線通信に準拠した信号(以下、UWB信号と表現する。)により実現される。UWB信号による無線通信において、インパルス方式を利用すれば、ナノ秒以下の非常に短いパルス幅の電波を使用することで電波の空中伝搬時間を高精度に測定することができ、伝搬時間に基づく測位及び測距を高精度に行うことができる。通信部120は、例えば、UWB信号での通信が可能な通信インタフェースとして構成される。
【0019】
なお、UWB信号は、測距用信号、及びデータ信号として送受信され得る。測距用信号とは、後述する測距処理において送受信されるPoll信号、Resp信号およびFinal信号である。測距用信号は、データを格納するペイロード部分を有さないフレームフォーマットで構成されていてもよいし、ペイロード部分を有するフレームフォーマットで構成されていてもよい。一方で、データ信号は、データを格納するペイロード部分を有するフレームフォーマットで構成されることが好ましい。
【0020】
また、通信部120は、少なくとも1つのアンテナ111を有する。そして、通信部120は、少なくとも1つのアンテナ121を介して無線信号を送受信する。
【0021】
(車載器200)
車載器200は、通信装置の一例であり、車両20に搭載される装置である。図1に示すように、車載器200は、制御部210と、通信部220と、を備える。
【0022】
制御部210は、車載器200の動作全般を制御する。制御部210は、例えば、後述するResp信号を通信部220に送信させる。制御部210は、例えばCPU及びマイクロプロセッサ等の電子回路によって構成される。
【0023】
通信部220は、携帯機100が備える通信部120との間で、無線による通信を行う。通信部220は、携帯機100が備える通信部120から送信されたPoll信号を受信する。また、通信部220は、制御部210の制御に従い、受信したPoll信号の応答としてResp信号を送信する。また、通信部220は、送信したResp信号の応答として携帯機100が備える通信部120から送信されたFianl信号を受信する。
【0024】
また、通信部220は、少なくとも3以上のアンテナ221を有する。そして、通信部220は、3以上のアンテナ221を介して無線信号を送受信する。ただし、後述する第1の実施例において本発明に係る制御装置30を適用する場合、通信部220は、少なくとも4以上のアンテナ221を有する必要がある。
【0025】
(制御装置300)
制御装置300は、携帯機100と車載器200との位置関係を算出する制御を行う。図1に示すように、制御装置300は、通信部310と、制御部320と、を備える。なお、本明細書に係る説明では、本実施形態に係る車両20が車載器200と制御装置300を分離して構成する一例を説明するが、携帯機100または車載器200により制御装置300の機能が実現されてもよい。
【0026】
通信部310は、任意の通信方式を用いて、車載器200との各種通信を行う。例えば、通信部310は、携帯機100と、車載器200との間で送受信された信号の情報を車載器200が備える通信部220から受信する。なお、任意の通信方式とは有線通信であってもよいし、無線通信であってもよい。また、通信部310は、無線通信方式を用いて、携帯機100が備える通信部120と各種通信を行ってもよい。
【0027】
制御部320は、制御装置300の動作全般を制御する。制御部320は、例えば、携帯機100と車載器200との間で送受信された信号に基づき、携帯機100と車載器200との位置関係を推定する制御を行う。制御部320は、図1に示すように、パラメータ算出部321と、位置推定部325と、を備える。
【0028】
制御部320は、例えばCPUおよびマイクロプロセッサ等の電子回路によって構成される。
【0029】
パラメータ算出部321は、車載器200と携帯機100との間で送受信された信号に基づき、当該信号が携帯機100と車載器200との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータを算出する。信頼性パラメータの詳細については後述する。
【0030】
位置推定部325は、携帯機100と車載器200との間で送受信された信号に基づき、携帯機100と車載器200との位置関係を推定する。例えば、位置推定部325は、携帯機100と車載器200との間で送受信された信号に基づき、携帯機100と、車載器200との測距値を算出する。また、位置推定部325は、車載器200が携帯機100から受信した信号に基づき、信号の到来角を推定する。また、位置推定部325は、算出した測距値および信号の到来角に基づき、携帯機100の二次元位置または三次元位置を算出する。なお、位置関係の推定に係る各種処理は、パラメータ算出部321により算出された信頼性パラメータを用いて実行されるが、詳細については後述する。
【0031】
(動作装置400)
動作装置400は、制御装置300の制御に従い、動作する装置である。動作装置400は、車両20が有するドアの鍵であってもよいし、車両20が有するエンジンであってもよい。
【0032】
以上、本実施形態に係るシステム1の構成例を説明した。続いて、図2図5を参照し、本実施形態に係るシステム1の技術的特徴を説明する。
【0033】
<<2.技術的特徴>>
<2.1.マルチパス環境>
携帯機100と車載器200との間で送受信された信号に基づく処理において、電波伝搬環境に応じて、位置関係の推定精度が低減する可能性がある。
【0034】
そのような状況の一例として、アンテナ121からアンテナ221までの通信経路内にピラー等の物体が存在する場合が挙げられる。この場合、例えば、送受信された信号の受信電力が低下する可能性があり、それに伴って、位置関係の推定精度が低減し得る。
【0035】
また、そのような状況の他の例として、マルチパス(Multi path)が発生する状況が挙げられる。マルチパスとは、ある送信機(例えば、通信部120)から送信された電波が受信器(例えば、通信部220)では複数到達する状態を指し、送信機および受信器の間で電波の経路が複数存在する場合に発生する。マルチパスが発生している状況下では、複数の異なる経路を経由した電波が互いに干渉することで、位置関係の推定精度が低減する可能性がある。
【0036】
従って、位置推定部325により推定された携帯機100と車載器200との位置関係は、マルチパス環境に起因する推定誤差を含む可能性が生じる。ここで、本実施形態に係る制御装置300は、車載器200が携帯機100から受信した信号に基づき算出された携帯機100と車載器200との位置関係を推定する処理対象として適切であるか否かの度合を示す指標である信頼性パラメータを用いて、携帯機100と車載器200との位置関係を推定する。これによって、上述したマルチパス環境に起因する位置関係の推定誤差の影響を低減し得る。
【0037】
以下、図2を参照し、本実施形態に係るシステム1の概要例について説明する。
【0038】
図2は、本実施形態に係るシステム1の概要例を説明するための説明図である。図2に示すように、携帯機100が備える通信部120は、アンテナ121を有する。また、車載器200が備える通信部220は、例えば、4素子アレーアンテナとしてアンテナ221A、アンテナ221B、アンテナ221Cおよびアンテナ221Dを有する。ただし、携帯機100が備える通信部120および車載器200が備える通信部220が有するアンテナ本数は係る例に限定されない。例えば、通信部120が有するアンテナの本数は、複数であってもよいし、通信部220が有するアンテナ221は、5本以上であってもよい。また、後述する第2の実施例または第3の実施例において、本発明に係る制御装置300を適用する場合、通信部220が有するアンテナ221は、3本であってもよい。
【0039】
また、通信部220および通信部220が有する複数のアンテナ221のスケール比においても図示しているスケール比に限定されない。例えば、アンテナ221A、アンテナ221B、アンテナ221Cおよびアンテナ221Dはそれぞれ1/2波長程度の間隔で配置されてもよい。また、4本のアンテナの配置形状は、正方形、平行四辺形、台形、矩形、及びその他の任意の形状を取り得る。ただし、複数のアンテナ221は、同一直線上ではなく、平面上に配置されることが望ましい。
【0040】
また、図2において、携帯機100が有するアンテナ121は、携帯機100の上側の左端に配置されているが、携帯機100が有するアンテナ121の配置位置は係る例に限定されない。例えば、アンテナ121は、携帯機100の任意の位置に配置されてもよい。
【0041】
図2に示すように、例えば、アンテナ121は、通信部220が有する複数のアンテナ221のうち少なくとも1以上のアンテナとの間で信号Sを送受信してもよい。
【0042】
そして、制御装置300が備える通信部310は、携帯機100と車載器200との間で送受信された信号Sに関する情報を通信部120または通信部220のいずれか一方から受信する。続いて、パラメータ算出部321は、送受信された信号Sに基づき、信頼性パラメータを算出してもよい。更に、位置推定部325は、送受信された信号Sに基づき、携帯機100と車載器200との位置関係を推定してもよい。
【0043】
<2.2.CIR算出処理>
本実施形態に係る携帯機100が備える通信部120および車載器200が備える通信部220は、通信部120と通信部220との間の無線通信路の特性を示すCIR(Channel Impulse Response)を算出し得る。
【0044】
本明細書におけるCIRは、通信部120及び通信部220のうち一方(以下、送信側とも称する)がパルスを含む無線信号を送信し、他方(以下、受信側とも称する)が無線信号を受信することにより算出される。より具体的には、本明細書におけるCIRとは、送信側が送信した無線信号(以下、送信信号とも称する)と受信側が受信した無線信号(以下、受信信号とも称する)との相関を、送信信号が送信されてからの経過時間である遅延時間ごとにとった結果である、相関演算結果である。
【0045】
受信側は、送信信号と受信信号とのスライディング相関をとることで、CIRを算出する。より詳細には、受信側は、受信信号とある遅延時間分遅延させた送信信号との相関をとった値を、当該遅延時間における特性(以下、CIR値とも称する)として算出する。そして、受信側は、遅延時間ごとのCIR値を算出することで、CIRを算出する。つまり、CIRは、CIR値の時系列推移である。ここで、CIR値は、I成分及びQ成分を有する複素数である。CIR値のI成分及びQ成分の二乗和は、CIRの電力値とも称される場合がある。なお、UWBを用いた測距技術においては、CIR値は遅延プロファイルとも称される。また、UWBを用いた測距技術においては、CIR値のI成分及びQ成分の二乗和は、電力遅延プロファイルとも称される。
【0046】
以下、送信側が携帯機100であり、受信側が車載器200である場合のCIR算出処理を、図3図4を参照し、詳細に説明する。
【0047】
図3は、本実施形態に係る通信部220の通信処理ブロックの一例を示す図である。図3に示すように、通信部220は、発振器222、乗算器223、90度移相器224、乗算器225、LPF(Low Pass Filter)226、LPF227、相関器228、及び積算器229を含む。
【0048】
発振器222は、送信信号を搬送する搬送波の周波数と同一の周波数の信号を生成して、生成した信号を乗算器223及び90度移相器224に出力する。
【0049】
乗算器223は、アンテナ221により受信された受信信号と発振器222から出力された信号とを乗算し、乗算した結果をLPF226に出力する。LPF226は、入力された信号のうち、送信信号を搬送する搬送波の周波数以下の周波数の信号を、相関器228に出力する。相関器228に入力される信号は、受信信号の包絡線に対応する成分のうちI成分(即ち、実部)である。
【0050】
90度移相器224は、入力された信号の位相を90度遅延させて、遅延させた信号を乗算器225に出力する。乗算器225は、アンテナ221により受信された受信信号と90度移相器224から出力された信号とを乗算し、乗算した結果をLPF227に出力する。LPF227は、入力された信号のうち、送信信号を搬送する搬送波の周波数以下の周波数の信号を、相関器228に出力する。相関器228に入力される信号は、受信信号の包絡線に対応する成分のうちQ成分(即ち、虚部)である。
【0051】
相関器228は、LPF226及びLPF227から出力された、I成分及びQ成分から成る受信信号と、参照信号とのスライディング相関をとることで、CIRを算出する。なお、ここでの参照信号とは、搬送波が乗算される前の送信信号と同一の信号である。
【0052】
積算器229は、相関器228から出力されたCIRを積算して、出力する。
【0053】
なお、通信部220は、上記処理を、複数のアンテナ221により受信された受信信号の各々に対して行う。
【0054】
図4は、積算器229から出力された本実施形態に係るCIRの一例を示すグラフである。グラフの横軸は遅延時間であり、縦軸は遅延プロファイルである。CIRにおける、ある遅延時間のCIR値のように、時系列に沿って変化する情報を構成するひとつの情報は、サンプリングポイントとも称される。CIRにおいて、典型的には、ゼロクロス点とゼロクロス点との間のサンプリングポイントの集合が、ひとつのパルスに対応する。ゼロクロス点とは、値がゼロになるサンプリングポイントである。ただし、ノイズがある環境ではその限りではない。例えば、ゼロ以外の基準となる水準とCIR値の推移との交点間のサンプリングポイントの集合が、ひとつのパルスに対応すると捉えられてもよい。図4に示したCIRには、あるパルスに対応するサンプリングポイントの集合21、及び他のパルスに対応するサンプリングポイントの集合22が、含まれている。
【0055】
集合21は、例えば、ファストパスのパルスに対応する。ファストパスとは、送受信間の最も短い経路を指し、遮蔽物がない環境では送受信間の直線距離を指す。ファストパスのパルスとは、ファストパスを通って受信側に到達したパルスである。集合22は、例えば、ファストパス以外の経路を通って受信側に到達したパルスに対応する。
【0056】
なお、ファストパスのパルスとして検出されたパルスは第1到来波とも称する。第1到来波は、直接波、遅延波、又は合成波のいずれかであり得る。直接波とは、送受信間の最短経路を経て、直接的に(即ち、反射等されずに)受信側に受信される信号である。即ち、直接波とはファストパスのパルスである。遅延波とは、送受信間の最短でない経路を経て、即ち、反射等されて間接的に受信側に受信される信号である。遅延波は、直接波よりも遅延して受信側に受信される。合成波とは、複数の異なる経路を経た複数の信号が合成された状態で受信側に受信される信号である。以下の説明では、第1到来波を単に信号と表現する場合がある。
【0057】
続いて、本実施形態に係る携帯機100と車載器200との位置関係の推定に係る処理の流れの一例を説明する。
【0058】
<2.3.位置関係の推定>
(1)距離推定
位置推定325は、測距処理を行う。測距処理とは、携帯機100と車載器200との間の距離を推定する処理である。測距処理は、測距用信号を送受信し、測距用信号の送受信にかかる時間に基づいて携帯機100と車載器200との間の距離、すなわち測距値を推定することを含む。
【0059】
測距処理において、携帯機100と車載器200との間で複数の測距用信号が送受信され得る。複数の測距用信号のうち、一方の装置から他方の装置へ送信される測距用信号をPoll信号と表現する。そして、Poll信号を受信した装置から、Poll信号を送信した装置へ、Poll信号の応答として送信される測距用信号を、Resp信号と表現する。また、Resp信号を受信した装置から、Resp信号を送信した装置へ、Resp信号の応答として送信される測距用信号をFinal信号と表現する。携帯機100および車載器200は、測距用信号のいずれにおいても送受信可能だが、本明細書では、携帯機100がPoll信号を送信する例を説明する。
【0060】
(2)到来角推定
位置推定部325は、装置間で送受信された信号の到来角を推定する。本明細書において、測距用信号に含まれるFinal信号を到来角推定用の信号として説明する。
【0061】
以下、図5を参照し、距離推定および到来角推定に係る処理の一例を説明する。
【0062】
図5は、本実施形態に係るシステム1において実行される装置間の位置関係推定に係る処理の一例を説明するためのシーケンス図である。
【0063】
まず、携帯機100が有するアンテナ121は、車載器200が有するアンテナ221Aに対して、Poll信号を送信する(S101)。
【0064】
次に、車載器200が有するアンテナ221Aは、Poll信号に対する応答として、Resp信号を携帯機100が有するアンテナ121に送信する(S103)。
【0065】
そして、携帯機100が有するアンテナ121は、Resp信号に対する応答として、Final信号を車載器200が有するアンテナ221A、アンテナ221B、アンテナ221Cおよびアンテナ221Dに送信する(S105)。
【0066】
ここで、携帯機100が、Poll信号を送信してからResp信号を受信するまでの時間長を時間長T1とし、Resp信号を受信してからFinal信号を送信するまでの時間長を時間長T2とする。そして、車載器200が、Poll信号を受信してからResp信号を送信するまでの時間長を時間長T3とし、Resp信号を送信してからFinal信号を受信するまでの時間長を時間長T4とする。
【0067】
携帯機100と車載器200との間の距離は、上述した各時間長を用いて算出されてもよい。例えば、車載器200は、携帯機100から時間長T1および時間長T2に関する情報を含む信号を受信してもよい。そして、制御装置300は、車載器200から時間長T1、時間長T2、時間長T3および時間長T4に関する情報を含む信号を受信してもよい。そして、位置推定部325は、時間長T1、時間長T2、時間長T3、および時間長T4を用いて、信号の伝搬時間τを算出する。より具体的には、位置推定部325は、以下の数式1を用いて信号の伝搬時間τを算出してもよい。
τ=(T1×T4―T2×T3)/(T1+T2+T3+T4)
(数式1)
【0068】
そして、位置推定部325は、算出した信号の伝搬時間τに既知である信号の速度を乗算して、携帯機100と車載器200との間の距離を推定してもよい。
【0069】
なお、位置推定部325は、携帯機100が有するアンテナ121と、車載器200が有するアンテナ221Aとの間で送受信された信号に基づき、携帯機100と車載器200との間の距離を推定する一例を説明したが、車載器200はアンテナ221Aと異なるアンテナを用いて信号を送受信してもよいし、複数のアンテナ221を用いて信号を送受信してもよい。
【0070】
また、信号の伝搬時間τは、数式1による算出方法に限定されない。例えば、信号の伝搬時間は、時間長T1から時間長T3を差し引き、当該時間を2で割ることによっても算出し得る。
【0071】
次に、信号の到来角は、車載器200が有する複数のアンテナ221のうち隣接するアンテナが受信したFinal信号の位相差から算出してもよい。例えば、アンテナ221Aが受信したFinal信号の位相を位相Pとし、アンテナ221Bが受信したFinal信号の位相を位相Pとし、アンテナ221Cが受信したFinal信号の位相を位相Pとし、アンテナ221Dが受信したFinal信号の位相を位相Pとする。
【0072】
例えば、アンテナ221Aおよびアンテナ221Bを繋ぐ直線をX軸とし、X軸と直交するアンテナ221Aおよびアンテナ221Cを繋ぐ直線をY軸とし、アンテナ221Aの鉛直方向をZ軸とする座標系を定義する。
【0073】
このような座標系の場合、X軸方向に隣接するアンテナ間の位相差PdAB、PdCD、およびY軸方向に隣接するアンテナ間の位相差PdAC、PdBDはそれぞれ以下の数式2を用いて表される。
PdAB=(P―P
PdCD=(P―P
PdAC=(P―P
PdBD=(P―P
(数式2)
【0074】
ここで、アンテナ221Aおよびアンテナ221B(あるいは、アンテナ221Cおよびアンテナ221D)を繋ぐ直線と第1到来波とのなす角をなす角θと称する。また、アンテナ221Aおよびアンテナ221C(あるいは、アンテナ221Bおよびアンテナ221D)を繋ぐ直線と第1到来波とのなす角をなす角Φと称する。ここで、なす角θおよびなす角Φは、信号の到来角であり、それぞれ数式3で表される。なお、λは電波の波長であり、dはアンテナ間の距離である。
θorΦ=arccos(λ×Pd/(2πd))
(数式3)
【0075】
従って、位置推定部325は、数式2および数式3に基づき、信号の到来角をそれぞれ数式4で算出する。
θAB=arccos(λ×(P―P)/(2πd))
θCD=arccos(λ×(P―P)/(2πd))
ΦAC=arccos(λ×(P―P)/(2πd))
ΦBD=arccos(λ×(P―P)/(2πd))
(数式4)
【0076】
なお、位置推定部325は、θABおよびθCDの平均値をなす角θとして算出してもよいし、θABまたはθCDのうちいずれか一方をなす角θとして推定してもよい。同様に、位置推定部325は、ΦACおよびΦBDの平均値をなす角Φとして算出してもよいし、ΦACまたはΦBDのうちいずれか一方をなす角Φとして推定してもよい。
【0077】
また、位置推定部325は、推定された測距値およびなす角θまたはなす角Φを用いて携帯機100の二次元位置または三次元位置を推定してもよい。
【0078】
例えば、上述した座標系において、位置推定部325は、携帯機100の三次元位置を数式5を用いて推定してもよい。
x=R×cosθ
y=R×cosΦ
z=√(R2-x2-y2)
(数式5)
【0079】
以上説明したように、位置推定部325は、車載器200が有する複数のアンテナ221と携帯機100が有するアンテナ121間で送受信された信号に基づき、携帯機100と車載器200との位置関係を推定し得る。一方、上述したように、車載器200が有する複数のアンテナ221と携帯機100が有するアンテナ121間で発生したマルチパス環境に応じて、位置関係の推定精度が低減する可能性がある。
【0080】
そこで、車載器200が有するいずれかのアンテナまたは携帯機100が有するアンテナ121が受信した信号に基づき、位置推定部325は、車載器200が有する複数のアンテナ221と携帯機100が有するアンテナ121間で送受信された信号が位置関係を推定する処理対象として適切であるか否かの度合いを示す信頼性パラメータを算出する。信頼性パラメータが所定の基準を満たした信号を位置関係の推定に用いることによって、位置推定部325は、より高い精度で携帯機100と車載器200との位置関係を推定し得る。
【0081】
以下、パラメータ算出部321が算出する信頼性パラメータの具体例を説明する。
【0082】
<2.4.信頼性パラメータ>
本実施形態に係るパラメータ算出部321は、通信部220が受信した信号に基づき、信頼性パラメータを算出する。ここで、受信した信号とは、上述したPoll信号、Resp信号またはFinal信号であってもよいし、携帯機100から測距用信号とは別に送信された信号であってもよい。
【0083】
信頼性パラメータは、通信部120が有するアンテナ121または通信部220が有するいずれかのアンテナ221が受信した信号が携帯機100と車載器200との位置関係を推定する処理対象として適切であるか否かの度合いを示す指標である。例えば、信頼性パラメータは、連続値または離散値であり、値が大きいほどアンテナが送受信する信号が位置関係を推定する処理対象として適切であり、値が小さいほど信号が位置関係を推定する処理対象として不適切であり得る。また、信頼性パラメータは、値が大きいほどアンテナが送受信する信号が位置関係を推定する処理対象として不適切であり、値が小さいほど信号が位置関係を推定する処理対象として適切であってもよい。以下、通信部220が受信した信号に基づく信頼性パラメータについて具体例を挙げて説明する。
【0084】
(ノイズの大きさを示す指標)
信頼性パラメータは、例えば、ノイズの大きさを示す指標であってもよい。より具体的には、パラメータ算出部321は、通信部220が受信した信号の電力値およびSNR(signal noise ratio)の少なくともいずれか一方に基づいて信頼性パラメータを算出してもよい。電力値またはSNRが大きい場合ノイズの影響が小さいので、第1到来波は検出される対象として適切であることを示す第1の信頼性パラメータが計算される。一方で、電力値またはSNRが小さい場合、ノイズの影響が大きいため、第1到来波は検出される対象として不適切であることを示す信頼性パラメータが算出されてもよい。
【0085】
(第1到来波が直接波によるものであることの妥当性を示す指標)
また、信頼性パラメータは、第1到来波が直接波によるものであることの妥当性を示す指標である。第1到来波が直接波によるものであることの妥当性が高いほど信頼性は高く、第1到来波が直接波によるものであることの妥当性が低いほど信頼性は低い。
【0086】
例えば、信頼性パラメータは、通信部220が有する複数のアンテナ221の各々における信号間の整合性に基づいて算出されてもよい。より具体的には、パラメータ算出部321は、通信部220が有する複数のアンテナ221の各々における信号の受信時刻及び電力値の少なくともいずれか一方に基づいて信頼性パラメータを算出してもよい。マルチパスの影響で、それぞれ異なる経路を経由して到来した複数の信号が合成され、互いに増幅又は相殺された状態でアンテナに受信され得る。そして、複数のアンテナの各々において、信号の増幅及び相殺のされ方が異なる場合、複数のアンテナ間で信号の受信時刻及び電力値が相違し得る。アンテナ間の距離が到来角推定用信号の1/2波長程度の近距離であることを考慮すれば、アンテナ221A、アンテナ221B、アンテナ221C、およびアンテナ221Dの間で信号の受信時刻及び電力値の差が大きいことは、信号が直接波によるものであることの妥当性が低いことを意味する。
【0087】
そこで、複数のアンテナ221間での、第1到来波の受信時刻(即ち、特定要素の遅延時間)の差が大きいほど、第1到来波が直接波によるものであることの妥当性が低いことを示す信頼性パラメータが計算される。一方で、複数のアンテナ221間での、第1到来波の受信時刻の差が小さいほど、第1到来波が直接波によるものであることの妥当性が高いことを示す信頼性パラメータが計算される。また、複数のアンテナ221間での、第1到来波の電力の差が大きいほど、第1到来波が直接波によるものであることの妥当性が低いことを示す信頼性パラメータが計算される。一方で、複数のアンテナ221間での、第1到来波の電力の差が小さいほど、第1到来波が直接波によるものであることの妥当性が高いことを示す信頼性パラメータが計算される。
【0088】
信頼性パラメータは、複数のアンテナ221のうち異なる2つのアンテナ(例えば、アンテナ221Aおよびアンテナ221B)により形成される、複数のアンテナペアの各々により受信された第1到来波に基づき推定される、携帯機100が存在する位置を示す位置パラメータ間の整合性に基づいて計算されてもよい。ここでの位置パラメータとは、測距値、なす角θ及びΦ、並びに座標(x,y,z)である。第1到来波が直接波によるものである場合、なす角θ及びΦ並びに座標(x,y,z)を計算するために使用される通信部220のアンテナペアの組み合わせが異なっても、なす角θ及びΦ並びに座標(x,y,z)の結果は同一又は略同一である。しかし、第1到来波が直接波によるものではない場合、異なる通信部220のアンテナペア同士でなす角θ及びΦ並びに座標(x,y,z)の結果に相違が生じ得る。
【0089】
そこで、異なるアンテナペアの組み合わせ間での位置パラメータの計算結果の相違が小さいほど、第1到来波が直接波によるものであることの妥当性が高いことを示す信頼性パラメータが計算される。例えば、角度推定処理において説明した、ΦACとΦBDとの間の誤差が小さいほど及びθABとθCDとの間の誤差が小さいほど、第1到来波が直接波によるものであることの妥当性が高いことを示す信頼性パラメータが計算される。一方で、異なるアンテナペアの組み合わせ間での位置パラメータの計算結果の相違が大きいほど、第1到来波が直接波によるものであることの妥当性が低いことを示す信頼性パラメータが計算される。例えば、角度推定処理において説明した、ΦACとΦBDとの間の誤差が大きいほど及びθABとθCDとの間の誤差が大きいほど、第1到来波が直接波によるものであることの妥当性が低いことを示す信頼性パラメータが計算される。ただし、なす角θ及びΦ並びに座標(x,y,z)の差を用いて算出される信頼性パラメータは、アンテナ全体に対する信頼性パラメータのため、後述する第1の実施例では適用されない。
【0090】
(第1到来波が合成波によるものではないことの妥当性を示す指標)
信頼性パラメータは、第1到来波が合成波によるものではないことの妥当性を示す指標であってもよい。第1到来波が合成波によるものではないことの妥当性が高いほど信頼性は高く、第1到来波が合成波によるものではないことの妥当性が低いほど信頼性は低い。具体的には、信頼性パラメータは、第1到来波の時間方向の幅、及び第1到来波における位相の状態の、少なくともいずれかに基づいて算出されてもよい。
【0091】
(無線信号を受信した状況の妥当性を示す指標)
信頼性パラメータは、無線信号を受信した状況の妥当性を示す指標であってもよい。無線信号を受信した状況の妥当性が高いほど信頼性は高く、無線信号を受信した状況の妥当性が低いほど信頼性は低い。
【0092】
例えば、信頼性パラメータは、複数の第1到来波のばらつきに基づいて算出されてもよい。この場合、信頼性パラメータは、第1到来波の電力値の分散、並びに推定された位置パラメータ(距離、なす角θ及びΦ、並びに座標(x,y,z))の分散及び変化量といった、複数の第1到来波のばらつきを示す統計量に基づいて算出されてもよい。
【0093】
(第1の要素の遅延時間と第2の要素の遅延時間との差)
信頼性パラメータは、CIRにおいて特定要素よりも後に1番目にCIR値がピークをとる第1の要素の遅延時間と、特定要素よりも後に2番目にCIR値がピークをとる第2の要素の遅延時間と、の差であってもよい。図4に示したように第1到来波のCIR波形はひとつのピークを有する波形になる。他方、合成波が第1到来波として検出される場合、第1到来波のCIR波形は複数のピークを含む波形になり得る。そして、第1到来波のCIR波形がひとつのピークを有するか複数のピークを有するかは、第1の要素の遅延時間と第2の要素の遅延時間との差により判定することができる。
【0094】
合成波が第1到来波として検出された場合、直接波が第1到来波として検出された場合と比較して、位置パラメータの推定精度は低下する。従って、第1要素の遅延時間と第2要素の遅延時間との差が大きいほど信頼性が高いと言える。
【0095】
(CIR波形の相関)
信頼性パラメータは、通信部220が有する複数のアンテナ221のうち、あるアンテナペアにおけるCIR波形の相関に基づいて導出されてもよい。通信部220が有する複数のアンテナ221において、直接波と遅延波とが合成された状態で受信される場合、アンテナ間の距離が近距離であっても、直接波と遅延波との位相の関係はアンテナ間で異なり得る。その結果、各アンテナにおける各々のCIR波形は異なるものとなり得る。つまり、あるアンテナペアにおいてCIR波形が異なることは、アンテナペアのうち少なくとも一方のアンテナにおいて、合成波が受信されていることを意味する。合成波が第1到来波として検出される場合、即ち、直接波に対応する特定要素が検出されなかった場合、位置パラメータの推定精度は低下する。
【0096】
例えば、信頼性パラメータは、通信部220が有する複数のアンテナ221のうち、あるアンテナより受信された受信信号に基づいて得られたCIRと、他のアンテナにより受信された受信信号に基づいて得られたCIRと、の間の相関係数であってもよい。この場合、信頼性パラメータは、相関係数が小さいほど信頼性が低いと判定され、相関係数が大きいほど、信頼性が高いと判定される。なお、相関係数は、例えばピアソンの相関係数が含まれる。
【0097】
(補足)
以下、続いて説明する信頼性パラメータの具体例に係る補足を説明する。
【0098】
まず、CIRに含まれる複数のサンプリングポイントの各々を、以下では要素とも称する。即ち、CIRは、遅延時間ごとのCIR値を要素として含むものとする。また、CIRの形状、より詳しくはCIR値の時系列変化の形状は、CIR波形とも称される。
【0099】
CIRに含まれる複数の要素のうち、特定の要素を、以下では特定要素とも称する。特定要素は、第1到来波に対応する要素である。特定要素は、第1到来波に関し上述した所定の検出基準に従って検出される。一例として、特定要素は、CIRに含まれる複数の要素のうち、CIR値としての振幅又は電力が最初に所定の閾値を超える要素である。以下では、かかる所定の閾値を、ファストパス閾値とも称する。
【0100】
特定要素の遅延時間に対応する時刻は、第1到来波の受信時刻として、測距のために使用される。また、特定要素の位相は、第1到来波の位相として、信号の到来角推定のために使用される。
【0101】
通信部220が有する複数のアンテナ221には、LOS(Line of Sight)状態の通信部220とNLOS(Non Line of Sight)状態の通信部220とが混在し得る。
【0102】
LOS状態であるとは、車載器200が有するアンテナ221と携帯機100が有するアンテナ121との間が見通せることを指す。LOS状態であれば、直接波の受信電力が最も大きいので、受信側は、直接波を第1到来波として検出することに成功する可能性が高い。
【0103】
NLOS状態であるとは、車載器200が有するアンテナ221と携帯機100が有するアンテナ121との間が見通せないことを指す。NLOS状態であれば、直接波の受信電力が他と比較して小さくなる可能性があるので、受信側は、直接波を第1到来波として検出することに失敗する可能性がある。
【0104】
通信部220がNLOS状態である場合、携帯機100から到来する信号のうち直接波の受信電力がノイズと比較して小さくなる。よって、直接波を第1到来波として検出することに成功したとしても、ノイズの影響で第1到来波の位相及び受信時刻が変動してしまい得る。その場合、測距精度及び到来角の推定精度は低下し得る。
【0105】
さらに、通信部220がNLOS状態である場合、通信部220がLOS状態である場合と比較して直接波の受信電力が小さくなり、直接波を第1到来波として検出することに失敗し得る。その場合、測距精度及び到来角推定精度は低下し得る。
【0106】
(特定要素の遅延時間とCIR値が最大となる要素の遅延時間との差)
そこで、信頼性パラメータは、特定要素の遅延時間と、CIRにおいてCIR値が最大となる要素の遅延時間と、の差であってもよい。
【0107】
通信部220がLOS状態であれば、直接波のCIR値が一番大きくなる。そのため、CIRにおいてCIR値が最大となる要素は、直接波に対応する集合に含まれる。
【0108】
一方、NLOS状態である場合、遅延波のCIR値が直接波のCIR値よりも大きくなり得る。NLOS状態であれば、ファストパスの途中に遮蔽物が存在するためである。とりわけ、ファストパスの途中に人体がある場合、直接波は人体を透過する際に大きく減衰する。その場合、CIRにおいてCIR値が最大となる要素は、直接波に対応する集合に含まれない。
【0109】
通信部220がLOS状態であるかNLOS状態であるかは、特定要素の遅延時間と、CIRにおいてCIR値が最大となる要素の遅延時間との差により判定することができる。
【0110】
通信部220がLOS状態である場合には当該差が小さくなり得るためである。また、通信部220がNLOS状態である場合には当該差が大きくなり得るためである。
【0111】
以上、本実施形態に係る信頼性パラメータの具体例を説明した。位置推定部325は、パラメータ算出部321により算出された信頼性パラメータを用いることにより、携帯機100と車載器200との位置関係の推定精度を向上し得る。
【0112】
なお、位置推定部325は、上述した信頼性パラメータの他に測距値を信頼性パラメータとして用いても良いし、複数の信頼性パラメータを組み合わせて用いてもよい。以下、信頼性パラメータを用いる具体例を順次説明する。
【0113】
<<3.実施例>>
<3.1.第1の実施例>
第1の実施例に係る制御部320は、車載器200が携帯機100から受信した信号に基づき算出された信頼性パラメータに基づく重みパラメータを、車載器200が有する複数のアンテナ221の隣接するアンテナ間の位相差に適用し、携帯機100と車載器200との位置関係を推定する制御を行ってもよい。
【0114】
ここで、隣接するアンテナとは、図2に示したアンテナ221Aおよびアンテナ221Bと、アンテナ221Cおよびアンテナ221Dと、アンテナ221Aおよびアンテナ221Cと、アンテナ221Bおよびアンテナ221Dとを示す。
【0115】
制御部320は、例えば、複数のアンテナ221の平行方向にあるアンテナのアンテナ間の位相差に対し、重みパラメータに基づく重み付け平均を行い、携帯機100と車載器200との位置関係を推定する制御を行ってもよい。平行方向にあるアンテナとは、上述したX軸に平行であるアンテナ221Aおよびアンテナ221Bのアンテナペアと、アンテナ221Cおよびアンテナ221Dのアンテナペアである。また、平行方向にあるアンテナとは、上述したY軸に平行であるアンテナ221Aおよびアンテナ221Cのアンテナペアと、アンテナ221Bおよびアンテナ221Dのアンテナペアである。
【0116】
例えば、X軸に平行である各アンテナペアに重み付け平均した後のアンテナ間位相差をアンテナ間位相差Pdとし、Y軸に平行である各アンテナペアに重み付け平均した後のアンテナ間位相差をアンテナ間位相差Pdとする。また、アンテナ221Aおよびアンテナ221Bのアンテナ間位相差PdABに対する重みパラメータを重みパラメータWABとし、アンテナ221Cおよびアンテナ221Dのアンテナ間位相差PdCDに対する重みパラメータを重みパラメータWCDとし、アンテナ221Aおよびアンテナ221Cのアンテナ間位相差PdACに対する重みパラメータを重みパラメータWACとし、アンテナ221Bおよびアンテナ221Dのアンテナ間位相差PdBDに対する重みパラメータを重みパラメータWBDとする。
【0117】
ここで、パラメータ算出部321は、例えば、信頼性パラメータが示す値を重みパラメータWAB、WCD、WACおよびWBDとして設定してもよい。例えば、信頼性パラメータを上述した受信電力とした場合、アンテナ221Aが受信した信号の受信電力が「―90dBm」であり、アンテナ221Bが受信した信号の受信電力が「―100dBm」であった際に、重みパラメータWABは、「―90dBm」および「―100dBm」の平均値である「―95dBm」としてもよい。または、重みパラメータWABは、「―90dBm」および「―100dBm」の最大値である「―90dBm」としてもよいし、最小値である「―100dBm」としてもよい。あるいは、重みパラメータWABは、複数のアンテナ221の受信電力の中央値であってもよい。
【0118】
そして、位置推定部325は、X軸方向のアンテナ間位相差PdおよびY軸方向のアンテナ間位相差Pdをそれぞれ、数式6を用いて推定してもよい。
Pd=(WAB×PdAB+WCD×PdCD)/(WAB+WCD
Pd=(WAC×PdAC+WBD×PdBD)/(WAC+WBD
(数式6)
【0119】
そして、位置推定部325は、数式6により推定されたPdと数式3に基づき、なす角θを算出し、数式6により推定されたPdと数式3に基づき、なす角Φを算出する。これにより位置推定部325は、携帯機100と車載器200との位置関係をより高い精度で推定し得る。
【0120】
以上説明した一例では、パラメータ算出部321は、信頼性パラメータが示す値を重みパラメータとして設定する一例を説明したが、重みパラメータは係る例に限定されない。以下、図6および図7を参照し、パラメータ算出部321による重みパラメータの算出方法の他の例について説明する。まずは、図6を参照し、信頼性パラメータの値が小さいほど信頼性が高い場合における重みパラメータの算出方法の具体例を説明する。また、以下の説明では、アンテナ221Aおよびアンテナ221Bのアンテナペアの信頼性パラメータに基づき、重みパラメータの算出する方法を説明する。
【0121】
図6Aは、第1の規定値に応じた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、例えば、信頼性パラメータRpおよび数式7に基づき、重みパラメータWを算出してもよい。
W=1 (Rp<TH)
W=0 (Rp≧TH)
(数式7)
【0122】
パラメータ算出部321は、例えば、信頼性パラメータRpABが規定値TH以上であった際に、第1の値を算出し、信頼性パラメータRpABが規定値TH未満であった際に、第2の値を算出してもよい。
【0123】
第1の値は、例えば、図6Aに示すように「0」であってもよい。また、第2の値は、例えば、図6Aに示すように「1」であってもよい。ただし、第1の値および第2の値は、第1の値が第2の値より小さければ任意の値であってもよい。これにより、パラメータ算出部321は、より簡易な算出方法により、重みパラメータを設定することが可能である。
【0124】
また、パラメータ算出部321は、信頼性パラメータRpが第1の規定値以上であった際に第1の値を算出し、信頼性パラメータRpが第1の規定値より小さい第2の規定値未満であった際に、第2の値を算出してもよい。更に、パラメータ算出部321は、信頼性パラメータRpが第2の規定値以上、かつ、第1の規定値未満であった際に、規定の関数を用いて、第3の値を算出してもよい。ここで、規定の関数は、例えば、単調増加または単調減少の関数であってもよい。この場合、信頼性パラメータが小さいほど信頼性が高い場合では、規定の関数は単調減少の関数であり、信頼性パラメータが大きいほど信頼性が高い場合では、規定の関数は単調増加の関数である。まず、図6B図6Dを参照し、規定の関数が単調減少の関数であった際における重みパラメータの算出方法の具体例を説明する。
【0125】
図6Bは、一次関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、信頼性パラメータRpおよび数式8に基づき、重みパラメータWを算出してもよい。
W=1 (Rp<TH2)
W=―(RpAB―TH2)/(TH1-TH2)+1 (TH2≦Rp<TH1)
W=0 (Rp≧TH1)
(数式8)
【0126】
パラメータ算出部321は、信頼性パラメータRpABが第1の規定値TH1以上であった際に、第1の値として「0」を算出し、第2の規定値未満であった際に、第2の値として「1」を算出する。更に、パラメータ算出部321は、信頼性パラメータRpABが第2の規定値TH2以上、かつ、第1の規定値TH1未満であった際に、一次関数を規定の関数として用いて、第3の値を算出してもよい。
【0127】
図6Cは、三角関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、信頼性パラメータRpおよび数式9に基づき、重みパラメータWを算出してもよい。
W=1 (Rp<TH2)
W=cos[(RpAB―TH2)/(TH1-TH2)×π/2]
(TH2≦Rp<TH1)
W=0 (Rp≧TH1)
(数式9)
【0128】
パラメータ算出部321は、信頼性パラメータRpABが第1の規定値TH1以上であった際に、第1の値として「0」を算出し、第2の規定値未満であった際に、第2の値として「1」を算出する。更に、パラメータ算出部321は、信頼性パラメータRpABが第2の規定値TH2以上、かつ、第1の規定値TH1未満であった際に、三角関数を規定の関数として用いて、第3の値を算出してもよい。
【0129】
図6Dは、指数関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、信頼性パラメータRpおよび数式10に基づき、重みパラメータWを算出してもよい。
W=1 (Rp<TH2)
W=exp[―5×(RpAB―TH2)/(TH1-TH2)]
(TH2≦Rp<TH1)
W=0 (Rp≧TH1)
(数式10)
【0130】
パラメータ算出部321は、信頼性パラメータRpABが第1の規定値TH1以上であった際に、第1の値として「0」を算出し、第2の規定値未満であった際に、第2の値として「1」を算出する。更に、パラメータ算出部321は、信頼性パラメータRpABが第2の規定値TH2以上、かつ、第1の規定値TH1未満であった際に、指数関数を規定の関数として用いて、第3の値を算出してもよい。
【0131】
以上、信頼性パラメータRpが小さいほど信頼性が高い場合における重みパラメータの算出方法の具体例を説明した。続いて、図7を参照し、信頼性パラメータRpが大きいほど信頼性が高い場合における重みパラメータの算出方法の具体例を説明する。
【0132】
図7Aは、第1の規定値に応じた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、信頼性パラメータRpおよび数式11に基づき、重みパラメータWを算出してもよい。
W=0 (Rp<TH)
W=1 (Rp≧TH)
(数式11)
【0133】
パラメータ算出部321は、数式7と同様、信頼性パラメータRpABが規定値TH以上であった際に、第1の値を算出し、信頼性パラメータRpABが規定値TH未満であった際に、第2の値を算出してもよい。
【0134】
なお、数式7では、第1の値は、第2の値より小さい値であれば任意の値であってもよかったが、数式11では、第1の値は、第2の値より大きければ任意の値であってもよい。第1の値は、例えば、図7Aに示すように「1」であってもよい。また、第2の値は、例えば、図7Aに示すように「0」であってもよい。
【0135】
つまり、信頼性パラメータが大きいほど信頼性が高い場合では、信頼性パラメータが小さいほど信頼性が高い場合において説明した第1の値と第2の値との大小関係が入れ替わる。以下の図7B図7Dを参照し、規定の関数が単調増加の関数であった際における重みパラメータの算出方法の具体例を説明するが、図6B図6Dを参照して説明した内容と重複する説明については省略する。
【0136】
図7Bは、一次関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、信頼性パラメータRpおよび数式12に基づき、重みパラメータWを算出してもよい。
W=0 (Rp<TH2)
W=(RpAB―TH2)/(TH1-TH2)+1 (TH2≦Rp<TH1)
W=1 (Rp≧TH1)
(数式12)
【0137】
図7Cは、三角関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、信頼性パラメータRpおよび数式13に基づき、重みパラメータWを算出してもよい。
W=0 (Rp<TH2)
W=sin[(RpAB―TH2)/(TH1-TH2)×π/2]
(TH2≦Rp<TH1)
W=1 (Rp≧TH1)
(数式13)
【0138】
図7Dは、指数関数を規定の関数として用いた重みパラメータの算出方法の一例を説明するための説明図である。パラメータ算出部321は、信頼性パラメータRpおよび数式14に基づき、重みパラメータWを算出してもよい。
W=0 (Rp<TH2)
W=exp[5×(RpAB―TH2)/(TH1-TH2)―1]
(TH2≦Rp<TH1)
W=1 (Rp≧TH1)
(数式14)
【0139】
パラメータ算出部321は、アンテナペア毎に重みパラメータの算出方法に係る具体例のうち少なくともいずれか一つの方法を用いることで重みパラメータを算出する。そして、位置推定部325は、算出された重みパラメータと、数式6に基づき、X軸方向のアンテナ間位相差Pdと、Y軸方向のアンテナ間位相差Pdを算出する。更に、位置推定部325は、重みパラメータを適用して算出した各アンテナ間位相差Pd及びPdと、数式3に基づき、信号のなす角θ及びなす角Φを信号の到来角として算出する。これにより、位置推定部325は、マルチパス環境の影響を低減し、より高い精度で信号の到来角を算出し得る。
【0140】
(動作処理例)
図8は、第1の実施例に係るシステム1の動作処理の一例を説明するための説明図である。まず、携帯機100が備える通信部120は、Poll信号を送信し、車載器200が備える通信部220はPoll信号を受信する(S201)。
【0141】
続いて、通信部220は、Poll信号に対する応答として、Resp信号を送信し、通信部120は、Resp信号を受信する(S203)。
【0142】
そして、通信部120は、Resp信号に対する応答として、Final信号を送信し、通信部220は、Final信号を受信する(S205)。ここで、通信部220は、通信部120との間で送受信した信号に関する各種情報を制御装置300が備える通信部310に送信する。
【0143】
続いて、位置推定部325は、携帯機100および車載器間で送受信された信号に基づき、測距値を算出する(S207)。
【0144】
続いて、パラメータ算出部321は、車載器200が受信した信号に基づき、信頼性パラメータを算出する(S209)。
【0145】
更に、パラメータ算出部321は、算出した信頼性パラメータに基づき、重みパラメータを算出する(S211)。
【0146】
そして、位置推定部325は、パラメータ算出部321により算出された重みパラメータを用いて、各アンテナ間位相差に重み付け平均を行う(S213)。
【0147】
続いて、位置推定部325は、重み付け平均が行われたアンテナ間位相差を用いて、携帯機100から受信した信号の到来角を推定する(S215)。
【0148】
そして、位置推定部325は、推定された信号の到来角と測距値に基づき、携帯機100の三次元位置を算出する(S217)。
【0149】
そして、制御部320は、位置推定部325により算出された携帯機100の三次元位置が所定の基準を満たすか否かを判定する(S219)。所定の基準を満たす場合(S219:Yes)、制御部320は処理をS221に進め、所定の基準を満たさない場合(S219:No)、制御部320は処理を終了する。
【0150】
所定の基準を満たす場合(S219:Yes)、制御部320は、動作装置400の一例であるエンジンの始動または停止に係る動作制御を行い(S221)、制御部320は処理を終了する。
【0151】
以上、第1の実施例に係る制御例について説明した。第1の実施例に係る制御によれば、制御装置300は、マルチパスの影響を低減することを可能にし、より高い精度で携帯機100と車載器200との位置関係を推定し得る。続いて、図9図11を参照し、第2の実施例について説明する。
【0152】
<3.2.第2の実施例>
第2の実施例に係る制御部320は、車載器200が携帯機100から受信した信号に基づき算出された信頼性パラメータに基づく重みパラメータを、車載器200と携帯機100が送受信した信号に基づき推定された少なくとも2以上の暫定位置関係に対して適用し、携帯機100と車載器200との位置関係を推定する制御を行う。
【0153】
例えば、第2の実施例に係る位置推定部325は、図2に示したような、アンテナ221Aと、アンテナ221Bと、アンテナ221Cの各々と、携帯機100とが送受信した信号に基づき、携帯機100と車載器200との暫定位置関係を推定する。また、第2の実施例に係る位置推定部325は、図2に示したような、アンテナ221Aと、アンテナ221Cと、アンテナ221Dの各々と、携帯機100とが送受信した信号に基づき、携帯機100と車載器200との暫定位置関係を推定する。更に、第2の実施例に係る位置推定部325は、図2に示したような、アンテナ221Bと、アンテナ221Cと、アンテナ221Dの各々と、携帯機100とが送受信した信号に基づき、携帯機100と車載器200の暫定位置関係を推定する。
【0154】
また、パラメータ算出部321は、車載器200のアンテナまたはアンテナペア毎に携帯機100が受信した信号に基づく信頼性パラメータを算出する。更に、パラメータ算出部321は、算出した信頼性パラメータに基づき、第1の実施例において説明したいずれかの方法を用いて、重みパラメータを算出する。
【0155】
そして、上述したように3つの暫定位置関係が推定された場合、第2の実施例に係る位置推定部325は、上述した重みパラメータを3つの暫定位置関係に適用し、携帯機100と車載器200の位置関係を推定してもよい。
【0156】
なお、暫定位置関係が3つ推定される場合について説明したが、暫定位置関係は少なくとも2以上が推定されれば任意の数であってもよい。また、車載器200が有するアンテナの数量は、少なくとも3以上であれば第2の実施例に係る携帯機100と車載器200との位置関係を推定する方法は適用可能である。
【0157】
また、第1の実施例、第2の実施例および第3の実施例では、車両20に車載器200が複数機搭載された場合であっても適用可能である。以下、第2の実施例および第3の実施例に係る車両20は、車載器200が2機搭載されていた場合について説明する。
【0158】
図9は、第2の実施例および第3の実施例に係る車両20の構成例を示すブロック図である。図9に示すように、車両20は、車載器200-1と、車載器200-2とを搭載する。なお、車両20は、車載器200を3以上搭載してもよい。また、車載器200、制御装置300および動作装置400の機能構成例は、図1を参照して説明したものと同一であるため、説明を省略する。
【0159】
第2の実施例に係る制御部320は、複数の車載器200の各々が携帯機100から受信した信号に基づき算出された信頼性パラメータに基づく重みパラメータを、複数の車載器200の各々と携帯機100が送受信した信号に基づき推定された携帯機100と車載器200の暫定位置関係に対して適用し、携帯機100と車載器200との位置関係を推定する制御を行ってもよい。
【0160】
まず、携帯機100と車載器200-1および車載器200-2との間で信号が送受信され、制御装置300は、車載器200-1および車載器200-2から送受信された信号に関する情報を取得する。
【0161】
そして、パラメータ算出部321は、車載器200―1が携帯機100受信した信号に基づき、信頼性パラメータを算出する。更に、パラメータ算出部321は、算出した信頼性パラメータに基づき、第1の実施例において説明したいずれかの方法を用いて、重みパラメータを算出する。
【0162】
また、パラメータ算出部321は、車載器200-2が携帯機100から受信した信号に基づき、信頼性パラメータを算出する。更に、パラメータ算出部321は、算出した信頼性パラメータに基づき、第1の実施例において説明したいずれかの方法を用いて、重みパラメータを算出する。
【0163】
続いて、位置推定部325は、携帯機100と車載器200-1との間で送受信された信号に基づき、信号の到来角及び携帯機100の三次元位置を推定する。更に、位置推定部325は、携帯機100と車載器200-2との間で送受信された信号に基づき、信号の到来角及び携帯機100の三次元位置を推定する。なお、車載器200ごとに推定された信号の到来角や携帯機100の三次元位置は、携帯機100と車載器200の暫定位置関係の具体例である。
【0164】
そして、位置推定部325は、推定された携帯機100と車載器200の暫定位置関係に対し、パラメータ算出部321により算出された重みパラメータを適用し、携帯機100と車載器200の位置関係を推定する。以下、第2の実施例の具体例について図10を参照して説明する。
【0165】
図10は、第2の実施例に係るシステム1の制御例を説明するための説明図である。図10に示すように、車載器200-1が備える通信部220-1は、アンテナ221A-1と、アンテナ221B-1と、アンテナ221C-1と、アンテナ221D-1とを有する。また車載器200-2が備える通信部220-2は、アンテナ221A-2と、アンテナ221B-2と、アンテナ221C-2と、アンテナ221D-2とを有する。
【0166】
受信電力を信頼性パラメータとした場合、パラメータ算出部321は、例えば図10に示すように、アンテナ221A-1、アンテナ221B-1およびアンテナ221C-1の信頼性パラメータをそれぞれ「―90dBm」として算出し、アンテナ221D-1の信頼性パラメータを「―105dBm」として算出したと仮定する。続いて、パラメータ算出部321は、アンテナ221A-2の信頼性パラメータを「―105dBm」として算出し、アンテナ221B-2、アンテナ221C-2およびアンテナ221D-2の信頼性パラメータを「―90dBm」として算出したと仮定する。
【0167】
この場合、位置推定部325は、例えば、より信頼性が高い3つのアンテナが送受信した信号に基づき、携帯機100と車載器200との位置関係を推定してもよい。例えば、位置推定部325は、信頼性が高い(例えば、受信電力が大きい)順に3つのアンテナ221を選定し、選定されたアンテナ221が送受信した信号に基づき、暫定位置関係を推定してもよい。
【0168】
例えば、図10に示す例では、信頼性が高い3つのアンテナは、通信部220-1のアンテナ221A-1、アンテナ221B-1およびアンテナ221C-1と、通信部220-2のアンテナ221B-2、アンテナ221C-2およびアンテナ221D-2である。
【0169】
位置推定部325は、例えば、アンテナ221A-1、アンテナ221B-1およびアンテナ221C-1と、携帯機100が有するアンテナ121が送受信した信号に基づき、暫定位置関係を推定する。更に、位置推定部325は、アンテナ221B-2、アンテナ221C-2およびアンテナ221D-2と、携帯機100が有するアンテナ121が送受信した信号に基づき、暫定位置関係を推定する。
【0170】
そして、位置推定部325は、推定した各暫定位置関係に対して重みパラメータを適用し、携帯機100と車載器200との位置関係を推定する。例えば、携帯機100と車載器200の位置関係を車載器200に対する携帯機100の三次元位置とした場合、位置推定部325は、数式15を用いて、携帯機100暫定三次元位置に対して重み付け平均を行い、携帯機100の三次元位置を推定する。ここで、携帯機100と車載器200-1が送受信した信号に基づき推定された携帯機100の暫定三次元位置を(x1,y1,z1)とし、携帯機100と車載器200-2が送受信した信号に基づき推定された携帯機100の暫定三次元位置を(x2,y2,z2)とする。また、車載器200―1の平均受信電力をP1とし、車載器200-2の平均受信電力をP2とする。
X=(P1×x1+P2×x2)/(P1+P2)
Y=(P1×y1+P2×y2)/(P1+P2)
Z=(P1×z1+P2×z2)/(P1+P2)
(数式15)
【0171】
数式15は、信頼性パラメータ(平均受信電力P1、P2)の平均値を重みパラメータとして適用した際における重み付け平均の算出例である。重みパラメータは、第1の実施例で説明した各数式を用いて、信頼性パラメータに基づく重みパラメータ算出してもよい。
【0172】
(動作処理例)
図11は、第2の実施例に係るシステム1の動作処理例を説明するための説明図である。まず、携帯機100が備える通信部120は、Poll信号を送信し、車載器200―1が備える通信部220―1と、車載器200―2が備える通信部220-2はPoll信号を受信する(S301)。
【0173】
続いて、通信部220―1および通信部220-2は、Poll信号に対する応答として、Resp信号を送信し、通信部120は、Resp信号を受信する(S303)。
【0174】
そして、通信部120は、Resp信号に対する応答として、Final信号を送信し、通信部220―1および通信部220-2は、Final信号を受信する(S305)。ここで、通信部220―1および通信部220-2は、送受信した信号に関する各種情報を制御装置300が備える通信部310に送信する。
【0175】
続いて、位置推定部325は、携帯機100と車載器200―1との間で送受信された信号に基づき、第1の測距値を算出し、携帯機100と車載器200-2との間で送受信された信号に基づき、第2の測距値を算出する(S307)。
【0176】
続いて、パラメータ算出部321は、車載器200―1が受信した信号に基づき、第1の信頼性パラメータを算出し、車載器200-2が受信した信号に基づき、第2の信頼性パラメータを算出する(S309)。
【0177】
更に、パラメータ算出部321は、算出した各信頼性パラメータに基づき、重みパラメータを算出する(S311)。例えば、パラメータ算出部321は、第1の信頼性パラメータに基づき、第1の重みパラメータを算出し、第2の信頼性パラメータに基づき、第2の重みパラメータを算出する。
【0178】
そして、位置推定部325は、携帯機100と車載器200-1との間で送受信された信号に基づき、第1の信号の到来角を推定し、携帯機100と車載器200-2との間で送受信された信号とに基づき、第2の信号の到来角を推定する(S313)。
【0179】
続いて、位置推定部325は、第1の信号の到来角に基づき、携帯機100の第1の暫定三次元位置を推定し、第2の信号の到来角に基づき、携帯機100の第2の暫定三次元位置を推定する(S315)。
【0180】
そして、位置推定部325は、携帯機100の第1の暫定三次元位置および第2の暫定三次元位置に対し、第1の重みパラメータおよび第2の重みパラメータによる重み付け平均を行い、携帯機100の三次元位置を推定する(S317)。
【0181】
そして、制御部320は、重み付け平均により推定された携帯機100の三次元位置が所定の基準を満たすか否かを判定する(S319)。所定の基準を満たす場合(S319:Yes)、制御部320は処理をS321に進め、所定の基準を満たさない場合(S319:No)、制御部320は処理を終了する。
【0182】
所定の基準を満たす場合(S319:Yes)、制御部320は、動作装置400の一例であるエンジンの始動または停止に係る動作制御を行い(S321)、制御部320は処理を終了する。
【0183】
以上、第2の実施例に係る制御例を説明した。第1の実施例に係る制御によれば、制御装置300は、マルチパスの影響を低減することを可能にし、より高い精度で携帯機100と車載器200との位置関係を推定し得る。
【0184】
また、第1の実施例および第2の実施例では、位置推定部325は、車載器200-1および車載器200―2のそれぞれが送受信した信号に基づき、2つの重みパラメータを算出し、携帯機100と車載器200との位置関係の算出過程や算出結果に適用する例を説明した。このように、信頼性パラメータに基づく重みパラメータを用いることで、マルチパス環境に起因する算出誤差の影響を低減し得る。また、制御部320は、車載器200―1および車載器200-2が送受信した信頼性パラメータに基づき、マルチパス環境の影響が小さい車載器200を選定してもよい。以下、図12図14を参照し、第3の実施例について説明する。
【0185】
<3.3.第3の実施例>
図12は、第3の実施例に係るシステム1の制御例を説明するための説明図である。第3の実施例に係る制御部320は、複数の車載器200の各々が携帯機100から受信した信号に基づき算出された信頼性パラメータの各々を比較し、位置関係を推定する処理対象としてより適切である信号を送信した車載器200と、携帯機100との間で送受信された信号に基づき、前記位置関係を推定する制御を行う。以下の説明では、信頼性パラメータをアンテナ221が受信した信号の受信電力として説明するが、上述した他の信頼性パラメータであってもよい。
【0186】
例えば、車載器200―1が備える通信部220-1のアンテナ221A-1、アンテナ221B-1、アンテナ221C-1およびアンテナ221D-1は携帯機100が備える通信部120のアンテナ121からFinal信号を受信する。ここで、アンテナ221A-1の受信電力は「―90dBm」であり、アンテナ221B-1の受信電力は「―95dBm」であり、アンテナ221C-1の受信電力は「―95dBm」であり、アンテナ221D-1の受信電力は「―100dBm」であったと仮定する。
【0187】
また、車載器200―2が備える通信部220-2のアンテナ221A-2、アンテナ221B-2、アンテナ221C-2およびアンテナ221D-2は携帯機100が備える通信部120のアンテナ121からFinal信号を受信する。ここで、アンテナ221A-2の受信電力は「―99dBm」であり、アンテナ221B-2の受信電力は「―99dBm」であり、アンテナ221C-2の受信電力は「―101dBm」であり、アンテナ221D-2の受信電力は「―101dBm」であったと仮定する。
【0188】
この場合、パラメータ算出部321は、アンテナごとに推定された信頼性パラメータ(例えば、受信電力)に基づく基本統計量を算出する。基本統計量とは、例えば、平均値、最大値、最小値または中央値であってもよい。
【0189】
例えば、基本統計量を平均値した場合、パラメータ算出部321は、アンテナ221A-1、アンテナ221B-1、アンテナ221C-1およびアンテナ221D-1の受信電力の平均値として「―95dBm」を算出してもよい。また、パラメータ算出部321は、アンテナ221A-2、アンテナ221B-2、アンテナ221C-2およびアンテナ221D-2の受信電力の平均値として「―100dBm」を算出してもよい。
【0190】
そして、位置推定部325は、アンテナ221A-1、アンテナ221B-1、アンテナ221C-1およびアンテナ221D-1の受信電力の平均値である「―95dBm」と、アンテナ221A-2、アンテナ221B-2、アンテナ221C-2およびアンテナ221D-2の受信電力の平均値である「―100dBm」とを比較する。
【0191】
そして、位置推定部325は、位置関係を推定する処理対象としてより適切である(即ち、信頼性が高い)通信部220を選定する。例えば、位置推定部325は、受信電力の平均値がより大きいアンテナ221―1を有する通信部220-1と、携帯機100が備える通信部120との間で送受信された信号に基づき、携帯機100と車載器200―1との位置関係を推定してもよい。
【0192】
また、位置推定部325は、複数の車載器200の各々で4以上のアンテナのうち3つのアンテナを信頼性パラメータに基づき選定してもよい。そして、位置推定部325は、選定された3つのアンテナの各々が受信した信号に基づき算出された信頼性パラメータを比較してもよい。そして、位置推定部325は、比較の結果に基づき位置関係を推定する処理対象としてより適切である信号を受信した車載器200と、携帯機100との間で送受信された信号に基づき、携帯機100と車載器200との位置関係を推定してもよい。
【0193】
図13は、第3の実施例に係るシステム1の他の制御例を説明するための説明図である。例えば、車載器200―1が備える通信部220-1のアンテナ221A-1、アンテナ221B-1、アンテナ221C-1およびアンテナ221D-1は、携帯機100が備える通信部120のアンテナ121からFinal信号を受信する。ここで、アンテナ221A-1の受信電力は「―89dBm」であり、アンテナ221B-1の受信電力は「―89dBm」であり、アンテナ221C-1の受信電力は「―89dBm」であり、アンテナ221D-1の受信電力は「―105dBm」であったと仮定する。この場合、位置推定部325は、受信電力の大きい順に、アンテナ221A-1、アンテナ221B-1およびアンテナ221C-1を選定してもよい。
【0194】
また、車載器200―2が備える通信部220-2のアンテナ221A-2、アンテナ221B-2、アンテナ221C-2およびアンテナ221D-2は携帯機100が備える通信部120のアンテナ121からFinal信号を受信する。ここで、アンテナ221A-2の受信電力は「―105dBm」であり、アンテナ221B-2の受信電力は「―90dBm」であり、アンテナ221C-2の受信電力は「―90dBm」であり、アンテナ221D-2の受信電力は「―90dBm」であったと仮定する。この場合、位置推定部325は、受信電力の大きい順に、アンテナ221B-2、アンテナ221C-2およびアンテナ221D-2を選定してもよい。
【0195】
また、複数の車載器200の各々がN個(4≦N)のアンテナを有していた場合、位置推定部325は、複数の車載器200の各々でN個のアンテナのうちM個(3≦M≦N)のアンテナを信頼性パラメータに基づき選定してもよい。
【0196】
続いて、位置推定部325は、車載器200-1および車載器200-2の各々で選定された3つのアンテナの各々が受信した信号に基づき算出された信頼性パラメータを比較する。
【0197】
比較方法を各アンテナ221の信頼性パラメータ平均値同士とした場合、位置推定部325は、車載器200-1が有するアンテナ221A―1、アンテナ221B-1およびアンテナ221C-1の方が車載器200-2のアンテナ221B-2、アンテナ221C-2およびアンテナ221D-2と比べて平均受信電力が大きく、位置関係を推定する処理対象としてより適切である信号を送受信したという比較結果を取得する。
【0198】
そして、位置推定部325は、より位置関係推定を推定する処理対象として適切である信号を送受信した車載器200-1と、携帯機100との間で送受信された信号に基づき、携帯機100と、車載器200-1との位置関係を推定する処理を実行する。なお、携帯機100と車載器200-1との位置関係とは、第1の実施例および第2の実施例と同様、信号の到来角であってもよいし、携帯機100の二次元位置または三次元位置であってもよい。
【0199】
また、位置推定部325は、複数の車載器200の各々が有する4以上のアンテナのうち、受信した信号に基づく信頼性パラメータが規定の基準を満たしたアンテナを複数の車載器200の各々から選定してもよい。例えば、位置推定部325は、複数の車載器200の各々が有する4以上のアンテナのうち、受信した信号に基づく信頼性パラメータが所定値であったアンテナを複数の車載器200の各々から選定してもよい。より具体的には、例えば、信頼性パラメータが受信電力であり、所定値が―90dBmであった場合、位置推定部325は、4以上のアンテナのうち、受信した信号の受信電力が―90dBm以上であったアンテナを選定してもよい。そして、位置推定部325は、複数の車載器200の各々で選定されたアンテナの信頼性パラメータを比較してもよい。
【0200】
(動作処理例)
図14は、第3の実施例に係るシステム1の動作処理例を説明するための説明図である。以下の説明では、信頼性パラメータの値が小さいほど送受信された信号の信頼性が高い場合に関する動作処理を説明する。まず、携帯機100が備える通信部120は、Poll信号を送信し、車載器200―1が備える通信部220―1と、車載器200―2が備える通信部220-2はPoll信号を受信する(S401)。
【0201】
続いて、通信部220―1および通信部220-2は、Poll信号に対する応答として、Resp信号を送信し、通信部120は、Resp信号を受信する(S403)。
【0202】
そして、通信部120は、Resp信号に対する応答として、Final信号を送信し、通信部220―1および通信部220-2は、Final信号を受信する(S405)。ここで、通信部220―1および通信部220-2は、送受信した信号に関する各種情報を制御装置300が備える通信部310に送信する。
【0203】
続いて、位置推定部325は、携帯機100と車載器200―1との間で送受信された信号に基づき、第1の測距値を算出し、携帯機100と車載器200-2との間で送受信された信号に基づき、第2の測距値を算出する(S407)。
【0204】
続いて、パラメータ算出部321は、車載器200―1が受信した信号に基づき、第1の信頼性パラメータを算出し、車載器200-2が受信した信号に基づき、第2の信頼性パラメータを算出する(S409)。
【0205】
そして、制御部320は、車載器200―1が受信した信号に基づく信頼性パラメータの方が、車載器200-2が受信した信号に基づく信頼性パラメータよりも大きいか否かを判定する(S413)。車載器200―1が受信した信号に基づく信頼性パラメータの方が大きい場合(S413:Yes)、制御部320は処理をS415に進め、車載器200―2が受信した信号に基づく信頼性パラメータの方が大きい場合(S413:No)、制御部320は処理をS419に進める。
【0206】
車載器200―1が受信した信号に基づく信頼性パラメータの方が大きい場合(S413:Yes)、位置推定部325は、車載器200-2が備える通信部220―2が送受信した信号に基づき、信号の到来角を推定する(S415)。
【0207】
そして、位置推定部325は、推定した信号の到来角および第2の測距値に基づき、携帯機100の三次元位置を推定する(S417)。
【0208】
車載器200―2が受信した信号に基づく信頼性パラメータの方が大きい場合(S413:No)、位置推定部325は、車載器200-1が備える通信部220―1が送受信した信号に基づき、信号の到来角を推定する(S419)。
【0209】
そして、位置推定部325は、推定した信号の到来角および第2の測距値に基づき、携帯機100の三次元位置を推定する(S421)。
【0210】
そして、制御部320は、推定された携帯機100の三次元位置が所定の基準を満たすか否かを判定する(S423)。所定の基準を満たす場合(S423:Yes)、制御部320は処理をS425に進め、所定の基準を満たさない場合(S423:No)、制御部320は処理を終了する。
【0211】
所定の基準を満たす場合(S423:Yes)、制御部320は、動作装置400の一例であるエンジンの始動または停止に係る動作制御を行い(S425)、制御部320は処理を終了する。
【0212】
以上、第3の実施例に係るシステム1の動作処理例を説明した。なお、車載器200が複数機あった場合の動作処理は係る例に限定されない。例えば、携帯機100が備える通信部120と、車載器200-1が備える通信部220-1と間でPoll信号、Resp信号、Final信号が送受信された後に、通信部120と、車載器200-2が備える通信部220―2との間でPoll信号、Resp信号、Final信号が送受信されてもよい。また、位置推定部325は、携帯機100と車載器200-1との間で送受信された信号に基づき、携帯機100の第1の三次元位置を推定し、携帯機100と車載器200-2との間で送受信された信号に基づき、携帯機100の第2の三次元位置を推定し、その後に、制御部320は、信頼性パラメータを比較してもよい。例えば、制御部320は、車載器200―1の方が車載器200-2よりも信頼性の高い信号を送受信したと判定した場合、第1の三次元位置を携帯機100の三次元位置として確定してもよい。
【0213】
以上で説明した第3の実施例に係る制御によれば、制御装置300は、マルチパスの影響がより小さい車載器200を選定することで、より高い精度で携帯機100と車載器200との位置関係を推定し得る。
【0214】
第1の実施例、第2の実施例および第3の実施例に関する詳細を説明したが、本実施形態に係る制御装置30は、上述した第1の実施例を、第2の実施例または第3の実施例のいずれか一方と組み合わせた制御を行ってもよい。
【0215】
第1の実施例と第2の実施例を組み合わせた場合、例えば、位置推定部325は、車載器200-1が有するアンテナペアのアンテナ間位相差に信頼性パラメータに基づく重みパラメータによる重み付け平均を行う。そして、位置推定部325は重み付け平均が行われたアンテナ間位相差に基づき、信号の到来角および携帯機100の暫定三次元位置を推定する。更に、位置推定部325は、車載器200-2においても同様の処理により、信号の到来角および携帯機100の暫定三次元位置を推定する。そして、位置推定部325は、推定された2つの携帯機100の暫定三次元位置に対して信頼性パラメータに基づく重み付け平均を行い、携帯機100の三次元位置を推定してもよい。
【0216】
第1の実施例と第3の実施例を組み合わせた場合、例えば、位置推定部325は、車載器200-1および車載器200-2の各々の信頼性パラメータを比較し、当該比較の結果に応じて、携帯機100との位置関係を推定する車載器200を選定する。次に、位置推定部325は、選定された車載器200が有するアンテナペアのアンテナ間位相差に対して信頼性パラメータに基づく重みパラメータによる重み付け平均を行う。そして、位置推定部325は重み付け平均が行われたアンテナ間位相差に基づき、信号の到来角および携帯機100の三次元位置を推定してもよい。
【0217】
以上説明した本実施形態に係る第1の実施例と、第2の実施例または第3の実施例のいずれか一方と組合せた制御によれば、制御装置30は、携帯機100と車載器200との位置関係をより高い精度で推定し得る。
【0218】
<<4.補足>>
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
【0219】
例えば、本発明書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、およびソフトウェアとハードウェアとの組み合わせのいずれかを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部または外部に設けられる記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、コンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。上記記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
【0220】
また、本実施形態に係るシステム1の動作の処理におけるステップは、必ずしも説明図として記載された順序に沿って時系列に処理する必要はない。例えば、システム1の動作の処理における各ステップは、説明図として記載した順序と異なる順序で処理されてもよく、並列的に処理されてもよい。
【符号の説明】
【0221】
1:システム、100:携帯機、110:制御部、120:通信部、121:アンテナ、20:車両、200:車載器、210:制御部、220:通信部、221:アンテナ、300:制御装置、310:通信部、320:制御部、321:パラメータ算出部、325:位置推定部、400:動作装置
図1
図2
図3
図4
図5
図6A
図6B
図6C
図6D
図7A
図7B
図7C
図7D
図8
図9
図10
図11
図12
図13
図14