IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ デピュイ・アイルランド・アンリミテッド・カンパニーの特許一覧

特許7604469骨内殖のための三次元多孔質構造体及び製造方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-13
(45)【発行日】2024-12-23
(54)【発明の名称】骨内殖のための三次元多孔質構造体及び製造方法
(51)【国際特許分類】
   A61F 2/28 20060101AFI20241216BHJP
   A61F 2/38 20060101ALN20241216BHJP
【FI】
A61F2/28
A61F2/38
【請求項の数】 10
(21)【出願番号】P 2022518972
(86)(22)【出願日】2020-09-22
(65)【公表番号】
(43)【公表日】2022-11-25
(86)【国際出願番号】 IB2020058848
(87)【国際公開番号】W WO2021059131
(87)【国際公開日】2021-04-01
【審査請求日】2023-09-06
(31)【優先権主張番号】62/906,004
(32)【優先日】2019-09-25
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】516312682
【氏名又は名称】デピュイ・アイルランド・アンリミテッド・カンパニー
【氏名又は名称原語表記】DEPUY IRELAND UNLIMITED COMPANY
【住所又は居所原語表記】Loughbeg Industrial Estate, Ringaskiddy, County Cork, Ireland
(74)【代理人】
【識別番号】100088605
【弁理士】
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【弁理士】
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】トン・ウェイドン
【審査官】丸山 裕樹
(56)【参考文献】
【文献】米国特許出願公開第2017/0095337(US,A1)
【文献】特表2019-517372(JP,A)
【文献】登録実用新案第3184817(JP,U)
【文献】米国特許出願公開第2017/0258606(US,A1)
【文献】米国特許出願公開第2019/0151113(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61F 2/28
A61F 2/38
(57)【特許請求の範囲】
【請求項1】
植え込み可能な装置であって、
患者の体内に植え込まれるように成形された多孔質三次元構造体であって、複数の相互連結された有機単位セルを含み、各有機単位セルは、
複数の外側支柱であって、3つの外側支柱のそれぞれの群が、それぞれの複数の外側ノードを画定するように交差している、複数の外側支柱と、
複数の内側支柱であって、各内側支柱は、前記外側ノードのうちの異なるそれぞれの外側ノードから延在し、前記内側支柱は、内側ノードを画定するように交差している、複数の内側支柱と、を含む、多孔質三次元構造体、を含み、
前記複数の外側ノードが、3つの外側支柱の第1の群の交点によって画定された第1の外側ノードと、3つの外側支柱の第2の群の交点によって画定された第2の外側ノードとを含み、
前記外側支柱に沿った前記第1の外側ノードから前記第2の外側ノードまでの最短経路が、前記複数の外側ノードのうちの3つの中間外側ノードのみを含み、
直線仮想線が、前記第1の外側ノード及び前記第2の外側ノードを通って延びており、前記内側ノードが、前記直線仮想線からオフセットされている、植え込み可能な装置。
【請求項2】
前記外側支柱のそれぞれが、その長さの全体に沿って一定の厚さを有する、請求項1に記載の植え込み可能な装置。
【請求項3】
前記内側支柱のそれぞれが、その長さの全体に沿って一定の厚さを有する、請求項1に記載の植え込み可能な装置。
【請求項4】
前記外側支柱のうちの少なくとも1つが、その長さに沿って湾曲している、請求項1に記載の植え込み可能な装置。
【請求項5】
前記内側支柱のうちの少なくとも1つが、その長さに沿って湾曲している、請求項1に記載の植え込み可能な装置。
【請求項6】
前記外側支柱の全てが、前記外側ノードのそれぞれの対から、また、前記外側ノードのそれぞれの対へと、それぞれの長さに沿って延在し、前記外側支柱の少なくともいくつかの前記長さは互いに異なっている、請求項1に記載の植え込み可能な装置。
【請求項7】
前記内側支柱及び前記外側支柱の全てが、それらのそれぞれの長さの全体に沿って実質的に真っ直ぐである、請求項1に記載の植え込み可能な装置。
【請求項8】
約50%~約75%の多孔度を有する、請求項1に記載の植え込み可能な装置。
【請求項9】
前記有機単位セルによってそれぞれ画定されたいくつかの細孔を含み、前記細孔の14.3パーセント未満が、0.1mm未満の細孔サイズを有する、請求項1に記載の植え込み可能な装置。
【請求項10】
前記細孔の50パーセントが、約0.2mm~約0.7mmの範囲の細孔サイズを有し、
前記外側支柱が協働していくつかの外側開口部を画定し、前記内側支柱がいくつかの前記外側支柱と協働していくつかの内側開口部を形成し、前記多孔質三次元構造体が、対応する前記外側開口部及び前記内側開口部内に位置付けられた円の直径として定義される窓サイズを画定し、これにより、前記外側開口部及び前記内側開口部をそれぞれ画定する前記外側支柱および前記内側支柱はそれぞれ、前記円の接線上に位置付けられるようになっており、前記細孔は、1.00~2.90の範囲内である、それらのそれぞれの細孔サイズの、その窓サイズのいずれかに対する比を規定する、請求項9に記載の植え込み可能な装置。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
これは、2019年9月25日に出願された米国特許出願第62/906,004号の優先権を主張するものであり、その開示は、その全体が本明細書に記載されているかのように、参照により本明細書に組み込まれる。
【0002】
(発明の分野)
本明細書に開示される実施形態は、概して、多孔質金属構造体及びそれらを製造するための方法を対象とし、より具体的には、多孔質金属構造体における多孔度及び細孔サイズの正確な制御を可能にするのに適した幾何学的格子構成を有する医療デバイス内の多孔質金属構造体を対象とする。
【背景技術】
【0003】
本明細書に開示される実施形態は、概して、骨内殖のための三次元多孔質構造体及び当該構造体を製造するための方法を対象とする。
【0004】
ラピッドプロトタイピング及び積層造形の分野では、長年にわたって、特にプロトタイプ部品及び金型ダイなどの物品のラピッドプロトタイピングのために多くの進歩が見られている。これらの進歩は、材料(例えば、金属)が材料のブロックとして開始され、その結果、最終製品まで機械加工されるものなどの従来の機械加工プロセスと比較して、最終製品の精度を向上させながら、製造コストと時間を削減してきた。
【0005】
しかしながら、ラピッドプロトタイピング三次元構造体の主な焦点は、ラピッドプロトタイピング構造体の密度を高めることにあった。最新のラピッドプロトタイピング/積層造形技術の例としては、シートラミネーション、接着結合、レーザ焼結(又は選択的レーザ焼結)、レーザ溶融(又は選択的レーザ焼結)、光重合、液滴堆積、ステレオリソグラフィ、3D印刷、溶融堆積モデリング、及び3Dプロットが挙げられる。特に、選択的レーザ焼結、選択的レーザ溶融、及び3D印刷の分野では、高密度部品の製造における改善により、それらの技術は、高密度金属部品などの物品を設計及び正確に製造するのに有用になってきている。
【0006】
過去数年では、積層造形分野の一部では、哺乳類細胞の成長及び再生を促進する用途に必要な多孔質構造体における機械的強度、相互接続チャネル設計、多孔度及び孔径を提供するソリューションを生み出す試みがなされてきた。しかしながら、現在の方法及び幾何学的形状は、骨などの哺乳類細胞の内殖挙動に強い影響を及ぼす細孔サイズ分布の制御に限界がある。更に、現在の方法及び幾何学的形状は、多くの場合、製造プロセス(例えば、3D印刷)中の構造的完全性を維持しながら、内殖に有益であると考えられる範囲で、細孔サイズ及び多孔度を同時に有する単位セル形状を有する多孔質構造体を製造することにおいて不足がある。その結果、現在の単位セル幾何学的構造体は、非常に大きな細孔サイズ又は非常に低い多孔度のいずれかを有しなければならなくなっている。更に、現在の方法及び幾何学的形状は、概して、構造体の幾何学的形状内で選択された支柱長さ及び単位セルの直径と、結果として得られる、多孔質構造体に所望される幾何学的特徴との間の密接な相関関係を妨げている。
【0007】
骨内殖のための多孔質金属材料を製造する現在の方法は、骨内殖挙動に強い影響を及ぼす細孔サイズ分布を限定的に制御している。最大細孔サイズ、最小細孔サイズ、及び多孔度を同時により良く制御することができれば、より良好な骨内殖が可能になるであろう。積層造形技術は、概念的には幾何学的形状を完全に制御した格子構造体の製造を可能にするが、実際には、機械が構築できる最小の支柱外径に制限されており、また任意の格子構造体が自己支持する必要性によって制限されている。現在の3Dプリンタの最小支柱直径は約200~250ミクロンであり、これは、多くの幾何学的構造体が非常に大きな細孔サイズ又は非常に低い多孔度のいずれかを有しなければならないことを意味する。
【発明の概要】
【課題を解決するための手段】
【0008】
本開示の一態様によれば、植え込み可能な装置は、患者の体内に植え込まれるように成形された多孔質三次元構造体を含む。多孔質三次元構造体は、複数の相互連結された有機単位セルを含む。各有機単位セルは、複数の外側支柱と複数の内側支柱とを含む。3つの外側支柱のそれぞれの群は、それぞれの複数の外側ノードを画定するように交差している。各内側支柱は、外側ノードのうちの異なるそれぞれの外側ノードから延在し、内側支柱は、内側ノードを画定するように交差している。複数の外側ノードは、3つの外側支柱の第1の群の交点によって画定された第1の外側ノードと、3つの外側支柱の第2の群の交点によって画定された第2の外側ノードとを含む。支柱に沿った第1の外側ノードから第2の外側ノードまでの最短経路は、複数の外側ノードのうちの3つの中間外側ノードのみを含む。直線仮想線は、第1の外側ノード及び第2の外側ノードを通って延びており、内側ノードは、直線仮想線からオフセットされている。
【0009】
一実施例では、外側支柱のそれぞれは、その長さの全体に沿って一定の厚さを有する。
【0010】
別の実施例では、内側支柱のそれぞれは、その長さの全体に沿って一定の厚さを有する。
【0011】
別の実施例では、外側支柱のうちの少なくとも1つは、その長さに沿って湾曲している。
【0012】
別の実施例では、内側支柱のうちの少なくとも1つは、その長さに沿って湾曲している。
【0013】
別の実施例では、外側支柱の全ては、外側ノードのそれぞれの対から、また、外側ノードのそれぞれの対へと、にそれぞれの長さに沿って延在し、外側支柱の少なくともいくつかの長さは互いに異なっている。
【0014】
別の実施例では、外側支柱のうちの少なくとも1つは、湾曲している。
【0015】
別の実施例では、外側支柱の全ては、それらのそれぞれの長さの全体に沿って実質的に真っ直ぐである。
【0016】
別の実施例では、複数の外側支柱は、最も長い外側支柱と最も短い外側支柱とを含み、最も短い外側支柱の長さは、最も長い外側支柱の長さの約60%以上である。
【0017】
別の実施例では、複数の外側支柱は、最も長い外側支柱と最も短い外側支柱とを含み、最も短い外側支柱の長さは、最も長い外側支柱の長さの約1/3以上である。
【0018】
別の実施例では、内側支柱のうちの少なくとも1つは、湾曲している。
【0019】
別の実施例では、内側支柱の全ては、それらのそれぞれの長さの全体に沿って実質的に真っ直ぐである。
【0020】
別の実施例では、植え込み可能な装置は、約50%~約75%の多孔度を有する。
【0021】
別の実施例では、植え込み可能な装置は、単位セルによってそれぞれ画定されたいくつかの細孔を含み、細孔の14.3パーセント未満が、0.1mm未満の細孔サイズを有する。
【0022】
細孔の50パーセントは、約0.2mm~約0.7mmの範囲の細孔サイズを有する。
【0023】
別の実施例では、外側支柱は協働していくつかの外側開口部を画定し、内側支柱はいくつかの外側支柱と協働していくつかの内側開口部を形成し、多孔質三次元構造体は、対応する外側開口部及び内側開口部内に位置付けられた円の直径として定義される窓サイズを画定し、これにより、外側開口部及び内側開口部をそれぞれ画定する支柱はそれぞれ、円の接線上に位置付けられるようになっており、植え込み可能な装置は、単位セルによってそれぞれ画定されたいくつかの細孔を含み、細孔は、1.00~2.90の範囲内である、それらのそれぞれの細孔サイズの、その窓サイズのいずれかに対する比を規定する。
【0024】
別の実施例では、内側ノードは、外側ノードに対して内部にある多孔質三次元構造体の唯一の内側ノードである。
【0025】
別の実施例では、内側支柱の全てが内側ノードで交差している。
【0026】
別の実施例では、植え込み可能な装置は、対応する幾何学的菱形三角面偏方多面体よりも大きい延性を有する有機菱形三角面偏方多面体を含む。
【0027】
別の実施例では、各有機単位セルは、第1の半分と、有機単位セル構造体を二分する平面によって第1の半分から分離された第2の半分とを画定し、平面の全ての向きに関して、1)有機単位セル構造体の第1の半分の外側ノードの少なくともいくつかが、対応する幾何学的単位セル構造体の対応する外側ノードに対して第1の向きに再配置されており、2)有機単位セル構造体の第2の半分の外側ノードの少なくともいくつかが、対応する幾何学的単位セル構造体の対応する外側ノードに対して、第1の方向とは異なる第2の方向に再配置されている。
【0028】
別の実施例では、整形外科用インプラントは、多孔質三次元構造体と中実基部とを備え、多孔質三次元構造体は中実基部に取り付けられている。
【0029】
本開示の別の態様によれば、植え込み可能な装置は、患者の体内に植え込まれるように成形されている多孔質三次元構造体を含む。複数の相互連結された有機単位セル構造体を含む多孔質三次元構造体。各有機単位セル構造体は、複数の外側支柱を含む。複数の外側支柱のうちの少なくとも3つの外側支柱は、それぞれの複数の外側ノードを画定するように交差している。外側支柱及びノードは、幾何学的菱形十二面体の50%以内の幾何学的構造体を実質的に画定するように組み合わされる。外側支柱は、それらのそれぞれの長さの全体に沿って一定の厚さを有する。外側ノードは、第1の外側ノードと、第1の対の対向するノードを画定するように第1の外側ノードに対向する第2の外側ノードとを含む。外側ノードは、第3の外側ノードと、第2の対の対向するノードを画定するように第3の外側ノードに対向する第4の外側ノードとを更に含む。外側ノードは、第5の外側ノードと、第3の対の対向するノードを画定するように第5の外側ノードに対向する第6の外側ノードとを更に含む。全ての対向する外側ノードは、外側支柱に沿った最短経路に沿った複数の外側ノードのうちの3つの中間の外側ノードによって互いに分離されている。第1の直線仮想線は、第1の外側ノード及び第2の外側ノードを通って延びており、第2の直線仮想線は、第3の外側ノードから第4の外側ノードまで延びており、第3の直線仮想線は、第5の外側ノードから第6の外側ノードまで延びている。第1の直線仮想線と第2の直線仮想線とは、多孔質三次元構造体の選択視野に対して第1の交点で互いに交差し、第3の直線仮想線は、多孔質三次元構造体の選択視野に対して第1の交点からオフセットされたそれぞれの第2の交点で第1の直線仮想線と交差する。
【0030】
一実施例では、有機単位セル構造体のそれぞれは、第1の半分と、有機単位セル構造体を二分する平面によって第1の半分から分離された第2の半分とを画定する。平面の全ての向きに関して、1)有機単位セル構造体の第1の半分の外側ノードの少なくともいくつかは、対応する幾何学的単位セル構造体の対応する外側ノードに対して第1の向きに再配置されており、2)有機単位セル構造体の第2の半分の外側ノードの少なくともいくつかは、対応する幾何学的単位セル構造体の対応する外側ノードに対して、第1の方向とは異なる第2の方向に再配置されている。
【0031】
別の実施例では、外側支柱は、第1の幾何学的構造体を画定し、多孔質三次元構造体は、複数の内側支柱を更に含み、当該複数の内側支柱は、外側支柱と組み合わさって、第1の幾何学的形状の内部に複数の第2の幾何学的構造体を画定する。
【0032】
別の実施例では、複数の内側支柱は、内側ノードを画定するように互いに交差する4つの内側支柱からなる。
【0033】
別の実施例では、複数の内側支柱は、8つの内側支柱からなり、複数の内側支柱の全ては、内側支柱のうちの少なくとも1つの他の内側支柱と交差する。
【0034】
別の実施例では、植え込み可能な装置は、対応する幾何学的菱形十二面体よりも大きい延性を有する有機菱形十二面体を含む。
【0035】
本開示の更に別の態様によれば、植え込み可能な装置は、患者の体内に植え込まれるように成形された多孔質三次元構造体を含む。多孔質三次元構造体は、複数の相互連結された単位セルを含む。各単位セルは、複数の支柱を含む。複数の支柱のうちの少なくとも3つの支柱は、それぞれの複数のノードを画定するように交差しており、複数の支柱の支柱のうちの少なくとも1つは、複数のノードのうちの第1のノードと複数のノードのうちの第2のノードとの間のその長さに沿って湾曲している。
【0036】
一実施例では、支柱は、第1のノード及び第2のノードを画定するように互いに交差する3つの支柱の群を画定する。
【0037】
別の態様によると、多孔質三次元構造体は、患者の体内に植え込まれるように成形されている。多孔質三次元構造体は、複数の相互連結された単位セルを含む。各単位セルは、複数の支柱を含む。複数の支柱のうちの少なくとも3つの支柱は、それぞれの複数のノードを画定するように交差しており、複数の支柱の支柱のうちの少なくとも1つは、複数のノードのうちの第1のノードと複数のノードのうちの第2のノードとの間のその長さに沿って湾曲している。
【0038】
別の実施例では、整形外科用インプラントは、多孔質三次元構造体と中実基部とを備え、多孔質三次元構造体は中実基部に取り付けられている。
【図面の簡単な説明】
【0039】
本明細書に開示された原理及びその利点をより完全に理解するために、ここで添付の図面と併せて以下の説明を参照する。
図1】整形外科用補綴部品の簡略立面図である。
図2図1の整形外科用補綴部品の簡略斜視図である。
図3図1及び図2の整形外科用補綴部品の多孔質構造体の単位セルの斜視図である。
図4図3の単位セルの1つの幾何学的構造体の斜視図である。
図5図3の単位セルの別の幾何学的構造体の簡略斜視図である。
図6図1及び図2の整形外科用補綴部品の多孔質構造体の単位セルの別の実施形態の斜視図である。
図7図3の単位セルの別の幾何学的構造体の簡略斜視図である。
図8】様々な実施形態による、様々な単位セルの幾何学的形状についての、多孔度(パーセント)対支柱長さ/直径のチャートである。
図9】様々な実施形態による、様々な単位セルの幾何学的形状についての、細孔サイズ及び最小細孔窓開口部サイズ対多孔度(パーセント)のチャートである。
図10】様々な実施形態による、単位セル構造体に対する窓サイズの関連付けを示す図である。
図11】様々な実施形態による、多孔質三次元構造体を製造するためのワークフローを示す図である。
図12A図4の単位セルの幾何学的構造体の別の斜視図である。
図12B図12Aに示される幾何学的構造に対して25%変更された有機構造体の斜視図である。
図12C図12Aに示される幾何学的構造体に対して50%変更されたれた有機構造体の斜視図である。
図13A図3の単位セルの幾何学的構造体の別の斜視図である。
図13B】直線状の外側支柱及び湾曲した外側支柱を示す、図13Aに示される幾何学的構造体に対して25%変更された有機構造体の斜視図である。
図13C】全てが真っ直ぐである外側支柱を示す、図13Bの有機構造体の斜視図である。
図13D】直線状の外側支柱及び湾曲した外側支柱を示す、図13Aに示される幾何学的構造体に対して50%変更された有機構造体の斜視図である。
図13E】全てが真っ直ぐである外側支柱を示す、図13Dの有機構造体の斜視図である。
図14図13Cに示される単位セル幾何学的形状を有しかつ約55%の多孔度を有する多孔質三次元構造体に関する、細孔のパーセンテージを細孔径の関数としてプロットしたチャートである。
図15図13Cに示される単位セル幾何学的形状を有しかつ約65%の多孔度を有する多孔質三次元構造体に関する、細孔のパーセンテージを細孔径の関数としてプロットしたチャートである。
【発明を実施するための形態】
【0040】
本明細書は、本開示の例示的な実施形態及び用途を説明する。しかしながら、本開示は、これらの例示的な実施形態及び用途に限定されるものではなく、例示的な実施形態及び用途が動作する様式、又は本明細書に記載される様式に限定されない。更に、図は、簡略されるか又は部分図を示してもよく、図中の要素の寸法は誇張されていてもよく、又はそうでなくても正確な比率ではない場合がある。更に、用語「の上にある(on)」、「に取り付けられている(attached to)」、「と接続されている(connected to)」、「に連結されている(coupled to)」又は類似の語句が本明細書で使用されるとき、1つの要素(例えば材料、層、基部など)は、1つの要素が直接、他の要素の上に、それに取り付けられているか、それと接続されているか、若しくはそれに連結されているか否かにかかわらず、又は1つ若しくは2つ以上の介在要素が一方の要素と他方の要素との間にあるか否かにかかわらず、又は2つの要素が単一の部品に統合されているかにかかわらず、別の要素「の上にある」か、それに「取り付けられている」か、それに「接続されている」か、又はそれに「連結されている」ことができる。また、文脈が別段に指示しない限り、提供される場合、方向(例えば、上(above)、下(below)、上端(top)、下端(bottom)、横へ(side)、上方へ(up)、下方へ(down)、下へ(under)、上へ(over)、上方へ(upper)、下方へ(lower)、水平の(horizontal)、垂直の(vertical)、「x」、「y」、「z」など)もまた相対的なものであって、説明及び検討を容易にするため例を用いて単に提供されるものであり、限定する目的はない。更に、要素の一覧(例えば、要素a、b、c)を参照する場合、このような参照は、列挙された要素のいずれか1つそれ自体、列挙された要素の全部より少ないものの任意の組み合わせ、及び/又は、列挙された要素全部の組み合わせを含むことを意図する。本明細書における章の分割は、単に確認を容易にするためのものであり、説明される要素の任意の組み合わせを限定するものではない。
【0041】
本明細書で使用するとき、「に結合されている(bonded to)」又は「結合する(bonding)」は、金属結合、静電引力、及び/又は接着力を含むがこれらに限定されない様々な物理化学的機構による金属の金属への取り付けを意味する。
【0042】
別途定義されない限り、本明細書に記載される教示に関連して用いられる科学用語及び技術用語は、当業者により一般的に理解される意味を有するものとする。
【0043】
本開示は、多孔質三次元金属構造体及びそれらを医療用途のために製造するための方法に関する。以下により詳細に記載するように、多孔質金属構造体は、患者の体内に植え込まれた補綴部品と患者の周囲の硬組織又は軟組織との間の硬組織又は軟組織の相互係止を促進する。例えば、患者の体内に植え込まれるように構成された整形外科用補綴部品に含まれる場合、多孔質三次元金属構造体を使用して整形外科用補綴部品の多孔質外側層を提供し、骨内殖構造体を形成することができる。あるいは、多孔質三次元金属構造体は、インプラントの意図された機能を実現すること、及び周囲組織との組織相互係止(例えば、骨内殖)のための相互接続された多孔度を提供することの両方のために、必要な構造的完全性を有するインプラントとして使用することができる。様々な実施形態では、多孔質三次元金属構造体を形成するために使用することができる金属の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブを挙げることができるが、これらに限定されない。
【0044】
ここで図1及び図2を参照すると、整形外科用インプラント又は補綴部品100などの植え込み可能な装置が示されている。補綴部品100は、基部110と、多孔質三次元構造体又は層120と、基部110から離れる方向に延びる錐体又はステム130と、を含む。例示的な実施形態では、多孔質構造体120は、基部110の一部分及びステム130の一部分を取り囲む。多孔質構造体120は、基部110及び/又はステム130とは別個の層として提供され得ることを理解されたい。多孔質構造体120はまた、基部110及び/又はステム130の全てを取り囲むコーティングとして提供されてもよい。以下により詳細に記載するように、多孔質構造体は、骨の内殖を可能にする空隙又は空間を画定する複数の単位セルを含み、それによって補綴部品100の患者の骨への固定を促進する。
【0045】
整形外科用インプラント100は、脛骨に植え込まれてもよい。例えば、ステム130は、脛骨の近位部分に当接して戴置されているインプラント100のレッジ部分140を脛骨に挿入することができる。本明細書に記載される様々な多孔質構造体は、例えば、参照により本明細書に明示的に組み込まれる、米国特許第8,470,047号に示される脛骨及び大腿骨部品と同様の脛骨補綴部品又は大腿骨補綴部品を含む、様々な整形外科用インプラント設計に組み込むことができることを理解されたい。多孔質構造体はまた、大腿骨補綴部品及び股関節又は肩関節形成術で使用するための補綴部品と係合するように成形された膝蓋骨部品を含む、他の整形外科用インプラント設計にも含まれてもよい。
【0046】
前述及び後述では、基部110は、例えば、本明細書の様々な実施形態の構成要素と接触し、それを支持し、それを接続し、又はそれを固定するか若しくはそれに固定し、又はそれを係留するか若しくはそれに係留することができる任意の種類の構造体であり得ることに留意されたい。基部110は、例えば、金属又は非金属トレイ、金属又は非金属基部板、トレイ上に据え付ける金属又は非金属構造体などを含むことができる。基部110を形成するために使用することができる金属の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブが挙げられるが、これらに限定されない。
【0047】
例示的な実施形態では、ステム130は、多孔質構造体120の多孔質領域160によってコーティングされた中実領域150を含む。ステム130の中実領域150は、基部110に係留され、多孔質構造体120から外向きに延び、その結果、多孔質構造体120は、基部110の近位のステム130の領域を取り囲む。他の実施形態において、ステム130は、多孔質構造体120に係留されてもよい。ステム130を形成するために使用することができる金属の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブが挙げられるが、これらに限定されない。
【0048】
ここで図4を参照すると、インプラント100の多孔質構造体120は、複数の接続された単位セルを含み、これら単位セルの少なくともいくつか、最大で全ては、例示的に、図4に示される幾何学的単位セル構造体200を有する。示される単位セル構造体を形成するために使用することができる金属の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブが挙げられるが、これらに限定されない。図4に示すように、各幾何学的単位構造体は、複数の外側支柱210を含む複数の支柱208を含む。外側支柱210は、格子構造体を画定するように組み合わされる。外側支柱210は協働して幾何学的外側構造体230を形成する。例示的な実施形態では、外部幾何学的形状は、幾何学的菱形十二面体215である。図12A図14Cに関して以下に説明するように、単位セルは、幾何学的構造体とは異なる有機構造体を含むことができる。いくつかの実施例では、有機構造体は、幾何学的構造体に対して変更される。
【0049】
本明細書で使用されるとき、サイズ、形状、寸法、方向、向きなどに関して使用される場合の「実質的」、「約」、「およそ」という用語、類似の意味の語、及びそれらの派生語は、記載されたサイズ、形状、寸法、方向、向き、並びにプラスマイナス2%などの典型的な製造公差に関連する範囲を含む。
【0050】
図4を参照すると、外側支柱210は、複数の外側頂点又は外側ノード212を画定するように更に互いに交差する。外側支柱210のうちの少なくとも3つのそれぞれの群は、それぞれの複数の外側ノード212を画定するように互いに交差する。例えば、外側ノード212のそれぞれは、一実施例では、外側支柱210の3つの交点によって画定される。したがって、外側支柱210のそれぞれは、外側ノード212のそれぞれの第1のノードから外側ノード212のそれぞれの第2のノードまでそれぞれの長さに沿って延在する。更に、複数の外側ノード212のそれぞれは、幾何学的菱形十二面体215のノード212を画定する複数の外側ノード212の残りの外側ノード212に対して、3次元空間内の(例えば、全て互いに垂直に方向付けられているx方向、y方向、及びz方向に沿った)位置を有する。外側支柱210が幾何学的菱形十二面体215を画定する場合、支柱210は、組み合わされて14個の外側ノード212を画定する。
【0051】
図3に示すように、支柱208は、複数の外側支柱210及び複数の内側支柱220を含む。したがって、図3に示す各幾何学的単位セル構造体200は、第1の幾何学的構造体230と、第1の幾何学的構造体230内にある複数の第2の幾何学的構造体240とを形成する、複数の外側支柱210及び複数の内側支柱220含む。例示的な実施形態では、第1の幾何学的構造体230は、複数の外側支柱210を含む。図4に関して上述したように、図3の複数の外側支柱210は協働して幾何学的菱形十二面体を形成する。したがって、第1の幾何学的構造体230は、幾何学的菱形十二面体を画定する。内側支柱220は、内側ノード232を画定するように互いに交差する。図示の実施形態では、全ての内側支柱220は、内側ノード232を画定するように互いに交差する。図示の実施形態では、内側支柱220は、単一の内側ノード232のみを画定し、他の内側ノードを画定しないように互いに交差する。インプラント100の多孔質構造体120の接続された単位セルの少なくともいくつか、最大で全ては、図3に示される単位セル構造体200を有することができる。したがって、単位セル構造体200は、外側ノード212に対して内部にあるただ1つの単一の内側ノード232のみを画定する。
【0052】
複数の第2の幾何学的構造体240の各々は、他の第2の幾何学的構造体240の内部容積250に実質的に等しい内部容積250を有する。図5に示すように、各第2の幾何学的構造体230は、いくつかの内側支柱220及びいくつかの外側支柱210によって形成される。各第2の幾何学的構造体230は、例示的には、幾何学的三角面偏方多面体である。図3に示すように、第1の幾何学的構造体230内の複数の第2の幾何学的構造体240は、単位セル構造体200が幾何学的菱形三角面偏方多面体(GRTT)であるように、4つの幾何学的三角面偏方多面体を含む。以下の説明から理解されるように、菱形三角面偏方多面体(rhombic trigonal trapezohedron、RTT)は、幾何学的RTT(GRTT)として構成され得、代替的に有機RTT(ORTT)として構成され得る。
【0053】
各単位セル構造体は、他の種類の第2の幾何学的構造体を含み得ることを理解されたい。例えば、図6に示すように、単位セル構造体300は、複数の外側支柱310及び複数の内側支柱320を含み、これらが第1の幾何学的構造体330と、第1の幾何学的構造体330内にある複数の第2の幾何学的構造体340とを形成する。例示的な実施形態では、第1の幾何学的構造体230のような第1の幾何学的構造体330は、複数の外側支柱310を含み、幾何学的菱形十二面体である。外側支柱310は、それらのそれぞれの長さの全体に沿って一定の厚さを画定することができる。更に、外側支柱310は、等しい厚さを有することができる。内側支柱320はまた、それらのそれぞれの長さの全体に沿って一定の厚さを画定することができる。更に、内側支柱320は、等しい厚さを有することができる。更に、内側支柱320と外側支柱310とは、等しい厚さを有することができる。あるいは、内側支柱320と外側支柱310とは、異なる厚さを有することができる。外側支柱310及び内側支柱320が円筒形である実施例では、それぞれの厚さは、それぞれ、外側支柱310及び内側支柱320の直径を画定する。
【0054】
図7に示すように、各第2の幾何学的構造体340は、いくつかの内側支柱320及びいくつかの外側支柱310によって形成される。各第2の幾何学的構造体340は、例示的に、幾何学的八面体(例えば、ダイヤモンド形状の構造体)である。図6に示すように、第1の幾何学的構造体330内の複数の第2の幾何学的構造体340は、単位セル構造体300が幾何学的菱形八面体(GRO)であるように6つの八面体を含む。
【0055】
上述の多孔質三次元構造体の単位セル構造体内では、各単位セル内の少なくとも1つの支柱の長さ及び直径のうちの少なくとも1つは、単位セル構造体の所定の又は所望の幾何学的特性を満たすように構成され得る。いくつかの実施例では、有機構造体の各単位セル内の少なくとも1つの支柱の長さ及び直径のうちの少なくとも1つは、幾何学的構造体の対応する少なくとも1つの支柱に対して変更され得る。これらの幾何学的特性は、多孔度、細孔サイズ、最小窓サイズ、及びこれらの組み合わせからなる群から選択することができる。単位セル構造体の特定の幾何学的構造体(以下に記載する)は、より堅牢かつ均質な幾何学形状を提供するために、これらの幾何学的特性のうちの1つ又は2つ以上を最適化することができることが有利に発見された。結果として得られる幾何学的形状は、必要な多孔質構造体の安定性を維持しながら、改良された骨内殖をもたらす。
【0056】
多孔度を参照すると、多孔質構造体120は、約50%~約75%の多孔度を有する。上述のように、「約」という用語は、典型的な製造公差に関連付けられた範囲を指す。そのようにして、「約50%」の多孔度は、例えば、2%などの典型的な製造公差を50%にプラス又はマイナスした多孔度であってもよい(すなわち、48%~52%の範囲)。他の実施形態では、多孔質三次元構造体の多孔度は、約20%~約95%である。他の実施形態では、多孔度は、約35%~約85%の範囲である。幾何学的に、単位セル構造体の多孔度は、支柱長さ(a)の支柱直径(d)に対する比に依存する。図8では、例えば、様々な実施形態による、様々な単位セルの幾何学的形状についての多孔度(パーセント)対支柱長さ/直径のチャート800が提供される。チャート800に概説されているように、3つの特定の単位セルの幾何学的形状/構造体、すなわち、幾何学的菱形十二面体(GRD)(例えば、図4参照)、4つの内側支柱を備えた幾何学的菱形十二面体(GRD+4)(又は幾何学的菱形三角面偏方多面体)(例えば、図3参照)、及び8つの内側支柱を備えた幾何学的菱形十二面体(GRD+8)(又は幾何学的菱形八面体)(例えば、図6参照)について検討された。構造体の各々について、各単位セル構造体についての設計ファイルからいくつかのa/d比で多孔度を取得し、各単位セル構造体についての関係を、データを次の形式の4次多項式に適合させることによってモデル化した:
【0057】
【数1】

式中、A、B、C、D、及びEは定数である。この比較では、構造体寸法は、各単位セル構造体の支柱長さ及び直径から幾何学的に導出された。
【0058】
図8のチャート800で観察されるように、RD構造体は、概して、所与のa/d比でより大きな多孔度を有し、これは、幾何学的RD+4構造体及び幾何学的RD+8構造体と比べて内側支柱がないことから予想通りである。幾何学的RD構造体の多孔度は、線802によって示される。しかしながら、線804、806によってそれぞれ示される幾何学的RD+4構造体及び幾何学的RD+8構造体におけるこの多孔度のこの減少は、以下により詳細に記載するように、幾何学的RD+4構造体及び幾何学的RD+8構造体で作られる設計が、幾何学的RDでは可能ではない、一定の支柱直径(プリンタのビルド解像度によって固定される)における比較的低い多孔度、より小さい細孔サイズ、及び比較的高い窓サイズの組み合わせに到達することを可能にする。
【0059】
ここで図9を参照すると、様々な実施形態による、様々な単位セルの幾何学的形状/構造体についての細孔サイズ及び最小窓サイズ対多孔度(パーセント)のチャート900が提供される。図8において見られるように、3つの特定の単位セル構造体、すなわち、菱形十二面体(GRD)(例えば、図4参照)、4つの内側支柱を備えた幾何学的菱形十二面体(GRD+4)(又は幾何学的菱形三角面偏方多面体)(例えば、図3参照)、及び8つの内側支柱を備えた幾何学的菱形十二面体(GRD+8)(又は幾何学的菱形八面体)(例えば、図6参照)について検討された。幾何学的菱形十二面体の細孔サイズは、例えば、幾何学的菱形十二面体の単位セル内で境界された容積内の球体の等価直径と見なされ、容積は、支柱長さ(a)の幾何学的菱形十二面体の容積をとり、幾何学的菱形十二面体内の又は幾何学的菱形十二面体によって境界された各支柱の容積を減算することによって計算した。細孔サイズ(PS)を計算するための本明細書で提供される式は、支柱長さ(a)、直径(d)、及び小数単位(p)での多孔度に依存する。式は以下のとおりである。
【0060】
SRD構造体の場合:
【0061】
【数2】

SRD+4構造体の場合:
【0062】
【数3】

SRD+8構造体の場合:
【0063】
【数4】
【0064】
チャート900の線902は、幾何学的菱形十二面体(SRD)についての細孔サイズと多孔度(パーセント)との関係を示す。線904は、幾何学的菱形三角面偏方多面体(SRD+4)についての細孔サイズと多孔度(パーセント)との関係を示し、線906は、幾何学的菱形八面体(SRD+8)についての細孔サイズと多孔度(パーセント)との関係を示す。
【0065】
図9のチャート900で観察されるように、より低い多孔度(パーセント)では、3つの構造体は、概して、同様の必要な細孔サイズを提供した。しかしながら、所与の多孔度(パーセント)が増加するにつれて(かつ支柱直径が実質的に同じままであると仮定すると)、多孔度(パーセント)に対応するためにSRD構造体において必要とされる細孔サイズは、他の構造体よりも著しく大きくなり、したがって、細孔サイズを骨内殖に有効であり得るサイズを超えるまで大きくすることによって必要な多孔度が増加するので、SRD構造体に課される要件はより厳しくなる。換言すれば、必要とされる多孔度(パーセント)が増加するにつれて、SRD構造体の効果が低くなり、本明細書で説明するものなどの多孔質三次元構造体を設計する際にはこのことに注目すべきである。
【0066】
ここで図10を参照すると、各単位セル構造体200は、複数の外側面1002を有し、外側支柱210は協働して、外側面1002内にいくつかの開口部1004を画定する。単位セル構造体200の内側支柱220は、いくつかの外側支柱210と協働して、いくつかの内部開口部1006を形成する。開口部1004、1006のそれぞれの最小窓開口部又はサイズは、対応する開口部(例示的には、図10の開口部1004のうちの1つ)内に位置付けられた円1010の直径1008として定義されてもよく、これにより、各支柱210(又は支柱220)は、円1010の接線上に位置付けられるようになっている。これにより、支柱の長さ及び直径は、開口部1004、1006の各々のサイズを決定し、ひいては、その中に適合することができる最大の球体の直径を決定する。例えば、所与の支柱長さについては、支柱直径が増加するにつれて、最小窓開口部は縮小するであろう。
【0067】
これらの関連性は、以下の式によって提供され、これを使用して全ての構造体(例えば、SRD、SRD+4、SRD+8など)の最小窓開口部を計算し、図9の線908、910、912を生成した。
【0068】
【数5】
【0069】
チャート900の目的で、最小窓開口部は、各開口部に適合することができる最大円1010の直径である。換言すれば、内接円の直径であり、したがって、支柱長さ(a)及び直径(d)に依存する。様々な単位セルの幾何学的形状についての窓サイズ対多孔度(パーセント)の関係。チャート900の線908は、幾何学的菱形十二面体(GRD)についての最小窓開口部対多孔度の関係を示している。線910は、幾何学的菱形三角面偏方多面体(GRD+4)についての最小窓開口部対多孔度の関係を示しており、線912は、幾何学的菱形八面体(GRD+8)についての最小窓開口部対多孔度の関係を示している。
【0070】
図9のチャート900で観察されるように、概して全ての多孔度(パーセント)で、各単位セル構造体間で最小窓開口部にほぼ均一な間隙が存在する。したがって、実質的に一定の支柱直径を有する所与の多孔質三次元構造体に必要な多孔度(パーセント)にかかわらず、所与の多孔度(パーセント)に対して、SRD+8構造体は、SRD+4及びSRD構造体よりも大きな最小窓開口部を有し、SRD+8構造体及びSRD+4構造体の両方が、SRD構造体よりも大きな最小窓開口部を有することになる。
【0071】
図9の結果は、内側支柱を有する構造体、すなわちSRD+4、及びより小さい範囲のSRD+8が、SRD構造体よりも有利であることを立証している。RD+4及びSRD+8は、所与の多孔度及び支柱直径においてより小さい細孔サイズを可能にする。SRD構造体がa/d比の関数としての多孔度において有していると思われるどのような利点も、必要とされるa/d比が増加するにつれてほぼ完全に減少する。最後に、SRD+4及びSRD+8構造体(又は内側支柱を有する構造体)は、細孔サイズと窓サイズとの差がSRD構造体よりも小さいことにより、最も均質な構造体を提供する。
【0072】
多孔質構造体120では、単位セルの細孔サイズの対応する窓サイズのいずれかに対する比は、1.50~1.60の範囲である。他の実施形態では、この比は、1.00~1.10の範囲であってもよい。更に他の実施形態では、この比は1.00~2.90の範囲であってもよい。図9に示すように、図3のSRTT構造体及び図6のSRO構造体では、細孔サイズと窓サイズとの差は、図4のSRD構造体よりも実質的に小さい。結果として、SRTT構造体は、有利には、細孔窓サイズと全体的な細孔サイズとの差がより小さい、より均質な構造体を提供し、特に高レベルの多孔度では、細孔サイズに密接に比例した窓サイズを提供することによって骨内殖を促進する。図9ではSRTTのみが参照されているが、結論は、内側支柱を含む様々な構造体、例えば、4の倍数の内側支柱を有する構造体にも当てはまるであろう。
【0073】
様々な実施形態によれば、整形外科用インプラントが提供される。インプラントは、例えば、図3図5の単位セル構造体によって示されるように、接続された単位セルの格子を含む多孔質三次元構造体を含み得る。少なくとも1つの単位セルは、複数の外側支柱を含み得る。少なくとも1つの単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体の複数の外側支柱のサブセットを共有し、かつ第1の幾何学的構造体とは異なる幾何学的形状を有する第2の幾何学的構造体と、を更に含み得る(図3及び図6を参照のこと)。更に、第2の幾何学的構造体内の複数の外側支柱のサブセットの少なくとも一部分は、第1の幾何学的構造体の複数の外側支柱の交点によって形成される角度と実質的に等しい角度を形成するように交差することができる。
【0074】
上述のように、第1の幾何学的構造体は、例えば、図4に示されるような幾何学的菱形十二面体であり得る。第2の幾何学的構造体は、幾何学的三角面偏方多面体であり得る(図5を参照のこと)。幾何学的三角面偏方多面体は、例えば、図3に示すように、4つの支柱を第1の幾何学的構造体に挿入することによって形成することができる。更に、少なくとも1つの単位セルは、例えば、図3に示されるように、第1の幾何学的構造体内に4つの幾何学的三角面偏方多面体構造体を含むことができる。
【0075】
多孔質三次元構造体内では、格子内の少なくとも1つの支柱の長さ及び直径のうちの少なくとも1つは、格子の所定の幾何学的特性を満たすように構成され得る。一実施例では、有機構造体の少なくとも1つの支柱の長さ及び直径のうちの少なくとも1つは、幾何学的構造体の少なくとも1つの支柱の長さ及び直径のうちの少なくとも1つに対して変更され得る。上述のように、これらの幾何学的特性は、多孔度、細孔サイズ、最小開口サイズ、及びこれらの組み合わせからなる群から選択することができる。例えば、多孔度は、約20%~約95%であり得る。多孔度はまた、約35%~約85%でもあり得る。多孔度はまた、約50%~約75%であり得る。更に、個々の支柱長さは、例えば、複数の支柱の平均支柱長さの約25%~約175%であり得る。以下により詳細に記載されるように、上記の幾何学的構造体のそれぞれは、有機構造体を生成するように変更されてもよい。一実施例では、幾何学的構造体のそれぞれの個々の外側支柱長さはまた、有機構造体を生成するように、幾何学的構造体の複数の外側支柱の平均支柱長さの最大で約75%~約125%となるように変更されてもよい。別の実施例では、幾何学的構造体のそれぞれの個々の外側支柱長さはまた、例えば、幾何学的構造体の複数の外側支柱の平均支柱長さの最大で約50%~約150%となるように変更されてもよい。
【0076】
様々な実施形態によれば、整形外科用インプラントが提供される。インプラントは、複数の繰り返し単位セルを含む多孔質三次元構造体を含み得る。各単位セルは、基部幾何学的構造体と、基部幾何学的構造体の一部分から形成され、基部幾何学的構造体とは異なる幾何学的形状を有する二次幾何学的構造体と、を含み得る。更に、所与の多孔質三次元構造体の多孔度について、少なくとも1つの単位セルは、多孔質三次元構造体の平均的な幾何学的構造体の細孔サイズとは異なる細孔サイズと、多孔質三次元構造体の平均的な幾何学的構造体の窓サイズとは異なる窓サイズと、を有し得る。
【0077】
ここで図12A図13Eを概して参照すると、有機単位セル構造体400は、上述の幾何学的単位セル構造体200に対して変更され得る。例えば、図12A及び図13Aは、第1の又は外側幾何学的構造体230を示す。図12B図12C及び図13B図13Eは、対応する第1の幾何学的構造体230のものとは異なるノード位置を有する第1の又は有機外側構造体を示す。図12Aに示される一実施例では、第1の幾何学的構造体230は、上記のような幾何学的菱形十二面体215として示されている。図12B図12Cに示されるように、有機構造体430は、上記の幾何学的菱形十二面体に対して変更された有機菱形十二面体415として構成され得る。例えば、有機構造体430のノードのうちの1つ又は2つ以上、最大でノードの全ては、幾何学的構造体230の対応するノードに対して再配置される。
【0078】
図12Aに示されるように、複数の外側ノード212のそれぞれは、幾何学的菱形十二面体215のノード212を画定する複数の外側ノード212の残りの外側ノード212に対して、3次元空間内の(例えば、全て互いに垂直に方向付けられているx方向、y方向、及びz方向に沿った)位置を有する。
【0079】
更に、外側ノード212は、対向するノードのそれぞれの対を含む。一実施例として、外側ノード212の第1の外側ノード212a及び第2の外側ノード212bは、第1の対の対向する外側ノードを画定する。一対の対向する外側ノードの各ノードは、任意の他のノードからよりも、互いにより遠くに離間していてもよい。この点に関して言えば、第1の外側ノード212aから第2の外側ノード212bよりもより遠くに離間している外側ノード212はない。更に、第2の外側ノード212bから第1の外側ノード212aよりもより遠くに離間している外側ノード212はない。更に、一対の対向する外側ノードの各ノードは、当該一対の対向する各外側ノードの間の外側支柱210に沿った最短経路に沿った複数の外側ノード212のうちの3つの中間の外側ノードによって、互いに離間され得る。したがって、第2の外側ノード212bは、第1の外側ノード212aから第2の外側ノード212bまでの外側支柱210に沿った最短経路に沿った複数の外側ノード212のうちの3つの中間の外側ノードによって、第1の外側ノード212aから離間され得る。すなわち、最短経路に沿って第1の外側ノード212aから第2の外側ノード212bまで外側支柱210に沿って移動する場合、経路は、3つの中間の外側ノード217a、217b、及び217cを含む(複数のそのような最短経路が画定されることが認識される)。
【0080】
外側ノード212の第3の外側ノード212c及び第4の外側ノード212dは、第2の対の対向するノードを画定する。外側ノード212の第5の外側ノード212e及び第6の外側ノード212fは、第3の対の対向するノードを画定する。第1の直線仮想線235は、第1の外側ノード212a及び第2の外側ノード212bを通って延びていることが認識される。第2の直線仮想線237は、第3の外側ノード212c及び第4の外側ノード212dを通って延びている。第3の直線仮想線239は、第5の外側ノード212e及び第6の外側ノード212fを通って延びている。第1の直線仮想線235、第2の直線仮想線237、及び第3の直線仮想線239は、交点241で互いに実質的に交差する。
【0081】
ここで図1及び図12Bを参照すると、インプラント100の多孔質構造体120の単位セルの少なくともいくつか、最大で全ては、図12Bに示される有機単位セル構造体400を有する。いくつかの実施例では、有機単位セル構造体400は、図4に示される幾何学的菱形十二面体215に対して変更される。他の実施例では、有機単位セル構造体400は、上記の幾何学的菱形十二面体などの、以前に設計された幾何学的単位セル構造体200の助けを借りずに設計される。したがって、図12Bに示すように、各有機単位構造体は、複数の外側支柱410を含む複数の支柱408を含む。外側支柱410は、格子構造体を画定するように組み合わされる。外側支柱410は協働して、図4の幾何学的外側構造体230に対して変更された有機外側構造体430を形成する。例示的な実施形態では、有機外側構造体430は、有機菱形十二面体415である。外側支柱410は、それらのそれぞれの長さの全体に沿って一定の厚さを画定することができる。更に、外側支柱410は、等しい厚さを有することができる。内側支柱420もまた、それらのそれぞれの長さの全体に沿って一定の厚さを画定することができる。更に、内側支柱420は、等しい厚さを有することができる。更に、内側支柱420と外側支柱410とは、等しい厚さを有することができる。あるいは、内側支柱420と外側支柱410とは、異なる厚さを有することができる。外側支柱410及び内側支柱420が円筒形である実施例では、それぞれの厚さは、外側支柱410及び内側支柱420の直径をそれぞれ規定する。
【0082】
したがって、外側支柱410は、複数の外側頂点又は外側ノード412を画定するように互いに交差する。外側ノード412のそれぞれは、外側支柱410の3つの交点によって画定される。したがって、外側支柱410のそれぞれは、外側ノード412のそれぞれの第1のノードから外側ノード412のそれぞれの第2のノードまでそれぞれの長さに沿って延在する。外側支柱410が有機菱形十二面体415を形成する場合、支柱410は、組み合わされて14個の外側ノード412を画定する。更に、複数の外側ノード412のそれぞれは、有機菱形十二面体415のノード412を画定する複数の外側ノード412の残りの外側ノード412に対して、3次元空間内の(例えば、全て互いに垂直に方向付けられているx方向、y方向、及びz方向に沿った)位置を有する。
【0083】
上述のように、複数の外側ノード412、最大で全ての外側ノードを含む、有機菱形十二面体415の少なくとも1つの外側ノード412の位置は、幾何学的菱形十二面体の対応の少なくとも1つの外側ノード212とは異なる。図12Bを参照すると、外側支柱410及び外側ノード412は、幾何学的菱形十二面体215の25%以内の幾何学的構造体430を実質的に画定するように組み合わされる。例えば、有機菱形十二面体415の少なくとも1つの外側ノード412の位置は、図12Aに示される幾何学的菱形十二面体215の対応する少なくとも1つの外側ノード212の位置に対して最大で25%変更される。例えば、有機菱形十二面体415の複数の外側ノード412の位置は、幾何学的菱形十二面体215の対応する少なくとも1つの外側ノード212の位置に対して最大で25%変更される。したがって、外側支柱410及び外側ノード412は、幾何学的菱形十二面体215の25%以内の幾何学的構造体を実質的に画定するように組み合わされる。更に、図12Bに示される有機菱形十二面体415の外側ノード412のうちの少なくとも1つ、最大で複数の外側ノード412の位置は、図12Aに示される幾何学的菱形十二面体215の外側ノード212のうちの対応する少なくとも1つ、最大で対応する複数の外側ノード212の位置と同じであり得る。パーセンテージを参照して本明細書で使用される「以内」という用語は、記載されたパーセンテージを含む。
【0084】
有機菱形十二面体415の外側ノード412の位置は、次の式によって表すことができる。
【0085】
【数6】

式中、Nはノードを特定し、「i」は、幾何学的形状の特定のノードを特定し、pは、幾何学的構造体のノードの位置のパーセンテージとして表される位置の変化であり、x、y、及びzは、幾何学的構造体のノード「i」の位置座標である。有機構造体430のノードの変更された位置は、x方向、y方向、及びz方向のうちのいずれか1つ以上、最大で全てに沿って、幾何学的構造体230の対応するノードの位置と異なり得る。
【0086】
別の実施形態では、図12Cを参照すると、外側支柱410及び外側ノード412は、幾何学的菱形十二面体215の50%以内の幾何学的構造体430を実質的に画定するように組み合わされる。例えば、有機菱形十二面体415の少なくとも1つの外側ノード412の位置は、図12Aに示される幾何学的菱形十二面体215の対応する少なくとも1つの外側ノード212の位置に対して最大で50%変更される。例えば、有機菱形十二面体415の複数の外側ノード412の位置は、幾何学的菱形十二面体215の対応する複数の外側ノード212の位置に対して最大で50%変更される。したがって、外側支柱410及び外側ノード412は、幾何学的菱形十二面体215の50%以内の幾何学的構造体を実質的に画定するように組み合わされる。更に、図12Cに示される有機菱形十二面体415の外側ノード412のうちの少なくとも1つ、最大で複数の外側ノード412の位置は、図12Aに示される幾何学的菱形十二面体215の外側ノード212のうちの対応する少なくとも1つ、最大で対応する複数の外側ノード212の位置と同じであり得る。
【0087】
このようにして、図12A図12Cに示されるように、有機菱形十二面体の外側ノード412の少なくともいくつかは、幾何学的菱形十二面体215の外側ノード212に対して再配置される。したがって、有機外側構造体430を含む第1の多孔質三次元構造体が、幾何学的構造体230を含む第2の多孔質三次元構造体の上に、同じ位置及び向きで重ね合わされると、第1の多孔質三次元構造体の外側ノード412の少なくともいくつかは、第2の多孔質三次元構造体のノード212の対応するいくつかに対してオフセットされる。いくつかの実施例では、第1の多孔質三次元構造体の複数の外側ノード412の他の外側ノード412は、第2の多孔質三次元構造体の複数のノード212の対応する他の外側ノード212と一致する。有機外側構造体430は、これから説明する再配置された外側ノード412及びその結果生じる対応の支柱410に対する変化を別にすれば、他の点では幾何学的外側構造体230と実質的に同一である。例えば、有機外側幾何学的形状430及び結果として得られる多孔質三次元構造体は、幾何学的外側構造体230及び結果として得られる多孔質三次元構造体と等しい数の支柱及びノードをそれぞれ有する。
【0088】
有機構造体430を有する多孔質三次元構造体は、幾何学的外側構造体230を含む多孔質三次元構造体の延性よりも大きい延性を有することが見出された。更に、有機外側構造体430を含む多孔質三次元構造体は、人間の解剖学的構造に植え込まれたときに好適な構造的完全性を有する。
【0089】
具体的に言えば、再配置された外側ノード412の結果として、有機外側構造体430の支柱410のうちの少なくとも1つ以上、最大で全ては、幾何学的外側構造体230の対応する支柱210とは異なる少なくとも1つの幾何学的特性を有する。上述のように、幾何学的特性は、支柱210の長さ、向き、及び経路タイプ(例えば、真っ直ぐ又は湾曲した)のうちの少なくとも1つを含むことができる。例えば、再配置された外側ノード412を部分的に画定する外側支柱410のうちの少なくとも1つ以上は、対応する幾何学的菱形十二面体の対応する外側支柱210よりも長くてもよく、又は短くてもよい。この点に関して言えば、外側支柱410は、各外側ノード412のそれぞれの対から、また、外側ノードのそれぞれの対へと、それぞれの長さに沿って延在し、外側支柱410の少なくともいくつかの長さは互いに異なる。例えば、外側支柱410の個々の長さを、例えば、複数の外側支柱410の平均支柱長さの約75%~約125%となるように変更することもできる。
【0090】
更に、外側支柱410は、その長さに沿った任意の好適な経路に沿って、外側支柱410によって画定される隣接する各ノード412の間に延在することができる。例えば、再配置された外側ノード412を部分的に画定する支柱410のうちの又はそれ以上は、そのそれぞれの長さ全体に沿った直線及び線形経路に沿って延在し得、対応する幾何学的構造体230の外側支柱210とは異なる向きを有することができる。あるいは、再配置された外側ノード412を部分的に画定する外側支柱410の少なくとも1つ以上の少なくとも一部分は、複数のノードのそれぞれの第1の外側ノード412と複数のノードのそれぞれの第2の外側ノード412との間のその長さに沿って湾曲していてもよい。したがって、少なくとも1つの湾曲した支柱410は、それぞれの第1及び第2の外側ノード412を画定するように、2つの異なる他の対の支柱410と交差する。一実施例では、外側支柱410の少なくとも一部分は、曲線状経路に沿って延在する。代替的又は追加的に、外側支柱410の少なくとも1つ以上の少なくとも一部分は、角度付けされてもよく、したがって湾曲していてもよい。図12B図12Cに示される外側支柱410の全てを直線状とすることができる(図13C及び図13Eを参照のこと)ことが理解される。あるいは、外側支柱410の全てを湾曲させることができる。
【0091】
引き続き図12Bを参照すると、外側支柱410は、最も長い外側支柱と最も短い外側支柱とを含む。最も長い外側支柱の経路よりも長い経路に沿ったそれぞれの隣接する外側ノード412の間に延在する外側支柱410はない。逆に言うと、最も長い外側支柱の経路よりも短い経路に沿ったそれぞれの隣接する外側ノード412の間に延在する外側支柱410はない。有機構造体430の外側ノード412の位置が対応する幾何学的外側構造体230の位置に対して25%変更される場合、最も短い外側支柱410の長さは、最も長い外側支柱410の長さの約60%以上である。
【0092】
図12Cに示すように、外側支柱410は、最も長い外側支柱と最も短い外側支柱とを含む。最も長い外側支柱の経路よりも長い経路に沿ったそれぞれの隣接する外側ノード412の間に延在する外側支柱410はない。逆に言うと、最も長い外側支柱の経路よりも短い経路に沿ったそれぞれの隣接する外側ノード412の間に延在する外側支柱410はない。外側ノード412の位置が、対応する幾何学的外側構造体230の外側ノード212の位置に対して50%変更される場合、最も短い外側支柱410の長さは、最も長い外側支柱410の長さの約1/3以上である。
【0093】
引き続き図12B図12Cを参照すると、外側ノード412は、第1の外側ノード412aと、第1の対の対向するノードを画定するように第1の外側ノード412aに対向する第2の外側ノード412bとを含む。外側ノード412は、第3の外側ノード412cと、第2の対の対向するノードを画定するように第3の外側ノード412cに対向する第4の外側ノード412dとを更に含む。外側ノード412は、第5の外側ノード412eと、第3の対の対向するノードを画定するように第5の外側ノード412eに対向する第6の外側ノード412fとを更に含む。
【0094】
図12Aに関して上述したように、一対の対向する外側ノード412の各ノードは、任意の他のノードからよりも、互いにより遠くに離間していてもよい。この点に関して言えば、第1の外側ノード412aから第2の外側ノード412bよりもより遠くに離間している外側ノード412はない。更に、第2の外側ノード412bから第1の外側ノード412aよりもより遠くに離間している外側ノード412はない。更に、一対の対向する外側ノードの各ノードは、当該一対の対向する外側ノードの各ノードの間の外側支柱410に沿った最短経路に沿った複数の外側ノード412のうちの3つの中間の外側ノードによって、互いに離間され得る。したがって、第2の外側ノード412bは、第1の外側ノード412aから第2の外側ノード412bまでの外側支柱410に沿った最短経路に沿った複数の外側ノード412のうちの3つの中間の外側ノードによって、第1の外側ノード412から離間される。すなわち、最短経路に沿って第1の外側ノード412aから第2の外側ノード412bまで外側支柱410に沿って移動する場合、経路は、3つの中間の外側ノード417a、417b、及び417cを含む(複数のそのような最短経路が画定されることが認識される)。
【0095】
第1の直線仮想線419は、第1の外側ノード412a及び第2の外側ノード412bを幾何学的な延びている。第2の直線仮想線421は、第3の外側ノード412c及び第4の外側ノード412dを通って延びている。第5の外側ノード412e及び第6の外側ノード412fを通って延びる第3の直線仮想線423。第1の仮想線419と第2の直線仮想線421とは、多孔質三次元構造体の選択視野(select view)に対して第1の交点424aで互いに交差する。第3の直線423は、多孔質三次元構造体の選択視野に対して第1の交点からオフセットされた第2の交点で第1の直線仮想線419と交差する。第3の直線仮想線423はまた、多孔質三次元構造体の選択視野に対して第1の交点及び第2の交点のいずれか又は両方からオフセットされた第3の交点で第2の直線仮想線421と交差し得る。
【0096】
図12B図12Cの有機単位セル構造体400は、有機単位セル構造体400の外側ノード412が幾何学的単位セル構造体200の対応する外側ノード212に対して任意の好適な方向に再配置されるように、幾何学的単位セル構造体200に対して変更され得る。したがって、有機単位セル構造体400の第1の半分の外側ノード412は、幾何学的単位セル構造体200の対応する外側ノード212に対して第1の方向に再配置されてもよい。有機単位セル構造体400の第2の半分の外側ノード412は、幾何学的単位セル構造体200の対応する外側ノード212に対して、第1の方向とは異なる第2の方向に再配置されてもよい。第1及び第2の方向は、互いに反対側、互いに垂直、又は互いに斜めであり得る。有機単位セル構造体400の第1及び第2の半分は、有機単位セル構造体400を二分する平面によって互いに分離される。したがって、いくつかの実施例では、平面の向きに関わらず(すなわち、平面の全ての向きに関して)、有機単位セル構造体400の第1の半分の外側ノード412の少なくともいくつか、最大で全てが、幾何学的単位セル構造体200の対応する外側ノード212に対して異なる方向に再配置され、有機単位セル構造体400の第2の半分の外側ノード412の少なくともいくつか、最大で全てが、幾何学的単位セル構造体200の対応する外側ノード212に対して異なる方向に再配置されるということになる。
【0097】
ここで図13Aを参照すると、図3に関して上述したように、支柱208は、第1の幾何学的構造体230を画定する複数の外側支柱210を含む。支柱208は、外側支柱210と組み合わさって第1の幾何学的構造体230内にある複数の第2の幾何学的構造体240を形成する複数の内側支柱220を更に含む。例示的な実施形態では、第1の幾何学的構造体230は、複数の外側支柱210を含む。上述のように、図3の複数の外側支柱210は協働して幾何学的菱形十二面体を形成する。したがって、第1の幾何学的構造体230は、幾何学的菱形十二面体を画定する。内側支柱220は、内側ノード232を画定するように互いに交差する。具体的に言えば、内側支柱220の全ては、内側ノード232を画定するように互いに交差する。更に、内側支柱220のそれぞれは、それぞれの外側ノード212から内側ノード232まで延在する。図示の実施形態では、内側支柱220は、単一の内側ノード232のみを画定し、他の内側ノードを画定しないように互いに交差する。したがって、幾何学的単位セル200は、外側ノード212に対して内部にあるただ1つの単一の内側ノード232のみを画定する。
【0098】
外側支柱210は、それらのそれぞれの長さの全体に沿って一定の厚さを画定することができる。更に、外側支柱210は、等しい厚さを有することができる。内側支柱220もまた、それらのそれぞれの長さの全体に沿って一定の厚さを画定することができる。更に、内側支柱220は、等しい厚さを有することができる。更に、内側支柱220と外側支柱210とは、等しい厚さを有することができる。あるいは、内側支柱220と外側支柱210とは、異なる厚さを有することができる。外側支柱210及び内側支柱220が円筒形である実施例では、それぞれの厚さは、外側支柱210及び内側支柱220の直径をそれぞれ規定する。
【0099】
図13Aに示すように、複数の第2の幾何学的構造体240のそれぞれは、他の第2の幾何学的構造体240の内部容積に実質的に等しい内部容積を有する。各第2の幾何学的構造体230は、いくつかの内側支柱220及びいくつかの外側支柱210によって形成される。各第2の幾何学的構造体230は、例示的には、幾何学的三角面偏方多面体である。図3に示すように、第1の幾何学的構造体230内の複数の第2の幾何学的構造体240は、単位セル構造体200が幾何学的菱形三角面偏方多面体(GRTT)であるように、4つの幾何学的三角面偏方多面体を含む。
【0100】
第1の幾何学的構造体230は、図12Aに関して上述したように、外側ノード212の第1、第2、及び第3の対を含む。したがって、第1の直線仮想線235は、第1の外側ノード212a及び第2の外側ノード212bを通って延びている。第2の直線仮想線237は、第3の外側ノード212c及び第4の外側ノード212dを通って延びている。第3の直線仮想線239は、第5の外側ノード212e及び第6の外側ノード212fを通って延びている。第1の直線仮想線235、第2の直線仮想線237、及び第3の直線仮想線239は、内側ノード232で互いに実質的に交差する。
【0101】
図13B図13Cを参照すると、有機菱形十二面体415の所与の外側ノード412の位置は、上記の幾何学的菱形十二面体215の対応する外側ノード212の位置に対して最大で25%変更される。図13D図13Eに示される別の実施形態では、有機菱形十二面体415の所与の外側ノード412の位置は、上記の幾何学的菱形十二面体215の対応する外側ノード212の位置に対して最大で50%変更される。更に、図13B及び図13Cの両方において、第1の有機構造体430の支柱408は、外側支柱410と組み合わさって第1の有機構造体430内にある複数の第2の有機構造体440を形成する複数の内側支柱420を含み得る。内側支柱420は、内側支柱の交点に内側ノード432を画定するように互いに交差する。具体的に言えば、例示的な実施形態では、内側支柱420の全ては、内側ノード432を画定するように互いに交差する。更に、内側支柱420のそれぞれは、複数の外側ノード412のそれぞれの異なる1つから内側ノード432まで延在する。図示の実施形態では、内側支柱420は、単一の内側ノード432のみを画定し、他の内側ノードを画定しないように互いに交差する。したがって、単位セル構造体400は、外側ノード412に対して内部にあるただ1つの単一の内側ノード432のみを画定する。
【0102】
例示的な実施形態では、第1の有機構造体430は、複数の外側支柱410を含む。上述のように、複数の外側支柱410は協働して有機菱形十二面体を形成する。各第2の有機構造体440は、例示的には、有機三角面偏方多面体である。有機的な第1の構造体430内の複数の有機的な第2の構造体440は、単位セル構造体400が有機菱形三角面偏方多面体(ORTT)であるように、4つの有機三角面偏方多面体を含む。有機三角面偏方多面体は、上記の幾何学的三角面偏方多面体に対して修正される。例えば、内側ノード432のうちの少なくとも1つ及び外側ノード412のうちの少なくとも1つ(複数から最大で全ての外側ノード412を包含する)は、上記の幾何学的三角面偏方多面体の内側ノードのうちの対応する少なくとも1つ及び外側ノードのうちの少なくとも1つ(複数から最大で全ての外側ノードを包含する)に対してそれぞれ再配置される。したがって、結果として生じる有機菱形三角面偏方多面体は、上記の幾何学的菱形の三角面偏方多面体に対して変更されていることが理解されるであろう。例えば、内側ノード432のうちの少なくとも1つ及び外側ノード412のうちの少なくとも1つ(複数から最大で全ての外側ノード412を包含する)は、上記の幾何学的菱形三角面偏方多面体の内側ノードのうちの対応する少なくとも1つ及び外側ノードのうちの少なくとも1つ(複数から最大で全ての外側ノードを包含する)に対してそれぞれ再配置される。
【0103】
各第2の有機構造体440は、いくつかの内側支柱420及びいくつかの外側支柱410によって形成される。各第2の有機構造体440は、例示的には、有機三角面偏方多面体である。上述のように、有機構造体430の外側ノード412のうちの少なくとも1つ以上、外側ノード412の最大で全ての位置は、第2の幾何学的構造体240の外側ノード212に対して変更される。更に、第2の有機構造体440の内部ノード432の位置は、第2の幾何学的構造体240の内側ノード232の位置に対して変更される。図13B図13Cに示される1つの例示的な実施形態では、内側ノード432のうちの少なくとも1つ及び外側ノード412のうちの少なくとも1つの位置は、図3B図3Cに示されるように、内側ノード232の位置に対して最大で25%変更される。図13D図13Eに示される別の例示的な実施形態では、内側ノード432のうちの少なくとも1つ及び外側ノード412のうちの少なくとも1つの位置は、図3B図3Cに示されるように、内側ノード232の位置に対して最大で50%変更される。図13B図13Cに関して上述したように、第1の有機構造体430、図13D図13Eの第2の有機構造体440の内側支柱420は、単一の内側ノード432のみを画定し、他の内側ノードを画定しないように互いに交差する。したがって、単位セル構造体400は、外側ノード412に対して内部にあるただ1つの単一の内側ノード432のみを画定する。
【0104】
引き続き図13B図13Eを参照すると、第1の有機構造体430は、図12B図12Cに関して上述したように、外側ノード412の第1、第2、及び第3の対を含む。したがって、第1の直線仮想線419は、第1の外側ノード412a及び第2の外側ノード412bを通って延びている。第2の直線の仮想線421は、第3の外側ノード412c及び第4の外側ノード412dを通って延びている。第3の直線仮想線423は、第5の外側ノード412e及び第6の外側ノード412fを通って延びている。第1の直線仮想線419、第2の直線仮想線421、及び第3の直線仮想線423の少なくとも1つ以上、最大で全ては、内側ノード232からオフセットされている。
【0105】
図13B図13Eの有機単位セル構造体400は、有機単位セル構造体400の外側ノード412が幾何学的単位セル構造体200の対応する外側ノード212に対して任意の好適な方向に再配置されるように、幾何学的単位セル構造体200に対して変更され得る。したがって、有機単位セル構造体400の第1の半分の外側ノード412は、幾何学的単位セル構造体200の対応する外側ノード212に対して異なる方向に再配置されてもよい。同様に、有機単位セル構造体400の第2の半分の外側ノード412は、幾何学的単位セル構造体200の対応する外側ノード212に対して異なる方向に再配置されてもよい。有機単位セル構造体400の第1及び第2の半分は、有機単位セル構造体400を二分する平面によって互いに分離され、内側ノード432は平面上にある。したがって、いくつかの実施例では、平面の向きに関わらず(すなわち、平面の全ての向きに関して)、有機単位セル構造体400の第1の半分の外側ノード412の少なくともいくつか、最大で全てが、幾何学的単位セル構造体200の対応する外側ノード212に対して異なる方向に再配置され、有機単位セル構造体400の第2の半分の外側ノード412の少なくともいくつか、最大で全てが、幾何学的単位セル構造体200の対応する外側ノード212に対して異なる方向に再配置されるということになる。
【0106】
有機構造体430の再配置された少なくとも1つのノードの結果として、有機構造体430の内側支柱420のうちの少なくとも1つ以上、最大で全ては、幾何学的構造体230の対応する内側支柱220とは異なる少なくとも1つの特性を有する。特性は、内側支柱420の長さ、向き、及び経路タイプ(例えば、真っ直ぐ又は湾曲している)のうちの少なくとも1つを含むことができる。例えば、再配置された内側ノード432を部分的に画定する内側支柱420のうちの少なくとも1つ以上は、対応する幾何学的構造体230の対応する内側支柱220よりも長くてもよく、又は短くてもよい。この点に関して言えば、内側支柱420は、それぞれの長さに沿ってそれぞれの外側ノード412から内側ノード432まで延在し、内側支柱420の少なくともいくつかの長さは互いに異なる。有機外側構造体430の外側支柱410のうちの少なくとも1つ以上、最大で全てはまた、図12B図12Cに関して上述したように、幾何学的外側構造体230の対応する支柱210とは異なる少なくとも1つの幾何学的特性を有する。
【0107】
更に、図13B図13Eに示される内側支柱420は、その長さに沿った任意の好適な経路に沿って、それぞれの外側ノード412から内側ノード432まで延在することができる。例えば、第2の有機構造体440の内側支柱420のうちの又はそれ以上は、そのそれぞれの長さ全体に沿った直線及び線形経路に沿って延在することができ、第2の幾何学的構造体240の対応する内側支柱220とは異なる向きを有することができる。図13B図13Eに示される内側支柱420の全ては、それぞれの外側ノード412から内側ノード432までそれぞれの直線経路に沿って延在することができることが理解される。あるいは、内側支柱420の少なくとも1つ以上、最大で全ての少なくとも一部分は、それぞれの外側ノード412から内側ノード432までその長さに沿って湾曲している内側支柱であってもよい。一実施例では、内側支柱420の少なくとも一部分は、曲線状経路に沿って延在し得る。代替的又は追加的に、内側支柱420の少なくとも1つ以上の少なくとも一部分は、角度付けされてもよく、したがって湾曲していてもよい。あるいは、内側支柱420の全てを湾曲させることができる。
【0108】
第1の有機構造体430及び第2の有機構造体440を有する多孔質三次元構造体は、第1の幾何学的構造体230及び第2の幾何学的構造体240を含む多孔質三次元構造体の延性よりも大きい延性を有することが見出された。更に、第1の有機構造体430及び第2の有機構造体440を含む多孔質三次元構造体は、人間の解剖学的構造に植え込まれたときに好適な構造的完全性を有する。
【0109】
各単位セル構造体は、他の種類の第2の有機構造体を含み得ることを理解されたい。例えば、有機単位セル構造体は、上記のように第1の有機構造体430を画定する複数の外側支柱410を含むことができる。変更された単位セル構造体は、外側支柱410と組み合わさって、複数の有機の第2の又は内側構造体を画定する複数の内側支柱420を更に備えることができる。有機内側構造体のそれぞれは、変更された八面体として構成され得る。したがって、一実施例では、有機単位セル構造体は、図6に関して上述したように、8つの内側支柱420を含むことができる。したがって、第1の有機構造体内の複数の第2の有機構造体は、有機単位セル構造体が変更された又は有機菱形八面体であるように6つの幾何学的八面体を含み得、それによって、第1の有機構造体のノードの少なくともいくつか及び第2の有機構造体の少なくともいくつかのノードの位置が、第1の幾何学的構造体のノード及び第2の幾何学的構造体のノードに対して再配置される。
【0110】
一実施形態では、有機外側構造体430及び有機内側構造体440を有する多孔質三次元構造体は、約50%~約75%の多孔度を有する。例えば、有機外側構造体430及び有機内側構造体440を有する多孔質三次元構造体は、約55%~約65%の多孔度を有することができる。更に、幾何学的外側構造体230及び幾何学的内側構造体240に関して上述したように、外側支柱410及び内側支柱420は、有機多孔質三次元構造体に複数の開口部を画定し、複数の開口部の各開口部は、窓サイズを有し、各有機構造体430及び440の内部容積は、細孔サイズを有する。上述のように、細孔サイズは、有機構造体430を有する単位セル内で境界された容積内の球体の等価直径と見なすことができる。
【0111】
図14を参照すると、多孔質三次元構造体が約55%の多孔度を有し、ノードの位置がGRTTに対して25%変更されている、図13Cの単位セル(例えば、全ての支柱410及び420が直線及び線形であるORTT)を含む多孔質三次元構造体の細孔のパーセンテージ。図示されるように、0.1mm未満の細孔径を有する三次元構造体の細孔のパーセンテージは、約14.3パーセント未満である。例えば、細孔の約2パーセント未満は、0.1mm未満の細孔サイズを有する。更に、図14は、三次元構造体の細孔の約50パーセントが0.2mmを超える細孔径を有することを示している。例えば、三次元構造体の細孔の約50パーセントは、約0.2mm~約0.36mmの細孔径を有する。
【0112】
図15を参照すると、多孔質三次元構造体が約65%の多孔度を有し、ノードのうちの少なくとも1つの位置がGRTTに対して25%変更されている、図13Cの単位セル(例えば、全ての支柱410及び420が直線及び線形であるORTT)を含む多孔質三次元構造体の細孔のパーセンテージ。図14に関して上述したように、0.1mm未満の細孔径を有する三次元構造体の細孔のパーセンテージは、約14.3パーセント未満である。例えば、細孔の約1.5パーセント未満は、図15に示すように0.1mm未満の細孔サイズを有する。更に、図15は、三次元構造体の細孔の約50パーセントが0.3mmを超える細孔径を有することを示している。例えば、三次元構造体の細孔の約50パーセントは、約0.3mm~約0.7mmの細孔径を有する。特に、三次元構造体の細孔の約50パーセントは、約0.3mm~約0.5mmの細孔径を有する。ORTT単位セルを有する三次元構造体の細孔の約50パーセントが、約0.2mm~約0.7mmの範囲の細孔径を有し得ることを、図14図15から更に確認することができる。例えば、ORTT単位セルを有する三次元構造体の細孔の約50パーセントは、約0.2mm~約0.5mmの範囲の細孔径を有し得る。
【0113】
更に、幾何学的構造体に関して上述したように、多孔質三次元構造体の有機構造体の細孔サイズの、有機構造体の各開口部の窓サイズに対する比は、1.00~2.90の範囲であり得る。いくつかの実施例では、有機構造体の少なくとも90パーセントが、1.00~2.90の範囲内の、細孔サイズの、各開口部の窓サイズに対する比を有することが認識される。例えば、幾何学的構造体に関して上述したように、一実施形態では、各有機構造体の細孔サイズの、有機構造体の各開口部の窓サイズに対する比は、1.00~1.10の範囲である。いくつかの実施例では、有機構造体の少なくとも90パーセントが、1.00~2.90の範囲内の、細孔サイズの、各開口部の窓サイズに対する比を有することが認識される。別の実施例では、幾何学的単位セルを有する多孔質三次元構造体に関して上述したように、有機単位セルの細孔サイズの、その対応する窓サイズのいずれかに対する比は、1.50~1.60の範囲である。いくつかの実施例では、有機単位セルの少なくとも90パーセントが、1.50~2.60の範囲内の、細孔サイズのその対応する窓サイズのいずれかに対する比を有することが認識される。
【0114】
再び図12A図13Eを概して参照すると、人体に植え込まれたときに骨内殖を促進するように構成された第1及び第2の多孔質有機三次元構造体の一方又は両方を有する本明細書に記載の単位セルを設計するための方法が提供される。この方法は、変更係数を第1の幾何学的単位セル設計に適用するステップを含むことができる。第1の幾何学的単位セル設計は、3つの外側支柱210などのいくつかの第1の又は外側支柱210を含み、これらは、いくつかの第1の又は外側ノード212を画定するように互いに交差し、第1の支柱210のそれぞれは、それぞれの第1の長さを有し、第1のノード212は、互いに対する第1の相対位置を規定する。一実施形態では、第1の支柱210のそれぞれの第1の長さは全て、互いに実質的に等しい。別の実施形態では、第1の支柱のうちのいくつかのそれぞれの第1の長さは、第1の支柱210の少なくともいくつかの他のもののそれぞれの第1の長さとは異なる。第1の単位セル設計は、上記の方法で提供することができる。変更係数は、上記の方法で最大25%など、最大50%であり得る。一実施例では、適用ステップは、Leuven,Belgiumに事業所を有するMaterialiseから市販されている3-maticソフトウェアパッケージを使用して実行することができる。
【0115】
適用ステップは、いくつかの第2の又は外側ノード412を画定するように互いに交差するいくつかの第2の又は外側の支柱410を有する第2の単位セル設計を生成する。外側ノード412の数は、外側ノード212の数に等しく、外側支柱410の数は、外側支柱210の数に等しい。外側支柱410のそれぞれは、それぞれの第1の長さを有し、外側ノード412は、第1の相対位置とは異なる、互いに対する第2の相対位置を規定する。外側支柱410の少なくともいくつかのそれぞれの第1の長さは、外側支柱410の少なくともいくつかの他のもののそれぞれの第1の長さとは異なる。更に、外側支柱410の少なくともいくつかのそれぞれの第1の長さは、対応する外側支柱210の少なくともいくつかのそれぞれの第1の長さとは異なる。あるいは、有機三次元構造体430及び440は、それぞれ、以前に設計された幾何学的構造体230及び240の助けを借りずに設計することができる。製造公差は、異なる支柱長さをもたらし得ることが認識されている。しかしながら、本明細書に記載される異なる支柱長さは、製造公差を除く異なる長さを指す。
【0116】
第2の単位セル設計が生成されると、それぞれが第2の単位セル設計を有する複数の相互連結された単位セルを含む多孔質三次元構造体を製造するための製造指示書が作成される。多孔質三次元構造体は、現場で製造することができる。あるいは、製造指示書は、多孔質三次元構造体を製造するための第三者製造業者に送信されてもよい。
【0117】
様々な実施形態によれば、整形外科用インプラントが提供される。インプラントは、複数の単位セルを含む多孔質三次元構造体を含み得る。各単位セルは、第1の幾何学的形状を有し、かつ複数の第1の支柱を含む外側幾何学的構造体を含み得る。各単位セルは、第2の幾何学的形状を有する内側幾何学的構造体を更に含むことができ、複数の第1の支柱の一部分と接続されて、外側幾何学的構造体内に内側幾何学的構造体を形成する複数の第2の支柱を更に含み得る。
【0118】
様々な実施形態によれば、外側幾何学的構造体は、菱形十二面体であり得る。内側幾何学的構造体は、三角面偏方多面体であり得る。三角面偏方多面体は、4つの支柱を外側幾何学的構造体内に挿入することによって形成することができる。更に、少なくとも1つの単位セルは、外側幾何学的構造体内に4つの三角面偏方多面体の幾何学的構造体を含むことができる。
【0119】
上述のように、整形外科用インプラントは、単位セル構造体を有する複数の繰り返し単位セルを含む孔質三次元構造体を含むことができる。単位セル構造体は、幾何学的又は有機幾何学的構造体を画成することができる。したがって、多孔質三次元構造体は、それぞれの第1の幾何学的又は有機構造体を画定する外側支柱の複数の群を含み得ることが認識される。更に、単位セル構造体のいくつかは、整形外科用インプラントの多孔質三次元構造体の他の単位セル構造体によって取り囲まれ得るか、又は他の方法でそれらに対して内側に配設され得る。結果として、単位セル構造体が組み合わされて多孔質三次元構造体を画成するとき、特定の単位セル構造体の外側支柱は、隣接する単位セル構造体の外側支柱を画定することができる。更に、単位セル構造体が、第2の幾何学的又は有機構造体を画定する内側支柱を含む場合、特定の単位セル構造体の内側支柱は、隣接する単位セル構造体の外側支柱を画定することができることが認識される。逆に、特定の単位セル構造体の外側支柱は、隣接する単位セル構造体の内部構造体を画定することができる。したがって、整形外科用インプラントの多孔質三次元構造体における支柱の任意の好適な組み合わせは、外側支柱から外側に配置されるか、又は外側支柱から延在する他の支柱が存在するかどうかに関係なく、本明細書に記載のタイプの外側支柱を画定することができる。同様に、整形外科用インプラントの多孔質三次元構造体における支柱の任意の好適な組み合わせは、それぞれの外側支柱から内側ノードまで延在する本明細書に記載のタイプの内側支柱を画定することができる。いくつかの実施例では、単位セル構造体は、外側ノードを画定する外側支柱からなるか、又は本質的にそれらからなり得る。他の実施例では、単位セル構造体は、外側ノードを画定する外側支柱、及び内側ノードを画定する内側支柱からなり得るか、又は本質的にそれらからなり得る。
【0120】
製造プロセス
上記の多孔質三次元金属構造体は、様々な異なる積層造形技術を使用して作製され得る。例えば、様々な実施形態によれば、多孔質三次元構造体120を製造するための方法は、金属粉末の連続層をビームで堆積及び走査することを含む。ビーム(又は走査ビーム)は、電子ビームであり得る。ビーム(又は走査ビーム)は、レーザビームであり得る。
【0121】
本明細書に記載される様々な方法に関して、金属粉末を焼結して多孔質三次元構造体を形成することができる。あるいは、金属粉末を溶融させて、多孔質三次元構造体を形成することができる。金属粉末の連続した層は、中実基部上に堆積させることができる(基部に関する説明について上記を参照されたい)。様々な実施形態では、使用することができる金属粉末の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブ粉末が挙げられるが、これらに限定されない。
【0122】
本明細書に記載される様々な方法に関して、幾何学的特性は、多孔度、細孔サイズ、最小開口サイズ、及びこれらの組み合わせからなる群から選択することができる。多孔度は、約20%~約95%であり得る。多孔度はまた、約40%~約80%であり得る。多孔度はまた、約50%~約75%であり得る。更に、支柱長さは、複数の支柱の平均支柱長さの約25%~約175%に変更することができる。個々の格子支柱長さはまた、例えば、複数の外側支柱の平均支柱長さの約50%~約150%であるように変更することもできる。個々の外側支柱長さはまた、例えば、複数の外側支柱の平均支柱長さの約75%~約125%であるように変更することもできる。更に、単位セルは、第1の幾何学的構造体の細孔サイズよりも小さい細孔サイズを有し得る。更に、単位セルは、複数の第2の幾何学的構造体の各々の窓サイズよりも大きい窓サイズを有することができる。
【0123】
記載された様々な方法に関して、第1の幾何学的構造体は、菱形十二面体であり得る。第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。更に、少なくとも1つの単位セルは、第1の幾何学的構造体内に4つの三角面偏方多面体の幾何学的構造体を含むことができる。
【0124】
様々な実施形態では、多孔質三次元構造体を製造するための方法が提供され、この方法は、所定の速度で金属粒子の流れを基部に適用して、複数の単位セルを含みかつ所定の幾何学的特性を有する多孔質三次元構造体を形成することを含み、各単位セルは、複数の外側支柱と複数の内側支柱とを含む。各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内の複数の内側支柱から形成された複数の第2の幾何学的構造体と、を含み得る。様々な実施形態では、使用することができる金属粒子の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブ粒子が挙げられるが、これらに限定されない。
【0125】
所定の速度は、基部に衝撃を与えると、金属粒子が結合するのに必要な臨界速度であり得る。臨界速度は、340m/sよりも大きい。
【0126】
方法は、金属粒子の流れが衝突する基部の領域上に所定の電力設定でレーザを適用することを更に含むことができる。
【0127】
第1の幾何学的構造体は、菱形十二面体であり得る。いくつかの実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。いくつかの実施形態では、八面体は、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することができる。この場合、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0128】
様々な実施形態によれば、多孔質三次元構造体を製造するための方法が提供され、この方法は、金属ワイヤの連続したフィードを基部表面上に導入することと、金属ワイヤが基部表面に接触する領域に所定の電力設定でビームを適用して、複数の単位セルを含み、かつ所定の幾何学的特性を有する多孔質三次元構造体を形成することと、を含む。各単位セルは、複数の外側支柱と複数の内側支柱とを含むことができ、各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内の複数の内側支柱から形成された複数の第2の幾何学的構造体と、を含み得る。ビーム(又は走査ビーム)は、電子ビームであり得る。ビーム(又は走査ビーム)は、レーザビームであり得る。様々な実施形態では、使用することができる金属ワイヤの種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブワイヤが挙げられるが、これらに限定されない。
【0129】
第1の幾何学的構造体は、菱形十二面体であり得る。いくつかの実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。いくつかの実施形態では、八面体は、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することができる。すなわち、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0130】
様々な実施形態によれば、多孔質三次元構造体を製造するための方法が提供され、この方法は、金属要素に埋め込まれたポリマー材料の連続したフィードを基部表面上に導入することを含む。本方法は、ポリマー材料が基部表面に接触する領域に熱を適用して、複数の単位セルを含み、かつ所定の幾何学的特性を有する多孔質三次元構造体を形成することを更に含み得る。各単位セルは、複数の外側支柱と複数の内側支柱とを含み得る。各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内のいくつかの内側支柱といくつかの外側支柱とから形成された複数の第2の幾何学的構造体と、を含む。金属要素は、金属粉末であり得る。様々な実施形態では、ポリマー材料の連続したフィードは、加熱されたノズルを通して供給することができ、したがって、ポリマー材料が基部表面に接触して多孔質三次元構造体を形成する領域に熱を適用する必要がなくなる。様々な実施形態では、ポリマー材料を埋め込むために使用することができる金属要素の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブを挙げることができるが、これらに限定されない。
【0131】
方法は、多孔質三次元構造体をビームで走査してポリマー材料を焼き切ることを更に含み得る。ビーム(又は走査ビーム)は、電子ビームであり得る。ビーム(又は走査ビーム)は、レーザビームであり得る。
【0132】
第1の幾何学的構造体は、菱形十二面体であり得る。様々な実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。様々な実施形態では、八面体は、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することができる。すなわち、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0133】
様々な実施形態によれば、多孔質三次元構造体を製造するための方法が提供され、この方法は、ノズルを通して金属スラリーを基部表面に導入して、複数の単位セルを含み、かつ所定の幾何学的特性を有する多孔質三次元構造体を形成することを含む。各単位セルは、複数の外側支柱と複数の内側支柱とを含み得る。各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内のいくつかの内側支柱といくつかの外側支柱とから形成された複数の第2の幾何学的構造体と、を含み得る。様々な実施形態では、ノズルは、金属スラリーの金属要素を基部表面に結合するために必要な温度で加熱される。様々な実施形態では、金属スラリーは、製造プロセス又は多孔質三次元構造体の性能を改善するために、1つ又は2つ以上の添加剤(液体又は固体)と共に金属粒子を含有する水性懸濁液である。様々な実施形態では、金属スラリーは、製造プロセス又は多孔質三次元構造体の性能を改善するために、1つ又は2つ以上の添加剤(液体又は固体)と共に金属粒子を含有する有機溶媒懸濁液である。様々な実施形態では、金属スラリーに利用することができる金属粒子の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブ粒子が挙げられるが、これらに限定されない。
【0134】
第1の幾何学的構造体は、菱形十二面体であり得る。いくつかの実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。様々な実施形態では、八面体は、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することができる。すなわち、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0135】
様々な実施形態によれば、多孔質三次元構造体を製造するための方法が提供され、この方法は、溶融金属の連続した層を基部表面に導入して、複数の単位セルを含み、かつ所定の幾何学的特性を有する多孔質三次元構造体を形成することを含む。各単位セルは、複数の外側支柱と複数の内側支柱とを含み得る。各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内の複数の内側支柱といくつかの外側支柱とから形成された複数の第2の幾何学的構造体と、を含み得る。更に、溶融金属は、基部表面上に連続した流れとして導入することができる。溶融金属はまた、別個の溶融金属液滴の流れとして基部表面上に導入することもできる。様々な実施形態では、使用することができる溶融金属の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブが挙げられるが、これらに限定されない。
【0136】
第1の幾何学的構造体は、菱形十二面体であり得る。様々な実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。様々な実施形態では、八面体は、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することができる。すなわち、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0137】
様々な実施形態によれば、多孔質三次元構造体を製造するための方法が提供され、この方法は、金属要素に埋め込まれた感光性ポリマーの連続した層を基部表面に適用し、これを光活性化して、複数の単位セルを含み、かつ所定の幾何学的特性を有する多孔質三次元構造体を形成することを含む。各単位セルは、複数の外側支柱と複数の内側支柱とを含み得る。各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内の複数の内側支柱といくつかの外側支柱とから形成された複数の第2の幾何学的構造体と、を含み得る。様々な実施形態では、ポリマー材料を埋め込むために使用することができる金属要素の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブを挙げることができるが、これらに限定されない。
【0138】
第1の幾何学的構造体は、菱形十二面体であり得る。いくつかの実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。いくつかの実施形態では、八面体は、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することができる。すなわち、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0139】
様々な実施形態によれば、多孔質三次元構造体を製造するための方法が提供され、この方法は、金属粉末の連続した層を堆積させ結合剤材料で結合して、複数の単位セルを含み、かつ所定の幾何学的特性を有する多孔質三次元構造体を形成することを含む。各単位セルは、複数の外側支柱と複数の内側支柱とを含み得る。各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内の複数の内側支柱といくつかの外側支柱とから形成された複数の第2の幾何学的構造体と、を含み得る。様々な実施形態では、使用することができる金属粉末の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブ粉末が挙げられるが、これらに限定されない。
【0140】
本方法は、結合した金属粉末をビームで焼結することを更に含み得る。ビーム(又は走査ビーム)は、電子ビームであり得る。ビーム(又は走査ビーム)は、レーザビームであり得る。
【0141】
本方法は、結合した金属粉末をビームで溶融することを更に含み得る。ビーム(又は走査ビーム)は、電子ビームであり得る。ビーム(又は走査ビーム)は、レーザビームであり得る。
【0142】
第1の幾何学的構造体は、菱形十二面体であり得る。いくつかの実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。いくつかの実施形態では、八面体はまた、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することもできる。すなわち、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0143】
様々な実施形態によれば、多孔質三次元構造体を製造するための方法が提供され、この方法は、金属材料の液滴を基部表面上に堆積させることと、金属材料が基部表面に接触する領域に熱を適用して、複数の単位セルを含み、かつ所定の幾何学的特性を有する多孔質三次元構造体を形成することと、を含む。各単位セルは、複数の外側支柱と複数の内側支柱とを含み得る。各単位セルは、複数の外側支柱を含む第1の幾何学的構造体と、第1の幾何学的構造体内の複数の内側支柱といくつかの外側支柱とから形成された複数の第2の幾何学的構造体と、を含み得る。ビーム(又は走査ビーム)は、電子ビームであり得る。ビーム(又は走査ビーム)は、レーザビームであり得る。様々な実施形態では、使用することができる金属材料の種類としては、チタン、チタン合金、ステンレス鋼、コバルトクロム合金、タンタル、又はニオブが挙げられるが、これらに限定されない。
【0144】
金属材料の堆積した液滴は、金属要素が埋め込まれた金属スラリーであり得る。金属材料は、金属粉末であり得る。
【0145】
第1の幾何学的構造体は、菱形十二面体であり得る。いくつかの実施形態では、第2の幾何学的構造体の各々は、三角面偏方多面体であり得る。すなわち、4つの三角面偏方多面体は、4つの支柱を第1の幾何学的構造体内に挿入することによって形成することができる。いくつかの実施形態では、八面体は、例えば、8つの内側支柱を第1の幾何学的構造体内に挿入することによって形成することができる。すなわち、6つの八面体幾何学的構造体を、第1の幾何学的構造体内に設けることができる。
【0146】
本明細書では、特定の実施形態及びその用途について説明してきたが、これらの実施形態及び用途は例示的なものに過ぎず、多くの変形が可能である。
【0147】
本教示は、様々な実施形態と共に記載されるが、本教示はそのような実施形態に限定されることを意図するものではない。それとは対照的に、本教示は、当業者に理解されるように、様々な代替物、修正物、及び等価物を包含する。
【0148】
更に、様々な実施形態を記載する際に、本明細書は、特定の一連の工程として方法及び/又はプロセスを提示し得る。しかしながら、方法又はプロセスが本明細書に記載される工程の特定の順序に依存しない限り、方法又はプロセスは、記載される特定の一連の工程に限定されるべきではない。当業者には理解されるように、他の一連の工程が可能であり得る。したがって、本明細書中に記載される工程の特定の順序は、特許請求の範囲の制限として解釈されるべきではない。更に、方法及び/又はプロセスを対象とした特許請求の範囲は、書かれた順序における工程の実行に限定されるべきではない、また当業者は順序が変化し得るものであってかつ様々な実施形態の趣旨及び範囲内に依然留まり得ることを容易に認識できる。
【0149】
〔実施の態様〕
(1) 植え込み可能な装置であって、
患者の体内に植え込まれるように成形された多孔質三次元構造体であって、複数の相互連結された有機単位セルを含み、各有機単位セルは、
複数の外側支柱であって、3つの外側支柱のそれぞれの群が、それぞれの複数の外側ノードを画定するように交差している、複数の外側支柱と、
複数の内側支柱であって、各内側支柱は、前記外側ノードのうちの異なるそれぞれの外側ノードから延在し、前記内側支柱は、内側ノードを画定するように交差している、複数の内側支柱と、を含む、多孔質三次元構造体、を含み、
前記複数の外側ノードが、3つの外側支柱の第1の群の交点によって画定された第1の外側ノードと、3つの外側支柱の第2の群の交点によって画定された第2の外側ノードとを含み、
前記支柱に沿った前記第1の外側ノードから前記第2の外側ノードまでの最短経路が、前記複数の外側ノードのうちの3つの中間外側ノードのみを含み、
直線仮想線が、前記第1の外側ノード及び前記第2の外側ノードを通って延びており、前記内側ノードが、前記直線仮想線からオフセットされている、植え込み可能な装置。
(2) 前記外側支柱のそれぞれが、その長さの全体に沿って一定の厚さを有する、実施態様1に記載の植え込み可能な装置。
(3) 前記内側支柱のそれぞれが、その長さの全体に沿って一定の厚さを有する、実施態様1に記載の植え込み可能な装置。
(4) 前記外側支柱のうちの少なくとも1つが、その長さに沿って湾曲している、実施態様1に記載の植え込み可能な装置。
(5) 前記内側支柱のうちの少なくとも1つが、その長さに沿って湾曲している、実施態様1に記載の植え込み可能な装置。
【0150】
(6) 前記外側支柱の全てが、前記外側ノードのそれぞれの対から、また、前記外側ノードのそれぞれの対へと、それぞれの長さに沿って延在し、前記外側支柱の少なくともいくつかの前記長さは互いに異なっている、実施態様1に記載の植え込み可能な装置。
(7) 前記内側支柱及び前記外側支柱の全てが、それらのそれぞれの長さの全体に沿って実質的に真っ直ぐである、実施態様1に記載の植え込み可能な装置。
(8) 約50%~約75%の多孔度を有する、実施態様1に記載の植え込み可能な装置。
(9) 前記単位セルによってそれぞれ画定されたいくつかの細孔を含み、前記細孔の14.3パーセント未満が、0.1mm未満の細孔サイズを有する、実施態様1に記載の植え込み可能な装置。
(10) 前記細孔の50パーセントが、約0.2mm~約0.7mmの範囲の細孔サイズを有する、実施態様9に記載の植え込み可能な装置。
【0151】
(11) 前記外側支柱が協働していくつかの外側開口部を画定し、前記内側支柱がいくつかの前記外側支柱と協働していくつかの内側開口部を形成し、前記多孔質三次元構造体が、対応する前記外側開口部及び前記内側開口部内に位置付けられた円の直径として定義される窓サイズを画定し、これにより、前記外側開口部及び前記内側開口部をそれぞれ画定する前記支柱はそれぞれ、前記円の接線上に位置付けられるようになっており、前記植え込み可能な装置が、前記単位セルによってそれぞれ画定されたいくつかの細孔を含み、前記細孔は、1.00~2.90の範囲内である、それらのそれぞれの細孔サイズの、その窓サイズのいずれかに対する比を規定する、実施態様10に記載の植え込み可能な装置。
(12) 前記内側ノードが、前記外側ノードに対して内部にある前記多孔質三次元構造体の唯一の内側ノードである、実施態様1に記載の植え込み可能な装置。
(13) 前記内側支柱の全てが、前記内側ノードで交差している、実施態様1に記載の植え込み可能な装置。
(14) 各有機単位セルが、第1の半分と、前記有機単位セル構造体を二分する平面によって前記第1の半分から分離された第2の半分とを画定し、前記平面の全ての向きに関して、1)前記有機単位セル構造体の前記第1の半分の前記外側ノードの少なくともいくつかが、対応する幾何学的単位セル構造体の対応する外側ノードに対して第1の向きに再配置されており、2)前記有機単位セル構造体の前記第2の半分の前記外側ノードの少なくともいくつかが、前記対応する幾何学的単位セル構造体の対応する外側ノードに対して、前記第1の方向とは異なる第2の方向に再配置されている、実施態様1に記載の植え込み可能な装置。
(15) 対応する幾何学的菱形三角面偏方多面体(geometric rhombic trigonal trapezohedron)よりも大きい延性を有する有機菱形三角面偏方多面体(organic rhombic trigonal trapezohedron)を更に含む、実施態様1~14のいずれかに記載の植え込み可能な装置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12A
図12B
図12C
図13A
図13B
図13C
図13D
図13E
図14
図15