IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テルモ カーディオバスキュラー システムズ コーポレイションの特許一覧

特許7604590ステッピングモータ駆動システム及びチュービングオクルーダーシステム
<>
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図1
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図2
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図3
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図4
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図5
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図6
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図7
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図8
  • 特許-ステッピングモータ駆動システム及びチュービングオクルーダーシステム 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-13
(45)【発行日】2024-12-23
(54)【発明の名称】ステッピングモータ駆動システム及びチュービングオクルーダーシステム
(51)【国際特許分類】
   H02P 8/12 20060101AFI20241216BHJP
   A61M 60/113 20210101ALI20241216BHJP
   A61M 60/232 20210101ALI20241216BHJP
   A61M 60/279 20210101ALI20241216BHJP
   A61M 1/36 20060101ALI20241216BHJP
【FI】
H02P8/12
A61M60/113
A61M60/232
A61M60/279
A61M1/36 107
【請求項の数】 4
【外国語出願】
(21)【出願番号】P 2023163192
(22)【出願日】2023-09-26
(62)【分割の表示】P 2022544762の分割
【原出願日】2021-01-12
(65)【公開番号】P2023179567
(43)【公開日】2023-12-19
【審査請求日】2023-10-23
(31)【優先権主張番号】16/777,533
(32)【優先日】2020-01-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500204326
【氏名又は名称】テルモ カーディオバスキュラー システムズ コーポレイション
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】ジェームズ・ブラッドリー・アサートン
【審査官】保田 亨介
(56)【参考文献】
【文献】特開平05-056693(JP,A)
【文献】特開2012-248095(JP,A)
【文献】特開2008-182783(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M1/00-1/38
60/00-60/90
H02P8/00-8/42
(57)【特許請求の範囲】
【請求項1】
電気駆動システムであって、
第1の電気負荷の第1の負荷入力に電気的に接続するように構成された第1の電力出力ポートと、
前記第1の電気負荷の第1の負荷出力に電気的に接続するように構成された第1の電力入力ポートと、
第2の電気負荷の第2の負荷入力に電気的に接続するように構成された第2の電力出力ポートと、
前記第2の電気負荷の第2の負荷出力に電気的に接続するように構成された第2の電力入力ポートと、
前記第1の電力入力ポートと前記第2の電力出力ポートとの間で電気通信状態にある第1のスナバ回路と、
前記第2の電力入力ポートと前記第1の電力出力ポートとの間で電気通信状態にある第2のスナバ回路と、を備え、
前記第1のスナバ回路は、第1の抵抗器と、前記第1の抵抗器と直列電気接続状態にある第1のダイオードと、を備え、前記第1のダイオードは、前記第1の電力入力ポートから前記第2の電力出力ポートへ電流を通し、前記第2の電力出力ポートから前記第1の電力入力ポートへの電流の流れを防止するように構成されており、
前記第2のスナバ回路は、第2の抵抗器と、前記第2の抵抗器と直列電気接続状態にある第2のダイオードと、を備え、前記第2のダイオードは、前記第2の電力入力ポートから前記第1の電力出力ポートへ電流を通し、前記第1の電力出力ポートから前記第2の電力入力ポートへの電流の流れを防止するように構成されている、電気駆動システム。
【請求項2】
電気駆動システムであって、
第1の電気負荷の第1の負荷入力に電気的に接続するように構成された第1の電力出力ポートと、
前記第1の電気負荷の第1の負荷出力に電気的に接続するように構成された第1の電力入力ポートと、
第2の電気負荷の第2の負荷入力に電気的に接続するように構成された第2の電力出力ポートと、
前記第2の電気負荷の第2の負荷出力に電気的に接続するように構成された第2の電力入力ポートと、
前記第1の電力入力ポートと前記第2の電力出力ポートとの間で電気通信状態にある第1のスナバ回路と、
前記第2の電力入力ポートと前記第1の電力出力ポートとの間で電気通信状態にある第2のスナバ回路と、を備え、
電力バスと、前記電力バスから前記第1の電力出力ポートへ電流を通すように構成された第1のダイオードと、前記電力バスから前記第2の電力出力ポートへ電流を通すように構成された第2のダイオードと、を更に備える、電気駆動システム。
【請求項3】
前記第1の電気負荷及び前記第2の電気負荷のうちの少なくとも1つは、誘導性電気負荷である、請求項1又は2に記載の電気駆動システム。
【請求項4】
前記第1の電気負荷は、ステッピングモータの第1の巻線であり、前記第2の電気負荷は、前記ステッピングモータの第2の巻線である、請求項1から3のいずれか一項に記載の電気駆動システム。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本開示は、2020年1月30日に出願された米国特許出願第16/777,533号の優先権及び利益を主張し、その全体が参照により本明細書に組み込まれる。
【技術分野】
【0002】
本文書は、例えば、人工心肺装置に関連してオクルーダー装置のステッピングモータを駆動するために使用され得る、ステッピングモータ駆動システムに関する。
【背景技術】
【0003】
中空ファイバ酸素供給器は、心肺バイパス手術等の医療処置中に患者のガス交換の必要性を満たすために、体外循環回路内で利用される。患者からの血液は、重力排出されるか、又はリザーバ内に十分な容量を維持するために必要な流量を得るために、VAVD(陰圧吸引補助脱血法)が使用されるかのいずれかである。時として、磁気駆動システムと結合された蠕動ポンプ又は遠心ポンプ等のポンプが、リザーバから血液を送り出し、酸素供給器を通して、最終的に患者に戻すために、回路の主ラインにおいて使用される。そのようなラインを通る流れは、手動でラインを挟むことによって、又はオクルーダー等の機構の使用を通じて等、ラインを調整可能に制限することによって制御され得る。いくつかのオクルーダーは、ステッピングモータによって駆動される。
【0004】
ステッピングモータは、一般に、電磁コイルの集合体を含むブラシレス直流(DC)モータである。これらのコイルは、モータの回転子を、回転を等間隔に細分化して、即ち、「ステップ」単位で回転させるように、通電(energized)及び非通電され得る。コイルは、制御装置又は外部ドライバ回路によって通電及び非通電される。モータシャフトを回転させるために、コイルに電力が与えられ、これは、回転子を磁気的に引き付ける。回転子が第1の電磁石に位置合わせされると、次のコイルがオンにされ、第1のコイルがオフにされ、回転子がわずかに回転して、次のコイルに位置合わせされる。次いで、このプロセスは、回転子を選択された速度で選択された位置又は回転距離まで制御及び回転させるために、繰り返され得る。
【発明の概要】
【0005】
本文書は、例えば、人工心肺装置に関連してオクルーダー装置のステッピングモータを駆動するために使用され得る、ステッピングモータ駆動システムを説明する。本明細書で説明されるステッピングモータ駆動システムはまた、ステッピングモータが使用される他の多くのコンテキストにおいても有益に使用され得る。
【0006】
一態様では、本開示は、チューブを解放可能に受容するように構成されたチューブクランプ装置と、第1の巻線及び第2の巻線を有し、チューブクランプ装置によってチューブに加えられる圧縮量を調整するように配置されたステッピングモータと、ステッピングモータに電気的に結合され、且つ、第1の巻線の第1の巻線入力に電気的に接続するように構成された第1の巻線出力ポートと、第1の巻線の第1の巻線出力に電気的に接続するように構成された第1の巻線入力ポートと、第2の巻線の第2の巻線入力に電気的に接続するように構成された第2の巻線出力ポートと、第2の巻線の第2の巻線出力に電気的に接続するように構成された第2の巻線入力ポートと、第1の巻線入力ポートと第2の巻線出力ポートとの間で電気通信状態にある第1のスナバ回路と、第2の巻線入力ポートと第1の巻線出力ポートとの間で電気通信状態にある第2のスナバ回路と、を含む駆動システムと、を含むチューブオクルーダーシステムに向けられる。
【0007】
いくつかの実施形態では、システムは、以下の特徴のうちのいくつか若しくは全てを含み得るか、又はいずれも含み得ない。第1のスナバ回路は、第1の抵抗器と、第1の抵抗器と直列電気接続状態にある第1のダイオードと、を含み得、第1のダイオードは、第1の巻線入力ポートから第2の巻線出力ポートへ電流を通し、第2の巻線出力ポートから第1の巻線入力ポートへの電流の流れを防止するように構成されている。第2のスナバ回路は、第2の抵抗器と、第2の抵抗器と直列電気接続状態にある第2のダイオードと、を含み得、第2のダイオードは、第2の巻線入力ポートから第1の巻線出力ポートへ電流を通し、第1の巻線出力ポートから第2の巻線入力ポートへの電流の流れを防止するように構成されている。チューブオクルーダーシステムはまた、電力バスと、電力バスから第1の巻線出力ポートへ電流を通すように構成された第1のダイオードと、電力バスから第2の巻線出力ポートへ電流を通すように構成された第2のダイオードと、を含み得る。チューブオクルーダーシステムはまた、低電位電力バスと、低電位電力バスに第1の巻線入力ポートを制御可能に接続するように構成された第1のスイッチと、低電位電力バスに第2の巻線入力ポートを制御可能に接続するように構成された第2のスイッチと、第1の巻線入力ポートから低電位電力バスへの電流の流れを制限することと、第2の巻線入力ポートから低電位電力バスへの電流の流れを制限することと、を行うように構成された少なくとも1つの抵抗器と、を含み得る。
【0008】
別の態様では、ステッピングモータにおいてエネルギーを再循環させる方法が、電力バスにおいて第1の出力及び第2の出力に電力を供給することと、第1の出力に電気的に接続された第1の電気負荷に電力を流すことと、第1の電気負荷から低電位バスへの電力の流れを遮断するように、第1のスイッチを切り替えることと、電力バスからの電力が、第2の出力から、第2の出力に電気的に接続された第2の電気負荷を通って、低電位バスへ流れることを許可するように、第2のスイッチを切り替えることと、第1のスナバ回路によって、第1の電気負荷からの電力の流れを、第2の出力へと向かわせることと、第2の電気負荷から低電位バスへの電力の流れを遮断するように、第2のスイッチを切り替えることと、電力バスからの電力が、第1の出力から、第1の電気負荷を通って、低電位バスへ流れることを許可するように、第1のスイッチを切り替えることと、第2のスナバ回路によって、第2の電気負荷からの電力の流れを、第1の出力へと向かわせることと、を含み得る。方法はまた、第1のスナバ回路から電力バスへの電流の逆流を防止することと、第2のスナバ回路から電力バスへの電流の逆流を防止することと、を含み得る。第1のスナバ回路は、第1の抵抗器と、第1の抵抗器と直列電気接続状態にある第1のダイオードと、を含み得、ここにおいて、第1のスナバ回路によって、第1の電気負荷からの電力の流れを、第2の出力へと向かわせることは、第1のダイオードによって、第1の入力における第1の電気負荷から第2の出力への電力の流れを許可することと、第1のダイオードによって、第2の出力から第1の入力への電力の流れを防止することと、を含み得る。第2のスナバ回路は、第2の抵抗器と、第2の抵抗器と直列電気接続状態にある第2のダイオードと、を含み得、ここにおいて、第2のスナバ回路によって、第2の電気負荷からの電力の流れを、第1の出力へと向かわせることは、第2のダイオードによって、第2の入力における第2の電気負荷から第1の出力への電力の流れを許可することと、第2のダイオードによって、第1の出力から第2の入力への電力の流れを防止することと、を含み得る。第1の電気負荷は、第1の誘導性電気負荷を含み得、第2の電気負荷は、第2の誘導性電気負荷を含み得、電力バスからの電力が、第1の出力から、第1の電気負荷を通って、低電位バスへ流れることを許可するように、第1のスイッチを切り替えることは、第1の誘導性電気負荷に通電することを含み得、電力バスからの電力が、第2の出力から、第2の出力に電気的に接続された第2の電気負荷を通って、低電位バスへ流れることを許可するように、第2のスイッチを切り替えることは、第2の誘導性電気負荷に通電することを含み得る。第1の電気負荷から第1の出力への電力の流れは、第1の誘導性電気負荷のインダクタンスによって生じる電流の流れを少なくとも部分的に含み得、第2の電気負荷から第2の出力への電力の流れは、第2の誘導性電気負荷のインダクタンスによって生じる電流の流れを少なくとも部分的に含み得る。第1の電気負荷は、ステッピングモータの第1の巻線を含み得、第2の電気負荷は、ステッピングモータの第2の巻線を含み得る。電力バスからの電力が、第1の出力から、第1の電気負荷を通って、低電位バスへ流れることを許可するように、第1のスイッチを切り替えることは、第1の巻線に通電することを含み得、電力バスからの電力が、第2の出力から、第2の出力に電気的に接続された第2の電気負荷を通って、低電位バスへ流れることを許可するように、第2のスイッチを切り替えることは、第2の巻線に通電することを含み得る。方法はまた、第1の方向へのステッピングモータの回転を促すように、第1のスイッチ及び第2のスイッチを制御可能に切り替えることと、ステッピングモータによって、チューブを解放可能に受容するように構成されたチューブクランプ装置を作動させることと、作動に基づいて、チューブクランプ装置によってチューブに加えられる圧縮量を調整することと、を含み得る。
【0009】
別の態様では、電気駆動システムが、第1の電気負荷の第1の負荷入力に電気的に接続するように構成された第1の電力出力ポートと、第1の電気負荷の第1の負荷出力に電気的に接続するように構成された第1の電力入力ポートと、第2の電気負荷の第2の負荷入力に電気的に接続するように構成された第2の電力出力ポートと、第2の電気負荷の第2の負荷出力に電気的に接続するように構成された第2の電力入力ポートと、第1の負荷入力ポートと第2の負荷出力ポートとの間で電気通信状態にある第1のスナバ回路と、第2の負荷入力ポートと第1の負荷出力ポートとの間で電気通信状態にある第2のスナバ回路と、を含む。
【0010】
様々な実施形態は、以下の特徴のうちのいくつか若しくは全てを含み得るか、又はいずれも含み得ない。第1のスナバ回路は、第1の抵抗器と、第1の抵抗器と直列電気接続状態にある第1のダイオードと、を含み得、第1のダイオードは、第1の負荷入力ポートから第2の負荷出力ポートへ電流を通し、第2の負荷出力ポートから第1の負荷入力ポートへの電流の流れを防止するように構成されており、第2のスナバ回路は、第2の抵抗器と、第2の抵抗器と直列電気接続状態にある第2のダイオードと、を含み得、第2のダイオードは、第2の負荷入力ポートから第1の負荷出力ポートへ電流を通し、第1の負荷出力ポートから第2の負荷入力ポートへの電流の流れを防止するように構成されている。システムはまた、電力バスと、電力バスから第1の負荷出力ポートへ電流を通すように構成された第1のダイオードと、電力バスから第2の負荷出力ポートへ電流を通すように構成された第2のダイオードと、を含み得る。システムはまた、低電位電力バスと、低電位電力バスに第1の負荷入力ポートを制御可能に接続するように構成された第1のスイッチと、低電位電力バスに第2の負荷入力ポートを制御可能に接続するように構成された第2のスイッチと、第1の負荷入力ポートから低電位電力バスへの電流の流れを制限することと、第2の負荷入力ポートから低電位電力バスへの電流の流れを制限することと、を行うように構成された少なくとも1つの抵抗器と、を含み得る。第1の電気負荷及び第2の電気負荷のうちの少なくとも1つが、誘導性電気負荷であってよい。第1の電気負荷は、ステッピングモータの第1の巻線であり得、第2の電気負荷は、ステッピングモータの第2の巻線であってよい。
【0011】
本文書で説明される技術は、1つ以上の利益を提供するために使用され得る。例えば、現行のシステムと比較して、本明細書で説明されるステッピングモータ駆動システムは、ステッピングモータに、最高速度まで加速するとき等に、より速い応答を呈させる。例えば、場合によっては、ステッピングモータが最高速度に達するのに必要な時間は、本明細書で説明されるステッピングモータ駆動システムを使用すると、現行のシステムと比較して約10倍速くなり得る。
【0012】
追加として、本明細書で説明されるステッピングモータ駆動システムは、現行のシステムよりもエネルギー効率が高い。換言すれば、本明細書で説明されるステッピングモータ駆動システムは、現行のシステムよりも少ない電気エネルギーを使用し、より少ないエネルギーを熱として放散する。
【0013】
追加として、本明細書で説明されるステッピングモータ駆動システムは、現行のシステムよりも電気的及び機械的にノイズが少ない。換言すれば、本明細書で説明されるステッピングモータ駆動システムは、より少ない電流リップル、より少ないトルクリップルを生じ、より低い必要動作電圧及び電流を有し、改善された電磁両立性を有する。
【0014】
別段の定義がない限り、本明細書で使用される全ての技術用語及び科学用語は、本発明が関連する技術分野の当業者によって一般的に理解されるものと同じ意味を有する。本明細書で説明されるものと類似又は同等の方法及び材料が、本発明を実施するために使用され得るが、好適な方法及び材料が、本明細書で説明される。本明細書で言及される全ての刊行物、特許出願、特許、及び他の参考文献は、その全体が参照により組み込まれる。矛盾が生じた場合、定義を含めて本明細書が優先されることになる。加えて、材料、方法、及び例は、例示にすぎず、限定することを意図しない。
【0015】
本発明の1つ以上の実施形態の詳細は、添付の図面及び本明細書の説明に記載されている。本発明の他の特徴、目的、及び利点は、説明及び図面、並びに特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0016】
図1図1は、本明細書で提供されるいくつかの実施形態による体外循環回路を使用してサポートされながら、開心術を受けている患者の概略図である。
図2図2は、いくつかの実施形態による、人工心肺装置及びチューブオクルーダー装置の一部を例示する。
図3図3は、先行技術のステッピングモータの概略図である。
図4図4は、先行技術のモータドライバ回路の概略図である。
図5図5は、いくつかの実施形態による、例となるモータドライバ回路の概略図である。
図6図6は、いくつかの実施形態による、例となるモータドライバ電気波形のチャートである。
図7図7は、いくつかの実施形態による、例となるモータドライバ電気波形のチャートである。
図8図8は、いくつかの実施形態による、例となるモータドライバ電気波形のチャートである。
図9図9は、いくつかの実施形態による、例となるプロセスの流れ図である。
【発明を実施するための形態】
【0017】
同様の参照番号は、全体を通して対応する部分を表す。
【0018】
本文書は、例えば、人工心肺装置に関連してチューブオクルーダーシステム及び装置のステッピングモータを駆動するために使用され得る、ステッピングモータ駆動システムを説明する。本明細書で説明されるステッピングモータ駆動システムはまた、ステッピングモータが使用される他の多くのコンテキストにおいても有益に使用され得る。
【0019】
図1に示されるように、患者10が生命維持心肺バイパス機械システム100に接続されている間、様々なタイプの医療処置が、患者10に対して行われ得る。この例では、患者10は、開心術を受けており、その間、患者10の心臓12及び肺は、一時的に意図的に機能を停止させられる。しかしながら、患者10の身体は、医療処置の間、循環する酸素化された血液の供給を受ける代謝要求を有し続けるので、心肺バイパス機械システム100は、そのような機能を果たす。即ち、以下で更に説明されるように、心肺バイパス機械システム100は、患者10に接続され、患者10が、開心術の間、生きて健康なままであるように、患者10の心臓12及び肺の機能を果たす。心肺バイパス機械システム100は、多くの異なるタイプの医療処置に使用され得る。例えば、心肺バイパス機械システム100が使用され得る医療処置は、限定はしないが、冠動脈バイパス移植、心臓弁修復、心臓弁置換、心臓移植、肺移植、アブレーション処置、中隔欠損の修復、先天性心臓欠陥の修復、動脈瘤の修復、肺動脈内膜摘除、肺血栓切除等を含む。
【0020】
図示される例では、心肺バイパス機械システム100は、人工心肺装置110、体外循環回路120、1つ以上の温度制御システム130、血液監視システム140、灌流データ管理システム150、及び局所酸素測定システム160等の、構成要素及びサブシステムを含む。心肺バイパス機械システム100を使用するいくつかのタイプの処置は、示される構成要素及びサブシステムの全てを必要とするとは限らない場合がある。心肺バイパス機械システム100を使用するいくつかのタイプの処置は、示されていない追加の構成要素及び/又はサブシステムを必要とし得る。
【0021】
体外循環回路120は、患者10と、人工心肺装置110とに接続される。温度制御システム130、血液監視システム140、及び灌流データ管理システム150等の他のシステムもまた、体外循環回路120とインターフェースするように配置され得る。体外循環回路120は、患者の心臓12において患者10に接続される。患者10からの酸素を使い果たした血液(静脈血)は、静脈カテーテル121を使用して、患者の心臓12において患者10から抽出される。以下で更に説明されるように、血液は、体外循環回路120を通って循環されて、酸素を受け取り、二酸化炭素を除去する。次いで、酸素化された血液は、体外循環回路120を通って、大動脈カニューレ129を介して患者の心臓12に戻される。
【0022】
体外循環回路120は、少なくとも、静脈カテーテル121に結合された静脈チューブ122と、血液リザーバ123と、遠心ポンプ124と、酸素供給器125と、動脈フィルタ126と、1つ以上の気泡検出器128と、大動脈カニューレ129に結合された動脈チューブ127と、を含み得る。静脈カテーテル121及び静脈チューブ122は、患者10の循環系の静脈側と流体連通している。静脈チューブ122はまた、リザーバ123への入口とも流体連通している。リザーバ123からの出口は、チュービングによってポンプ124の入口に接続される。ポンプ124の出口は、チュービングによって酸素供給器125の入口に接続される。酸素供給器125の出口は、チュービングによって動脈フィルタ126の入口に接続される。動脈フィルタ126の出口は、動脈チューブ127に接続される。1つ以上の圧力変換器が、動脈チューブ127に沿って位置して、動脈チューブ127内の血液の人工心肺装置(HLM:heart/lung machine)システムライン圧力を検出し得、これは、人工心肺装置110によって測定され、灌流技師によって監視される。動脈チューブ127は、大動脈カニューレ129に接続され、これは、心臓12と物理的に接触し、患者10の循環系の動脈側と流体連通している。
【0023】
簡単に言えば、体外循環回路120は、静脈カテーテル121を介して患者10から静脈の酸素を使い果たした血液を脱血し、静脈チューブ122を介してリザーバ123内に静脈血を貯血する(depositing)ことによって動作する。場合によっては、血液を患者10からリザーバ123へ流れるようにするか、又は排出させるために、重力が使用される。場合によっては、血液が患者10からリザーバ123へ流れるのを補助するために、真空が使用される。少なくともいくらかの量の血液が、外科的処置の間、常にリザーバ123内に維持されることが意図される。さもなければ、リザーバ123が空になった場合、空気が、体外循環回路120内に送り出され、潜在的には、患者10の血管系内に送り出される可能性がある。このような結果は、患者10にとって致命的になる可能性が高い。従って、灌流技師は、リザーバ123内の血液のレベルを視覚的に監視することをタスクとして課される。加えて、レベル検出器が、リザーバ123内の低レベル状態の検出に応答してアラームを発するために、リザーバ123と共に含まれ得る。更に、1つ以上の気泡検出器128が、体外循環回路120に沿った様々な部位に位置し得る。リザーバ123からの血液は、ポンプ124によってリザーバ123から吸引される。図示される実施形態は、ポンプ124として単回使用型の遠心ポンプを含むが、場合によっては、人工心肺装置110の蠕動ポンプが代わりに使用される。ポンプ124によって生成された圧力は、酸素供給器125を通して血液を推進させる。灌流技師は、体外循環回路120の血液中に微小空気を生じさせ得る負のキャビテーション等の動作上の問題を回避しながら、所望に応じて動作するようにポンプ124を調整することになる。酸素供給器125では、静脈血は酸素で富化され、二酸化炭素が血液から除去される。ここで酸素を豊富に含んだ動脈血は、酸素供給器125を出て、塞栓を除去するために動脈フィルタ126を通って移動し、動脈チューブ127を通って大動脈カニューレ129を介して患者の心臓12に注入される。体外循環回路120はまた、限定はしないが、患者10の心臓に蓄積する血液の排出、手術野の可視性を維持するための外科的吸引の提供、処置中の患者10の心臓12への心筋保護液の送達、血液パラメータの測定、血液からの空気の除去、血液濃縮、薬物添加、血液サンプルの取得、血液の加熱及び冷却等のような機能を容易にするためのチュービング及び他の構成要素を含み得る。
【0024】
心肺バイパス機械システム100はまた、人工心肺装置110を含む。人工心肺装置110は、複数のポンプ、モニタ、制御装置、ユーザインターフェース、アラーム、安全装置等を含む複合システムであり、これらは全て、外科的処置中に灌流技師によって監視及び操作/調整される。例えば、図示される人工心肺装置110は、動脈ポンプ111(これは、図示されるような使い捨ての遠心ポンプ124又は蠕動ポンプのための駆動システムであってよい)と、吸引ポンプ112と、排気/排液ポンプ113と、心筋保護液ポンプ114と、心筋保護液送達ポンプ115と、を含む。人工心肺装置110はまた、チュービングオクルーダー、ガス混合器等のような装置を含み得るか、又はそれらとインターフェースされ得る。ポンプの各々の回転速度及び他のパラメータ等の人工心肺装置110のパラメータは、灌流技師によって設定及び調整される。例えば、動脈ポンプ111の速度は、リザーバ123内の血液の望ましいレベルを維持し、患者10内に必要なレベルの血液循環を提供するように調整される。
【0025】
心肺バイパス機械システム100はまた、1つ以上の温度制御システム130を含む。第1の態様では、温度制御システム130は、熱交換器を介して酸素供給器125内の患者の血液を加熱及び冷却するために使用される。追加として、温度制御システム130は、患者10の心臓12に送達されている心筋保護液を加熱及び冷却するために使用される。一般に、温度制御システム130は、(代謝要求を低減するために)処置中は冷却モードで使用され、その後、外科的処置がその終わりに近づいているときに、血液及び/又は心筋保護液を温めるために使用される。灌流技師は、外科的処置の間、必要に応じて温度制御システム130を監視及び調整することをタスクとして課される。
【0026】
心肺バイパス機械システム100はまた、図示されるように、血液監視システム140を含む。血液監視システム140は、外科的処置の間、患者10の体外血液を監視するために使用される。監視されるパラメータは、限定はしないが、pH、pCO、pO、K+、温度、SO、ヘマトクリット、ヘモグロビン、塩基過剰、重炭酸塩、酸素消費及び酸素送達を含み得る。
【0027】
心肺バイパス機械システム100はまた、図示されるように、灌流データ管理システム150と、局所酸素測定システム160と、を含む。これらのシステムはまた、外科的処置の間、患者10の状態、及び/又は心肺バイパス機械システム100の状態を監視するために、灌流技師によって使用され得る。
【0028】
心肺バイパス機械システム100はまた、図示されるように、オクルーダー装置170(例えば、チューブオクルーダーシステム)を含む。図示される例となる配置では、オクルーダー装置170は、静脈チューブ122に沿って位置する。代替又は追加として、オクルーダー装置170は、動脈チューブ127又は心肺バイパス機械システム100のその他任意のチューブに沿って位置し得る。オクルーダー装置170は、チューブ内を流れる流体の流量を調節するために、チューブの外径に外部挟持力(external clamping force)を加える。場合によっては、オクルーダー装置170は、チューブを完全に閉塞するように作動され得る遮断装置として使用され、それによって、チューブを通る流体の流れを全て防止する。
【0029】
ここで図2も参照すると、この例では、オクルーダー装置170は、人工心肺装置110に取り付けられているものとして示されている。オクルーダー装置170は、オクルーダーハウジング172と、駆動システムハウジング174と、ユーザインターフェース176と、を含む。
【0030】
オクルーダーハウジング172は、チューブを解放可能に受容するように構成されている(この例では、チューブは、静脈チューブ122である)。オクルーダーハウジング172内には、チューブ122の外径を圧縮するクランプ機構(図示せず)と、クランプ機構を駆動するステッピングモータ(図示せず)とがある。ステッピングモータは、チューブ122を通る流体の流れを調節するために、チューブ122に加えられる制御された量の圧縮を調整するように動作され得る。
【0031】
駆動システムハウジング174内には、ステッピングモータに電気的に結合されたステッピングモータ駆動システム(図示せず)がある。ステッピングモータ駆動システムは、以下で更に説明される。
【0032】
オクルーダー装置170はまた、ユーザインターフェース176を含む。ユーザ(例えば、灌流技師)は、ユーザインターフェース176を介して、チューブ122内の流体の流量を調整し得る。
【0033】
図3を参照すると、例となるステッピングモータ300の概略図が示される。ステッピングモータ300は、回転子310と、相320aと、相320bと、を含む。例示される例では、ステッピングモータ300は、8線式ユニポーラステッピングモータであり、ここで、相320aは、巻線322aと、巻線324aと、を含み、相320bは、巻線322bと、巻線324bと、を含む。コイル322a、322b、324a及び324bの各々は、コイル入力と、コイル出力と、を有する。いくつかの実施形態では、ユニポーラステッピングモータは、それぞれがセンタータップ付きの、相ごとに1つの巻線を有し、巻線の各セクションは、磁界の各方向について通電され得る。典型的に、相が与えられると、各巻線のセンタータップは共通にされ、これは、相ごとに3つのリード線をもたらし、合計で6つのリード線をもたらす(例えば、2相モータの場合)。いくつかの実施形態では、2つのセンタータップは、内部で接合され、5線式構成をもたらし得る。いくつかの実施形態では、ステッピングモータ300は、相ごとに単一のコイルを有するバイポーラステッピングモータであってよい。
【0034】
使用時に、相320a及び320bの巻線322a、322b、324a及び324bは、回転子310の回転を促すように、(例えば、モータ制御装置の制御下で)制御可能に通電及び非通電され得る。通電されたとき、巻線322a、322b、324a及び324bの各々等の電気コイルは、瞬時には電流を流さない。むしろ、電流の流れは、比較的ゆっくりと始まり、コイルを通る電流の流れによって生成される磁界がそれらの最大まで増加する(builds)につれて、その最大流まで増加する。逆に、コイルを通る電流の流れは、コイルが非通電にされたとき、瞬時には停止しない。崩壊する磁界は、それがゼロに減少するまで、電流の流れを促し続けることになる。
【0035】
図4を参照すると、先行技術のモータドライバ回路400の概略図が示される。回路400は、ステッピングモータの巻線401a及び巻線401bを駆動するように構成されている。いくつかの実装形態では、巻線401a及び巻線401bは、図3の例となるステッピングモータ300の例となる相320a又は相320bの全部又は一部であってよい。
【0036】
巻線401aは、コイル402aと、抵抗器403aと、を含む。いくつかの実施形態では、コイル402aは、巻線401aのインダクタンスをモデル化し得る。いくつかの実施形態では、抵抗器403aは、巻線401aの固有DC抵抗をモデル化し得る。巻線401bは、コイル402bと、抵抗器403bと、を含む。いくつかの実施形態では、コイル402bは、巻線401bのインダクタンスをモデル化し得る。いくつかの実施形態では、抵抗器403bは、巻線401bの固有DC抵抗をモデル化し得る。コイル402aは、ステッピングモータの巻線を駆動する電磁石の一部であり、コイル402bは、ステッピングモータの別の巻線を駆動する電磁石の一部である。巻線インダクタンスは、典型的に、ステッピングモータのデータシートに規定されており、従って、設計者は、巻線にエネルギーを蓄積するのにどれくらいの時間がかかるか、ある程度把握し得、これは、一次微分方程式によって近似され得、ここで、tau=L/R、Lは巻線インダクタンス、Rは巻線抵抗(DCR)である(例えば、winding_current(time)=(Vsupply/DCR)*(1-e-t/tau))。
【0037】
電源410が、電力バス412に電力を供給する。電力バス412は、巻線401a及び巻線401bに電力を供給する。電力バス412から巻線401aを通って低電位バス420(例えば、接地、中性端子(neutral)、負極(negative))への電流の流れは、スイッチ入力432aに提供される制御信号に基づいて、スイッチ430aによって制御可能に遮断及び許可される。電力バス412から巻線401bを通って低電位バス420への電流の流れは、スイッチ430bによって制御可能に遮断及び許可される。例示される例では、スイッチ430a及び430bは、MOSFET装置である。
【0038】
スイッチ430a及び430bを通る電力の流れを制御可能に交互にすることによって、巻線401a及び401bは、ステッピングモータの回転を促すように通電及び非通電され得る。上述されたように、コイルを通る電流の流れは、電力がオフに切り替えられたとき、瞬時には停止しない。代わりに、コイルの周りの崩壊する磁界によって誘導される残留電流の流れが存在する。例示される例では、そのような電流は、スイッチ430a及び430bの両端に電圧スパイクを生じ得、そのような電圧スパイクは、スナバ回路450によって考慮されない場合、(例えば、電気アーク放電により)スイッチ430a及び430bに損傷を与え得る。
【0039】
図4の例では、スナバ回路450は、既知のスナバ回路構成である。スイッチ430aが遮断されると、巻線401aからの残留電流は、低電位バス420へ流れることを防止される。巻線401aの残留電流は、巻線401aから、ダイオード452a及び電流放散抵抗器454を通って、電力バス412に戻るように流れることが可能である。ダイオード452aは、電力バス412からの電流が、巻線401aをバイパスすることを防止する。スイッチ430bが遮断されると、巻線401bからの残留電流は、低電位バス420へ流れることを防止される。巻線401bの残留電流は、巻線401bから、ダイオード452b及び電流放散抵抗器454を通って、電力バス412に戻るように流れることが可能である。ダイオード452bは、電力バス412からの電流が、巻線401bをバイパスすることを防止する。
【0040】
一般に、スナバ回路450を通って流れる残留エネルギーは、電流放散抵抗器454によって放散される(例えば、熱に変わる)。回路400の例では、残留エネルギーは、放散を通じて失われ、熱の発生等の望ましくない影響を有し得る。回路400の例では、コイル402a、402bの速度は、電力バス412において利用可能な電力量に比例する。例えば、コイル402a、402bが(例えば、より少ない電流リップル及び/又はトルクリップルを生じさせるために、ステッピングモータ300が失速しないことをより確実にするために)より迅速に通電される必要がある場合、電源410の出力は、増大される必要があり(例えば、回路400の増大されたサイズ、コスト、重量をもたらし)、スイッチ430a、430bによって切り替えられている電力量が増大するにつれて、電磁妨害(EMI:electromagnetic interference)(例えば、スイッチングノイズ)の量が増大し得、用途に応じて対処される必要があってよい(例えば、回路400のサイズ、コスト及び複雑さを更に増大させる)。
【0041】
図5を参照すると、本明細書で開示されるいくつかの実施形態による、例となるモータドライバ回路500の概略図が示される。回路500は、ステッピングモータの巻線501a及び巻線501bを駆動するように構成されている。いくつかの実装形態では、巻線501a及び巻線501bは、図3の例となるステッピングモータ300の例となる巻線322a、322b、324a及び324bのうちの任意の2つに類似し得る。
【0042】
巻線501aは、コイル502aと、抵抗器503aと、を含む。いくつかの実施形態では、コイル502aは、巻線501aのインダクタンスをモデル化し得る。いくつかの実施形態では、抵抗器503aは、巻線501aの固有DC抵抗をモデル化し得る。巻線501bは、コイル502bと、抵抗器503bと、を含む。いくつかの実施形態では、コイル502bは、巻線501bのインダクタンスをモデル化する。いくつかの実施形態では、抵抗器503bは、巻線501bの固有DC抵抗をモデル化し得る。コイル502aは、ステッピングモータ(例えば、例となるステッピングモータ300)のモータ巻線を駆動する電磁石の一部であり、コイル502bは、ステッピングモータの同じ相又は異なる相の別のモータ巻線を駆動する電磁石の一部である。
【0043】
負荷入力ポート504aは、電力を巻線501aに受け入れるように構成されており、負荷出力ポート506aは、電力が巻線501aから流出することを許可するように構成されている。例示される例では、負荷入力ポート504aは、ステッピングモータ巻線入力ポート又は入力リード線であり、負荷出力ポート506aは、ステッピングモータ巻線出力ポート又は出力リード線である。
【0044】
電源510は、電力バス512に電力を供給する。電力バス512は、負荷出力ポート514a及び負荷出力ポート514bに電力を供給する。負荷出力ポート514aは、電気的に負荷入力ポート504aに接続するように構成されており、負荷出力ポート514bは、電気的に負荷入力ポート504bに接続するように構成されている。負荷入力ポート516aは、巻線501aから流出する電力を受け取るために、負荷出力ポート506aに電気的に接続されるように構成されている。負荷入力ポート516bは、巻線501bから流出する電力を受け取るために、負荷出力ポート506bに電気的に接続されるように構成されている。電力バス512への電流の逆流は、負荷出力ポート514aと電力バス512との間に配置されたダイオード518aによって遮断される。巻線501aから電力バス512への電流の逆流は、負荷出力ポート514aと電力バス512との間に配置されたダイオード518aによって遮断される。巻線501bから電力バス512への電流の逆流は、負荷出力ポート514bと電力バス512との間に配置されたダイオード518bによって遮断される。いくつかの実施形態では、ダイオード518a、518bは、例えば、電源510が単方向電源であるとき、省略され得る。いくつかの実施形態では、ダイオード518a及び518bは、例えば、電源が双方向である、6線リード付きステッピングモータの場合には、単一ダイオードによって置き換えられ得る。いくつかの実施形態では、ダイオード518a及び518bは、例えば、電源が単方向である場合、6線リード付きステッピングモータの場合には、除去され得る。8線リード付きステッピングモータが使用されるいくつかの実施形態では、電源410が単方向及び/又は双方向であるかどうかにかかわらず、ダイオード518a及び518bの両方が使用され得る。
【0045】
回路500は、低電位バス520を含む。例示される例では、低電位バス520は、接地バスであるが、いくつかの実施形態では、低電位バス520は、中性線、負極線(例えば、帰線)を含み得るか、又は電力バス512の電圧よりも低い任意の適切な電圧とされ得る。
【0046】
電力バス512から巻線501aを通って低電位バス520への電流の流れは、スイッチ入力532aに提供される制御信号に基づいて、スイッチ530aによって制御可能に遮断及び許可される。電力バス512から巻線501bを通って低電位バス520への電流の流れは、スイッチ530bによって制御可能に遮断及び許可される。例示される例では、スイッチ530a及び530bは、MOSFET装置であるが、いくつかの実施形態では、スイッチ530a及び530bは、巻線501a及び501bを通る電流の流れを制御し得る任意の適切な形態の制御可能なスイッチ(例えば、FET、IGBT、BJT、又は他の形態のトランジスタ、継電器)であってよい。電流制限抵抗器522が、低電位バスへの電流の流れを制限する。
【0047】
スイッチ530a及び530bを通る電力の流れを制御可能に交互にすることによって、巻線501a及び501bは、ステッピングモータの回転を促すように通電及び非通電され得る。上述されたように、コイルを通る電流の流れは、電力がオフに切り替えられたとき、瞬時には停止せず、コイル502a、502bの周りの崩壊する磁界によって誘導される残留電流の流れが存在する。例示される例では、さもなければスイッチ530a及び530bの両端に電圧スパイクを生じさせ得る(そして、例えば、場合によっては、電気アーク放電によりスイッチ530a及び530bに損傷を与え得る)そのような電流は、スナバ回路550によって考慮される。
【0048】
スナバ回路は、分岐551aと、分岐551bと、を含む。分岐551aは、負荷入力ポート516aから負荷出力ポート514bまでの間の電気通信を提供する。分岐551aは、電流制限抵抗器554aと直列接続されたダイオード552aを含む。ダイオード552aは、負荷入力ポート516aから負荷出力ポート514bへの電流の流れを許可し、負荷出力ポート514bから負荷入力ポート516aへの電流の流れを防止するように構成されている。分岐551bは、負荷入力ポート516bから負荷出力ポート514aまでの間の電気通信を提供する。分岐551bは、電流制限抵抗器554bと直列接続されたダイオード552bを含む。ダイオード552bは、負荷入力ポート516bから負荷出力ポート514aへの電流の流れを許可し、負荷出力ポート514aから負荷入力ポート516bへの電流の流れを防止するように構成されている。
【0049】
使用時に、スイッチ530aがオンにされて、巻線501aが通電状態になり、一方、スイッチ530bはオフである。次いで、スイッチ530aはオフにされる。残留電流が、コイル502aから押し出されることになる。この残留電流の逆流は、ダイオード518a及びダイオード552bによって遮断される。この残留電流の順流は、スイッチ530aによって遮断され、残留電流が流れ得る唯一の電気経路として、分岐551aを残す。コイル502aが非通電になるにつれて、残留電流は、分岐551aを通って負荷出力ポート514bへ流れる。ダイオード518bが電力バス512への電流の逆流を防止するので、電流は、巻線501bに流入し、コイル502bへ流れる。例示される例では、コイル502aが非通電になるにつれて生じる残留電流は、コイル502bを少なくとも部分的な程度まで通電するために使用される。いくつかの実装形態では、スナバ回路550は、コイル502aのエネルギーを(例えば、それを放散させるのではなく)回収し、その回収されたエネルギーを、電力バス512からの電力と共に使用して、電力バス512からの電力のみに基づいて通電され得るよりも迅速にコイル502bを通電させ得る。
【0050】
先の例を続けると、使用時に、スイッチ530bがオンにされて、巻線501bが通電状態になり、スイッチ530aはオフにされる。次いで、スイッチ530bはオフにされる。残留電流が、コイル502bから押し出されることになる。この残留電流の逆流は、ダイオード518b及びダイオード552aによって遮断される。この残留電流の順流は、スイッチ530bによって遮断され、残留電流が流れ得る唯一の電気経路として、分岐551bを残す。コイル502bが非通電になるにつれて、残留電流は、分岐551bを通って負荷出力ポート514aへ流れる。ダイオード518aが電力バス512への電流の逆流を防止するので、電流は、巻線501aに流入し、コイル502aへ流れる。例示される例では、コイル502bが非通電になるにつれて生じる残留電流は、コイル502aを少なくとも部分的な程度まで通電するために使用される。いくつかの実装形態では、スナバ回路550は、コイル502bのエネルギーを(例えば、それを放散させるのではなく)回収し、その回収されたエネルギーを、電力バス512からの電力と共に使用して、電力バス512からの電力のみに基づいて通電され得るよりも迅速にコイル502aを通電させ得る。
【0051】
いくつかの実装形態では、コイル502a、502bからの残留エネルギーを、それらの対となるコイルに向け直すことによって、エネルギー効率が高められ得る。例えば、残留コイルエネルギーの少なくとも一部は、完全に放散される代わりに、再利用され得る。
【0052】
いくつかの実装形態では、コイル502a、502bからの残留エネルギーを、それらの対となるコイルに向け直すことによって、温度及び/又は熱管理の必要性が低減され得る。例えば、回路500は、残留コイルエネルギーを熱として放散する、図4の電流放散抵抗器454等の電流放散抵抗器を実装しない。回路500は、コイルエネルギーを熱として実質的に放散するのではなく、コイルエネルギーを実質的に再利用するので、そのような発熱に関連付けられた熱管理は、実質的に低減される。
【0053】
いくつかの実装形態では、コイル502a、502bからの残留エネルギーを、それらの対となるコイルに向け直すことによって、回路500は、効率的に(例えば、例となる回路400よりも効率的に)実装され得る。例えば、回路400の例では、コイル402a、402bが通電される速度を増大させるためには、電源410及び/又は電力バス412の容量を増大させる必要があり、これは、回路400のサイズ、重量、コスト、及び/又は複雑さを増大させ得る。回路400とは異なり、回路500は、電力バス512からの電力に加えて、コイル502a、502bの一方からの残留エネルギーを使用して、コイル502a、502bの他方に通電するように構成されている。従って、コイル502a、502bの性能は、電源510及び/又は電力バス512の容量を増大させることによる同様の性能増大を達成することに関連付けられ得るサイズ、重量、コスト、及び/又は複雑さなしに、(例えば、より少ない電流リップル及び/又はトルクリップルを生じさせるために、ステッピングモータが失速しないことをより確実にするために)増大され得る。
【0054】
いくつかの実装形態では、コイル502a、502bからの残留エネルギーを、それらの対となるコイルに向け直すことによって、電磁妨害(EMI)及び/又はEMI管理の必要性が低減され得る。例えば、コイル502a、502bにおける残留エネルギーは、回路400でよりも、相対的により迅速にスイッチ530a、530bから離れるように向け直され、その結果、スイッチ530a、530bの両端に相対的により低い電圧をもたらす。スナバ回路550によって提供される相対的により低い電圧は、回路400と比較して、スイッチ530a、530bを切り替えることによって引き起こされる相対的により低い量のEMI(例えば、スイッチングノイズ)をもたらし得る。
【0055】
図6図8は、例となるモータドライバ電気波形のチャートである。
【0056】
図6は、図5の例となる回路500によって生成され得る電流波形610の一例を示すチャート600である。図6はまた、図4の回路400等の既知の回路によって生成され得る電流波形620の一例を示す。
【0057】
波形610及び波形620の両方は、それらのそれぞれのモータコイルにまだエネルギーが蓄積されていないので、ほぼ同じスタートアップ挙動を有することが観測され得る。第1のコイルがエネルギーを蓄積した後、エネルギー再循環の効果が観測され得、波形610は、波形620よりも速く立ち上がり、より少ないリップルを有する。例示される例では、いずれの場合も、同じ24vの供給電圧であった。波形610のより速い立ち上がり時間は、コイルに蓄積されたエネルギーが、切り替わりエッジ中に相補コイルに迅速に伝達されることによるものであり、これは、これらコイル(又は巻線若しくはインダクタンス)が、より多くの初期エネルギーを有することを可能にし、従って、一次1-e-t/tau曲線により沿ったものになり、従って、より少ない電流リップルを示す。
【0058】
図7は、図5の例となる回路500によって生成され得る電流波形710の別の例を示すチャート700である。図7はまた、図4の回路400等の既知の回路によって生成され得る電流波形720の一例を示す。チャート700は、(例えば、電力バス412及び512の)供給電圧が、線730によって表されるような、(例えば、オンタイムサイクルの終了において)ピーク電流値に一致するように調整された後のリップル電流の例を示す。波形710は、線732によって表される初期電流値と、ピーク電流値730との間で測定されるような、約141mAのリップルを有する。対照的に、波形720は、線734によって表される初期電流値と、ピーク電流値730との間に約1.57Aのリップルを有する。例となる回路500のリップルは、既知の回路400によって示されるリップルよりも約11倍小さいリップルを示す。電源がピーク電流の代わりに等価平均電流を達成するように調整される実装形態では、回路500によって提供されるリップル低減の係数は、更に大きくなり得る。
【0059】
図8は、図5の例となる回路500によって生成され得る電流波形対810の別の例を示すチャート800である。図8はまた、図4の回路400等の既知の回路によって生成され得る電流波形対820の一例を示す。電流波形対810は、波形812aと、波形812bと、を含む。いくつかの実装形態では、波形812a及び812bは、(例えば、回路500によって提供される低減されたリップルをより明確に例示することを目的として)モータ相内の巻線の例となる電流を表し得る。いくつかの実装形態では、波形812aは、例となる巻線501aの両端の電流波形の一例であり得、波形812bは、例となる巻線501bの両端の電流波形の一例であってよい。電流波形対820は、波形822aと、波形822bと、を含む。いくつかの実装形態では、波形822aは、例となる巻線401aの両端の電流波形の一例であり得、波形822bは、例となる巻線401bの両端の電流波形の一例であってよい。概して、チャート800は、回路400と比較したときの、回路500によって提供されるリップル及びエネルギー伝達における改善例を例示する。
【0060】
図9は、いくつかの実施形態による、例となるプロセス900の流れ図である。いくつかの実装形態では、プロセス900は、図5の例となる回路500によって行われ得る。
【0061】
910において、電力は、電力バスにおいて第1の出力及び第2の出力に供給される。例えば、電力は、電源510によって、電力バス512において負荷出力ポート514a及び負荷出力ポート514bに供給され得る。
【0062】
920において、第1のスイッチは、第1の電気負荷から低電位バスへの電力の流れを遮断するように切り替えられる。例えば、スイッチ530aは、巻線501aから低電位バス520へ流出する電力を停止するように、オフに切り替えられ得る。
【0063】
930において、第2のスイッチは、電力バスからの電力が、第2の出力から、第2の出力に電気的に接続された第2の電気負荷を通って、低電位バスへ流れることを許可するように切り替えられる。例えば、スイッチ530bは、電力バス512からの電力が、巻線501bを通って、低電位バス520へ流れることを許可するように、オンに切り替えられ得る。
【0064】
940において、第1のスナバ回路が、第1の電気負荷からの電力の流れを、第2の出力へと向かわせる。例えば、スナバ回路550の分岐551aは、負荷入力ポート516aを通って流入し、スイッチ530aによって遮断された残留エネルギーを、負荷出力ポート514bへ伝導する。
【0065】
いくつかの実装形態では、第1のスナバ回路は、抵抗器と、抵抗器と直列電気接続状態にあるダイオードと、を含み得る。例えば、分岐551aは、ダイオード552aと、電流制限抵抗器554aと、を含む。いくつかの実装形態では、第1のスナバ回路によって、第1の電気負荷からの電力の流れを、第2の出力へと向かわせることは、ダイオードによって、第1の入力における第1の電気負荷から第2の出力への電力の流れを許可することと、ダイオードによって、第2の出力から第1の入力への電力の流れを防止することと、を含み得る。例えば、ダイオード552aは、負荷入力ポート516aから負荷出力ポート514bへの一方向の電流の流れを許可し得る。
【0066】
950において、第2のスイッチは、第2の電気負荷から低電位バスへの電力の流れを遮断するように切り替えられる。例えば、スイッチ530bは、負荷入力ポート516bを通って流入する電力が、低電位バス520へ流れることを遮断するように切り替えられ得る。
【0067】
960において、第1のスイッチは、電力バスからの電力が、第1の出力から、第1の電気負荷を通って、低電位バスへ流れることを許可するように切り替えられる。例えば、スイッチ530aは、電力が負荷入力ポート516aから低電位バス520へ流れることを許可するように切り替えられる。
【0068】
970において、第2のスナバ回路が、第2の電気負荷からの電力の流れを、第1の出力へと向かわせる。例えば、スナバ回路550の分岐551bは、負荷入力ポート516bを通って流れ、スイッチ530bによって遮断された残留エネルギーを、負荷出力ポート514aへ伝導する。いくつかの実装形態では、第1の電気負荷から第1の出力への電力の流れは、少なくとも部分的に、第1の誘導性電気負荷のインダクタンスによって生じる電流の流れであり得、第2の電気負荷から第2の出力への電力の流れは、少なくとも部分的に、第2の誘導性電気負荷のインダクタンスによって生じる電流の流れであってよい。
【0069】
本明細書で開示されるいくつかの実装形態では、第2のスナバ回路は、抵抗器と、抵抗器と直列電気接続状態にあるダイオードと、を含み得る。例えば、分岐551bは、ダイオード552bと、電流制限抵抗器554bと、を含む。いくつかの実装形態では、第2のスナバ回路によって、第2の電気負荷からの電力の流れを、第1の出力へと向かわせることは、ダイオードによって、第2の入力における第2の電気負荷から第1の出力への電力の流れを許可することと、ダイオードによって、第1の出力から第2の入力への電力の流れを防止することと、を含み得る。例えば、ダイオード552bは、負荷入力ポート516bから負荷出力ポート514aへの一方向の電流の流れを許可し得る。
【0070】
本明細書で開示されるいくつかの実装形態では、プロセス900はまた、第1のスナバ回路から電力バスへの電流の逆流を防止することと、第2のスナバ回路から電力バスへの電流の逆流を防止することと、を含み得る。例えば、ダイオード518a及び518bは、スナバ回路550から電力バス512への電力の逆流を防止し得る。
【0071】
本明細書で開示されるいくつかの実装形態では、第1の電気負荷は、第1の誘導性電気負荷であり得、第2の電気負荷は、第2の誘導性電気負荷であってよい。例えば、巻線501aは、誘導性電気負荷であるコイル502aを含む電気負荷であり、巻線501bは、別の誘導性電気負荷であるコイル502bを含む電気負荷である。いくつかの実装形態では、電力バスからの電力が、第1の出力から、第1の出力に電気的に接続された第1の電気負荷を通って、低電位バスへ流れることを許可するように、第1のスイッチを切り替えることは、第1の誘導性電気負荷に通電することを含み得る。例えば、巻線501aに電流が流れると、コイル502aは、通電状態になり得る。いくつかの実装形態では、電力バスからの電力が、第2の出力から、第2の出力に電気的に接続された第2の電気負荷を通って、低電位バスへ流れることを許可するように、第2のスイッチを切り替えることは、第2の誘導性電気負荷に通電することを含み得る。例えば、巻線501bに電流が流れると、コイル502bは、通電状態になり得る。
【0072】
本明細書で開示されるいくつかの実施形態では、第1の電気負荷は、ステッピングモータの第1の巻線であり得、第2の電気負荷は、ステッピングモータの第2の巻線であってよい。例えば、巻線501aは、ステッピングモータ300の巻線320aの全部又は一部であり得、巻線501bは、巻線320bの全部又は一部であってよい。いくつかの実装形態では、電力バスからの電力が、第1の出力から、第1の電気負荷を通って、低電位バスへ流れることを許可するように、第1のスイッチを切り替えることは、第1の巻線に通電することを含み得、電力バスからの電力が、第2の出力から、第2の出力に電気的に接続された第2の電気負荷を通って、低電位バスへ流れることを許可するように、第2のスイッチを切り替えることは、第2の巻線に通電することを含み得る。例えば、スイッチ530a及び530bは、巻線501a及び501bに通電するように切り替えられ得、これは、巻線320a及び320bであってよい。
【0073】
本明細書で開示されるいくつかの実装形態では、プロセス900はまた、第1の方向へのステッピングモータの回転を促すように、第1のスイッチ及び第2のスイッチを制御可能に切り替えることと、ステッピングモータによって、チューブを解放可能に受容するように構成されたチューブクランプ装置を作動させることと、作動に基づいて、チューブクランプ装置によってチューブに加えられる圧縮量を調整することと、を含み得る。例えば、例となる回路500は、図3の例となるステッピングモータ300を作動させるために使用され得、これは、図1及び図2の例となるオクルーダー装置170を作動させるように構成され得る。ステッピングモータ300は、チューブ122に加えられる圧縮量を制御し、それによって、チューブ122を通る流体の流れを調節するように動作され得る。
【0074】
本明細書で与えられた例は、概して、モータ相の1つの巻線から、同じモータ相の別の巻線にエネルギーを再循環させる概念について論じているが、他の実施形態も存在する。例えば、本明細書で説明されたプロセス及びシステムは、モータ相の巻線から、別のモータ相の別の巻線にエネルギーを再循環させるように修正され得る。別の例では、本明細書で説明されたプロセス及びシステムは、任意の適切なエネルギー貯蔵装置(例えば、インダクタ、誘導性負荷、キャパシタ、容量性負荷)から、その他任意の適切なエネルギー貯蔵装置にエネルギーを再循環させるように修正され得る。
【0075】
本明細書は多くの具体的な実装形態の詳細を含むが、これらは、いかなる発明の範囲又は特許請求され得るものの範囲に対する限定として解釈されるべきではなく、むしろ、特定の発明の特定の実施形態に固有であり得る特徴の説明として解釈されるべきである。別個の実施形態のコンテキストにおいて本明細書で説明された特定の特徴はまた、単一の実施形態において組み合わせて実装され得る。逆に、単一の実施形態のコンテキストにおいて説明されている様々な特徴はまた、複数の実施形態で別々に、又は任意の好適な副組合せ(subcombination)において実装され得る。更に、特徴は、ある特定の組合せで機能するものとして本明細書で説明され、当初はそのようなものとして請求項に記載されていても、請求項に記載の組合せからの1つ以上の特徴は、場合によっては、組合せから削除され得、請求項に記載の組合せは、副組合せ又は副組合せの変形例に向けられ得る。
【0076】
同様に、動作は、特定の順序で図面に図示されているが、これは、望ましい結果を達成するために、そのような動作が示された特定の順序で若しくは連続した順序で行われること、又は全ての例示された動作が行われることを必要とするものとして理解されるべきではない。ある特定の状況では、マルチタスキング及び並列処理が有利であり得る。更に、本明細書で説明された実施形態における様々なシステムモジュール及び構成要素の分離は、そのような分離を全ての実施形態において必要とするものとして理解されるべきではなく、説明されたプログラム構成要素及びシステムは、概して、単一の製品に一体化され得るか、又は複数の製品にパッケージ化され得ることを理解されたい。
【0077】
主題の特定の実施形態が説明された。他の実施形態も、以下の特許請求の範囲内にある。例えば、特許請求の範囲に記載されるアクションは、異なる順序で行われ得、それでもなお望ましい結果を達成し得る。一例として、添付の図面に図示されるプロセスは、望ましい結果を達成するために、示される特定の順序、又は連続した順序を必ずしも必要としない。ある特定の実装形態では、マルチタスキング及び並列処理が有利であり得る。
以下に、出願当初の特許請求の範囲に記載の事項を、そのまま、付記しておく。
[1] チューブオクルーダーシステムであって、
チューブを解放可能に受容するように構成されたチューブクランプ装置と、
第1の巻線及び第2の巻線を有し、前記チューブクランプ装置によって前記チューブに加えられる圧縮量を調整するように配置されたステッピングモータと、
前記ステッピングモータに電気的に結合された駆動システムであって、
前記第1の巻線の第1の巻線入力に電気的に接続するように構成された第1の巻線出力ポートと、
前記第1の巻線の第1の巻線出力に電気的に接続するように構成された第1の巻線入力ポートと、
前記第2の巻線の第2の巻線入力に電気的に接続するように構成された第2の巻線出力ポートと、
前記第2の巻線の第2の巻線出力に電気的に接続するように構成された第2の巻線入力ポートと、
前記第1の巻線入力ポートと前記第2の巻線出力ポートとの間で電気通信状態にある第1のスナバ回路と、
前記第2の巻線入力ポートと前記第1の巻線出力ポートとの間で電気通信状態にある第2のスナバ回路と、
を備える駆動システムと、
を備えるチューブオクルーダーシステム。
[2] 前記第1のスナバ回路は、第1の抵抗器と、前記第1の抵抗器と直列電気接続状態にある第1のダイオードと、を備え、前記第1のダイオードは、前記第1の巻線入力ポートから前記第2の巻線出力ポートへ電流を通し、前記第2の巻線出力ポートから前記第1の巻線入力ポートへの電流の流れを防止するように構成されている、[1]に記載のチューブオクルーダーシステム。
[3] 前記第2のスナバ回路は、第2の抵抗器と、前記第2の抵抗器と直列電気接続状態にある第2のダイオードと、を備え、前記第2のダイオードは、前記第2の巻線入力ポートから前記第1の巻線出力ポートへ電流を通し、前記第1の巻線出力ポートから前記第2の巻線入力ポートへの電流の流れを防止するように構成されている、[2]に記載のチューブオクルーダーシステム。
[4] 電力バスと、前記電力バスから前記第1の巻線出力ポートへ電流を通すように構成された第1のダイオードと、前記電力バスから前記第2の巻線出力ポートへ電流を通すように構成された第2のダイオードと、を更に備える、[1]~[3]のいずれか一項に記載のチューブオクルーダーシステム。
[5] 低電位電力バスと、前記低電位電力バスに前記第1の巻線入力ポートを制御可能に接続するように構成された第1のスイッチと、前記低電位電力バスに前記第2の巻線入力ポートを制御可能に接続するように構成された第2のスイッチと、前記第1の巻線入力ポートから前記低電位電力バスへの電流の流れを制限することと、前記第2の巻線入力ポートから前記低電位電力バスへの電流の流れを制限することと、を行うように構成された少なくとも1つの抵抗器と、を更に備える、[1]~[4]のいずれか一項に記載のチューブオクルーダーシステム。
[6] ステッピングモータにおいてエネルギーを再循環させる方法であって、前記方法は、
電力バスにおいて第1の出力及び第2の出力に電力を供給することと、
前記第1の出力に電気的に接続された第1の電気負荷に電力を流すことと、
前記第1の電気負荷から低電位バスへの電力の流れを遮断するように、第1のスイッチを切り替えることと、
前記電力バスからの電力が、前記第2の出力から、前記第2の出力に電気的に接続された第2の電気負荷を通って、前記低電位バスへ流れることを許可するように、第2のスイッチを切り替えることと、
第1のスナバ回路によって、前記第1の電気負荷からの電力の流れを、前記第2の出力へと向かわせることと、
前記第2の電気負荷から前記低電位バスへの電力の流れを遮断するように、前記第2のスイッチを切り替えることと、
前記電力バスからの電力が、前記第1の出力から、前記第1の電気負荷を通って、前記低電位バスへ流れることを許可するように、前記第1のスイッチを切り替えることと、
第2のスナバ回路によって、前記第2の電気負荷からの電力の流れを、前記第1の出力へと向かわせることと、
を備える、方法。
[7] 前記第1のスナバ回路から前記電力バスへの電流の逆流を防止することと、
前記第2のスナバ回路から前記電力バスへの電流の逆流を防止することと、
を更に備える、[6]に記載の方法。
[8] 前記第1のスナバ回路は、第1の抵抗器と、前記第1の抵抗器と直列電気接続状態にある第1のダイオードと、を備え、前記第1のスナバ回路によって、前記第1の電気負荷からの電力の流れを、前記第2の出力へと向かわせることは、
前記第1のダイオードによって、第1の入力における前記第1の電気負荷から前記第2の出力への電力の流れを許可することと、
前記第1のダイオードによって、前記第2の出力から前記第1の入力への電力の流れを防止することと、
を備える、[6]に記載の方法。
[9] 前記第2のスナバ回路は、第2の抵抗器と、前記第2の抵抗器と直列電気接続状態にある第2のダイオードと、を備え、前記第2のスナバ回路によって、前記第2の電気負荷からの電力の流れを、前記第1の出力へと向かわせることは、
前記第2のダイオードによって、第2の入力における前記第2の電気負荷から前記第1の出力への電力の流れを許可することと、
前記第2のダイオードによって、前記第1の出力から前記第2の入力への電力の流れを防止することと、
を備える、[8]に記載の方法。
[10] 前記第1の電気負荷は、第1の誘導性電気負荷を備え、
前記第2の電気負荷は、第2の誘導性電気負荷を備え、
前記電力バスからの電力が、前記第1の出力から、前記第1の電気負荷を通って、前記低電位バスへ流れることを許可するように、前記第1のスイッチを切り替えることは、前記第1の誘導性電気負荷に通電することを備え、
前記電力バスからの電力が、前記第2の出力から、前記第2の出力に電気的に接続された前記第2の電気負荷を通って、前記低電位バスへ流れることを許可するように、前記第2のスイッチを切り替えることは、前記第2の誘導性電気負荷に通電することを備える、[6]~[9]のいずれか一項に記載の方法。
[11] 前記第1の電気負荷から前記第1の出力への電力の流れは、前記第1の誘導性電気負荷のインダクタンスによって生じる電流の流れを少なくとも部分的に備え、前記第2の電気負荷から前記第2の出力への電力の流れは、前記第2の誘導性電気負荷のインダクタンスによって生じる電流の流れを少なくとも部分的に備える、[10]に記載の方法。
[12] 前記第1の電気負荷は、ステッピングモータの第1の巻線を備え、
前記第2の電気負荷は、前記ステッピングモータの第2の巻線を備える、[6]~[11]のいずれか一項に記載の方法。
[13] 前記電力バスからの電力が、前記第1の出力から、前記第1の電気負荷を通って、前記低電位バスへ流れることを許可するように、前記第1のスイッチを切り替えることは、前記第1の巻線に通電することを備え、
前記電力バスからの電力が、前記第2の出力から、前記第2の出力に電気的に接続された前記第2の電気負荷を通って、前記低電位バスへ流れることを許可するように、前記第2のスイッチを切り替えることは、前記第2の巻線に通電することを備える、[12]に記載の方法。
[14] 第1の方向への前記ステッピングモータの回転を促すように、前記第1のスイッチ及び前記第2のスイッチを制御可能に切り替えることと、
前記ステッピングモータによって、チューブを解放可能に受容するように構成されたチューブクランプ装置を作動させることと、
前記作動に基づいて、前記チューブクランプ装置によって前記チューブに加えられる圧縮量を調整することと、
を更に備える、[13]に記載の方法。
[15] 電気駆動システムであって、
第1の電気負荷の第1の負荷入力に電気的に接続するように構成された第1の電力出力ポートと、
前記第1の電気負荷の第1の負荷出力に電気的に接続するように構成された第1の電力入力ポートと、
第2の電気負荷の第2の負荷入力に電気的に接続するように構成された第2の電力出力ポートと、
前記第2の電気負荷の第2の負荷出力に電気的に接続するように構成された第2の電力入力ポートと、
前記第1の負荷入力ポートと前記第2の負荷出力ポートとの間で電気通信状態にある第1のスナバ回路と、
前記第2の負荷入力ポートと前記第1の負荷出力ポートとの間で電気通信状態にある第2のスナバ回路と、
を備える電気駆動システム。
[16] 前記第1のスナバ回路は、第1の抵抗器と、前記第1の抵抗器と直列電気接続状態にある第1のダイオードと、を備え、前記第1のダイオードは、前記第1の負荷入力ポートから前記第2の負荷出力ポートへ電流を通し、前記第2の負荷出力ポートから前記第1の負荷入力ポートへの電流の流れを防止するように構成されており、
前記第2のスナバ回路は、第2の抵抗器と、前記第2の抵抗器と直列電気接続状態にある第2のダイオードと、を備え、前記第2のダイオードは、前記第2の負荷入力ポートから前記第1の負荷出力ポートへ電流を通し、前記第1の負荷出力ポートから前記第2の負荷入力ポートへの電流の流れを防止するように構成されている、[15]に記載の電気駆動システム。
[17] 電力バスと、前記電力バスから前記第1の負荷出力ポートへ電流を通すように構成された第1のダイオードと、前記電力バスから前記第2の負荷出力ポートへ電流を通すように構成された第2のダイオードと、を更に備える、[15]又は[16]に記載の電気駆動システム。
[18] 低電位電力バスと、前記低電位電力バスに前記第1の負荷入力ポートを制御可能に接続するように構成された第1のスイッチと、前記低電位電力バスに前記第2の負荷入力ポートを制御可能に接続するように構成された第2のスイッチと、前記第1の負荷入力ポートから前記低電位電力バスへの電流の流れを制限することと、前記第2の負荷入力ポートから前記低電位電力バスへの電流の流れを制限することと、を行うように構成された少なくとも1つの抵抗器と、を更に備える、[15]~[17]のいずれか一項に記載の電気駆動システム。
[19] 前記第1の電気負荷及び前記第2の電気負荷のうちの少なくとも1つは、誘導性電気負荷である、[15]~[18]のいずれか一項に記載の電気駆動システム。
[20] 前記第1の電気負荷は、ステッピングモータの第1の巻線であり、前記第2の電気負荷は、前記ステッピングモータの第2の巻線である、[15]~[19]のいずれか一項に記載の電気駆動システム。
図1
図2
図3
図4
図5
図6
図7
図8
図9