IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ズークス インコーポレイテッドの特許一覧

<>
  • 特許-自律ドライビング機能の新領域への拡張 図1
  • 特許-自律ドライビング機能の新領域への拡張 図2
  • 特許-自律ドライビング機能の新領域への拡張 図3
  • 特許-自律ドライビング機能の新領域への拡張 図4
  • 特許-自律ドライビング機能の新領域への拡張 図5
  • 特許-自律ドライビング機能の新領域への拡張 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-13
(45)【発行日】2024-12-23
(54)【発明の名称】自律ドライビング機能の新領域への拡張
(51)【国際特許分類】
   B60W 40/02 20060101AFI20241216BHJP
   G01C 21/26 20060101ALI20241216BHJP
   G08G 1/0968 20060101ALI20241216BHJP
   B60W 60/00 20200101ALI20241216BHJP
【FI】
B60W40/02
G01C21/26 A
G08G1/0968
B60W60/00
【請求項の数】 14
(21)【出願番号】P 2021558619
(86)(22)【出願日】2020-03-19
(65)【公表番号】
(43)【公表日】2022-06-01
(86)【国際出願番号】 US2020023615
(87)【国際公開番号】W WO2020205262
(87)【国際公開日】2020-10-08
【審査請求日】2023-03-03
(31)【優先権主張番号】16/370,696
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518156417
【氏名又は名称】ズークス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】アンドレアス クリスチャン レシュカ
(72)【発明者】
【氏名】コリン マグレガー
【審査官】稲本 遥
(56)【参考文献】
【文献】米国特許出願公開第2017/0059335(US,A1)
【文献】国際公開第2019/176083(WO,A1)
【文献】特開2010-169440(JP,A)
【文献】特開平09-152343(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 10/00-10/30
30/00-60/00
G08G 1/00-99/00
G01C 21/26
(57)【特許請求の範囲】
【請求項1】
1つ以上のプロセッサと、
前記1つ以上のプロセッサによって実行可能な命令を記憶する1つ以上の非一時的なコンピュータ可読媒体と、
を含み、前記命令は、前記1つ以上のプロセッサが、
第1の地理的領域内の第1のドライブ可能サーフェスと、前記第1のドライブ可能サーフェスに関連付けられた1つ以上のトラフィック特徴とについての情報を含む第1のマップデータを受信するステップであって、前記1つ以上のトラフィック特徴は、トラフィックレーンの数、トラフィックレーンタイプ、レーンジオメトリ、又はトラフィック制御情報のうちの1つ以上を含む、ステップと、
前記1つ以上のトラフィック特徴に少なくとも部分的に基づいて、前記第1のドライブ可能サーフェスの複数の第1のセグメントを決定するステップであって、前記第1のセグメントは、複数のレーンを含む道路セグメントを含む、ステップと、
前記複数の第1のセグメントのうちの第1のセグメントについて、前記1つ以上のトラフィック特徴に少なくとも部分的に基づいて、複数の第1のセグメントパラメータを決定するステップと、
自律車両によってナビゲート可能な第2の地理的領域に関連付けられた第2のマップデータを受信するステップであって、前記第2のマップデータは、前記第2の地理的領域内の第2のドライブ可能サーフェスの複数の第2のセグメントについての情報を含む、ステップと、
前記複数の第1のセグメントパラメータと前記第2のマップデータとに少なくとも部分的に基づいて、前記第1のセグメントと、前記複数の第2のセグメントのうちの1つ以上との間の類似度を示す類似度メトリックを決定するステップと、
前記類似度メトリックに少なくとも部分的に基づいて、前記自律車両が、前記複数のレーンのサブセットをナビゲートでき、かつ、前記自律車両が、前記複数のレーンのうちの前記サブセット以外のレーンをナビゲートできないと決定するステップと、
を含む動作を実行するようにプログラムする、システム。
【請求項2】
前記類似度メトリックは、前記第1のセグメントに関連付けられた前記1つ以上のトラフィック特徴と、前記第2のセグメントに関連付けられた1つ以上の第2のトラフィック特徴とに少なくとも部分的に基づき、
前記動作は、前記類似度メトリックに少なくとも部分的に基づいて、前記第1のセグメントを通過するように自律車両を制御するステップをさらに含む、
請求項1に記載のシステム。
【請求項3】
前記複数の第2のセグメントは、複数の代表セグメントを含み、
前記類似度メトリックを決定するステップは、前記1つ以上のトラフィック特徴を、前記第2のセグメントに関連付けられた1つ以上の第2のトラフィック特徴と比較するステップを含み、前記動作は、
前記第2のセグメントをドライブする自律車両に関連付けられたドライビングデータを受信するステップと、
前記ドライビングデータに少なくとも部分的に基づいて、前記第1のセグメントを通過するように前記自律車両を制御するステップと、
をさらに含む、
請求項1又は2に記載のシステム。
【請求項4】
記類似度メトリックを決定するステップは、前記複数のレーンのサブセットと、前記第2のマップデータ内のレーンの組み合わせとを比較することに少なくとも部分的に基づく、
請求項3に記載のシステム。
【請求項5】
第1の地理的領域内の第1のドライブ可能サーフェスについての情報を含む第1のマップデータを受信するステップと、
前記第1のドライブ可能サーフェスの複数の第1のセグメントを決定するステップであって、前記複数の第1のセグメントのうちの第1のセグメントは、1つ以上の第1のパラメータに関連付けられており、前記第1のセグメントは、複数のレーンを有する道路セグメントを含む、ステップと、
第2の地理的領域に関連付けられた第2のマップデータを受信するステップであって、前記第2のマップデータは、自律車両によってナビゲート可能な第2のドライブ可能サーフェスの複数の第2のセグメントについての情報を含み、前記複数の第2のセグメントのうちの第2のセグメントは、1つ以上の第2のパラメータに関連付けられている、ステップと、
前記1つ以上の第1のパラメータと、1つ以上の第2のパラメータとに少なくとも部分的に基づいて、前記第1のセグメントと前記第2のセグメントとの間の類似度を示す類似度メトリックを決定するステップと、
前記類似度メトリックに少なくとも部分的に基づいて、前記自律車両によってナビゲート可能な前記第1のドライブ可能サーフェスの第1の領域を決定するステップであって、前記第1の領域を決定するステップは、前記自律車両が、前記複数のレーンのサブセットをナビゲートでき、かつ、前記自律車両が、前記複数のレーンのうちの前記サブセット以外のレーンをナビゲートできないと決定することを含む、ステップと、
前記第1の領域をドライブするように自律車両を制御するステップと、
を含む、コンピュータ実行方法。
【請求項6】
前記1つ以上の第1のパラメータは、トラフィックレーンの数、トラフィックレーンタイプ、幅、長さ、勾配、曲率、又は前記第1のセグメントに関連付けられたトラフィック制御情報のうちの少なくとも1つを含む、
請求項5に記載のコンピュータ実行方法。
【請求項7】
閾値類似度より小さい前記類似度メトリックに少なくとも部分的に基づいて、前記自律車両が回避する領域に関連付けられた前記第1のドライブ可能サーフェスの第2の領域を決定するステップと、
前記第1の領域と前記第2の領域とを含む前記第1のドライブ可能サーフェスの更新済みマップデータを生成するステップと、
をさらに含む、請求項5又は6に記載のコンピュータ実行方法。
【請求項8】
前記複数の第2のセグメントは、前記第2のマップデータの代表セグメントを示す前記第2のマップデータの全セグメントのサブセットを含み、
前記類似度を決定するステップは、前記1つ以上の第1のセグメントパラメータの値を、前記第2のパラメータのうちの1つ以上と比較することに少なくとも部分的に基づく、
請求項5~7のいずれか1項に記載のコンピュータ実行方法。
【請求項9】
前記第1のセグメントと、前記複数の第2のセグメントのいずれかとの間の最大類似度メトリックが、閾値類似度より小さいと決定するステップと、
前記閾値類似度より小さい前記最大類似度メトリックに少なくとも部分的に基づいて、前記複数の第2のセグメントを更新すること又は新たな代表セグメントを生成することの少なくとも1つを行うステップと、
をさらに含む、請求項8に記載のコンピュータ実行方法。
【請求項10】
前記類似度メトリックに少なくとも部分的に基づいて、第2の車両を制御するための1つ以上の制限を決定するステップであって、前記1つ以上の制限は、最大制限速度又は運転操作のサブセットのうちの少なくとも1つを含む、ステップ
をさらに含む、請求項8又は9に記載のコンピュータ実行方法。
【請求項11】
前記第1のドライブ可能サーフェスの前記複数の第1のセグメントを決定するステップは、前記1つ以上の第1のパラメータに少なくとも部分的に基づいて、前記第1のドライブ可能サーフェスの部分をクラスタリングするステップであって、前記1つ以上の第1のパラメータは、制限速度、レーンの少なくとも一部の幅、レーンの数、ドライブ不可領域、傾斜、曲率、又は、道路セグメント内の走行レーン又は隣接レーンでの許容されるタイプの走行のうちの少なくとも1つを含む、ステップを含む、
請求項5~10のいずれか1項に記載のコンピュータ実行方法。
【請求項12】
第1のセグメントは、交差点を含み、前記1つ以上の第1のパラメータは、前記交差点に接続する道路セグメントの数、前記交差点に接続する道路セグメント間の角度、前記交差点での前記道路セグメントの終端におけるトラフィック制御情報、又は前記交差点でのエージェント横断についての情報のうちの少なくとも1つを含む、
請求項5~11のいずれか1項に記載のコンピュータ実行方法。
【請求項13】
前記第2のセグメントに関連付けられたドライビングデータを受信するステップと、
前記類似度のスコアと前記ドライビングデータとに少なくとも部分的に基づいて、ドライビングポリシーを前記第1のセグメントに関連付けるステップであって、前記ドライビングポリシーは、最大制限速度、又はドライビングに関連付けられた1つ以上の運転操作の識別のうちの少なくとも1つを含む、ステップと、
をさらに含む、請求項5~12のいずれか1項に記載のコンピュータ実行方法。
【請求項14】
実行されたとき、1つ以上のプロセッサに、請求項5~13のいずれか1項に記載の方法を実行させる命令を記憶する、1つ以上の非一時的なコンピュータ可読媒体。
【発明の詳細な説明】
【背景技術】
【0001】
このPCT国際特許出願は、2019年3月29日に提出された米国特許出願第16/370,696の優先権の利益を主張し、その開示の全体が参照によって本明細書に組み込まれる。
【0002】
車両は、ますます手動の機能を補助し又は自動制御に置き換えている。準自律車両は、いくつかの機能、例えば、衝突回避及びブレーキングでドライバーをアシストしうるが、完全自律車両は、目的地までシャトルで移動するため、全ての乗員を受動的な参加者に変えうる。通常、このような自動化の拡大は、例えば、詳細なマップの形態で、車両の環境の詳細な理解を必要とする。
【発明の概要】
【0003】
しかし、マッピングされていない領域、例えば、自律ドライビングのために自律車両が未だテストされていない領域については、詳細を取得して環境を理解するのに、非常に大きなコストと時間がかかり、通常は、数千を超える時間及び/又はマイルを必要とする。
【図面の簡単な説明】
【0004】
図1図1は、この開示の態様による、新領域への自律ドライビング機能の拡張の例を示す。
図2図2は、自律ドライビング機能を新領域へ拡張するための例示的方法を説明するためのテキスト及び視覚的なフローチャートを含む。
図3図3は、自律ドライビング機能を新領域へ拡張するための他の例示的方法を説明するためのテキスト及び視覚的なフローチャートを含む。
図4図4は、この開示の態様による、自律ドライビング機能を新領域へ拡張するための、例示的車両及びリモートコンピューティングシステムを示すブロック図である。
図5図5は、この開示の態様による、自律ドライビング機能を新領域へ拡張して、新領域をドライブするための1つ以上のプロセスを表すフローチャートである。
図6図6は、この開示の態様による、自律ドライビング機能を新領域へ拡張することにおいて利用するために、道路セグメントを分類するための1つ以上のプロセスを表すフローチャートである。
【発明を実施するための形態】
【0005】
以下の詳細な説明は、自律車両が以前に走行したことがない新たな環境を含む環境内で自律車両を制御するためのシステム及びプロセスに向けられている。従来の自動車とは異なり、一部の自律車両は、容易に手動制御できるようにするオンボードナビゲーション制御、例えば、ステアリングホイール、トランスミッション制御、アクセル制御、及び/又はブレーキ制御を有しないことがある。従って、そのような自律車両は、ドライブ可能サーフェス(drivable surfaces)、例えば、範囲、勾配、サーフェスタイプなどについて、レーン及び道路構成について、そして、トラフィックルールなどについての詳細をマップが含みうる領域の詳細なマップを必要とすることがある。そのような精巧なマップを生成することは、その領域についての大量のデータを必要とし、そのようなデータを取得することは、これまでは通常、その領域での長期にわたる手動運転の量を必要としていた。さらに、精巧なマップが生成されるとしても、自律ドライビングのための車両を準備することは、依然として、新たにマッピングされた領域での車両の追加的なトレーニングを必要とすることがある。本明細書で説明される技術は、自律ドライビングを新領域へと拡張するために必要な時間及び/又は努力を低減しうる。例えば、この開示は、新たな、例えば、自律ドライビングのために以前にマッピングされていない地理的領域を評価し、そのような領域内で自律車両を制御するためのシステム及び方法を提供する。本明細書で説明される技術は、また、以前に検証されていない領域の新たなマップデータを更新及び/又は生成しうる。そのようなマップデータは、車両がそれらの領域についてのセンサデータを取得して、さらにマップデータを更新することができるように、それらの以前にマッピングされていない領域での自律車両の制御を容易にするために利用されうる。
【0006】
いくつかの例において、本明細書で説明される技術は、例えば、自律車両による潜在的なナビゲーションのために、新領域のために利用可能なマップデータを、車両が既に自律的に動作している領域についてのマップデータ及び/又は追加的な車両データと比較することによって、新領域を評価しうる。例えば、自律車両は、いくつかの場所、例えば、都市、都市の一部などでのドライビングに熟練していることがあり、(例えば、ある巧みな操縦を実行して、安全に動作し、その一部で生じうる様々なシナリオを認識しうる能力に基づいて決定されうるので)その熟練は、詳細なマップデータの利用可能性に少なくとも部分的に基づいている。例えば、そのようなマップデータは、それらの車両が領域内のドライブ可能サーフェスを横切るときに車両に取り付けられたセンサによって取得されるセンサデータを利用することを含む、場所の注意深い調査を経て取得され、生成され、補足され、及び/又は更新されうる。例えば、(自律車両によって)ナビゲーション可能な領域の詳細なマップデータは、ドライブ可能サーフェスの物理的な範囲及び配置についての情報を含んでいることがある。そのような情報は、道の長さ及び幅、交差点のレイアウト、面勾配の厳しさ、建物、消火栓、又は他の定着物の位置及び配置、及び、他の要素を含むことができる。マップデータは、また、ドライブ可能サーフェスの走行に影響する特徴及び状態についての情報を含むことがある。例えば、マップデータは、制限速度、横断歩道、信号機、道路標識など、及び環境内をドライビングする上での、そのような要素が有する影響についての情報を含むことがある。少なくとも一部の例において、そのようなマップデータは、天気、気候、及び/又はそのような領域内での自律的なドライビングに影響を与えうる他の環境特徴(平均日照時間、平均降水量、平均気温、任意の降雪量又は凍結など)をさらに含むことがある。
【0007】
本明細書で利用されるとき、「検証済みマップデータ」、「マッピングされた領域用のデータ」、及び/又は「検証済み領域用のデータ」は、自律車両が検証されているか又は別の方法で、例えば、自律的に動作するように構成されている地理的領域又は場所に関連付けられたマップデータを指すことがある。同様に、「マッピングされた領域」又は「検証済み領域」は、それらの地理的領域又は場所を指すことがある。それに対し、「新領域用のマップデータ」、「未検証マップデータ」、及び類似の用語は、自律車両が未だ検証されていない、及び/又は自律車両を安全に及び/又はそこでの適法に動作することが十分可能ではない地理的領域又は場所に関連付けられたマップデータを指すことがある。同様に、「マッピングされていない領域」、「新領域」、及び「未検証領域」は、そのような地理的領域又は場所を指すことがある。従って、マップデータは、「マッピングされていない」、「新たな」又は「未検証の」領域について利用可能であるが、そのようなマップデータは、自律走行には不十分なことがある。
【0008】
いくつかの例において、本明細書で説明される技術は、マップデータ(例えば、検証済みマップデータ及び/又は新領域のマップデータ)をドライブ可能サーフェスの複数のセグメントに分解することができる。例えば、この開示の技術は、マップデータからセグメントを生成しうる。いくつかの例において、セグメントは、ジャンクションセグメント、例えば、交差点、合流点など、又は、接続道路セグメント、例えば、ジャンクション間の道の範囲を含むことができる。本明細書で説明されるシステムは、また、データを、個々のセグメントのそれぞれに関連付けることができる。例えば、ジャンクションセグメントは、ジャンクションタイプ、例えば、合流、「T」、ラウンドアバウトなど;ジャンクションで出会う道路の数;それらの道路の相対位置、例えば、ジャンクションで出会う道路間の角度;ジャンクションでのトラフィック制御信号についての情報;及び/又は他の特徴を含みうる。接続道路セグメントに関連付けられたデータは、レーンの数、それらのレーンの幅、レーンのそれぞれにおける進行方向、パーキングレーンの識別、道路セグメント上の制限速度、及び/又は他の特徴を含むことができる。
【0009】
例において、本明細書で説明される技術は、例えば、新領域のマップデータで識別される、新領域のドライブ可能サーフェスのセグメントと、例えば、検証済みマップデータで識別される、検証済み領域のドライブ可能サーフェスのセグメントとを比較することができる。実装において、新領域用のマップデータは、それに限定されないが、3つのパーティベンダーを含む多くのソースから取得されることができる。いくつかの例において、そのようなマップデータは、2Dマップデータ、3Dマップデータ、衛生画像、及び/又は他のタイプのマップデータを含みうる。例において、新領域内のドライブ可能サーフェスについての情報を提供する任意のマップデータが利用されうる。
【0010】
本明細書で説明されるいくつかの例において、そのような既存のセグメント内で自律車両がどのくらいうまくドライブするかを定義するために様々なメトリックが決定されうる。非限定的な例として、そのようなメトリックは、ある時間期間を通じて、遠隔操作介入が必要になった発生数、搭乗者の快適性(例えば、バンプ、ジャークなど)、車両がセグメントを完全にナビゲートする能力、車両が安全に乗り越えることができるシナリオのパーセンテージ(例えば、セグメントが、保護されていない左折を伴う交差点を含む場合、車両はナビゲートすることができない)などを含みうる。そのようなメトリックは、ドライブ可能であるセグメント及びそれに関連付けられた能力のレベルを示すためにマップデータで利用されうる。
【0011】
いくつかの例において、本明細書で説明される技術は、例えば、セグメント分類又はセグメントステレオタイプに従って、検証済み領域内のドライブ可能サーフェスのセグメントをグループ化することができる。非限定的な例において、メトリック又は属性の一部範囲に適合する全てのジャンクションセグメントは、(例えば、k-meansの利用、セグメントパラメータ間の重み付き距離(例えば、ユークリッド)の評価、又はセグメントパラメータに基づく、そのようなセグメントの別の方法でのクラスタリング)一緒にグループ化されうる。例えば、自律車両は、ジャンクションのそれぞれでステレオタイプの範囲内で同じことを実行する(及び/又は明らかに実行したことがある)ことが期待されうる。同様に、接続道路セグメントステレオタイプは、また、1つ以上の類似度に従ってグループ化されることができる。非限定的な例において、10mph範囲内の制限速度を有する全ての2レーン道路セグメントは、同じステレオタイプに関連付けられうる。いくつかの例において、ステレオタイプの利用は、類似セグメントを決定するためになされるべき比較の数を低減することができる。
【0012】
いくつかの例において、本明細書で説明される技術は、新領域のセグメントと、検証済み領域のセグメント(又はステレオタイプ分類)とを比較することができる。例えば、比較は、新領域のセグメントが、マッピングされた領域からの1つ以上のナビゲート可能なセグメントに類似するかかどうか及びどの程度かを決定しうる。いくつかの例において、類似度は、類似度メトリック、スコア、又は他の値として表現されうる。いくつかの例において、閾値以上の類似度メトリック、値、又はスコアを有する新領域内のセグメントは、自律車両によってナビゲート可能(でありそう)として識別されうる。それに対し、閾値より小さい類似度メトリック、スコア、又は値を有する新領域内のセグメントは、自律車両によってナビゲート不可として識別されうる。いくつかの例において、様々なドライビング特徴が、各新セグメントに関連付けられうる。非限定的な例として、全ての状態での完全な動作は1つのセグメントに関連付けられてよく、一方で、単一の進行方向、天候及び/又は環境的な条件制限された走行などは、そのようなセグメント内での自律的なドライビングに課される。そのようなドライビング特徴は、一般に、ポリシー(例えば、期待される動作のセット及び/又は、それに限定されないが、最大制限速度、二重駐車車両の追い越しを控えること、追加的な巧みな操縦を実行することを控えることなど、そのような動作上での制限)と称されうる。
【0013】
本明細書で説明される技術は、また、新領域内のドライブ可能及びドライブ不可セグメントのインジケーションに基づいて、更新済み又は新たなマップデータを生成しうる。例えば、個々のセグメントに関連付けられたマップデータは、セグメントがドライブできそうか、そうでないか(又は別の方法で制限された自律機能を有するか)を示すために、フラグ付け、タグ付け、又は別の方法で添付され、又は補正されることがある。いくつかの例において、マップデータは、アップロードされ、又は別の方法で自律車両にアクセス可能にされることができる。本明細書で説明される技術は、更新済み又は新しいマップデータを利用して新領域内を走行するように車両を制御することを含むことができる。
【0014】
また、例において、新たなマップデータに従って自律車両が制御されるとき、車両のナビゲーションは評価されることができる。例えば、技術は、安全上の考慮事項、法律上の考慮事項、搭乗者の快適性上の考慮事項などのうちの1つ以上に少なくとも部分的に基づくことがある、事前定義された基準の範囲内で車両が動作するかどうかを決定することができる。いくつかの例において、ドライブ可能又はナビゲート可能であると決定されたセグメント内で車両が適切に機能していないという情報は、そのセグメントの検証済みセグメントに対する類似度を決定した処理を更新しうる。例えば、本明細書で説明される技術は、新領域内のセグメントの属性と、検証済みセグメント又はステレオタイプの属性との間の差を決定することができる。いくつかの例において、その差は、ステレオタイプを更新するため及び/又は新たなステレオタイプを生成するために利用できる。
【0015】
本明細書で説明される技術は、多くの方式で自律車両の機能を改善することができる。例えば、本明細書で説明される技術は、マッピングされていない領域での走行を容易にしうるし、それらのマッピングされていない領域のマッピングを容易にしうる。さらに、本明細書で説明される技術は、例えば、新領域を評価し及び/又はマッピングするのに必要な処理の量を低減することによって、コンピュータの機能を改善することができる。本明細書で説明される技術は、また、例えば、自律車両によって、全領域の詳細マップを生成する及び/又は別の方法で取得する前に、領域のナビゲーションを可能にしうる。自律車両、自律車両に関連付けられたコンピューティングシステムの機能に対する及び/又はユーザ体験に対する、これらの及び他の改善が本明細書で論じられる。
【0016】
本明細書で説明される技術は、多くの方式で実装されることができる。例示的な実装は、図1図6を参照しながら以下で提供される。自律車両のコンテキストにおいて論じられるけれども、本明細書で説明される方法、装置、及びシステムは、様々なシステムに適用されることができ、自律車両に限定されない。他の例において、技術は、ロボティックス、航空、及び/又は船舶のコンテキストにおいて利用されることができ、例えば、デバイスのナビゲーションカバレッジを拡大する。
【0017】
図1は、この開示の態様の模式図100である。より具体的には、図1は、自律車両の車両制御システムが領域をナビゲートするために一般的に必要とされるタイプ及び特定の詳細なマップデータがない場合においても、(自律ナビゲーションのために)未検証領域の部分がナビゲート可能でありうるかどうか及び/又はどの部分がそうであるかを決定するための評価システム102を示す。示されるように、評価システム102は、新領域、例えば、「未検証領域」に対するマップデータ104を受信する又はそれに別の方法でアクセスし、検証済みマップデータ106を受信する又はそれに別の方法でアクセスするように構成されうる。例えば、「新領域」は、自律車両の動作が検証されていない地理的領域であってよい。例えば、新たな、未検証の、又はマッピングされていない領域は、例えば、既存のドライブ可能領域又は自律車両のためのジオフェンスを拡張するために、既にマッピングされた領域に隣接するエリア又は領域であってよく、又は、完全に新しい地理的領域、例えば、異なる都市であってよい。本明細書でさらに詳細に示されるように、新領域用のマップデータ104は、新領域内のドライブ可能サーフェスの態様を収集しうるデータの任意の形態をとりうる。例えば、新領域用のマップデータ104は、衛星画像、手動で生成されたマップなどの、新領域についての情報を提供し、それに限定されないがサードパーティからの利用可能なマップデータを含む、任意の2次元又は3次元マップデータを含むことができる。それに対し、検証済みマップデータ106は、自律車両の動作が検証されている1つ以上の地理的領域のマップデータであってよい。検証済みマップデータ106は、例えば、同時ローカリゼーション及びマッピング(SLAM)技術を利用して、領域内を走行するために、1つ以上の自律車両によって利用される詳細マップを含みうる。例えば、検証済みマップデータ106は、ドライブ可能サーフェス、及びドライブ可能サーフェスの態様についての情報を含み、それに限定されないがドライブ可能サーフェス、道路標識情報、トラフィック制御情報などの範囲を含む、環境の3Dメッシュを含みうる。少なくとも一部の例において、新領域用のマップデータ104及び/又は検証済みマップデータ106は、シミュレートされたマップデータを含むことができる。そうした例において、おおよその道路パラメータ(勾配、幅など)及び/又は実際の道路パラメータ(制限速度、レーン数など)は、現実の道路セグメントを近似する、そのような合成セグメントを生成するために利用されうる。例えば、シミュレートされたマップデータは、本明細書で説明される実装の態様及び/又は自律車両の態様をテストするために利用されることができる。従って、本明細書で利用されるように、新領域及び/又は未検証領域は、例えば、自律車両動作を可能にするのに十分な詳細なマップデータが利用可能ではない地理的領域を指しうる。それに対し、検証済み領域及び/又はマッピングされた領域は、例えば、自律的に、その領域をナビゲートするために自律車両によって利用されうるマップデータ及び/又はドライビングデータ(例えば、検証済みマップデータ106)が存在する地理的領域を指しうる。
【0018】
評価システム102は、新領域用のマップデータ104及び検証済みマップデータ106を利用して、新領域の評価を生成することができる。評価108は、新領域内の、ドライブ不可セグメント又は領域110、及び、ドライブ可能セグメント又は領域112を識別することができる。いくつかの例において、評価システム102は、新領域内の道路セグメントの、マッピングされた領域内の道路セグメントに対する類似度又は類似を決定して、ドライブ不可領域110及びドライブ可能領域112を決定することができる。例えば、ドライブ不可領域110は、評価システム102が、例えば、いくつかの類似度メトリック閾値以下であり、自律車両によってナビゲート可能ではなさそうだと決定する領域であってよく、一方で、ドライブ可能領域112は、評価システム102が、例えば、いくつかの類似度メトリック閾値以上であり、自律車両によってナビゲート可能でありそうだと決定する領域であってよい。
【0019】
より詳細には、評価システム102は、新領域用のマップデータ104及び検証済みマップデータ106を受信し及び/又は別の方法でそれにアクセスするように構成された1つ以上のコンピューティングデバイス114を含むことができる。概して、いくつかの例において、コンピューティングデバイス114は、新領域106のマップデータ及び検証済みマップデータ108上での様々な処理及び/又は動作を実行する様々な要素を含むことができる。例えば、コンピューティングデバイス114は、マップセグメント化要素116、セグメント分析要素、及び評価/マッピング要素120を含むことができる。
【0020】
マップセグメント化要素116は、地理的領域内のドライブ可能サーフェスの不連続な部分に対応するマップデータのセグメントを識別する機能を含むことができる。いくつかの例において、不連続な部分は、道路ジャンクション及び接続道路セグメントを含むことができる。道路ジャンクションは、2つ以上の接続道路セグメントの合流であってよく、接続道路セグメントは、2つのジャンクションの間に延びる道路の部分であってよい。他の例において、不連続な部分は、道路ジャンクションのセグメント及び/又は接続道路セグメントであってよい。例えば、マップセグメント化要素116は、道路ジャンクション又は接続道路セグメントのいずれかにおいて、個々のレーン又は2つ以上のレーンのグループ化を識別することができる。同様に、マップセグメント化要素116は、ジャンクションの部分、例えば、4方向交差点での2つの道路セグメントのジャンクションを識別する機能を含むことができる。理解されることができるように、ドライブ可能サーフェスは、多くの物理的な部分を含むことができ、セグメントは、本明細書で明確に論じられるものに限定されるべきではない。いくつかの例において、マップセグメントは、場所、範囲、及びマップセグメントに関連付けられた意味情報を定義することができる。本明細書でさらに説明されるように、マップセグメント化要素116は、新領域用のマップデータ104及び検証済みマップデータ106内のセグメントを識別する機能を含むことができる。
【0021】
マップセグメント化要素116は、新領域用のマップデータ104及び/又は検証済みマップデータ106内のセグメントを認識するための多くの技術を実装することができる。非限定的な例を通し、マップデータが画像データを含むとき、マップセグメント化要素116は、それに限定されないが、エッジ検出技術を含む特徴認識技術を実装し、ドライブ可能サーフェスの範囲及び/又はドライブ可能サーフェス上のレーン境界線を決定することができる。他の例において、マップセグメント化要素116は、マップデータ上でのセグメント化及び/又は分類技術を実装し、例えば、異なる分類に関連付けられたセンサデータの部分を識別することができる。いくつかの例において、ドライブ可能サーフェスは、意味セグメント化を利用して識別される分類であることができる。少なくとも一部の例において、様々なクラスタリングベースアルゴリズムが、任意の1つ以上の道路パラメータに基づいて、あるレーンセグメント(k-means、k-modiods、DBSCANなど)を識別するために利用されうる。他の技術も利用されうる。
【0022】
マップセグメント化要素116は、また、特徴又は属性、例えば、非物理的な特徴/属性を識別された物理的なセグメントに関連付けることができる。例えば、マップセグメント化要素116は、また、関連するドライブ可能サーフェスの部分についてのトラフィック制御情報をセグメントに関連付けることができる。非限定的な例において、トラフィック制御情報は、制限速度について、進行方向について、トラフィック制御デバイス、例えば、停止標識、優先通行標識、信号機についての情報を含むことができる。追加的なトラフィック制御情報は、横断歩道、パーキングゾーン、非パーキングゾーン、自転車レーン、HOV情報などについての情報を含むことができる。実装において、マップセグメント化要素116は、物理的なドライブ可能サーフェスセグメントを識別し、そのようなセグメント内での安全な及び適法な走行に影響を与えることができる任意の及び全ての情報を関連付けることができる。
【0023】
さらに、少なくとも一部の例において、マップセグメント化要素116は、各セグメントに関連付けられた1つ以上の車両からの以前に記録したドライビングデータを利用し、各セグメントに関連付けられた自律性のレベルを提供しうる。非限定的な例として、様々なセグメントは、自律性が制限された(制限速度、巧みな操縦の制限など)全ての環境条件において完全に自律的にドライブする能力を有し、完全な自律性を有する能力は持たないとして識別されうる。
【0024】
セグメント分析要素118は、マップセグメント化要素116によって識別されたセグメントを比較し、それらの類似度を決定する機能を含むことができる。例えば、セグメント分析要素118は、検証済みマップデータ106からのセグメントと類似又は同じである、新領域用のマップデータ104からのセグメントを識別することができる。いくつかの例において、セグメント分析要素118は、新領域のマップデータ104からの個々のセグメントを、検証済みマップデータ106からの個々のセグメントと比較して、類似物を見つけることができる。そのような分析は、1つのセグメントに関連付けられた特徴ベクトルと、1つ以上のクラスタ又はマップセグメント化要素116において識別されたセグメントとの間の距離(例えば、ユークリッド距離)を決定することを含むことがある。シンプルで非限定的な例によれば、マップセグメント化要素116は、新領域用のマップデータ104内で30mph制限速度を持つ比較的真っ直ぐな2レーンの接続道路セグメントを識別するとき、セグメント分析要素118は、検証済みマップデータ106内で30mphの制限速度を有する比較的真っ直ぐな2レーンの接続道路セグメントを探すことができる。このシンプルな例において、測定される属性、例えば、道路セグメントの真っ直ぐさ、レーンの数、及び制限速度は、実質的に同じでありうる。他の例において、しかし、類似度は、それほど正確ではないことがある。例えば、新領域は、ある程度の曲率と40mph制限速度とを持つ2レーンの接続道路セグメントを含むことがある。本明細書で説明される例において、セグメント分析要素118は、新領域内のセグメントの、検証済み領域内の1つ以上のセグメントとの類似度を定量化する類似度メトリックを決定することができる。
【0025】
いくつかの例において、類似度メトリックは、多数の属性に分解し、それらの属性のいくつが、比較されたセグメント間で同じ及び/又は類似するかを決定しうる。いくつかの例示的な属性は、物理的な属性又はトラフィック制御属性を含むことができる。物理的な属性は、例えば、範囲(例えば、長さ、幅)、レーンの数、曲率、勾配、道路タイプ(例えば、舗装、砂利、土、商店街、境界線なし)、縁石又は非縁石、中央分離帯又は非中央分離帯などを含んでよい。トラフィック制御属性は、例えば、制限速度、進行方向、トラフィック制御要素(例えば、信号機、停止標識、優先通行標識)、横断歩道、自転車レーン、HOVルール、方向転換ルール(例えば、左折禁止、赤で右折禁止)などについての情報を含むことができる。いくつかの例において、類似度メトリック又は類似度スコアは、バイナリ値、例えば、1又は0、一致又は不一致、ドライブ可能又はドライブ不可であってよい。もちろん、他の例において、そのようなスコアは、連続であってよく、一のセグメントが他のものとどのくらい類似するかを示してよく、類似度のより低いレベルは、あるドライビング特徴(例えば、ある制限速度を超えてドライブすること、ある巧みな操縦(二重駐車車両を自律的に乗り越えるようなことなど)を実行すること)を無効化することに関連付けられてよい。いくつかの例において、ある属性が2つの比較されるセグメントで同一ではないとき、類似度メトリックは、他の属性が同じ又は類似であっても、不一致があると示しうる。非限定的な例において、一の方向に進行する専用の1つのレーンと、それとは逆の方向に進行する専用の第2のレーンとを有する道路の2レーンセグメントは、いずれも同じ方向に進行する専用のレーンを有する道路の2レーンセグメントとは一致しないだろう。それに対し、他の属性は異なりうるが、セグメントは依然として一致しうる。非限定的な例において、制限速度が5mph異なる場合を除き、実質的に一致する2つの道路セグメントは一致となりうる。この例において、類似度メトリックは、2つの属性間の差の程度を考慮しうる。例えば、時速5マイルで変化する制限速度は、時速20マイルで変化する制限速度より類似しうる。少なくとも1つの例において、類似度メトリックは、値、例えば、この程度の類似度を表す数値を割り当ててよく、セグメント分析要素118は、同様に異なる属性を含む複合又は他のスコアを生成することができる。
【0026】
セグメント分析要素118は、また、セグメントステレオタイプについての情報を考慮することができる。例えば、ステレオタイプは、道路セグメントタイプを定義するパラメータ値又はパラメータ値の範囲を定義しうる。いくつかの例において、ステレオタイプは、代表セグメント、例えば、ステレオタイプに関連付けられた属性/パラメータ/範囲を含むセグメントによって具体化されうる。セグメント分析要素118は、そのようなパラメータ/範囲に類似である又はそれを含む道路セグメントを決定することができる。例えば、ステレオタイプは、自律車両が同様に動作すると期待される(又は証明されている)十分に類似する全てのセグメントを一緒にグループ化しうる。例えば、そのような動作の類似度は、道路セグメント上を何時間も及び/又は何マイルもドライブすることを通じて見いだされうる。いくつかの例において、セグメント分析要素は、機械学習モデルを実行して、ステレオタイプ内の類似の道路セグメントをグループ化する及び/又はステレオタイプを更新することができる。従って、この開示の例において、セグメント分析要素118は、新領域用のマップデータ104からの道路セグメントと、検証済みマップデータから決定される及び/又はそれに含まれるステレオタイプとを比較することができる。
【0027】
評価/マッピング要素120は、セグメント分析要素118の結果を評価し、新領域用のマップデータ104を更新して、ドライブ不可領域110及びドライブ可能領域112(及び/又はドライビング能力に対する制限)を識別する機能を含むことができる。例えば、評価/マッピング要素120は、例えば、セグメント分析要素118によって決定された類似度メトリックから、(例えば、検証済みマップデータ106からの)自律的な走行について自律車両が既に検証されたセグメントに実質的に類似する新領域のセクションを決定することができる。少なくとも一部の例において、オリジナルセグメントに対応する自律性の類似レベルは、そのような新たなセグメントに関連付けられてよい。例において、検証済みマップデータ106内に類似物がない新領域用のマップデータ104のセグメントは、走行が検証されていないとして、フラグ付けされるか又は別の方法で示される。同様に、検証済みマップデータ106内に類似物がある新領域用のマップデータ104のセグメントは、走行が検証されている(又は潜在的に検証されている)として、フラグ付けされるか又は別の方法で示される。上記のように、少なくとも一部の例において、制限される自律性の量(又は機能に関する他の限定)は、決定された類似セグメントに基づいて1つ以上のセグメントに関連付けられてよい。いくつかの例において、評価/マッピング要素120は、例えば、新領域用のマップデータ104をドライブ可能領域112のインジケーションで補足することによって、新たなマップデータを生成し、例えば、ドライブ不可領域116を除いて、ドライブ可能領域112内での動作を自律車両が備えるために、更新された(又は新たな)マップデータを自律車両に提供することができる。
【0028】
評価/マッピング要素120は、また、新領域についての全体スコア又はカバレッジを決定することができる。例えば、新領域用のマップデータ104内のセグメントのそれぞれがドライブ不可又はドライブ可能のいずれかとしてフラグ付けされる際、評価/マッピング要素120は、新領域の全体カバレッジを決定することができる。いくつかの例において、全体スコア又はカバレッジは、ドライブ可能領域112を含むとして示されている新領域内のドライブ可能領域のパーセンテージに対応することができる。他の評価及び/又はスコアリングメトリックも利用されうる。例えば、評価/マッピング要素120は、新領域についての追加的な情報を考慮してよい。例えば、配車サービスのコンテキストにおいて、ドライブ可能領域112が乗車(pickup)/降車(drop-off)場所を含むかどうかを決定することが望まれることがある。評価/マッピング要素120は、見通しの良いカーブ、パーキングレーン、私道、駐車場、又は乗車/降車の助けとなりうる他の属性も含む新領域用のマップデータ104のセグメントのパーセンテージを決定しうる。追加的な例において、評価/マッピング要素120は、新領域がどのくらいが接続されているかを識別するメトリックを決定することができる。例えば、新領域内のドライブ可能領域112が、大部分の領域を走行することを許可するという決定は、例えば、接続道路が少ないか又は全くなく、ドライブ可能領域112が互いに離れていると決定することより相対的に高いスコアが付けられてよい。
【0029】
従って、本明細書で説明される技術によれば、車両制御システムが新領域でどのくらいうまくいくかの決定は、検証済み領域のマップデータ及び新領域のマップデータを利用して決定されることができる。たとえ、新領域用のマップデータ104が、検証済みマップデータ106よりも詳細又は具体的でないことがあっても、評価システム102は、その領域で自律車両が動作する可能性についての有意義な情報を提供することができる。いくつかの実装において、評価システム102は、自律車両サービスを新領域に提供するかどうか及び/又はどの新たな地域に進入するのかを決定することを助けることができる。
【0030】
図2は、新領域内のドライブ可能サーフェスを識別し、及び/又は自律的特徴をそれに関連付ける例示的プロセス200の絵的なフロー図を示す。例えば、プロセス200は、評価システム102で使用することに限定されず、評価システム102がプロセス200に加えて動作及び/又はプロセスを実行しうるけれども、プロセス200は、評価システム102の1つ以上の要素によって実装されうる。
【0031】
動作202で、プロセス200は、新領域用のマップデータを受信することを含みうる。例えば、新領域は、既にマッピングされた領域の拡張又は完全に新領域、例えば、新たな都市又は場所に対応するものであってよい。動作202に付随する例204は、新領域のマップ206のグラフィック表示を含む。例えば、マップ206は、図1に関連して上で論じた新領域用のマップデータ104を表しうる。この開示の例において、マップデータは、場所の代表的な情報を含む任意の数のデータタイプでありうる。特に、本明細書で説明される技術は、新領域内のドライブ可能サーフェスについての情報が決定されることができる任意のマップデータを利用しうる。いくつかの例において、そのようなマップ204は、マッピングの期間に収集された、車両の1つ以上のセンサからの収集データに基づいて生成されうる。いくつかの例において、マップ204は、ユーザによって生成された、シミュレートされた(合成)データ、又はシミュレートされた部分とセンサデータとの組み合わせに基づいて決定されうる。任意のそのような例において、道路に対応する追加パラメータは、マップの様々な部分に関連付けられてよい(制限速度、停止標識、信号機、レーンインジケータ、横断歩道など)。
【0032】
動作208では、プロセス200は、新領域内のドライブ可能サーフェスセグメントを識別することを含むことができる。動作208に付随する例において、マップ206の領域の数が特定される。例えば、図中では、4つのジャンクション210(1)、210(2)、210(3)、210(4)(まとめてジャンクション210)と、4つの接続道路セグメント212(1)、212(2)、212(3)、212(4)(まとめて接続道路212)が列挙されている(ラベル付けされていないが、追加の道路セグメントの部分も図示されている)。この例において、ジャンクション210のそれぞれは、2つ以上の接続道路212の合流点であり、接続道路212のそれぞれは、2つのジャンクション210の間に延びている。より詳細には、第1のジャンクション210(1)及び第3のジャンクション210(3)は、3つの接続道路セグメントが収束する「T」タイプジャンクションであってよい。第1のジャンクション210(1)の特定の例において、3つの接続道路セグメントは、第1の接続道路212(1)、第4の接続道路2212(4)、及び、第1の接続道路212(1)の続きであるラベル付けされていない接続道路セグメントを含む。第2のジャンクション210(2)及び第4のジャンクション210(4)は、異なるタイプの交差点であってよい。例えば、第2のジャンクション210(2)は、4方向の交差点として描かれ、第4のジャンクション210(4)は、トラフィックサークル又はラウンドアバウトとして描かれている。もちろん、これらは単なるジャンクションの例である。
【0033】
理解されるように、マップ206は、(はるかに)より大きな領域の小さなセクションのみを提供してよい。従って、いくつかの実装において、数百、潜在的には数千又はそれより多くのジャンクション210、及び同等数の接続道路212が存在しうる。さらに、各ジャンクションは、それ自体の特徴を有することがあり及び/又は各接続道路212は、それ自体の特徴を有することがある。非限定的な例を通し、第1のジャンクション210(1)及び第3のジャンクション210(3)は、同じであるように見えることがあるけれども、実際には、それらは全く異なることがある。例えば、ジャンクション210(1)、210(3)のそれぞれでのトラフィック制御は変えることができる。例えば、ジャンクション210(1)は3方向停止であってよく、一方で、接続道路セグメント212(3)は、主要道路であってよく、その結果、接続道路セグメント212(3)からジャンクション210(3)を通って真っ直ぐ進行する車両は、停止しないことがあり、一方で、第4の接続道路212(4)上のトラフィックは、ジャンクション210(4)が備える交差点に進入する前に停止しなくてはならない。もちろん、これらはほんの一例である。他の例において、1つ以上のジャンクションが、例えば、横断歩道、方向転換レーン、優先通行標識、信号機などのような他の特徴を含むことがある。さらに、第4の接続道路セグメント212(4)は、どちらの方向も一方通行でありうる。同様に、他の要因も、ジャンクション210でのトラフィック制御に影響しうる。例えば、接続道路セグメント212を含む道路の制限速度は、ジャンクション210のそれぞれについて変わりうる。ジャンクション210は、同様に、追加的な変形を有しうる。非限定的な例において、接続道路212は、概して、隣接するセグメントに対して直角に配置されるように描かれているが、道路セグメントの間の角度は変わりうる。さらに、個々のジャンクション210は、横断歩道、自転車レーン、物理障壁、又は、そこを通るナビゲーションに影響を与えることができる他の特徴を含みうる。本明細書では他の例が提供される。
【0034】
同様に、参照された接続道路セグメント212は、実質的にマップ206内と同じように見えるが、それぞれはユニークな特徴又は属性を有してよい。非限定的な例として、各セグメントは、異なる曲率、異なる勾配、異なる制限速度、異なる数のレーン又はレーン構成、例えば、幅、長さ又は他の範囲、それらのレーンについて異なる進行方向などを有してよい。また、例において、道路セグメント212は、パーキングレーン、横断歩道、駐車禁止ゾーン、中央分離帯又は他の物理障壁、橋、トンネル、隣接歩道、スピードバンプ、自転車レーン、又は他の特徴を含むことができる。本明細書では他の例が提供される。
【0035】
動作214で、プロセス200は、セグメントと、マッピングされたセグメント及び/又は参照マップデータからのステレオタイプとを比較することを含みうる。例えば、動作208で識別されたセグメントのそれぞれ、例えば、ジャンクション210のそれぞれと、接続道路セグメント212のそれぞれとは、上で議論した検証済みマップデータ106などのナビゲート可能な領域からのマッピングされたデータと比較されうる。動作214に付随する図は、マップ206及び関連セグメントデータ216からの第1のジャンクション210(1)を示す。非限定的な例として、セグメントデータ216は、それらに限定されないが上で議論されたものを含む、特徴、属性、及び/又はジャンクション210(1)を定量化する変数のいずれかを含みうる。比較は、本明細書で定義されるように、類似度メトリックを決定することに基づきうる。
【0036】
動作214に付随する例は、また、例示的なマッピングされたジャンクション218を示す。例えば、マッピングされたジャンクション218は、検証済みマップデータ106などのナビゲート可能な領域内で識別されるジャンクションセグメントを含みうる。いくつかの例において、検証済みマップデータ106内の各ジャンクションは、セグメントデータ216のように、関連データと共に個別に格納されることができる。例において、第1のマッピングされたジャンクション218(1)は、4方向交差点及び関連データを示し、第2のマッピングされたジャンクション218(2)は、第1の3方向交差点及び関連ジャンクションデータを示し、第3のマッピングされたジャンクション218(3)は、第2の3方向交差点及び関連ジャンクションデータを示す。前述のように、マッピングされたジャンクション218は、自律車両が走行することが検証されている領域からのものであり、従って、自律車両がマッピングされたジャンクション218のそれぞれをナビゲートできることがある程度確実に知られうる。従って、動作214で、ジャンクション210(1)が、マッピングされたジャンクション218の1つと同じであると決定される場合、自律車両が新領域内のジャンクション210(1)をナビゲートしうるという合理的な期待がありうる。動作214に付随する例において、ジャンクション210(1)は、第3のマッピングされたジャンクション218(3)と類似及び/又は同じであると決定されうる。上記のように、これは、2つのセグメントの1つ以上の特徴/パラメータに関連付けられた類似度スコア又はメトリックを決定することに基づいて行われうる。
【0037】
いくつかの実装において、動作214は、ジャンクション210(1)を各マッピングされたジャンクション218と比較しうる。しかし、他の実装において、マッピングされたジャンクション218のそれぞれは、類似するジャンクションのクラス又はグループを表しうる。例と通して、自律車両は、例えば、側道が停止標識、優先通行標識、及び/又は点滅赤信号を有するかどうかにかかわらず、及び/又は主要道路の制限速度にかかわらず、主要道路及び2つの側道の4方向交差点をナビゲートするために同じ機能を使用しうる。そのような例において、マッピングされたジャンクション218は、ジャンクション又は交差点ステレオタイプを含みうる。例えば、交差点ステレオタイプは、単一のパラメータ範囲内に1つ以上の範囲又は基準のタイプを含むことができる。上記の例において、側道と主要道路とのジャンクションで利用されるトラフィック制御デバイス(又はトラフィック制御デバイスが類似のデバイスのリスト上にあるデバイスである場合)にかかわらず、及び/又は主要道路の制限速度にかかわらず(又は制限速度が制限速度の一部範囲内にある場合)、主要道路及び2つの側道の類似する4方向交差点が一緒にグループ化される。いくつかの例において、ステレオタイプを利用すると、例えば、新領域のセグメントを、より少ないマップセグメント、例えば、マッピングされたジャンクション218と比較することによって、演算負荷を低減することができる。ステレオタイプ又は分類の利用は、例えば、数千のジャンクションを数十のステレオタイプに減らすことができる。クラスタリングアルゴリズムがセグメントをクラスタリングするために利用される少なくとも一部の例において、各クラスタの平均、中央値、又は最頻値は、各クラスタがどのくらい緊密かを示す分散でそのセグメントの特徴を示すものとして利用されうる。
【0038】
動作220で、プロセス200は、新領域内のドライブ可能サーフェスを識別することを含みうる。例えば、プロセス200は、(例えば、動作214での比較に基づいて)検証済みマップデータ内に類似物が存在するマップ206内のそれらのセグメントを識別することを含むことができる。いくつかの例において、類似物が存在するそれらの領域は、(潜在的な)ドライブ可能領域222(例えば、自律車両がナビゲートできそう)として示されてよく、類似物が存在しないそれらの領域は、ドライブ不可領域224(例えば、自律車両がナビゲートできない)として示されてよい。動作220に付随する例において、第2の接続道路212(2)、第3の接続道路212(3)、及び第4のジャンクション210(4)は、ドライブ不可領域224として示され、一方で、全ての残りのセグメントは、ドライブ可能領域222を含むとして示される。少なくとも一部の例において、そのような決定は、それほどバイナリではないことがある(例えば、ドライブ可能か、ドライブ不可か)。そのような例において、類似度メトリックに少なくとも部分的に基づいて、様々な動作が制限されうる(例えば、最大制限速度、実行できるアクション、自律車両が許容される時間及び/又は条件など)。非限定的な例として、新たにマッピングされた道路セグメントが、既存のセグメントの特徴の95%範囲内である場合、類似のドライビング特徴が有効化されうる。他の例において、新たなセグメントが、ステレオタイプの道路セグメントの0.8の類似度メトリックを有する場合、最大制限速度は、新たなセグメントの掲示された制限速度の一部分に設定されうる。
【0039】
いくつかの実装において、自律車両が、課された任意の制限に従って、ドライブ可能領域222内で動作できるように、ドライブ可能領域222を識別する、更新されたマップデータを自律車両が備えることができる。いくつかの例において、自律車両は、例えば、回避するために、ドライブ不可領域224についての情報なしに動作しうる。それはさらに別の例であるが、領域又はセグメントがドライブ不可であるというインジケーションは、追加的な処理を促すことがある。例えば、図3は、プロセス200又は他のプロセスによってドライブ不可と示されたセグメントが、自律車両によって依然としてナビゲート可能でありうるかどうかを決定する例を示す。より具体的には、図3は、新領域において、ドライブ可能サブセグメント、例えば、レーンのサブセットを識別するための例示的なプロセス300の絵的なフロー図を示す。例えば、プロセス300は、評価システム102と共に利用することに限定されず、評価システム102は、プロセス300に追加して又はそれに代えて、動作及び/又はプロセスを実行してよいけれども、プロセス300は、評価システム102の1つ以上の要素によって実装されうる。
【0040】
動作302で、プロセス300は、道路セグメントについての情報を受信することを含みうる。例えば、道路セグメントは、本明細書で論じられるようなジャンクションセグメント又は接続道路セグメントでありうる。いくつかの例において、道路セグメントは、例えば、上で論じられたプロセス200又はいくつかの他のプロセスに従って、ドライブ不可としてフラグ付けされた又は別の方法で識別されたセグメントであってよい。そのような例において、セグメントは、図2に関連して上で論じられたように、検証済みマップデータと十分に対応しないため、ドライブ不可でありうる。動作302に付随する例304において、道路セグメントは、接続道路セグメント306として具体化される。例えば、接続道路セグメント306は、プロセス200に関連して上で論じられた接続道路セグメント212の1つであってよい。より詳細には、接続道路セグメント306は、第1のレーン308、第2のレーン310、第3のレーン312、第4のレーン314、第5のレーン316、第6のレーン318、及び多くのパーキングスペース320を含むパーキングレーンを含む複数のレーンを含んでよい。また詳細には、中心線は、第3のレーン312を第4のレーン314から分離してよく、レーンマーカ324は、他のレーンの間に提供されてよい。例えば、第1のレーン308は、トラフィックが道路セグメント306から右折しうる方向転換レーンであってよく、第2のレーン310及び第3のレーン312は、例えば、図示された方向で右から左へと、同じ方向に進行するトラフィックのために利用されてよい。それに対し、第4のレーン314、第5のレーン316、及び第6のレーン318は、例えば、図示された方向で左から右へと、反対方向に進行することを容易にしうる。パーキングスポット320は、第6のレーン318に隣接する縦列駐車のために配置されうる。
【0041】
動作326で、プロセス300は、道路セグメント内のレーンのサブセットを識別することを含みうる。例えば、動作326に付随する例において、プロセス300は、第5のレーン316、第6のレーン318、及びパーキングスポット320を含むレーンを含むサブセット328を識別しうる。実装において、例えば、車両の進行するレーン及びいずれかの側の隣接レーン内で、自律車両の安全な進行が、物体、障害物、及び又はそのようなものの知識を必要としうるため、少なくとも3つのレーンが選択されうる。他の例において、より多くの又はより少ないレーンがサブセットに含まれうる。非限定的な例において、第6のレーン318、及びパーキングスポット320を含むレーンのみがレーンのサブセットとして利用されうる。さらに、道路セグメント306は接続道路セグメントであるけれども、類似する技術は、セグメント又はジャンクションセグメントの部分を識別するために利用されうる。非限定的な例として、ジャンクションでの2つの接続道路セグメントの収束は、例えば、ジャンクションで出会う他の接続道路を除いて、動作326によって識別されうる。セグメントの少なくとも1つのレーンが他のセグメントに類似している少なくとも一部の例において、それらのレーンがドライビングのために他のレーンより優先されるか、及び/又は追加の制限がそのような他のレーンに課されうる。本明細書で説明される他の特徴及び属性を含む、セグメントの範囲内の特徴の他のサブセット又はグループも企図される。
【0042】
動作330で、プロセス300は、識別されたレーンを、検証済みレーンの組み合わせ及び/又はステレオタイプと比較することを含みうる。動作330は、上で説明された動作214と同様でありうる。例えば、レーンの組み合わせ328を含む、レーンの組み合わせのそれぞれは、上で論じられた検証済みマップデータ106などのナビゲート可能な領域からのマッピングされたデータに比較されうる。動作330に付随する図は、レーンセグメント306及び関連レーンデータ332からのレーンの組み合わせ328を示す。非限定的な例において、レーンデータ332は、それに限定されないが、レーンについての進行方向、レーンの範囲、レーンマーカ情報、制限速度情報、パーキングスポット320の向き、及び/又はレーンの組み合わせ328に関連付けられた他のデータを含む、任意の特徴、属性、及び/又はレーンの組み合わせ328を定量化できる変数を含みうる。
【0043】
動作330に付随する例は、また、検証済みレーンデータ334を示す。例えば、検証済みレーンデータは、検証済みマップデータ106内など、ナビゲート可能な領域内で識別されたレーンの組み合わせについての情報を含みうる。いくつかの例において、検証済みマップデータ106内の各レーンの組み合わせは、例えば、レーンデータ332と同様に、関連データと共に個別に格納されることができる。動作330は、新領域内のレーンの組み合わせ328に関連付けられたレーンデータ332と、例えば、検証済みレーンデータ334内の、各マッピングされたレーンの組み合わせとを比較して、レーンの組み合わせ328と、自律が検証されているレーンの組み合わせとの間の対応関係を決定しうる。しかし、他の実装において、検証済みレーンデータ334は、類似するレーンの組み合わせのクラス又はグループの情報を含みうる。例において、自律車両は、70mph速度制限を持つ8レーン幹線道路の2つの右端レーン上と同様に、65mph速度制限を持つ5レーン幹線道路の2つの右端レーン上でナビゲートする機能を利用しうる。従って、例えば、検証済みレーンデータ334は、65~70mphの範囲の制限速度を持つ2レーン構成を包含するレーンステレオタイプを含みうる。もちろん、これは1つの単純な例に過ぎず、追加の及び/又は異なる属性、範囲、及び/又はそのようなものが、ステレオタイプを開発するために利用されてよい。いくつかの例において、ステレオタイプを利用すると、例えば、新領域内のレーンの組み合わせを、より少ないマッピングされた組み合わせと比較することによって、演算負荷を低減することができる。少なくとも一部の例において、そのような検証済みレーンデータ334は、1つ以上の自律車両の検証済みの(実際の、成功した)ドライビング動作を含みうる。そのようなドライビング動作及び類似度スコアは、1つ以上の制約を新たに示されたセグメント内でのドライビングに課すために利用されうる。
【0044】
動作336で、プロセス300は、全てのレーンより少ないレーンをナビゲート可能として識別することを含みうる。例えば、プロセス300は、組み合わせ328を含む、レーンの各組み合わせについて、検証済みマップデータ内に類似物が存在するかどうかを決定することを含むことができる。いくつかの例において、類似物が存在するそれらの領域は、ドライブ可能領域338として示されることがあり(例えば、潜在的に自律車両によってナビゲート可能)、類似物が存在しないそれらの領域は、ドライブ不可領域340として示されることがある(例えば、自律車両によってナビゲート不可)。動作336に付随する例において、第5のレーン316、第6のレーン318、及びパーキングスポット320を含むレーンは、ドライブ可能領域338として示され、一方で、第1のレーン308、第2のレーン310、第3のレーン312、第4のレーン314は、ドライブ不可領域340として示されている。
【0045】
例えば、上で示したように、道路セグメント306は、例えば、道路セグメント306が検証済みのナビゲート可能道路セグメントの類似物として識別されるであろう、十分に同じ又は類似の特徴を持つ道路セグメントをナビゲート可能領域のマップデータが含まないことがあるため、ドライブ不可道路セグメントとして識別されうる。プロセス300の結果として、本明細書で説明される技術は、自律車両が動作しうる新しい、例えば、検証されていない領域の追加部分を識別しうる。例において、自律車両は、ドライブ可能領域338についての情報を備えてよく、従って、その領域内でのみ道路セグメント306を横切ってよい。図示された例において、自律車両は、第5のレーン316又は第6のレーン318のみを走行してよく、及び/又はパーキングスポット320の1つ内で駐車又は別の方法で停止してよい。従って、配車サービスのコンテキストでは、車両は、道路セグメント306の全てのレーンを走行することについて検証されていないことがあるとしても、例えば、パーキングスポット320での乗車及び/又は降車サービスを提供しうる。さらに、車両がドライブ可能領域338をナビゲートするとき、それは、例えば、車両に取り付けられたセンサを利用してセンサデータを生成し、ドライブ不可領域340のマッピングを可能にしうる。
【0046】
図4は、本明細書で説明される技術を実装するための例示的システムのブロック図を示す。少なくとも1つの例において、システム400は、本明細書で説明される自律車両などの自律車両である車両402を含むことができる。車両402は、車両コンピューティングデバイス404と、1つ以上のセンサシステム406と、1つ以上のエミッタ408と、1つ以上の通信接続410と、少なくとも1つの直接接続412と、1つ以上のドライブモジュール414とを含むことができる。
【0047】
車両コンピューティングデバイス404は、1つ以上のプロセッサ416と、1つ以上のプロセッサ416と通信可能に接続されたメモリ418とを含むことができる。図示された例において、車両402は、自律車両である。しかし、車両402は、任意の他のタイプの車両、又は少なくとも画像キャプチャデバイス(例えば、カメラ対応スマートフォン)を有する任意の他のシステムでありうる。図示された例において、車両コンピューティングデバイス404のメモリ418は、ローカライゼーション要素420と、パーセプション要素422と、プランニング要素424と、1つ以上のシステムコントローラ426と、1つ以上のマップ428とを格納する。例示目的でメモリ418に存在するものとして図4に示されているけれども、ローカライゼーション要素420、パーセプション要素422、プランニング要素424、1つ以上のシステムコントローラ426、及び1つ以上のマップ428は、追加的に又は代替的に、車両402にアクセス可能であってよい(例えば、遠隔で格納される)ことが企図される。
【0048】
少なくとも1つの例において、ローカライゼーション要素420は、センサシステム406からデータを受信して、車両402の位置を決定する機能を含むことができる。例えば、ローカライゼーション要素420は、環境のマップを含む及び/又は要求する/受信することができ、続けてマップ内の自律車両の位置を決定することができる。いくつかの例において、ローカライゼーション要素420は、SLAM(simultaneous localization and mapping)又はCLAMS(calibration, localization and mapping, simultaneously)を利用して、画像データ、LIDARデータ、レーダデータ、IMUデータ、GPSデータ、ホイールエンコーダデータなどを受信し、正確に自律車両の位置を決定することができる。いくつかの例において、ローカライゼーション要素420は、データを車両402の様々な要素に提供して、本明細書で論じられるように、候補軌道を生成するための自律車両の初期位置を決定することができる。
【0049】
いくつかの例において、パーセプション要素422は、物体検出、セグメント化、及び/又は分類を実行する機能を含むことができる。いくつかの例において、パーセプション要素422は、車両402に近接するエンティティの存在、及び/又はエンティティタイプとしてエンティティの分類(例えば、自動車、歩行者、サイクリスト、動物、建物、樹木、路面、縁石、歩道、不明など)を示す処理後のセンサデータを提供することができる。追加的及び/又は代替的な例において、パーセプション要素422は、検出されたエンティティ及び/又はエンティティが位置する環境に関連付けられた1つ以上の特徴を示す処理後のセンサデータを提供することができる。いくつかの例において、エンティティに関連付けられた特徴は、それに限定されないが、x位置(グローバル位置)、y位置(グローバル位置)、z位置(グローバル位置)、方向、エンティティタイプ(例えば、分類)、エンティティの速度、エンティティの範囲(サイズ)などを含むことができる。環境に関連付けられた特徴は、それに限定されないが、環境内の他のエンティティの存在、環境内の他のエンティティの状態、時刻、曜日、季節、気象条件、暗闇/明かりのインジケーションなどのを含むことができる。
【0050】
概して、プランニング要素424は、環境を横切るために車両402が辿る経路を決定することができる。例えば、プランニング要素424は、様々なルート及び軌道、及び様々なレベルの詳細を決定することができる。例えば、プランニング要素424は、第1の位置(例えば、現在位置)から第2の位置(例えば、対象位置)まで移動するためのルートを決定することができる。この議論の目的のために、ルートは、2つの場所の間を移動するための一連のウェイポイントにすることができる。非限定的な例として、ウェイポイントは、道、交差点、グローバルポジショニングシステム(GPS)座標などを含む。さらに、プランニング要素424は、ルートの少なくとも一部に沿って第1の位置から第2の位置へと自律車両をガイドするための命令を生成することができる。少なくとも1つの例において、プランニング要素424は、一連のウェイポイント内の第1のウェイポイントから、一連のウェイポイント内の第2のウェイポイントへと自律車両をガイドする方法を決定することができる。いくつかの例において、命令は、軌道、又は軌道の一部であることができる。いくつかの例において、後退水平線(receding horizon)技術に従って、複数の軌道が実質的に同時に(例えば、技術的許容範囲内で)生成されることができる。
【0051】
システムコントローラ426は、車両402のステアリング、推進、ブレーキング、安全、エミッタ、通信、又は他のシステムを制御するように構成されることができる。システムコントローラ426は、ドライブモジュール414及び/又は車両402の他の要素の対応するシステムと通信及び/又はそれを制御することができる。
【0052】
環境内をナビゲートするために車両402によって利用されることができるマップ428。この議論の目的のために、マップは、それらに限定されないが、トポロジー(交差点など)、道、山岳領域、道路、地形、及び一般的な環境など、環境についての情報を提供することができる、2次元、3次元、又はN次元でモデル化された任意数のデータ構造であることができる。いくつかの例において、マップは、それらに限定されないが、テクスチャ情報(例えば、色情報(例えば、RGB色情報、Lab色情報、HSV/HSL色情報)など)、強度情報(例えば、LIDAR情報、RADAR情報など)、空間情報(例えば、メッシュに投影された画像データ、個々の「サーフェル(surfels)」(例えば、個々の色及び/又は強度に関連付けられたポリゴン))、反射率情報(例えば、鏡面反射情報、再帰反射情報、BRDF情報、BSSRDF情報など)を含むことができる。一例において、マップは、本明細書で論じられる技術を利用して生成される3次元メッシュを含むことができる。いくつかの例において、マップは、マップの個々のタイルが環境の別々の部分を表すようなタイル化されたフォーマットで記憶されることができ、必要に応じてワーキングメモリにロードされることができる。少なくとも1つの例において、マップ428は、本明細書で論じられる技術に従って生成される少なくとも1つのマップ(例えば、画像及び/又はメッシュ)を含みうる。例えば、マップ428は、新たな環境内のドライブ可能領域のみについての情報を含んでよく、ドライブ可能領域は、本明細書で説明される技術に従って決定される。いくつかの例において、マップ428は、ドライブ可能領域についての情報を含んでよく、一方で、他の実装は、ドライブ不可領域のマップデータを含む、全領域のマップデータを含むことができる。いくつかの例において、車両402は、マップ428に少なくとも部分的に基づいて制御されることができる。即ち、マップ428は、車両の位置を決定し、環境内の物体を識別し、及び/又は、環境範囲内をナビゲートするためのルート及び/又は軌道を生成するために、ローカライゼーション要素420、パーセプション要素422、及び/又はプランニング要素424と関連して利用されることができる。さらに、センサシステム406からのデータ及び/又は他のデータは、マップ428に含まれるマップデータを増強、補足、及び/又は生成するために利用されることができる。
【0053】
いくつかの例において、マップ428は、ネットワーク430を介してアクセス可能なリモートコンピューティングデバイス(コンピューティングデバイス432など)上に格納されうる。いくつかの例において、複数のマップ428は、例えば、特徴(例えば、エンティティのタイプ、時刻、曜日、季節など)に基づいて格納されうる。複数のマップ428を格納することは、同様のメモリ要件を有しうるが、ヒートマップ内のデータがアクセスされうる速度を増加させうる。
【0054】
いくつかの例において、本明細書で論じられた要素の一部又は全部の態様は、任意のモデル、アルゴリズム、及び/又は機械学習アルゴリズムを含みうる。例えば、いくつかの例において、メモリ418(及び以下で論じるメモリ436)内の要素は、ニューラルネットワークとして実装されうる。
【0055】
本明細書で論じされるように、例示的なニューラルネットワークは、入力データを一連の接続レイヤに渡して出力を生成する、生物学的着想のアルゴリズムである。ニューラルネットワーク内の各レイヤは、また、他のニューラルネットワークを含んでよく、又は任意の数のレイヤを含んでよい(畳み込みか否か)。この開示のコンテキストで理解されうるように、ニューラルネットワークは、学習されたパラメータに基づいて出力が生成される、そのようなアルゴリズムの幅広いクラスを参照しうる機械学習を利用しうる。
【0056】
ニューラルネットワークのコンテキストで論じられるけれども、任意のタイプの機械学習が、この開示と整合して利用されうる。例えば、機械学習アルゴリズムは、それらに限定されないが、回帰アルゴリズム(例えば、通常の最小二乗回帰(OLSR)、線形回帰、ロジスティック回帰、ステップワイズ回帰、多変量適応回帰スプライン(MARS)、局所推定散布図平滑化(LOESS))、インスタンスベースのアルゴリズム(例えば、リッジ回帰、最小絶対収縮及び選択演算子(LASSO)、エラスティックネット、最小角度回帰(LARS))、決定木アルゴリズム(例えば、分類及び回帰ツリー(CART)、反復二分法3(ID3)、カイ二乗自動相互作用検出(CHAID)、決定株、条件付き決定木)、ベイジアンアルゴリズム(例えば、ナイーブベイズ、ガウスナイーブベイズ、多項ナイーブベイズ、平均1依存推定器(AODE)、ベイジアン信念ネットワーク(BNN)、ベイジアンネットワーク)、クラスタリングアルゴリズム(例えば、k-means、k-medians、期待値最大化(EM)、階層的クラスタリング)、相関ルール学習アルゴリズム(例えば、パーセプトロン、バックプロパゲーション、ホップフィールドネットワーク、動径基底関数ネットワーク(RBFN)など)、深層学習アルゴリズム(例えば、ディープボルツマンマシン(DBM)、ディープビリーフネットワーク(DBN)、畳み込みニューラルネットワーク(CNN)、スタック型オートエンコーダ)、次元削減アルゴリズム(例えば、主成分分析(PCA)、主成分回帰(PCR)、部分最小二乗回帰(PLSR)、サモンマッピング、多次元スケーリング(MDS)、射影追跡、線形判別分析(LDA)、混合判別分析(MDA)、二次判別分析(QDA)、柔軟判別分析(FDA))、アンサンブルアルゴリズム(例えば、ブースティング、ブートストラップ集約(バギング)、AdaBoost、スタック一般化(ブレンド)、勾配ブースティングマシン(GBM)、勾配ブースティング回帰ツリー(GBRT)、ランダムフォレスト)、SVM(サポートベクターマシン)、監視付き学習、監視なし学習、半監視付き学習などを含みうる。
【0057】
アーキテクチャの追加的な例は、ResNet70、ResNet101、VGG、DenseNet、PointNetなどのニューラルネットワークを含む。
【0058】
少なくとも1つの例において、センサシステム406は、LIDARセンサ、レーダセンサ、超音波トランスデューサ、ソナーセンサ、位置センサ(例えば、GPS、コンパスなど)、慣性センサ(例えば、慣性測定ユニット(IMU)、加速度計、磁気計、ジャイロスコープなど)、カメラ(例えば、RGB、IR、強度、深度、飛行時間など)、マイクロフォン、ホイールエンコーダ、環境センサ(例えば、温度センサ、湿度センサ、光センサ、圧力センサなど)などを含むことができる。センサシステム406は、これら又は他のタイプのセンサのそれぞれの複数の例を含むことができる。例えば、LIDARセンサは、車両402の角、前方、後方、側方、及び/又は上面に配置された個々のLIDARセンサを含むことができる。他の例として、カメラセンサは、車両402のエクステリア及び/又はインテリアについて様々な位置に配置された複数のカメラを含むことができる。センサシステム406は、車両コンピューティングデバイス404への入力を提供することができる。追加的に又は代替的に、センサシステム406は、センサデータを、1つ以上のネットワーク430を介して、所定時間が経過した後、ほぼリアルタイムなど、特定の頻度で、1つ以上のコンピューティングデバイスに送信することができる。
【0059】
エミッタ408は、光及び/又は音を放出するように構成されうる。この例におけるエミッタ408は、車両402の搭乗者と通信するためのインテリアオーディオ及びビジュアルエミッタを含むことができる。例において、それに限定されないが、インテリアエミッタは、スピーカ、ライト、サイン、ディスプレイ画面、タッチスクリーン、触覚エミッタ(例えば、振動及び/又は力フィードバック)、機械式アクチュエータ(例えば、シートベルトテンショナー、シートポジショナー、ヘッドレストポジショナーなど)などを含むことができる。この例におけるエミッタ408は、また、エクステリアエミッタを含む。例において、それに限定されないが、この例におけるエクステリアエミッタは、進行方向を知らせるライト又は車両動作の他のインジケータ(例えば、インジケータライト、サイン、ライトアレイなど)、及び/又は、歩行者又は近くにいる他の車両と音声で通信するための1つ以上のオーディオエミッタ(例えば、スピーカ、スピーカアレイ、ホーンなど)、音響ビームステアリング技術を含むことができる1つ以上のものを含むことができる。
【0060】
通信接続410は、車両402と、コンピューティングデバイス432などの1つ以上の他のローカル又はリモートコンピューティングデバイスとの間の通信を可能にする。例えば、通信接続410は、車両402及び/又はドライブモジュール414上の他のローカルコンピューティングデバイスとの通信を容易にすることができる。また、通信接続410は、車両が、近くの他のコンピューティングデバイス(例えば、近くにいる他の車両、信号機など)と通信することを可能にすることができる。通信接続410は、また、車両402が、リモートテレオペレーションデバイス又は他のリモートサービスと通信することを可能にする。
【0061】
通信接続410は、車両コンピューティングデバイス404を、他のコンピューティングデバイス又はネットワーク430などのネットワークに接続するための物理的及び/又は論理的なインターフェースを含むことができる。例えば、通信接続410は、IEEE402.11標準によって規定される周波数、Bluetooth(登録商標)などの短距離無線周波数などを介したWi-Fiベース通信、セルラ通信(例えば、2G、3G、4G、4G LTE、5Gなど)、又は各コンピューティングデバイスが他のコンピューティングデバイスとインターフェースすることを可能にする任意の好適な有線又は無線通信プロトコルを有効化することができる。
【0062】
ドライブモジュール414は、高電圧バッテリ、車両を推進するモータ、バッテリからの直流を他の車両システムで使用するための交流に変換するインバータ、(電気式であることができる)ステアリングモータとステアリングラックを含むステアリングシステム、油圧式又は電気式アクチュエータを含むブレーキングシステム、油圧式及び/又は空気圧式要素を含むサスペンションシステム、トラクションのロスを軽減して制御を維持するようにブレーキ力を分散するための安定性制御システム、HVACシステム、照明(例、車両を囲むエクステリアを照らすヘッド/テールライトなどの照明)、及び1つ以上の他のシステム(例えば、冷却システム、安全システム、オンボード充電システム、DC/DCコンバータ、高電圧ジャンクション、高電圧ケーブル、充電システム、充電ポートなどの他の電気的要素)を含む、多くの車両システムを含むことができる。加えて、ドライブモジュール414は、センサシステムからのデータを受信して前処理することができるドライブモジュールコントローラを含み、様々な車両システムの動作を制御することができる。いくつかの例において、ドライブモジュールコントローラは、1つ以上のプロセッサと、1つ以上のプロセッサに通信可能に接続されたメモリとを含むことができる。メモリは、1つ以上のモジュールを記憶し、ドライブモジュール414の様々な機能を実行することができる。さらに、ドライブモジュール414は、各ドライブモジュールによる、1つ以上の他のローカル又はリモートコンピューティングデバイスとの通信を可能にする1つ以上の通信接続も含む。
【0063】
いくつかの例において、車両402は、単一のドライブモジュール414を有することができる。少なくとも1つの例において、車両402が複数のドライブモジュール414を有する場合、個々のドライブモジュール414は、車両402の対向する端部(例えば、前方と後方など)に配置されることができる。少なくとも1つの例において、ドライブモジュール414は、ドライブモジュール414及び/又は車両402の周囲の状態を検出するために、1つ以上のセンサシステムを含むことができる。例において、それに限定されないが、センサシステムは、ドライブモジュールのホイールの回転を検知する1つ以上のホイールエンコーダ(例えば、ロータリーエンコーダ)、方向及びドライブモジュールの加速度を測定する慣性センサ(例えば、慣性測定ユニット、加速度計、ジャイロスコープ、磁気計など)、カメラ又は他の画像センサ、ドライブモジュールの周囲の物体を音響で検出する超音波センサ、LIDARセンサ、レーダセンサなどを含むことができる。ホイールエンコーダなどの一部のセンサは、ドライブモジュール414に固有であることができる。一部のケースにおいて、ドライブモジュール414のセンサシステムは、車両402の対応するシステム(例えば、センサシステム406)と重複し又はそれを補足することができる。
【0064】
少なくとも1つの例において、ローカライゼーション要素420、パーセプション要素422、及び/又はプランニング要素424は、上で説明されたように、センサデータを処理することができ、それらの各出力を、ネットワーク430を介して、コンピューティングデバイス432に送信することができる。少なくとも1つの例において、ローカライゼーション要素420、パーセプション要素422、及び/又はプランニング要素424は、それらの各出力を、所定期間の経過後、ほぼリアルタイムなど、特定の頻度で、1つ以上のコンピューティングデバイス432に送信することができる。いくつかの例において、車両402は、未処理(raw)のセンサデータをコンピューティングデバイス432に送信することができる。他の例において、車両402は、処理後のセンサデータ及び/又はセンサデータの表現をコンピューティングデバイス432に送信することができる。いくつかの例において、車両402は、所定期間の経過後、ほぼリアルタイムなど、特定の頻度で、センサデータをコンピューティングデバイス432に送信することができる。一部のケースにおいて、車両402は、1つ以上のログファイルとして、センサデータ(未処理の又は処理後の)をコンピューティングデバイス432に送信することができる。
【0065】
コンピューティングデバイス432は、センサデータ(未処理の又は処理後の)を受信することができ、センサデータに基づいてマップを生成及び/又は更新することができる。例えば、コンピューティングデバイス432は、例えば、自律車両402がドライビングについて検証されていない新領域のマップデータを、例えば、自律車両402がドライビングについて検証されている又は別の方法で構成されている領域からの検証済みマップデータと比較して、自律車両402が進行できる新領域のセグメントを識別することができる。例えば、コンピューティングデバイス432は、ナビゲート可能であると決定される領域を含む更新後のマップデータを生成し、車両402が更新後のマップデータを供給又は別の方法で利用可能にすることができる。従って、車両は、新たな、例えば、以前はナビゲーションのためにマッピングされていなかった画像内の地理的領域の影を識別し、影のないテクスチャ3Dマップを生成するように制御されることができる。
【0066】
少なくとも一部の例において、コンピューティングデバイス432は、1つ以上のプロセッサ434と、1つ以上のプロセッサ434に通信可能に接続されたメモリ436とを含むことができる。コンピューティングデバイス432は、また、第1のマップデータ438と、第2のマップデータ440とを含んでよい。第2のマップデータ440は、また、ステレオタイプデータ442を含みうる。また、図示された例において、コンピューティングデバイス432のメモリ436は、マップセグメント化要素116、セグメント分析要素118、及び評価/マッピング要素120を格納する。少なくとも1つの例において、コンピューティングデバイス432は、図1の評価システム102の一部又は全部の機能を含むことができる。
【0067】
マップセグメント化要素116は、図1に関連して上で説明されている。概して、マップセグメント化要素は、特徴識別要素、及び/又は、ドライブ可能サーフェスのセグメントを識別するようにトレーニングされた機械学習アルゴリズムを含むことができる。一部のケースにおいて、マップセグメント化要素116は、第1のマップデータ438及び/又は第2のマップデータ440などのマップデータを受信し、データを分析して、接続道路セグメント及び接続道路セグメントが収束するジャンクションセグメントなどのセグメントを決定することができる。また、実装において、マップセグメント化要素116は、それらに限定されないが、レーンの組み合わせ、交差点の部分など、セグメントのサブ領域を識別することができる。
【0068】
セグメント分析要素118は、図1に関連して上で説明されている。概して、セグメント分析要素118は、新領域のマップデータ、例えば、第1のマップデータ438からのマップセグメントと、検証済み領域のマップデータ、例えば、第2のマップデータ440からのマップセグメントとを比較することができる。例えば、セグメント分析要素118は、検証済みマップデータからのセグメントと類似又は似ている新領域のマップデータ内で検証されたセグメントかどうかを決定しうる。本明細書で説明されるように、自律車両は、検証済みマップデータに対応する地理的領域内をうまく走行することができるため、自律車両はまた、類似の又は同じ特徴、属性、及び/又は構成を有する新領域のセグメント上をうまく走行しうる。
【0069】
いくつかの例において、セグメント分析要素118は、また、新領域のマップデータからのマップセグメントを、セグメントクラスのステレオタイプと比較することができる。例えば、本明細書で説明されるように、ステレオタイプデータ442などのステレオタイプは、同じ又は類似の方式で車両が機能しうる(又は動作することが証明されている)グループセグメントを利用することができる。さらに、セグメント分析要素118は、ステレオタイプデータ442を生成及び/又は更新しうる。例えば、本明細書で説明されるプロセス600は、ドライブ可能領域内の自律車両402の動作に基づいて、新たなステレオタイプを生成する例を含む。
【0070】
評価/マッピング要素120は、図1に関連して上で説明されている。概して、評価/マッピング要素120は、セグメント分析要素118による処理、例えば、比較の結果を集約又は別の方法で評価することができる。例えば、評価/マッピング要素120は、新領域のいくつかの部分をドライブ可能な部分として、新領域の他の部分をドライブ不可の部分としてフラグ付け又は別の方法で識別することができる。評価/マッピング要素120は、また、概して新領域及び/又はその領域のセグメントのドライブ可能性を示すスコア又は他のメトリックを提供しうる。例えば、スコアメトリックは、新領域のセグメントとマッピングされた領域内のセグメントとの比較に基づいてドライブ可能であると期待される新領域のパーセンテージに少なくとも部分的に基づいてよい。
【0071】
図4の例において、第1のマップデータ438は、新領域用のマップデータ104など、新領域についてのデータを含みうる。説明したように、第1のマップデータ438は、ドライブ可能サーフェスの特徴が取得されることができる多くのタイプの2D、3D、又は他のマップデータのいずれかであることができる。例において、第1のマップデータは、衛星画像、センサ生成データ、又は他のマップデータを含むことができる。第2のマップデータ440は、検証済みマップデータ106であってよく、上で説明されたマップ428の一部又は全部と類似又は同じでありうる。例えば、第2のマップデータ440は、車両402が自律的に動作することができる領域に関連付けられた詳細なマップデータであってよい。本明細書で記したように、第2のマップデータ440は、2D又は3Dデータを含むことができ、ローカライゼーション要素420、プランニング要素424、及び/又は車両402の他の要素によって、マッピングされた領域内をナビゲートするために利用されうる。また図4に示したように、第2のマップデータ440は、また、ステレオタイプデータ442を含む又はそれに関連付けられていることができる。本明細書で説明したように、ステレオタイプデータ442は、情報、例えば、マップデータの類似セグメントを特徴付けるために利用されることができるパラメータ、値、及び/又は範囲を含むことができる。例において、第1のマップデータ438及び第2のマップデータ440は、コンピューティングデバイス432に関連付けられているとして示されている。実装において、第1のマップデータ438及び第2のマップデータ440の一方又は両方は、メモリ436に格納されるか及び/又はコンピューティングデバイス432によってアクセス可能にされることができる。非限定的な例において、第2のマップデータ440の一部又は全部は、マップ428のように、車両402に格納されることができる。
【0072】
車両402のプロセッサ416及びコンピューティングデバイス432のプロセッサ434は、本明細書で説明されたように、データを処理して動作を実行するための命令を実行することが可能な任意の適切なプロセッサであることができる。例において、それに限定されず、プロセッサ416、434は、1つ以上の中央処理ユニット(CPU)、グラフィックス処理ユニット(GPU)、又は電子データを処理して、電子データをレジスタ及び/又はメモリに格納されることができる他の電子データに変換する任意の他のデバイス又はデバイスの部分を含むことができる。いくつかの例において、集積回路(例えば、ASICなど)、ゲートアレイ(例えば、FPGAなど)、及び他のハードウェアデバイスは、また、それらがエンコードされた命令を実装するように構成されている限り、プロセッサとみなされることができる。
【0073】
メモリ418及びメモリ436は、非一時的なコンピュータ可読媒体の例である。メモリ418及びメモリ436は、オペレーティングシステム及び1つ以上のソフトウェアアプリケーション、本明細書で説明された方法及び様々なシステムに起因する機能を実装するために、命令、プログラム、及び/又はデータを記憶することができる。様々な実装において、メモリは、静的ランダムアクセスメモリ(SRAM)、シンクロナスダイナミックRAM(SDRAM)、不揮発性/フラッシュタイプメモリ、又は情報を格納することが可能な任意の他のタイプのメモリなどの任意の適切なメモリ技術を利用して実装されることができる。本明細書で説明されたアーキテクチャ、システム、及び個々の要素は、多くの他の論理的な、プログラム的な、物理的な要素を含むことができ、添付図に示されたものは、本明細書での議論に関連する単なる例に過ぎない。
【0074】
図4は分散されたシステムとして描かれているが、代替的な例において、車両402の要素は、コンピューティングデバイス432に関連付けられることができ、及び/又はコンピューティングデバイス432の要素は、車両402に関連付けられることができることに留意されるべきである。即ち、車両402は、逆に、コンピューティングデバイス432に関連付けられた1つ以上の機能を実行することができる。
【0075】
図2図3図5図6は、開示の実施形態による例示的なプロセスを示している。これらのプロセスは、論理フローグラフとして描かれ、その各動作は、ハードウェア、ソフトウェア、又はそれらの組み合わせで実装されることができる一連の動作を表す。ソフトウェアのコンテキストにおいて、動作は、1つ以上のプロセッサによって実行されるときに列挙された動作を実行する、1つ以上のコンピュータ可読記憶媒体に格納されたコンピュータ実行可能命令を表す。概して、コンピュータ実行可能命令は、特定の機能を実行し又は特定の抽象データタイプを実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含む。動作が説明される順序は、限定として解釈されることを意図しておらず、説明された動作の任意の数は、任意の順序で及び/又は並行に組み合わせてプロセスを実装することができる。
【0076】
図5は、新領域のドライブ可能セグメントを決定し、ドライブ可能セグメントに基づいて生成されたマップデータに従って自律車両を制御するための例示的なプロセス500を示す。例えば、プロセス500の一部又は全部は、本明細書で説明されるように、図4に示した1つ以上の要素によって実行されることができる。例えば、プロセス500の一部又は全部は、コンピューティングデバイス432及び/又は自律車両402によって実行されることができる。
【0077】
動作502で、プロセス500は、未検証領域のマップデータを受信することを含むことができる。例えば、未検証領域は、走行について自律車両が未だ検証されていない新たな地理的領域であってよい。いくつかの実装において、新領域は、例えば、ドライブ可能領域に関連付けられたジオフェンス又は他の仮想境界を拡張するための、既存の地理的領域の拡張でありうる。実装において、動作502で受信されるマップデータは、ドライブ可能サーフェスの特徴及び/又は詳細が決定されうる任意のタイプのマップデータであってよい。いくつかの例において、マップデータは、新領域についての2次元及び/又は3次元の情報を含みうる。
【0078】
動作504で、プロセス500は、検証済み領域のマップデータを受信することを含むことができる。例えば、車両402などの自律車両は、環境内を自律的にナビゲートするために広範で詳細なマップデータを必要とすることがある。例えば、そのようなマップデータは、それに限定されないが、ドライブ可能サーフェス、障害物、建物、縁石などを含む、マッピングされた領域内の物体の3次元メッシュデータを含むことがある。さらに、そのようなマップデータは、ドライブ可能サーフェス上の走行に影響を与えることができる任意の情報及び/又はデータを含むことがある。例えば、動作504で受信された検証済み領域のマップデータは、制限速度情報、トラフィック制御情報、及び/又は、検証済み領域を安全に及び/又は適法に走行するために必要な任意の他の情報を含みうる。少なくとも一部の例において、そのようなセグメント上での以前の自律的動作は、1つ以上のセグメントに関連付けられてよい。
【0079】
動作506で、プロセス500は、未検証領域内のドライブ可能サーフェスのセグメントを決定することを含むことができる。例えば、マップセグメント化要素116は、未検証領域内のドライブ可能サーフェスの部分を識別することができる。非限定的な例において、そのようなセグメントは、接続道路のジャンクション及び/又はジャンクション間に延びる接続道路を含みうる。いくつかの実装において、セグメントは、ジャンクション及び/又は接続道路セグメントのサブセットでありうる。本明細書で説明される図3の例において、セグメントは、接続道路セグメント内の又はジャンクションでのトラフィックレーンのグループを含みうる。いくつかの例において、マップセグメント化要素116は、ドライブ可能サーフェス及び/又はそのセグメントを識別するために、画像処理技術を実行することができる。少なくとも一部の例において、そのようなセグメントは、1つ以上のクラスタリングアルゴリズムに基づいて決定されうる。
【0080】
動作508で、処理は、個々のセグメントについて、あるセグメントが、検証済み領域からのセグメント又はステレオタイプに類似するかどうかを決定することを含みうる。例えば、セグメント分析要素118は、新領域からのセグメント(動作506で決定されたとき)を、検証済み領域からのマッピングされたセグメントと比較しうる。例えば、セグメント分析要素118は、類似度スコア又は他のメトリックを決定する。そのような類似度スコアは、例えば、2つのセグメントに関連付けられた1つ以上の特徴/パラメータ間の距離(例えば、重み付きユークリッド距離)でありうる。いくつかの例において、セグメント分析要素118は、本明細書で説明されるように、新領域からのセグメントのある特徴又は属性に関連付けられた値が、マッピングされたデータのセグメント内のそれらの特徴/属性に対応するかどうかを決定しうる。
【0081】
動作508で、個々のセグメントが、検証済み領域からのセグメント又はステレオタイプと類似すると決定される(例えば、類似度スコア又はメトリックが閾値以上である)場合、動作510で、プロセス500は、そのセグメントを潜在的にドライブ可能として識別することができる。例えば、本明細書で説明されるように、検証済み領域のマップデータは、自律車両が容易にナビゲートすることができるドライブ可能領域のセグメントを含むことができる。少なくとも一部の例において、それに関連付けられる自律性のレベルは、類似度スコアに少なくとも部分的に基づくことがある。上で詳細に説明したように、類似度スコアが異なるため、自律性の1つ以上の機能は、新領域に関して制約されることがある。従って、セグメント分析要素118が、新領域のセグメントが実質的に検証済み領域のセグメントと類似すると決定するとき、プロセス500は、自律車両がまた、新領域の類似セグメント上でうまく動作しそうであると決定することができる。
【0082】
対称的に、動作508で、個々のセグメントが、検証済み領域からのセグメント又はステレオタイプと類似しないと決定される(例えば、類似度スコアが閾値スコア未満である)場合、動作512で、プロセス500は、そのセグメントを、ほぼドライブ不可として識別することを含むことができる。従って、動作508、510、512は、新領域内のセグメントがドライブ可能であるか又はドライブ不可であるかを決定するために利用されうる。実装において、ドライブ可能サーフェス全体の範囲は、別々のセグメントに分解され、各セグメントがドライブ可能又はドライブ不可として識別される。
【0083】
動作514で、プロセス500は、ドライブ可能及びドライブ不可領域を含むように、新たな、例えば、未検証の領域のマップデータを生成することを含むことができる。例えば、動作502で受信される未検証領域のマップデータは、そのようなセグメントがドライブ可能であるか又はドライブ不可であるか及び/又は任意の追加的な制限を示す、道路セグメントに関連付けられたフラグ、タグ、又は他の表示を含むように補足されうる。
【0084】
動作516で、プロセス500は、検証済み領域についてのドライビングデータを受信することを含むことができる。例えば、未検証領域内のセグメントは、検証済み領域内のセグメントに対する、そのセグメントの類似度に基づいてドライブ可能と示されるため、検証済み領域内のセグメント内の車両を制御するためのドライビングデータは、類似の未検証セグメントをナビゲートするために役立つことがある。いくつかの例において、他の実装において、より多く又はより少ないドライビングデータが受信されることがあるけれども、ドライビングデータは、未検証領域内のセグメントに類似するとみなされた、検証済み領域からのそれらのセグメントにのみ制限されることがある。
【0085】
動作518で、プロセス500は、ドライビングポリシーを生成することを含むことができる。例えば、ドライビングポリシーは、車両402などの車両による自律的ドライビングを可能にするか又は別の方法で通知する、ルール、制御、制限、又は他のデータのセットであることができる。ドライビングポリシーは、新領域の潜在的にドライブ可能なセグメントをナビゲートするとき、車両によって実装されうる。従って、例えば、ドライビングポリシーは、潜在的にドライブ可能なセグメントを走行する車両をアシストし、ドライブ不可セグメントを回避するための情報を含むことがある。いくつかの例において、ドライビングポリシーは、検証済み領域内で自律的にナビゲートするために利用される全ての機能、制御などを含むことができる。他の実装において、ドライビングポリシーは、新領域内のセグメントに一致するそれらのセグメント内で自律車両を制御することについての情報のみを含んでよい。さらに、ドライビングポリシーは、類似度の程度に少なくとも部分的に基づくことができる。例えば、正確に一致してはいないが、検証済み領域内のセグメントと類似しているとみなされる新領域内のセグメントについて、ドライビングポリシーは、新領域内のそのセグメントを横切ることについての制限された機能についての情報を含むことができる。例えば、ドライビングポリシーは、そのセグメントを車両が走行することができる制限速度を限定することができ、車両が特定の行為などを実行することを控えさせることができる。
【0086】
動作520で、プロセス500は、ドライビングポリシーに基づいて未検証領域のドライブ可能領域内をドライブするように車両を制御することを含むことができる。例えば、動作514で生成されたマップデータは、自律車両402などの自律車両にアップロードされるか又は利用可能にされ、自律車両402は、新領域を走行するためのドライブ可能に関連付けられたマップデータを利用することができる。自律車両402は、また、動作516で受信されたドライビングデータを利用することができる。本明細書で説明されるように、自律車両は、ドライブ可能として示されたセグメントで動作することが期待されうる。さらに、いくつかの実装において、車両がドライブ可能セグメント内の新領域を走行するとき、車両は、例えば、車両に搭載された又は別の方法で関連付けられた1つ以上のセンサシステムを利用してセンサデータを収集してよく、そのようなセンサデータは、例えば、ドライブ不可として示された領域についての情報を取得することによって、マップを補足するために、及び/又はドライブ可能として示された領域についての追加的な、より詳細な情報を得るために利用されうる。また本明細書で説明されるように、車両402の機能は、例えば、類似度スコア及び/又は他のパラメータに基づいて、未検証領域のセグメントに限定されうる。
【0087】
図6は、新領域のドライブ可能性を検証し、ステレオタイプ又は他のセグメント分類を生成する例示的なプロセス600を示す。いくつかの例において、プロセス600は、少なくとも部分的に自律車両402によって実行されることができる。しかし、プロセス600の一部又は全部は、システム下の他の車両によって実行されてよく、自律車両402は、プロセス600の実装に限定されない。
【0088】
動作602で、プロセス600は、未検証領域の潜在的にドライブ可能なセグメントについての情報を受信することを含む。例えば、図5に関してちょうど説明されたように、本明細書で説明される技術は、例えば、新領域のセグメントが実質的に、検証済みマップセグメントに関連付けられたステレオタイプ又はグループと同じ又は適合するため、自律車両が動作可能であると期待される道路のセグメント又は他のドライブ可能サーフェスを決定するために利用されうる。いくつかの例において、未検証領域のマップデータは、それらの潜在的にドライブ可能なセグメントを識別するために更新されうる。
【0089】
動作604で、プロセス600は、潜在的なドライブ可能セグメントに沿って、検証済み領域に関連付けられた制御を利用して、車両を制御することを含みうる。例えば、自律車両402などの自律車両は、車両が検証済みの、例えば、マッピングされたセグメントをナビゲートすることを可能にする機能、ルール、及び/又は制御ロジックを含みうる。実装において、これらの制御は、マッピングされた領域からのそれらと類似すると決定されたセグメント内で車両を制御するために、動作604で実装されうる。
【0090】
動作606で、プロセス600は、個々のセグメントについて、車両が許容可能に実行するかどうかを決定することを含むことができる。例えば、本明細書で説明される技術は、自律車両がうまく動作すると期待されるセグメントを識別することができるけれども、それらのセグメント上での車両の動作は、例えば、実際にうまく動作することを確認するために、さらに検証を必要とする。いくつかの実装において、車両は、ドライブ可能部分として示された場所を走行しようとするときに情報を生成することができる。いくつかの例において、セグメント内の正しいナビゲーションは、セグメントを通過する間、開始又は起点から目的地まで横切ることを含みうる。他の例において、許容可能な動作は、時間的な要素、例えば、特定の時間内に起点から目的地まで車両が移動すると決定することを含みうる。許容可能な性能は、それらに限定されないが、環境内の物体からの最小距離を維持すること、先行車両との間の時間ギャップを維持すること、衝突するまでの時間を閾値時間以下に維持することなどの、安全パラメータ又は他のパラメータを含む車両が他のドライビングパラメータに適合するかどうかも考慮しうる。さらに別の例において、搭乗者の快適さに影響するパラメータが、車両が成功したかどうかを決定するために評価されうる。例えば、車両がセグメントを走行する際の、加速及び減速の回数及び重大度、巧みな操縦又は旋回の重大度なども考慮されうる。ドライビング上の追加的な制限が課されたこれらの例において、そのような制限は、そのようなセグメント上での1つ以上の成功ドライブに基づいて段階的に削除されうる(例えば、最大制限速度を増加すること、より複雑な巧みな操縦を許容することなどによって)。
【0091】
動作606で、車両が個々のセグメントで許容可能に機能すると決定される場合、動作608で、プロセス600は、セグメントのドライブ可能性を検証することを含みうる。例えば、車両が1つ以上の期待又は要件に従って機能する場合、本明細書で説明される技術を利用して識別される新領域のセグメントは、検証済みセグメントとして示されることができる。
【0092】
代替的に、操作606で、車両が個々のセグメントで許容可能に機能しないと決定される場合、動作610で、プロセス600は、そのセグメントと、そのセグメントが比較された検証済みセグメント又はステレオタイプとの間の差を決定することを含みうる。例えば、本明細書で論じられるように、いくつかの実装は、それらのステレオタイプとの適合性に基づいて、及び/又は属性の一部の差にもかかわらず、セグメントが互いに類似すると決定しうる。動作610は、それらの差を識別しうる。
【0093】
動作612で、プロセス600は、ステレオタイプデータを更新すること/新たなステレオタイプを識別することを含むことができる。例えば、車両が、ドライブ可能なセグメントであると識別され又は信じられるセグメントで期待通りに機能しないとき、そのセグメントと、類似であると信じられたセグメント又はステレオタイプとの間の差が重大であると決定されうる。従って、いくつかの例において、セグメント分析要素118は、例えば、新領域内のセグメントに関連付けられた値又は属性がもはやステレオタイプに含まれなくなるように、ステレオタイプを更新することができる。他の例において、他の、例えば、以前に考慮されていない属性も考慮されうる。そのような新たな又は異なる属性が識別されるとき、その属性に関連付けられた異なる範囲又は値を含むように、新たなステレオタイプが生成されうる。
【0094】
従って、本明細書で説明される技術によれば、自律車両の機能は、より容易に新しい地理的領域に拡張されうる。例えば、マップデータのセグメントは、新たな及び既にマッピングされた領域との間の類似度を決定するために比較されることができる。また、実装において、上で詳述したように、ドライブ可能サーフェスのセグメントに起因するもの以外の異なる特徴及び属性についての情報も考慮されうる。非限定的な例において、本明細書で説明される技術は、また、新領域との自律車両のベースライン互換性を決定するために、新領域をフィルタリングすることを含むことができる。例えば、第1のドライビング属性を持つ、第1の天候での第1の都市についての検証済みマップデータは、同じ天候及び属性を持つ領域とより容易に比較されうる。
【0095】
例示条項
A:例示的コンピュータ実行方法は、第1の地理的領域内の第1のドライブ可能サーフェスと、第1のドライブ可能サーフェスに関連付けられた1つ以上のトラフィック特徴とについての情報を含む第1のマップデータを受信するステップであって、1つ以上のトラフィック特徴は、トラフィックレーンの数、トラフィックレーンタイプ、レーンジオメトリ、又はトラフィック制御情報のうちの1つ以上を含む、ステップと、1つ以上のトラフィック特徴に少なくとも部分的に基づいて、第1のドライブ可能サーフェスの複数の第1のセグメントを決定するステップと、複数の第1のセグメントのうちの第1のセグメントについて、1つ以上のトラフィック特徴に少なくとも部分的に基づいて、複数の第1のセグメントパラメータを決定するステップと、自律車両によってナビゲート可能な第2の地理的領域に関連付けられた第2のマップデータを受信するステップであって、第2のマップデータは、第2の地理的領域内の第2のドライブ可能サーフェスの複数の第2のセグメントについての情報を含む、ステップと、複数の第1のセグメントパラメータと第2のマップデータとに少なくとも部分的に基づいて、第1のセグメントと、複数の第2のセグメントのうちの1つ以上との間の類似度を示す類似度メトリックを決定するステップと、類似度メトリックに少なくとも部分的に基づいて、自律車両が、第1のセグメントをナビゲートできると決定するステップと、を含む。
【0096】
B:例Aのコンピュータ実行方法であって、類似度メトリックは、第1のセグメントに関連付けられた1つ以上のトラフィック特徴と、第2のセグメントに関連付けられた1つ以上の第2のトラフィック特徴とに少なくとも部分的に基づき、方法は、類似度メトリックに少なくとも部分的に基づいて、第2のセグメントを横切るように自律車両を制御するステップをさらに含む。
【0097】
C:例A又は例Bのコンピュータ実行方法であって、複数の第2のセグメントは、複数の代表セグメントを含み、類似度メトリックを決定するステップは、1つ以上のトラフィック特徴を、第2のセグメントに関連付けられた1つ以上の第2のトラフィック特徴と比較するステップを含み、方法は、第2のセグメントをドライブする自律車両に関連付けられたドライビングデータを受信するステップと、ドライビングデータに少なくとも部分的に基づいて、第1のセグメントを横切るように自律車両を制御するステップと、をさらに含む。
【0098】
D:例A~例Cのいずれか1つのコンピュータ実行方法であって、第1のセグメントは、複数のレーンを含む道路セグメントを含み、類似度メトリックを決定するステップは、複数のレーンのサブセットと、第2のマップデータ内のレーンの組み合わせとを比較することに少なくとも部分的に基づき、自律車両が第1のセグメントをナビゲートできると決定するステップは、自律車両が、複数のレーンのサブセットを含む第1のセグメントの一部をナビゲートできると決定するステップを含む。
【0099】
E:例示的システムは、1つ以上のプロセッサと、1つ以上のプロセッサによって実行可能な命令を記憶する1つ以上の非一時的なコンピュータ可読媒体と、を含み、命令は、1つ以上のプロセッサが、第1の地理的領域内の第1のドライブ可能サーフェスについての情報を含む第1のマップデータを受信するステップと、第1のドライブ可能サーフェスの複数の第1のセグメントを決定するステップであって、複数の第1のセグメントのうちの第1のセグメントは、1つ以上の第1のパラメータに関連付けられている、ステップと、第2の地理的領域に関連付けられた第2のマップデータを受信するステップであって、第2のマップデータは、自律車両によってナビゲート可能な第2のドライブ可能サーフェスの複数の第2のセグメントについての情報を含み、複数の第2のセグメントのうちの第2のセグメントは、1つ以上の第2のパラメータに関連付けられている、ステップと、1つ以上の第1のパラメータと、1つ以上の第2のパラメータとに少なくとも部分的に基づいて、第1のセグメントと第2のセグメントとの間の類似度を示す類似度メトリックを決定するステップと、類似度メトリックに少なくとも部分的に基づいて、自律車両によってナビゲート可能な第1のドライブ可能サーフェスの領域を決定するステップと、領域をドライブするように自律車両を制御するステップと、を含む動作を実行するようにプログラムする。
【0100】
F:例Eのシステムであって、1つ以上の第1のパラメータは、トラフィックレーンの数、トラフィックレーンタイプ、幅、長さ、勾配、曲率、又は第1のセグメントに関連付けられたトラフィック制御情報のうちの少なくとも1つを含む。
【0101】
G:例E又は例Fのシステムであって、動作は、閾値類似度より小さい類似度メトリックに少なくとも部分的に基づいて、自律車両が回避する領域に関連付けられた第1のドライブ可能サーフェスの第2の領域を決定するステップと、領域と第2の領域とを含む第1のドライブ可能サーフェスの更新済みマップデータを生成するステップと、をさらに含む。
【0102】
H:例E~例Gのいずれか1つのシステムであって、複数の第2のセグメントは、第2のマップデータの代表セグメントを示す第2のマップデータの全セグメントのサブセットを含み、類似度を決定するステップは、1つ以上の第1のセグメントパラメータの値を、第2のパラメータのうちの1つ以上と比較することに少なくとも部分的に基づく。
【0103】
I:例E~例Hのいずれか1つのシステムであって、動作は、第1のセグメントと、複数の第2のセグメントのいずれかとの間の最大類似度メトリックが、閾値類似度より小さいと決定するステップと、閾値類似度より小さい最大類似度メトリックに少なくとも部分的に基づいて、複数の第2のセグメントを更新すること又は新たな代表セグメントを生成することの少なくとも1つを行うステップと、をさらに含む。
【0104】
J:例E~例Iのいずれか1つのシステムであって、動作は、類似度メトリックに少なくとも部分的に基づいて、第2の車両を制御するための1つ以上の制限を決定するステップであって、1つ以上の制限は、最大制限速度を含む、ステップをさらに含む。
【0105】
K:例E~例Jのいずれか1つのシステムであって、第1のドライブ可能サーフェスの複数の第1のセグメントを決定するステップは、1つ以上の第1のパラメータに少なくとも部分的に基づいて、第1のドライブ可能サーフェスの部分をクラスタリングするステップであって、1つ以上の第1のパラメータは、制限速度、レーンの少なくとも一部の幅、レーンの数、ドライブ不可領域、傾斜、曲率、又は、道路セグメント内の走行レーン又は隣接レーンでの許容されるタイプの走行のうちの少なくとも1つを含む、ステップを含む。
【0106】
L:例E~例Kのいずれか1つのシステムであって、第1のセグメントは、交差点を含み、1つ以上の第1のパラメータは、交差点に接続する道路セグメントの数、交差点に接続する道路セグメント間の角度、交差点での道路セグメントの終端におけるトラフィック制御情報、又は交差点でのエージェント横断についての情報のうちの少なくとも1つを含む。
【0107】
M:例E~例Lのいずれか1つのシステムであって、複数のドライブ可能サーフェスセグメントの1つは、複数のレーンを有する道路セグメントを含み、個々のセグメントの第1のセグメントは、複数のレーンのサブセットを含み、第1のドライブ可能サーフェスの領域を決定するステップは、自律車両が複数のレーンのサブセットをナビゲートでき、かつ自律車両がサブセット以外の、複数のレーンのレーンをナビゲートできないと決定するステップを含む。
【0108】
N:例E~例Mのいずれか1つのシステムであって、動作は、第2のセグメントに関連付けられたドライビングデータを受信するステップと、類似度スコアとドライビングデータとに少なくとも部分的に基づいて、ドライビングポリシーを第1のセグメントに関連付けるステップと、をさらに含む。
【0109】
O:例E~例Nのいずれか1つのシステムであって、ドライビングポリシーは、最大制限速度を含む。
【0110】
P:実行されたとき、1つ以上のプロセッサに、第1の地理的領域内の第1のドライブ可能サーフェスについての第1の情報を含む第1のマップデータを受信するステップと、第1の情報に少なくとも部分的に基づいて、第1のドライブ可能サーフェスの複数の第1のセグメントを決定するステップと、第2の地理的領域に関連付けられた第2のマップデータを受信するステップであって、第2のマップデータは、自律車両によってナビゲート可能な、第2の地理的領域内の第2のドライブ可能サーフェスの複数の第2のセグメントについての第2の情報を含む、ステップと、複数の第1のセグメントのうちの第1のセグメントについて、第1のセグメントの1つ以上の第1のセグメントパラメータを決定するステップと、第2のマップデータと、1つ以上の第1のセグメントパラメータとを利用して、第1のセグメントと、複数の第2のセグメントのうちの第2のセグメントとの間の類似度を示す類似度メトリックを決定するステップと、類似度メトリックに基づいて、第1のセグメントに関連して、自律車両のためのドライビングポリシーを決定するステップとを含む動作を実行させる命令を記憶する1つ以上の例示的な非一時的なコンピュータ可読媒体。
【0111】
Q:例Pの非一時的なコンピュータ可読媒体であって、複数の第1のセグメントを決定するステップは、第1のドライブ可能サーフェスの部分をクラスタリングすることに少なくとも部分的に基づき、複数の第2のセグメントを決定するステップは、第2の情報に少なくとも部分的に基づいて第2のドライブ可能サーフェスの部分をクラスタリングすることに少なくとも部分的に基づき、類似度メトリックを決定するステップは、第1のセグメントに関連付けられた第1の情報の第1の部分と、第2のセグメントに関連付けられた第2の情報の第2の部分とを比較するステップを含む。
【0112】
R:例P又は例Qの非一時的なコンピュータ可読媒体であって、ドライビングポリシーは、ドライビングを控えること、最大制限速度下でドライブすること、又は1つ以上の動作を控えることを含む。
【0113】
S:例P~例Rのいずれか1つの非一時的なコンピュータ可読媒体であって、複数の第2のセグメントは、1つ以上の代表セグメントを含み、1つ以上の代表セグメントのうちの代表セグメントは、1つ以上のパラメータ及び値に関連付けられ、類似度メトリックを決定するステップは、第1のパラメータの値を、第2のセグメントに関連付けられた1つ以上の第2のパラメータについての値と比較することに少なくとも部分的に基づく。
【0114】
T:例P~例Sのいずれか1つの非一時的なコンピュータ可読媒体であって、動作は、第1のセグメントをナビゲートする車両に関連付けられたドライビングデータを受信するステップをさらに含み、ドライビングポリシーは、さらに、ドライビングデータに少なくとも部分的に基づく。
【0115】
結論
本明細書で説明された技術の1つ以上の例が示されたが、様々な代替、追加、置換、及びそれらの等価物は、本明細書で説明された技術の範囲に含まれる。
【0116】
例の説明において、本明細書の一部を形成する添付図が参照され、それはクレームされた構成要素の具体的な例を説明目的で示すものである。他の例が利用されることができ、構造変形など、その変形又は代替がされうると理解されるべきである。そのような例、変形又は代替は、必ずしも意図するクレームされた構成要素に関連する範囲から逸脱するものではない。本明細書のステップは、ある順序で表されることができるが、いくつかのケースにおいて、その順序は、説明されたシステム及び方法の機能を変えることなく、ある入力が異なる時点又は異なる順序で提供されるように変更されることができる。開示された手順は、また、異なる順序で実行されうる。加えて、本明細書で説明された様々な演算処理は、開示された順序で実行される必要はなく、演算処理の代替的な順序を利用する他の例が容易に実装されうる。再順序化に加え、いくつかの例において、演算処理は、また、同じ結果を伴うサブ演算処理に分離されうる。
図1
図2
図3
図4
図5
図6