IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧

特許7604190検査システム、管理装置、検査方法、プログラム、記録媒体および物品の製造方法
<>
  • 特許-検査システム、管理装置、検査方法、プログラム、記録媒体および物品の製造方法 図1
  • 特許-検査システム、管理装置、検査方法、プログラム、記録媒体および物品の製造方法 図2
  • 特許-検査システム、管理装置、検査方法、プログラム、記録媒体および物品の製造方法 図3
  • 特許-検査システム、管理装置、検査方法、プログラム、記録媒体および物品の製造方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-13
(45)【発行日】2024-12-23
(54)【発明の名称】検査システム、管理装置、検査方法、プログラム、記録媒体および物品の製造方法
(51)【国際特許分類】
   G01N 21/88 20060101AFI20241216BHJP
【FI】
G01N21/88 Z
【請求項の数】 15
(21)【出願番号】P 2020194820
(22)【出願日】2020-11-25
(65)【公開番号】P2022083487
(43)【公開日】2022-06-06
【審査請求日】2023-11-14
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100126240
【弁理士】
【氏名又は名称】阿部 琢磨
(74)【代理人】
【識別番号】100223941
【弁理士】
【氏名又は名称】高橋 佳子
(74)【代理人】
【識別番号】100159695
【弁理士】
【氏名又は名称】中辻 七朗
(74)【代理人】
【識別番号】100172476
【弁理士】
【氏名又は名称】冨田 一史
(74)【代理人】
【識別番号】100126974
【弁理士】
【氏名又は名称】大朋 靖尚
(72)【発明者】
【氏名】志岐 美佳
【審査官】小澤 瞬
(56)【参考文献】
【文献】特開2020-041889(JP,A)
【文献】特開2008-249653(JP,A)
【文献】特開2019-178928(JP,A)
【文献】米国特許出願公開第2019/0347782(US,A1)
【文献】国際公開第2019/130307(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00 - G01B 11/30
G01N 21/84 - G01N 21/958
(57)【特許請求の範囲】
【請求項1】
ワークを撮像する撮像部と、
前記撮像部により撮像された前記ワークを含む画像に基づき、前記ワークの良否を判定する処理部と、を有する検査システムであって、
前記処理部は、
第2検査工程における前記ワークを含む第2画像に基づき、前記ワークに不良があると判定した場合に、
前記第2画像と、前記第2検査工程より前に行われた第1検査工程における前記ワークを含む第1画像と、に基づき、前記第1検査工程の検査条件を変更する
ことを特徴とする検査システム。
【請求項2】
前記処理部は、
前記第2画像と、前記第1画像と、に基づき前記ワークの不良個所の候補を抽出し、
抽出された前記ワークの不良個所の候補に基づき、前記第1検査工程の検査条件を変更する請求項1に記載の検査システム。
【請求項3】
前記処理部は、前記第1画像に画像処理を行うことにより、前記ワークの不良個所を推定する請求項2に記載の検査システム。
【請求項4】
変更される前記第1検査工程の検査条件は、前記第1画像の画像処理の条件を含む請求項1乃至3のいずれか1項に記載の検査システム。
【請求項5】
変更される前記第1検査工程の検査条件は、前記撮像部の撮像条件を含む請求項1乃至4のいずれか1項に記載の検査システム。
【請求項6】
前記処理部は、予め構築された学習モデルに基づいて前記ワークの良否を判定し、抽出した前記ワークの不良個所の候補に基づく前記第1検査工程の検査条件の変更を前記学習モデルに反映させる請求項2乃至5のいずれか1項に記載の検査システム。
【請求項7】
前記第1検査工程と前記第2検査工程の間には、前記ワークに対して加工を施す加工工程が行われる請求項1乃至6のいずれか1項に記載の検査システム。
【請求項8】
前記処理部は、前記第1検査工程の検査条件を変更することにより、前記加工工程後における前記ワークの良否判定を前記第1検査工程において推定することを可能とする請求項7に記載の検査システム。
【請求項9】
前記撮像部は、第1撮像部および第2撮像部を有し、
前記第1撮像部は前記第1検査工程において前記ワークを撮像し、
前記第2撮像部は前記第2検査工程において前記ワークを撮像する請求項1乃至8のいずれか1項に記載の検査システム。
【請求項10】
前記処理部は、前記第1検査工程における前記ワークを含む前記第1画像に基づき、前記ワークに不良があると判定しなかった場合、かつ、第2検査工程における前記ワークを含む第2画像に基づき、前記ワークに不良があると判定した場合に、前記第2画像と、前記第2検査工程より前に行われた第1検査工程における前記ワークを含む第1画像と、に基づき、前記第1検査工程の検査条件を変更する請求項1乃至9のいずれか1項に記載の検査システム
【請求項11】
第1検査工程の検査条件および前記第1検査工程の後に行われる第2検査工程の検査条件を管理する管理装置であって、
前記管理装置は、
前記第2検査工程で検査に用いられたワークを含む第2画像に基づき、前記ワークに不良があると判定した場合に、
前記第2画像と、前記第1検査工程で検査に用いられた前記ワークを含む第1画像と、に基づき、前記第1検査工程の検査条件を変更する
ことを特徴とする管理装置。
【請求項12】
ワークを含む第1画像を撮像する第1検査工程と、
前記第1検査工程の後に、前記ワークを含む第2画像を撮像し、前記第2画像に基づき、前記ワークの良否を判定する第2検査工程と、を含む検査方法であって、
処理部が、前記第2検査工程において前記ワークに不良があると判定した場合に、
前記処理部が、前記第2画像と、前記第1画像と、に基づき、前記第1検査工程の検査条件を変更する工程と、
を含むことを特徴とする検査方法。
【請求項13】
請求項12に記載の検査方法の各工程をコンピュータに実行させるためのプログラム。
【請求項14】
請求項13に記載のプログラムを記録した、前記コンピュータが読み取り可能な記録媒体。
【請求項15】
請求項1乃至10のいずれか1項に記載の検査システムを用いてワークを検査する工程と、
検査された前記ワークに対し所定の処理を行う工程と、
を含むことを特徴とする物品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査システム、管理装置、検査方法、プログラム、記録媒体および物品の製造方法に関する。
【背景技術】
【0002】
ユーザーが要求する製品の品質は年々高まっており、製品の外観に対する要求レベルも年々高まっている。そのため、メーカーには、製品が出荷される前の外観検査において、製品についた微小な傷やごみ、シミ、塗工不良、膜の色ムラといった微妙な外観の違いを可視化して評価することが求められている。
【0003】
特許文献1には、対象物を含む画像に画像処理を施して欠陥の有無を判定する検査方法および検査装置が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2014-66599号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、製品が出荷されるまでには複数の検査工程があり、前工程の検査工程において顕在化しなかった外観不良が後工程の検査工程において初めて発見されるケースがある。この場合、後工程までの加工コストが無駄となり、前工程に戻り、作業をやり直すことにより余計にコスト(やり直し)が発生することになる。
【課題を解決するための手段】
【0006】
上記課題を解決するための検査システムは、ワークを撮像する撮像部と、前記撮像部により撮像された前記ワークを含む画像に基づき、前記ワークの良否を判定する処理部と、を有する検査システムであって、前記処理部は、第2検査工程における前記ワークを含む第2画像に基づき、前記ワークに不良があると判定した場合に、前記第2画像と、前記第2検査工程より前に行われた第1検査工程における前記ワークを含む第1画像と、に基づき、前記第1検査工程の検査条件を変更することを特徴とする。
【発明の効果】
【0007】
本発明によれば、後工程の検査工程の不良結果に基づき前工程の検査工程の検査条件を変更するので、前工程の検査工程の検査精度を向上できる。また、後工程の検査工程までに発生する加工コスト、やり直しコストを削減できる。
【図面の簡単な説明】
【0008】
図1】第1実施形態に係る検査システムの一実施態様を示す概略図である。
図2】第1実施形態に係る処理部の一実施態様を示す概略図である。
図3】第2実施形態に係る検査方法の一実施態様を示すフロー図である。
図4】第3実施形態に係る検査方法の一実施態様を示すフロー図である。
【発明を実施するための形態】
【0009】
(検査システム)
[第1実施形態]
図1は第1実施形態に係る検査システム1の概略図である。検査システム1は検査装置300と、処理装置(処理部)100と、を有する。図2は処理装置100のブロック図である。
【0010】
検査装置300は、ワーク206を検査する装置である。検査装置300は、撮像部304、照明部305および基台307を有する。
【0011】
撮像部304は、不図示の撮像素子を筐体内に備える撮像本体部3041と、光学系を備えるレンズ部3042と、撮像本体部3041およびレンズ部3042の位置を移動させる撮像駆動部3043と、を有する。撮像本体部3041およびレンズ部3042には市販のデジタルカメラを用いることができる。撮像部304は、処理装置100に設けられた制御部105によりZ方向およびXY方向に移動可能である。そのため、撮像部304とワーク206との相対位置は任意に変更することができる。この相対位置を変更することにより、ワーク206の撮像領域やワーク206に対する焦点位置を変更することができる。
【0012】
照明部305は、少なくとも1つの光源を有し、検査装置300の検査対象であるワーク206の表面に光を照射する機能を有する。光源は、例えば、LEDである。照明部305は不図示の支柱に取り付けられ、処理装置100に設けられた制御部105によりZ方向およびXY方向に移動可能である。そのため、照明部305とワーク206との相対位置は任意に変更することができる。また、制御部105により照明部305の光源の電源のON/OFFを制御することが可能である。照明部305の光源の個数および形状は、ワーク206の種類に応じて選択する。例えば、光学レンズのようなZ方向から平面視した際に円形状のワークに対してはリング形状が好適である。また、車の外装のような大きな形状のワークに対しては複数の光源を用いて、複数の方向から順番に照射することができる配置にすることが好適である。光源の波長は、ワーク206の種類や検出する外観不良の種類に応じて選択する。例えば、傷や薄膜の剥がれといった微細な凹凸を有する立体的欠陥に対しては、420nm以上500nm以下の範囲の波長を有する青色の光であることが好ましい。さらに、外観の良否を判定するためにはS/N比が高いことが好ましい。また、LEDを高密度に配置すること、直線光のLEDを用いることが好ましい。
【0013】
基台307は、検査対象であるワーク206を載置する部材である。図1の形態では、基台307はZ方向もしくはXY方向に移動可能な駆動機構を有していないが、基台307に駆動機構を設け、制御部105を用いて、ワーク206と照明部305または撮像部304との相対位置を制御しても良い。また、図1においてワーク206は光学レンズであり、凹レンズである。ただしワーク206の形状はこれに限定されず、平板でも凸形状であっても良い。また、非光透過性ワークであっても光透過性ワークであっても良い。
【0014】
なお図1において検査装置300は、1つの処理装置100に対し1つ検査装置が通信可能な状態にあるが、検査装置300の数は1つに限らない。1つの処理装置100で複数の検査装置300と通信可能であっても良い。また、複数の検査システム1において、それぞれの検査システム1の処理装置100を統括制御する統括処理装置を用いて、各検査システムを制御しても良い。また、統括処理装置は、各処理装置と外部サーバーを通じで制御してもよく、検査装置300がある場所から離れた遠隔地に配置されていても良い。また、検査装置300として、市販の3次元形状測定機を用いてもよい。
【0015】
処理装置100は、撮像部304により撮像された画像に基づき、ワーク206の良否を判定する機能を有する。また、処理装置100は、検査装置300の検査条件を管理する機能を有する。処理装置100は、情報記憶部101、画像加工部102、推定部103、出力部104、制御部105および入力部106を有する。
【0016】
情報記憶部101は、ワーク206固有の情報、検査工程の検査条件を記憶する機能を有する。ワーク206固有の情報は、例えば、形状、材質、部番である。また、これらの情報に、良否判定の結果、ワーク206に対する加工データ等を関連付けても良い。検査条件は、画像加工部102が画像に対して行う画像処理の条件、画像に対してワークの良否を判定するための条件(良否判定基準)を含む。検査条件は、上述の条件以外にも、撮像部の位置、撮像部の絞り・焦点距離、撮像部の露光条件、撮像部とワークの相対位置、照明部の位置、照明部の照明光の波長、照明部とワークの相対位置等を含んでも良い。情報記憶部101は、画像加工部102および推定部103に伝達するデータを記憶し、これらのデータを画像加工部102および推定部103に出力する。情報記憶部101は検査装置300内の情報だけでなく、データベースが格納されたクラウドもしくは外部装置からネットワークを介した情報を記憶しても良い。
【0017】
画像加工部102は、情報記憶部101に記憶された画像処理の条件を読み出し、情報記憶部101に記憶された画像に対し加工処理を行い、画像処理後の画像もしくは画像情報を推定部103に出力する機能を有する。ここで画像処理とは、画像変換や変形処理、特徴量の抽出など公知の加工処理の方法から適宜選択することが可能である。この際、画像加工部102の内部には、画像加工処理方法に関する機械学習機能を組み込んでもよく、それにより推定に適した画像加工処理方法のみを選択的に出力しても良い。なお撮像部304が撮像した画像は、画像加工部102によって必ずしも加工される必要はなく、加工処理を施さない画像を推定部103に出力しても良い。
【0018】
推定部103は、画像加工部102から出力された画像および画像情報、情報記憶部101に記憶された各種情報を用いてワーク206の良否判定を行う。画像に対してワーク206の良否を判定するための条件は、例えば、傷やごみ、シミ、塗工不良、膜の色ムラといった部分を欠陥部として扱う最小のサイズや、その欠陥部が発生する位置を含む。欠陥部として扱う最小のサイズは、検査対象のワーク206の位置に応じて設定しても良い。また、検査工程の前に加工工程がある場合は、その加工工程に応じて欠陥部のサイズや位置を設定しても良い。推定部103は、これらの条件を満たすか否かによってワーク206の良否判定を行う。
【0019】
推定部103は、画像加工部102から出力された画像および画像情報、情報記憶部101に記憶された各種情報を用いて、ワーク206の不良発生個所を推定する機能も有する。不良発生個所を推定する手順については、検査方法の項で説明する。
【0020】
なお、推定部103には、機械学習のための機械学習部を設けてもよく、その演算のために複数種のGPU(Gfaphics Processing Units)を搭載したコンピュータを用いても良い。機械学習の手法は既知の方法を用いることができ、具体的には「教師あり学習」、「教師なし学習」および「強化学習」に大きく分けられる。
【0021】
「教師あり学習」を用いる場合は、入力データとして、ワークの前工程(後述の第1検査工程)における画像、ワークに係る情報、加工工程情報、前工程における画像に施す画像加工条件、等がある。教師データとして、後工程(後述の第2検査工程)で不良判定されたワークの画像、ワークに係る情報、加工工程情報、判定結果がある。入力データおよび教師データから、ワークの不良個所と、ワークの前工程で推定された欠陥種の類似度を推定し、それぞれを出力することにより、学習モデルを構築する。類似度の推定にはパラメーターの重みづけ演算をしてよく、その重みづけは変更することができる。
【0022】
「教師なし学習」を用いる場合は、後工程で不良判定されたワークの画像、ワークの前工程における画像、これらの画像それぞれへ施す画像処理の条件等がある。
【0023】
出力部104は、撮像部304によって撮像された画像および画像加工部102によって画像処理された画像を表示装置202に出力する機能を有する。また、情報記憶部101に記憶された情報を表示装置202に出力することも可能である。
【0024】
制御部105は、情報記憶部101、画像加工部102、推定部103、出力部104と接続されており、各種条件の設定や推定の施行回数の設定を行う。また、制御部105は、検査装置300の駆動を制御したり、検査装置300の検査条件を制御したりすることが可能である。また、推定部103が不良個所を推定したあとに、検査条件を変更し、情報記憶部101に変更した検査条件を記憶させる機能を有する。
【0025】
入力部106は、後述するユーザーインターフェース装置201を介して、ユーザーによって入力されるワーク206の形状、材質、部番といった情報を一時的に記憶する機能を有する。入力部106は、例えば、RAMやHDDである。入力部106は、必ずしもUI装置201と接続されている必要はなく、CADなどの不図示の外部装置と接続し、外部装置からワーク206の情報を入力部106に入力しても良い。また、不図示のネットワークを介してクラウドに格納されたデータベースからワーク206の情報を入力部106に入力しても良い。
【0026】
処理装置100は、ユーザーインターフェース装置201(以下UI装置201)と、表示装置202に接続されている。
【0027】
UI装置201は、図1において入力部106と接続されている。UI装置201は例えば、キーボード、マウス、タッチペンといった入力機器である。
【0028】
表示装置202は、図1において処理装置100の出力部104と接続されている。表示装置202はディスプレイであり、特にハイダイナミックレンジディスプレイのような高階調の画像を表示可能であることが好ましい。
【0029】
(検査方法)
[第2実施形態]
続いて、検査システム1を用いたワーク206の検査方法について説明する。図3は第2実施形態に係る検査方法の一実施態様を示すフロー図である。
【0030】
まず、検査システム1の基台307にワーク206を載置し、ワーク206の基台307と接している側と反対側の表面を含む第1画像を撮像部304によって取得(撮像)する(S11)。取得した第1画像は、第1画像の検査条件、ワーク206固有の情報、それまでに行われたプロセス履歴等と関連付けて情報記憶部101に記憶される。ワーク206固有の情報は、例えば、ユーザーがUI装置201を介して情報記憶部101に記憶された情報を選択することが可能である。検査条件は、画像加工部102が画像に対して行う画像処理の条件、画像に対してワークの良否を判定するための条件を含む。検査条件は、上述の条件以外にも、撮像部の位置、撮像部の絞り・焦点距離、撮像部の露光条件、撮像部とワークの相対位置、照明部の位置、照明部の照明光の波長、照明部とワークの相対位置等の撮像条件を含んでも良い。なお第1画像は、必ずしも画像処理が行われていなくても良い。
【0031】
次に、取得した第1画像に、処理装置100の推定部103が、第1画像に基づきワーク206の表面に不良が発生しているか否かを判定する(S12)。このS11からS12までを第1検査工程と呼ぶ。なお第1画像および推定部103の判定結果は、出力部104を介して表示装置202に表示され、ユーザーが視認可能な状態となる。第1検査工程で取得した第1画像からワーク206に不良があると判定した場合は、第1検査工程をやり直す、または、第1検査工程より後の工程には進まない。
【0032】
次に、第1検査工程により不良がないと判定されたワーク206に対し、加工を行う(S13)。ワークに対して行う加工の種類は特に限定されないが、例えば、蒸着、スプレー塗布、スピンコート、スキージおよびスパッタリングといった成膜工程である。また、成膜以外では切断、塗工、塗布、成形、研削、研磨、穿孔および変形処理といった工程でも良い。このような加工処理を行うことにより、第1検査工程において顕在化しなかった外観不良が、この後の第2検査工程において初めて発見される可能性が高くなる。ただし、第1検査工程と後述する第2検査工程の間には、必ずしも加工工程を有していなくても良い。
【0033】
続いて、加工処理を施したワーク206に対し、第2検査工程(S21,S22)を行う。第2検査工程では、まず、ワーク206の第1画像を取得した表面と同じ表面を含む第2画像を撮像部304によって取得(撮像)する(S21)。取得した第2画像は、第2画像の検査条件、ワーク206固有の情報、それまでに行われたプロセス履歴等と関連付けて情報記憶部101に記憶される。ここで関連付けられる情報の種類は、第1画像と同じであっても異なっていても良い。なお、撮像部304は複数であってもよく、第1検査工程を行う第1撮像部と、第2検査工程を行う第2撮像部とは異なる装置であっても良い。第2画像は、出力部104を介して表示装置202に表示され、ユーザーが視認可能な状態となる。
【0034】
次に、取得した第2画像に基づき、処理装置100の推定部103がワーク206の表面に不良が発生しているか否かを判定する(S22)。具体的には、推定部103は、画像加工部102から出力された画像および画像情報、情報記憶部101に記憶された各種情報に基づく良否判定基準を基にワークの良否判定を行う。画像に対してワークの良否判定基準は、例えば、傷やごみ、シミ、塗工不良、膜の色ムラといった部分を欠陥部として扱う最小のサイズや、その欠陥部が発生する位置を含む。欠陥部として扱う最小のサイズは、検査対象のワークの位置に応じて設定しても良い。また、検査工程の前に加工工程がある場合は、その加工工程に応じて欠陥部のサイズや位置を設定しても良い。推定部103は、これらの条件を満たすか否かによってワーク206の良否判定を行う。良否判定の結果は、出力部104を介して表示装置202に表示され、ユーザーが視認可能な状態となる。
【0035】
ここで不良がないと判定された場合(S22のN)は、検査は終了する。一方、ワーク206に不良が発生していると判定された場合(S22のY)、すなわち、ワーク206には第1検査工程で発見できなかった不良が第2検査工程で発見された場合は次のステップ(S23)に進む。
【0036】
ワーク206に不良が発生していると判定した場合、制御部105は情報記憶部101から第2検査工程における不良判定情報を読み出す(S23)。具体的には、不良判定されたワークの情報を読み出し、読み出した情報を第2画像と関連付けて推定部103に与える(S23)。第2画像と関連付ける情報とは、例えば、ワークの材質、形状、サイズ、加工工程で使用される加工図面、加工工程情報、不良と判定された判定基準、不良分類が挙げられる。また、ワークの部番情報や製造情報、設計データ等も対象としてよい。
【0037】
次に、読み出された情報に基づき、制御部105は情報記憶部101から第1画像を読み出し、読み出した第1画像を推定部103に与える(S24)。第2検査工程の前に複数の検査工程を有している場合は、第1画像は、第2検査工程より前に行われた複数の検査工程のいずれかから読み出しても良いが、直前の検査工程における情報を読み出すことが好ましい。また推定部103は、第1画像を読み出す際に、第1画像を取得したときのワークの情報および検査条件も併せて読み出しても良い。
【0038】
続いて、推定部103は、第2画像から不良個所の情報を抽出し、第2画像と第1画像に基づきワークの不良個所を推定する(S25)。具体的には、第2画像から不良個所の候補を抽出し、不良個所が存在する不良個所候補領域を推定する。その推定した不良個所候補領域に基づき、第1画像に対して行う画像加工の種類及び位置を決定する。そして、その画像加工により、不良発生個所である欠陥部を抽出し、欠陥部の位置を第1画像において特定する。不良個所候補および不良個所候補領域は1つであっても良いし、複数であっても良い。画像加工は、画像変換や変形、特徴量などの情報抽出を行う、画像データに関わる一般的な画像加工処理方法を用いることができる。中でもコントラスト調整、ノイズ除去、二値化処理、パターン認識、膨張・収縮画像処理が好適であり、これらの組み合わせにより第1検査工程において不良判定基準に達しなかった欠陥部を強調して、不良個所と認識することができるようになる。第2画像における不良個所と第1画像における不良発生候補領域、および第1画像の加工結果を組み合わせて比較することにより、第1画像における不良個所の推定の確度を高めることができる。また、第2工程において欠陥部が顕在化する理由の1つとして、撮像時のワークの位置ずれや回転が挙げられる。したがって、推定部103は、第1画像および第2画像におけるワーク全体の位置関係を整合してうえで、不良個所を推定することが望ましい。
【0039】
また、推定部103は不良発生候補領域の設定に際し、S12の加工工程の情報を用いることもできる。例えば、加工工程が成膜工程であった場合、成膜手段が蒸着、スプレー塗工など膜が検査表面の上部から形成される場合は、第1画像の不良発生候補領域は第2画像の不良発生個所とほぼ同じとなることは多い。しかし、スピンコート、スキージなどの塗工により膜を形成した場合は、欠陥部は不良発生領域よりも塗工開始点側にある場合が多い。このように、加工工程の種類を不良発生候補領域の設定(条件)に反映させることで、第1画像における不良個所の推定の確度を高めることができる。
【0040】
続いて、推定部103は不良個所における欠陥部の種類(不良分類)を推定する。欠陥部の種類としては、傷、クモリ、塗工不良、膜の色ムラ、汚れ、ゴミといったものが挙げられる。これらの欠陥部の種類を予めユーザーがリスト化し、ワークを含む画像と関連付けさせて情報記憶部101に記憶させておくことにより、推定部103が欠陥部の種類を推定する。また、推定部103は不良個所における欠陥部の大きさを推定する。第1画像から抽出された欠陥部の大きさの情報と、第2画像の欠陥部から抽出された欠陥部の大きさの情報と、に基づき欠陥部の大きさを推定することができる。
【0041】
そして、第1画像の欠陥部を推定した際の画像加工条件および欠陥部の情報に基づき、新たな第1検査工程の検査条件を作成し、情報記憶部101に記憶されていた第1検査工程の検査工程を変更登録する(S26)。検査条件として変更させる項目としては、第1画像の画像加工条件、第1画像において欠陥を欠陥部として認識させる良否判定条件が含まれる。また、上述の条件以外にも、撮像部の位置、撮像部の絞り・焦点距離、撮像部の露光条件、撮像部とワークの相対位置、照明部の位置、照明部の照明光の波長、照明部とワークの相対位置等の撮像条件を含んでも良い。
【0042】
なお、図3に示すフローは、不良と判定されたワーク全てについて随時実行しても、ユーザーが指定したワークナンバーについてのみ実行しても、特定回数以上検出された不良部番のみについて実行してもよく、ユーザーが実行頻度を指定することもできる。
【0043】
以上、第2実施形態の検査方法によれば、第2検査工程の不良結果に基づき第1検査工程の検査条件を変更するため、第1検査工程の検査精度を向上できる。また、第1検査工程の検査条件を変更することにより、第1検査工程の後に行われる加工工程後の第2検査工程の良否判定を第1検査工程の結果から推定することが可能となる。
【0044】
[第3実施形態]
図4は、第3実施形態に係る検査方法の一実施態様を示すフロー図である。第3実施形態は、第2実施形態の検査方法のフローとは、不良個所の推定(S25)の方法が異なり、第2実施形態よりも推定精度を高めることができる。図3のフローとS11~S24は同じであるため、図4ではS11,S12,S13,S21,S22,S23およびS24を省略している。
【0045】
S24で読み出された第1検査工程で撮像した第1画像に対し、任意の画像加工処理方法を選択し、画像加工処理を行う(S251)。その結果と不良判定ワーク情報とを比較し、第1画像に対して不良発生箇所の推定を行う(S252)。推定により不良発生原因と推定される欠陥部の候補がなかった場合は、第1画像に対して別の画像加工処理の条件が有るか無いかを判定する(S253)。別の画像加工処理の条件があった場合はS251工程に戻り、なかった場合はフローを終了する。
【0046】
推定により不良個所となり得る欠陥部の候補があった場合、S251で選択した画像加工条件および判定条件を仮の第1工程の検査条件として追加する(S254、S255)。なお、この2工程は順番が入れ替わっても良い。
【0047】
次に、装置あるいはユーザーにより指定された検査数を第1検査工程において実施し(S256)、装置あるいはユーザーにより指定された判定率が得られるかどうか確認する(S257)。この際、指定された検査数が行われる検査対象はすでに検査が終了しているワークでも良いし、新たなワークでも良い。判定率は仮の第1工程の検査条件により判定された、第2検査工程における不良数に対する第1検査工程における不良数の割合(比)とする。この判定率が指定した判定率以上であった場合、第1検査工程の検査条件は確度が高いと判断できる。
【0048】
以上のフローにより決定された第1検査工程の画像加工条件(S261)と、その時の判定基準条件(S262)を登録してフローは終了である。この時、S261とS262は順番が入れ替わっても問題ない。また、同一種類の不良について、図4で示したフローを繰り返すことにより、判定基準の精度が向上する。
【0049】
(物品の製造方法)
[第4実施形態]
以上に説明した実施形態に係る検査システムは、物品の製造方法に使用することも可能である。第4実施形態である物品の製造方法は、上述した検査システムを用いてワークの表面を検査する工程と、検査された前記ワークに対し所定の処理を行う工程と、を含む。所定の処理とは、例えば、加工、搬送および組立のうちから選ばれる少なくとも1つである。ここで加工とは、成膜、切断、塗工、塗布、成形、研削、研磨、穿孔および変形処理を含む。本実施形態の物品の製造方法は、従来の方法に比べて、加工コストにおいて有利である。
【0050】
なお、上述の実施形態においては、ワークとして光学レンズを例に挙げて説明したが、本実施形態は光学レンズのような透明体のワーク以外にも適用可能である。透明体のみならず非透明体であっても良いし、自動車の筐体(ボディ)や宝石の表面の検査にも適用可能である。
【0051】
また、上述の実施形態の1以上の機能を実現するプログラムは、ネットワーク又は記録媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
【符号の説明】
【0052】
100 処理装置(処理部)
101 情報記憶部
102 画像加工部
103 推定部
104 出力部
105 制御部
106 入力部
201 UI装置
202 表示装置
206 ワーク
300 検査装置
304 撮像部
3041 撮像本体部
3042 レンズ部
3043 撮像駆動部
305 照明部
307 基台
図1
図2
図3
図4