(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-16
(45)【発行日】2024-12-24
(54)【発明の名称】管制装置、及び管制システム
(51)【国際特許分類】
G08G 1/16 20060101AFI20241217BHJP
G08G 1/00 20060101ALI20241217BHJP
G08G 1/13 20060101ALI20241217BHJP
B60W 60/00 20200101ALI20241217BHJP
B60W 40/04 20060101ALI20241217BHJP
G05D 1/43 20240101ALI20241217BHJP
【FI】
G08G1/16 A
G08G1/00 X
G08G1/13
B60W60/00
B60W40/04
G05D1/43
(21)【出願番号】P 2021064086
(22)【出願日】2021-04-05
【審査請求日】2024-02-09
(73)【特許権者】
【識別番号】000003609
【氏名又は名称】株式会社豊田中央研究所
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】藤井 亮暢
(72)【発明者】
【氏名】奥村 文洋
【審査官】西畑 智道
(56)【参考文献】
【文献】特開平10-105895(JP,A)
【文献】特開2020-197885(JP,A)
【文献】特許第6030778(JP,B2)
【文献】米国特許出願公開第2019/0259282(US,A1)
【文献】国際公開第2017/111135(WO,A1)
【文献】独国特許出願公開第102016219394(DE,A1)
【文献】韓国公開特許第10-2019-0099756(KR,A)
【文献】国際公開第2020/121612(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/00-99/00
G01C 21/00-21/36
G01C 23/00-25/00
B60W 60/00
B60W 40/04
G05D 1/43
(57)【特許請求の範囲】
【請求項1】
移動時間及び空間を規定した制約条件を受信する自律移動体を含んだ各々の移動体の状態を表す移動体情報を受信する受信部と、
前記受信部で移動体情報を受信した各々の移動体のうち、干渉領域において前記自律移動体と予め定めた範囲まで接近する可能性がある接近移動体の状態の変化から、前記接近移動体について移動に関する異常が発生したか否かを検知する異常検知部と、
前記異常検知部で異常が検知された場合、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、
前記干渉領域への進入を禁止する進入禁止時間が長くなるようにして、前記接近移動体と前記干渉領域で干渉しづらくなるように制約を強めた前記制約条件である強化制約条件を前記自律移動体に対して生成する生成部と、
を備えた管制装置。
【請求項2】
前記異常検知部は、前記接近移動体の状態に関する状態値が、前記受信部で受信した前記接近移動体の移動体情報を用いて設定した予測範囲内に含まれない場合に、前記接近移動体について移動に関する異常が発生したと検知する
請求項1
に記載の管制装置。
【請求項3】
前記異常検知部は、前記接近移動体の速度、前記接近移動体の加速度、前記接近移動体が前記干渉領域を通過する通過時間、及び前記接近移動体の位置の少なくとも1つの前記接近移動体の状態について設定した前記予測範囲内に前記状態値が含まれない場合に、前記接近移動体について移動に関する異常が発生したと検知する
請求項2
に記載の管制装置。
【請求項4】
前記異常検知部は、前記接近移動体の速度、前記接近移動体の加速度、前記接近移動体が前記干渉領域を通過する通過時間、及び前記接近移動体の位置の少なくとも1つの前記接近移動体の状態に関する前記状態値の測定精度が予め定めた基準精度より低い場合、前記状態値が前記予測範囲内に含まれる場合であっても、前記接近移動体について移動に関する異常が発生したと検知する
請求項2
に記載の管制装置。
【請求項5】
前記生成部は、前記異常検知部で異常が検知される前に生成した前記制約条件における前記干渉領域への進入禁止時間に対して延長した前記強化制約条件における前記干渉領域への進入禁止時間の延長時間を、前記干渉領域の形状を用いて調整する
請求項
1~請求項4の何れか1項に記載の管制装置。
【請求項6】
前記接近移動体が、前記生成部で生成された前記制約条件を受信すると共に、受信した前記制約条件に従った移動を行うコネクテッド移動体である場合、
前記生成部は、前記自律移動体及び前記コネクテッド移動体の各々について前記干渉領域への進入禁止時間が重複するように設定した前記強化制約条件を前記自律移動体及び前記コネクテッド移動体に対してそれぞれ生成する
請求項
1~請求項
5の何れか1項に記載の管制装置。
【請求項7】
前記生成部は、前記接近移動体の移動に関する異常の検知回数が多くなるにつれて、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記干渉領域への進入禁止時間を長く設定した前記強化制約条件を前記自律移動体に対して生成する
請求項
1~請求項
6の何れか1項に記載の管制装置。
【請求項8】
前記生成部は、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記自律移動体の進入を禁止する範囲が広くなるように設定した前記強化制約条件を前記自律移動体に対して生成する
請求項1~請求項
7の何れか1項に記載の管制装置。
【請求項9】
前記生成部は、前記接近移動体の移動に関する異常の検知回数が多くなるにつれて、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記自律移動体の進入を禁止する前記干渉領域の範囲を広く設定した前記強化制約条件を前記自律移動体に対して生成する
請求項
8記載の管制装置。
【請求項10】
干渉領域において、移動時間及び空間を規定した制約条件を受信する自律移動体と予め定めた範囲まで接近する可能性がある接近移動体の状態を表す移動体情報、及び前記自律移動体の状態を表す移動体情報を取得する取得装置と、
前記取得装置で取得した前記自律移動体及び前記接近移動体の移動体情報を前記取得装置から受信する受信部、前記受信部で受信した移動体情報によって表される前記接近移動体の状態の変化から、前記接近移動体について移動に関する異常が発生したか否かを検知する異常検知部、及び前記異常検知部で異常が検知された場合、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、
前記干渉領域への進入を禁止する進入禁止時間が長くなるようにして、前記接近移動体と前記干渉領域で干渉しづらくなるように制約を強めた前記制約条件である強化制約条件を前記自律移動体に対して生成する生成部と、
を備えた管制システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、管制装置、及び管制システムに関する。
【背景技術】
【0002】
特許文献1には、規定の走行ルートに沿って走行する複数の無人走行車両における任意のステータスを、通信にて逐次統合管理する統合制御サーバにより、走行ルートが互いに交差する交差箇所に2台以上の車両が接近している際に、車両同士が合流干渉するタイミングでの進入になるかどうかを判断し、交差箇所への進入が行われると判断した場合、合流干渉の対象となる各車両に対して予め定めた秩序に基づいて通過優先順位を決定する走行管制方法が開示されている。
【0003】
特許文献2には、無人車両及び有人車両と、それらを管制制御する管制局とがそれぞれ通信可能に接続された車両管理システムであって、有人車両の有人車両車載制御装置は、管制局への位置通知の異常を判定した場合に、有人車両の運転手に対して停止を要求する警告を出力する指令を生成し、管制局は、有人車両からの位置通知の異常を認識した場合に、有人車両を中心とする異常時無人車両進入禁止領域を生成することが開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2019-46013号公報
【文献】特開2020-197885号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1における車両の走行管制方法は、車両が統合制御サーバの予測範囲内の動作を行うことを前提とした技術である。しかしながら、実際の車両の走行時には、例えば障害物の検知によって車両が急減速こともあるため、車両は統合制御サーバの予測から外れた動作を行うこともある。したがって、特許文献1に示す車両の走行管制方法において、車両が統合制御サーバの予測から外れた動作を行った場合、車両同士が交差箇所で干渉することがある。
【0006】
また、特許文献2における車両管理システムでは、管制局が有人車両からの位置通知の異常を認識した場合、有人車両を中心とする領域であって、当該領域への無人車両の進入を禁止する異常時無人車両進入禁止領域を生成する。したがって、例えば既に干渉領域に進入している無人車両に対して有人車両が接近するような場合には、いくら有人車両に異常時無人車両進入禁止領域が生成されていたとしても、干渉領域で有人車両と無人車両が干渉してしまうことがある。
【0007】
更に言えば、無人車両は異常時無人車両進入禁止領域に進入することはできないため、例えば交差点を通過しようとしている有人車両に対して異常時無人車両進入禁止領域が生成されていると、無人車両は交差点の手前に引かれた停止線から離れた位置に停止しなければならず、交通流の妨げとなってしまう。
【0008】
一方、有人車両が交差点を通過した後も、しばらくの間は交差点が異常時無人車両進入禁止領域に含まれるため、無人車両はすぐに発進することができない。すなわち、無人車両は交差点の手前で停止状態を継続することになるため、この場合においても交通流の妨げとなってしまう。
【0009】
本発明は、上記に示した問題点を鑑みてなされたものであり、移動体の移動に関する状態が予測した状態とは異なる場合であっても、干渉領域における移動体同士の干渉を抑制する安全な交通流を実現することができる管制装置、及び管制システムを提供することを目的とする。
【課題を解決するための手段】
【0010】
請求項1記載の管制装置は、移動時間及び空間を規定した制約条件を受信する自律移動体を含んだ各々の移動体の状態を表す移動体情報を受信する受信部と、前記受信部で移動体情報を受信した各々の移動体のうち、干渉領域において前記自律移動体と予め定めた範囲まで接近する可能性がある接近移動体の状態の変化から、前記接近移動体について移動に関する異常が発生したか否かを検知する異常検知部と、前記異常検知部で異常が検知された場合、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記干渉領域への進入を禁止する進入禁止時間が長くなるようにして、前記接近移動体と前記干渉領域で干渉しづらくなるように制約を強めた前記制約条件である強化制約条件を前記自律移動体に対して生成する生成部と、を備える。
【0011】
請求項2記載の発明では、前記異常検知部は、前記接近移動体の状態に関する状態値が、前記受信部で受信した前記接近移動体の移動体情報を用いて設定した予測範囲内に含まれない場合に、前記接近移動体について移動に関する異常が発生したと検知する。
【0012】
請求項3記載の発明では、前記異常検知部は、前記接近移動体の速度、前記接近移動体の加速度、前記接近移動体が前記干渉領域を通過する通過時間、及び前記接近移動体の位置の少なくとも1つの前記接近移動体の状態について設定した前記予測範囲内に前記状態値が含まれない場合に、前記接近移動体について移動に関する異常が発生したと検知する。
【0013】
請求項4記載の発明では、前記異常検知部は、前記接近移動体の速度、前記接近移動体の加速度、前記接近移動体が前記干渉領域を通過する通過時間、及び前記接近移動体の位置の少なくとも1つの前記接近移動体の状態に関する前記状態値の測定精度が予め定めた基準精度より低い場合、前記状態値が前記予測範囲内に含まれる場合であっても、前記接近移動体について移動に関する異常が発生したと検知する。
【0015】
請求項5記載の発明では、前記生成部は、前記異常検知部で異常が検知される前に生成した前記制約条件における前記干渉領域への進入禁止時間に対して延長した前記強化制約条件における前記干渉領域への進入禁止時間の延長時間を、前記干渉領域の形状を用いて調整する。
【0016】
請求項6記載の発明では、前記接近移動体が、前記生成部で生成された前記制約条件を受信すると共に、受信した前記制約条件に従った移動を行うコネクテッド移動体である場合、前記生成部は、前記自律移動体及び前記コネクテッド移動体の各々について前記干渉領域への進入禁止時間が重複するように設定した前記強化制約条件を前記自律移動体及び前記コネクテッド移動体に対してそれぞれ生成する。
【0017】
請求項7記載の発明では、前記生成部は、前記接近移動体の移動に関する異常の検知回数が多くなるにつれて、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記干渉領域への進入禁止時間を長く設定した前記強化制約条件を前記自律移動体に対して生成する。
【0018】
請求項8記載の発明では、前記生成部は、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記自律移動体の進入を禁止する範囲が広くなるように設定した前記強化制約条件を前記自律移動体に対して生成する。
【0019】
請求項9記載の発明では、前記生成部は、前記接近移動体の移動に関する異常の検知回数が多くなるにつれて、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記自律移動体の進入を禁止する前記干渉領域の範囲を広く設定した前記強化制約条件を前記自律移動体に対して生成する。
【0020】
請求項10記載の管制システムは、干渉領域において、移動時間及び空間を規定した制約条件を受信する自律移動体と予め定めた範囲まで接近する可能性がある接近移動体の状態を表す移動体情報、及び前記自律移動体の状態を表す移動体情報を取得する取得装置と、前記取得装置で取得した前記自律移動体及び前記接近移動体の移動体情報を前記取得装置から受信する受信部、前記受信部で受信した移動体情報によって表される前記接近移動体の状態の変化から、前記接近移動体について移動に関する異常が発生したか否かを検知する異常検知部、及び前記異常検知部で異常が検知された場合、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記干渉領域への進入を禁止する進入禁止時間が長くなるようにして、前記接近移動体と前記干渉領域で干渉しづらくなるように制約を強めた前記制約条件である強化制約条件を前記自律移動体に対して生成する生成部と、を備える。
【発明の効果】
【0021】
本発明によれば、移動体の移動に関する状態が予測した状態とは異なる場合であっても、干渉領域における移動体同士の干渉を抑制する安全な交通流を実現することができる。
【図面の簡単な説明】
【0022】
【
図1】管制システムのシステム構成例を示す図である。
【
図2】遵守車両の制御装置における機能構成例を示す図である。
【
図3】準遵守車両の制御装置における機能構成例を示す図である。
【
図4】非遵守車両の制御装置における機能構成例を示す図である。
【
図5】車両種類毎の運転機能の相違例を示す図である。
【
図6】収集装置及び管制装置の機能構成例を示す図である。
【
図7】管制走行ルート地図の内容例を示す図である。
【
図12】管制装置における電気系統の要部構成例を示す図である。
【
図13】車両の制御装置における電気系統の要部構成例を示す図である。
【
図14】管制装置によって実行される管制処理の流れの一例を示すフローチャートである。
【
図15】干渉地点における車両の干渉時間の一例を示す図である。
【
図16】状態s
x=0に設定された干渉地点での仮想交通ルールを模式化した模式図である。
【
図17】状態s
x=1に設定された干渉地点での仮想交通ルールを模式化した模式図である。
【
図18】干渉地点の協調について説明する模式図である。
【
図19】仮想交通ルール生成処理の流れの一例を示すフローチャートである。
【
図20】車両の速度変化によって引き起こされる交通流の事例を示す図である。
【
図21】手動車両の速度変化に対する自動車両の仮想交通ルールの一例を示す図である。
【
図22】車両の速度が予測範囲内に含まれていない状態例を示す図である。
【
図23】強化仮想交通ルールの一例を示す図である。
【
図24】車両の速度が予測範囲内に含まれている状態例を示す図である。
【
図26】通過優先順位が優先に設定されている状況での強化仮想交通ルールの一例を示す図である。
【
図27】通過優先順位が優先に設定されている状況で車両同士が接近した場合の制約条件の一例を示す図である。
【
図28】通過優先順位が非優先に設定されている状況での強化仮想交通ルールの一例を示す図である。
【
図29】通過優先順位が非優先に設定されている状況で車両同士が接近した場合の制約条件の一例を示す図である。
【発明を実施するための形態】
【0023】
以下、実施形態について図面を参照しながら説明する。なお、同じ構成要素及び同じ処理には全図面を通して同じ符号を付与し、重複する説明を省略する。
【0024】
図1は、本実施形態に係る管制システム1のシステム構成例を示す図である。管制システム1は、管制システム1による管制対象となる車両7、それぞれ経路6に沿って設置される複数の無線通信装置3及び収集装置9、並びに管制装置10を含み、各々の無線通信装置3及び収集装置9は、通信網5を通じて管制装置10と接続されている。
【0025】
車両7が備える運転に関する機能である運転機能の相違により、車両7は複数の種類に分類される。例えば車両7のうち、無線設備を備え、走行中に例えば最も近い場所に設置されている何れか1つの無線通信装置3に無線接続することで、通信網5を通じて管制装置10とデータ通信を行う車両7はコネクテッド車両に分類され、無線設備を備えておらず、管制装置10とデータ通信を行うことができない車両7は非コネクテッド車両に分類される。
【0026】
無線通信装置3は、コネクテッド車両と管制装置10の間のデータ中継装置としての役割を果たす。無線通信装置3は、コネクテッド車両との無線通信が可能な範囲内であればその設置場所に制約はないが、例えば車道と並走して設けられた歩道や車道の中央分離帯、及び信号設備のように、車道からできるだけ近い場所に設置されることが好ましい。また、無線通信装置3の設置台数に制約はない。
【0027】
通信網5は、無線通信装置3及び収集装置9で収集した車両7の各種情報を管制装置10に伝送すると共に、管制装置10で生成されたコネクテッド車両の管制情報を、管制装置10が指定した無線通信装置3に伝送する。管制情報は管制装置10からの指示によってすべての無線通信装置3に伝送され、各々のコネクテッド車両に通知されることもある。なお、通信網5は、有線回線であっても無線回線であってもよい。
【0028】
管制装置10は、車両7同士の交通効率を低下させることなく、車両7同士が接触する可能性が認められる予め定めた範囲(以降、「干渉範囲」という)まで接近するような箇所、すなわち、干渉地点Xで干渉を回避させる交通管制を行う装置である。ここで「干渉」とは、車両7同士が接触する状況を示すだけでなく、車両7同士が干渉範囲まで接近する状況をいう。
【0029】
管制装置10は、管制対象となる各々の車両7から、車両7の状態を表す移動体情報を受信し、各々の車両7が行う移動に関する判断を制約する制約条件(以降、「仮想交通ルール」という)を制約条件の受信機能を有する車両7毎に生成して、制約条件の受信機能を有する各車両7に送信する。これにより車両7同士が干渉地点Xで干渉しないような交通管制が行われる。
【0030】
ここで「車両7の状態」とは、車両7の動き、車両7に対して行われた制御内容、及び車両7に備わっている各機能の動作状況というように、計測及び収集可能な車両7に関する項目を項目毎に表した情報の集合体である。
【0031】
なお、管制装置10が車両7に送信する仮想交通ルールは車両7に対する制約条件の一例であり、詳細内容については後ほど説明する。
【0032】
管制装置10は、コネクテッド車両であれば無線通信装置3を通じて移動体情報を受信することができるが、非コネクテッド車両の場合には無線設備を備えていないため、無線通信装置3を通じて移動体情報を受信することができない。
【0033】
したがって、管制装置10は、収集装置9を通じて非コネクテッド車両の移動体情報を取得する。
【0034】
収集装置9は、例えば光学的に撮影を行う撮影ユニットやUWB(Ultra Wide Band)レーダ等を用いて、車線8における非コネクテッド車両や非コネクテッド車両周辺の交通環境を撮影又は計測し、非コネクテッド車両に関する移動体情報を収集する装置である。
【0035】
コネクテッド車両は、運転機能の相違により、遵守車両、準遵守車両、及び非遵守車両の3つの種類に分離される。
【0036】
遵守車両とは、管制装置10から仮想交通ルールを受信し、車両7に取り付けられたセンサ等から得られる交通環境情報を参照しながら、受信した仮想交通ルールを満たし、かつ、車両7同士の干渉を自律的に回避するように、車両7自らの判断によって車両7を制御しながら走行する自動運転機能を備えた車両7のことである。なお、本実施形態に係る自動運転とは、運転手ではなく自動運転機能が走行に関する責任を負うレベル3以上の区分に分類される運転を指す。遵守車両は、車両7自らの判断によって移動を行う自律移動体の一例である。
【0037】
準遵守車両とは、管制装置10から仮想交通ルールを受信するが、遵守車両のように車両7自身が仮想交通ルールを満たすように走行を制御するのではなく、仮想交通ルールの伝達を受けた運転手が仮想交通ルールを満たし、かつ、車両7同士の干渉を回避するように自らの判断によってハンドルやアクセルを制御して走行する車両7のことである。
【0038】
非遵守車両とは、無線通信装置3を通じて管制装置10に移動体情報を送信することはできるが、管制装置10から仮想交通ルールを受信することができない車両7のことである。
【0039】
以降では、遵守車両、準遵守車両、非遵守車両、及び非コネクテッド車両を区別して説明する必要がない場合には総称して「車両7」と表し、区別して説明する場合には、それぞれ遵守車両7A、準遵守車両7B、非遵守車両7C、及び非コネクテッド車両7Dということにする。
【0040】
また、準遵守車両7B、非遵守車両7C、及び非コネクテッド車両7Dは運転手の操作により車両7の走行が行われることから「手動車両」と表すことがある。一方、遵守車両7Aは車両7自らの判断と制御により車両7の走行が行われることから、手動車両に対して「自動車両」と表すことがある。
【0041】
管制装置10が管制情報によって指示した経路6に沿って車両7の移動が実現される度合い、又は管制装置10が予測した経路6に沿って車両7の移動が実現される度合いを「遵守度」と呼び、遵守度が高い車両7ほど、管制装置10が指示した経路6、又は管制装置10が予測した経路6に沿って移動する蓋然性が高くなる。なお、車両7の移動は仮想交通ルールによって制約されるため、遵守度を仮想交通ルールの遵守度、又は移動に関する遵守度ということがある。
【0042】
車両7において、遵守車両7Aの遵守度が最も高く、次に準遵守車両7Bの遵守度が高い。非遵守車両7Cにおける遵守度は準遵守車両7Bよりも低く、非コネクテッド車両7Dの遵守度は車両7の中で最も低い。すなわち、本実施形態に係る車両7の種類は、各車両7の遵守度によって区分される。
【0043】
図2は、遵守車両7Aの制御装置における機能構成例を示す図である。
【0044】
図2に示すように、遵守車両7Aの制御装置は、位置推定部21A、状態管理部22A、無線通信部23A、局所経路計画部24、及び制御部25Aの各機能部と、車両走行ルート地
図26を含む。
【0045】
位置推定部21Aは遵守車両7Aの位置を推定する。具体的には、位置推定部21Aは、遵守車両7Aに取り付けられた例えばレーザレンジファインダやカメラのように、遵守車両7Aが走行する周辺環境の形状や、移動体である遵守車両7Aの移動路の一例である車線8上の状況を捉える外界センサから外形形状データを取得し、取得した外形形状データと、例えば予め用意している環境外形データ(自己位置推定用地図)をマッチングさせ、一致する地点を遵守車両7Aの現在位置として推定するマップマッチングを用いて遵守車両7Aの位置を推定する。位置推定部21Aにおける遵守車両7Aの位置の推定方法に制約はなく、例えばGPS(Global Positioning System)を用いた遵守車両7Aの位置の推定等、他の推定方法を用いてもよい。位置推定部21Aは、推定した遵守車両7Aの位置を位置情報として状態管理部22A及び局所経路計画部24に通知する。こうした位置推定部21Aは、本実施形態に係る第1位置推定部に相当する。
【0046】
状態管理部22Aは、例えばナンバー情報及び車体番号のように遵守車両7Aを一意に識別するために用いられる情報を含んだ車両固有情報を管理する。また、状態管理部22Aは、例えば位置情報によって表される車両7の位置、並びに、姿勢、速度、及び制御内容等を計測するセンサ(「内界センサ」と呼ばれる)や外界センサで取得した周囲の交通環境に関するセンサ値を時系列に沿って収集し、遵守車両7Aの状態として管理する。
【0047】
状態管理部22Aは、車両固有情報と遵守車両7Aの状態を移動体情報として定期及び随時の少なくとも一方のタイミングで、無線通信部23A及び局所経路計画部24に通知する。
【0048】
無線通信部23Aは、状態管理部22Aから受け付けた移動体情報を、無線通信装置3を通じて管制装置10に送信すると共に、無線通信装置3を通じて管制装置10から受信した管制情報を遅滞なく局所経路計画部24に通知する。
【0049】
局所経路計画部24は、位置推定部21Aから受け付けた位置情報、状態管理部22Aから受け付けた移動体情報、無線通信部23Aから受け付けた管制情報、及び車両走行ルート地
図26を用いて局所経路を計画し、制御部25Aに通知する。
【0050】
局所経路計画部24は、遵守車両7Aが管制情報に含まれる仮想交通ルールを満たし、かつ、管制情報で指定された大域経路に沿って走行するという条件の下で、移動体情報に含まれる遵守車両7Aに取り付けられた外界センサの計測データから走行中の車道の状況を判断し、大域経路に対応した車道のどの位置を実際に走行しなければならないのかといった実経路を決定する。その上で、局所経路計画部24は、決定した実経路に沿って車両7を走行させるために従うべき各時刻における遵守車両7Aの速度や姿勢を設定する。
【0051】
このように、遵守車両7Aが仮想交通ルールを満たしながら、管制装置10によって指定された大域経路に沿って走行するという条件の下で決定した実経路を「局所経路」と呼び、局所経路には、局所経路に従って遵守車両7Aを走行させるための制御内容が付加される。なお、大域経路の詳細内容については後ほど説明する。
【0052】
車両走行ルート地
図26は、遵守車両7Aが走行する車線8を表す地図情報を含んでおり、局所経路の決定や、局所経路に沿って遵守車両7Aを走行させるための各時刻における遵守車両7Aの制御内容の設定に用いられる。
【0053】
制御部25Aは局所経路計画部24から局所経路を受け付けると、局所経路に含まれる制御内容に従って遵守車両7Aのハンドル、アクセル、ブレーキ等を制御し、局所経路に沿った遵守車両7Aの自律走行を実現する。
【0054】
制御部25Aが実施した制御に伴うハンドル、アクセル、ブレーキ等の操作量といった遵守車両7Aの制御内容は、各種制御量を計測するそれぞれの内界センサを通じて状態管理部22Aに通知され、遵守車両7Aの状態として状態管理部22Aで管理される。
【0055】
なお、遵守車両7Aは管制装置10から大域経路を受信しなくても、外界センサの計測データから走行中の車道の状況を判断し、仮想交通ルールを満たすような実経路を決定することができるが、ここでは一例として、遵守車両7Aは管制装置10から大域経路を受信して実経路、すなわち、局所経路を決定するものとする。
【0056】
図3は、準遵守車両7Bの制御装置における機能構成例を示す図である。
【0057】
図3に示すように、準遵守車両7Bの制御装置は、位置推定部21B、状態管理部22B、無線通信部23B、制御部25B、及び仮想交通ルール伝達部27を含む。
【0058】
準遵守車両7Bは運転手が実経路を決定するため、遵守車両7Aのように局所経路計画部24及び車両走行ルート地
図26は存在せず、その代わりに、仮想交通ルール伝達部27が存在する。
【0059】
位置推定部21Bは、遵守車両7Aにおける位置推定部21Aと同様の方法により準遵守車両7Bの位置を推定し、推定した準遵守車両7Bの位置を位置情報として状態管理部22Bに通知する。
【0060】
状態管理部22Bは、遵守車両7Aにおける状態管理部22Aと同様に、準遵守車両7Bの移動体情報の収集及び管理を行う。準遵守車両7Bの場合、運転手が準遵守車両7Bを制御するため、準遵守車両7Bの状態には、運転手が操作したハンドル、アクセル、ブレーキ等の操作量が含まれる。
【0061】
また、状態管理部22Bは、管理する移動体情報を定期及び随時の少なくとも一方のタイミングで、無線通信部23Bに通知する。
【0062】
無線通信部23Bは、状態管理部22Bから受け付けた移動体情報を、無線通信装置3を通じて管制装置10に送信すると共に、無線通信装置3を通じて管制装置10から受信した管制情報を遅滞なく仮想交通ルール伝達部27に通知する。
【0063】
仮想交通ルール伝達部27は、無線通信部23Bを通じて管制装置10から受信した管制情報に含まれる仮想交通ルールをドライバに伝達する。準遵守車両7Bの運転手が仮想交通ルールを把握することができる方法であれば、仮想交通ルール伝達部27における仮想交通ルールの伝達方法に制約はなく、表示による伝達、音声による伝達、及び触覚による伝達の何れの方法を用いてもよく、また、複数の伝達方法を組み合わせて運転手に仮想交通ルールを伝達してもよい。
【0064】
なお、準遵守車両7Bは管制装置10から大域経路を受信し、仮想交通ルール伝達部27で大域経路を仮想交通ルールと共に運転手に伝達して運転手の運転支援を行ってもよいが、ここでは一例として、準遵守車両7Bは管制装置10から大域経路を受信しないものとして説明を行う。
【0065】
図4は、非遵守車両7Cの制御装置における機能構成例を示す図である。
【0066】
図4に示すように、非遵守車両7Cの制御装置は、位置推定部21C、状態管理部22C、無線通信部23C、及び制御部25Cを含む。
【0067】
非遵守車両7Cでは管制装置10から仮想交通ルールを受信することができないか、又は、仮想交通ルールを受信しても仮想交通ルールを活用する機能を備えていないため、準遵守車両7Bから仮想交通ルール伝達部27を取り除いた構成となる。
【0068】
位置推定部21Cは、遵守車両7Aにおける位置推定部21Aと同様の方法により非遵守車両7Cの位置を推定し、推定した非遵守車両7Cの位置を位置情報として状態管理部22Cに通知する。
【0069】
状態管理部22Cは、準遵守車両7Bにおける状態管理部22Bと同様に、非遵守車両7Cの移動体情報の収集及び管理を行う。また、状態管理部22Cは、管理する移動体情報を定期及び随時の少なくとも一方のタイミングで、無線通信部23Cに通知する。
【0070】
無線通信部23Cは、状態管理部22Cから受け付けた移動体情報を、無線通信装置3を通じて管制装置10に送信する。
【0071】
なお、非遵守車両7Cは管制装置10から大域経路を受信し、受信した大域経路を運転手に伝達して運転手の運転支援を行うようにしてもよいが、ここでは一例として、非遵守車両7Cは管制装置10から大域経路を受信しないものとして説明を行う。
【0072】
非遵守車両7Cは、管制装置10から仮想交通ルールを受信することができないか、又は、仮想交通ルールを受信しても仮想交通ルールを活用する機能を備えていなければ、何らかの自動運転機能を備えていてもよいが、ここでは一例として運転手が非遵守車両7Cを手動運転しているものとする。
【0073】
図5は、上述した遵守車両7A、準遵守車両7B、非遵守車両7C、及び非コネクテッド車両7Dが有する運転機能の相違をまとめた図である。
【0074】
図5において、“〇”は対応する運転機能を備えていることを表し、“×”は対応する運転機能を備えていないことを表す。“〇/×”は対応する運転機能を備えていても備えていなくてもどちらでもよいことを表し、“-”は原則不要な運転機能であることを表す。
【0075】
以降では、説明の便宜上、移動体情報を区別して説明する必要がある場合、遵守車両7Aの移動体情報を「移動体情報A」、準遵守車両7Bの移動体情報を「移動体情報B」、及び非遵守車両7Cの移動体情報を「移動体情報C」ということにする。
【0076】
一方、
図6は、収集装置9及び管制装置10の機能構成例を示す図である。
図6に示すように、収集装置9はインフラセンサ9Aと状態検出部9Bを備える。
【0077】
インフラセンサ9Aは、例えば光学的に撮影を行う撮影ユニットやUWBレーダ等であり、非コネクテッド車両7Dや非コネクテッド車両7D周辺の交通環境を撮影又は計測する。インフラセンサ9Aは、撮影又は計測して収集した非コネクテッド車両7Dの走行状態や交通環境に関する収集データを状態検出部9Bに通知する。なお、インフラセンサ9Aは、例えば予め定めた間隔毎に交通環境の撮影又は計測を行うが、非コネクテッド車両7Dのような移動体を検出してから一定期間の間だけ、交通環境の撮影又は計測を行うようにしてもよい。一例として、インフラセンサ9Aは、予め定めた間隔で画像を常時撮影しているカメラとする。画像の撮影間隔を短く設定していけば、インフラセンサ9Aが撮影する画像は動画となる。こうしたインフラセンサ9Aは、車両7の状態を取得する取得装置に相当する。
【0078】
状態検出部9Bは、インフラセンサ9Aから収集データを受け付けると、公知の画像処理によってインフラセンサ9Aが撮影した画像から非コネクテッド車両7Dの車両部分を抽出し、画像における非コネクテッド車両7Dの位置を、インフラセンサ9Aにおけるカメラ座標の位置から実際の道路の形状を表す地図座標の位置に座標変換を行って、管制走行ルート地
図19上における非コネクテッド車両7Dの位置を算出する。管制走行ルート地
図19上における非コネクテッド車両7Dの位置が確定すれば、例えば2枚の画像から得られた非コネクテッド車両7Dの位置のずれと2枚の画像が撮影された時間差から、非コネクテッド車両7Dの速度が得られる。また、時系列に沿った非コネクテッド車両7Dの位置の変化から、非コネクテッド車両7Dがどのように移動しているのか追尾することができる。
【0079】
このように、状態検出部9Bは、非コネクテッド車両7Dの位置、姿勢、及び速度といった非コネクテッド車両7Dの移動体情報を検出し、通信網5を通じて遅滞なく管制装置10に送信する。以降では、非コネクテッド車両7Dの移動体情報を「移動体情報D」ということがある。
【0080】
収集装置9は、必ずしもインフラセンサ9Aと状態検出部9Bを備える必要はなく、例えばインフラセンサ9Aだけを備えてもよい。この場合、状態検出部9Bを備えた図示しない状態検出装置を通信網5に接続し、図示しない状態検出装置で各収集装置9から通知されるそれぞれの収集データを受け付けて、非コネクテッド車両7Dの移動体情報を検出すればよい。各々の収集装置9から状態検出部9Bが不要となるため、収集装置9に状態検出部9Bを含めるよりも収集装置9を小型化することができ、収集装置9の取り付けが容易になる。
【0081】
収集装置9も無線通信装置3と同様に、例えば車道と並走して設けられた歩道や車道の中央分離帯、及び信号設備のように非コネクテッド車両7Dの移動体情報が得られる範囲に設置される。収集装置9におけるインフラセンサ9Aの撮影方向及び撮影される画像の範囲(画角)は固定であっても可変であってもよい。
【0082】
次に、管制装置10の機能について説明する。
【0083】
図6に示すように、管制装置10は、目的地設定部11、通信部12、大域経路計画部13、走行経路予測部14、干渉地点特定部15、異常検知部16、及び仮想交通ルール生成部18の各機能部と、管制走行ルート地
図19を含む。
【0084】
通信部12は、遵守車両7A、準遵守車両7B、及び非遵守車両7Cの各々から無線通信装置3を通じて移動体情報を受信すると共に、後述する仮想交通ルール生成部18で生成した仮想交通ルールを含む管制情報を、管制情報の送信先として指定された各々の遵守車両7A及び準遵守車両7Bに送信する。通信部12は移動体情報を受信する受信部の一例である。
【0085】
遵守車両7Aは、管制装置10によって指定された大域経路に沿って走行する車両7であるため、管制装置10が大域経路を計画する必要がある。
【0086】
そのため、目的地設定部11は、遵守車両7Aが向かおうとしている目的地と遵守車両7Aの車両固有情報を受け付け、遵守車両7Aの車両固有情報と目的地を対応付けて大域経路計画部13に通知する。
【0087】
遵守車両7Aの目的地及び車両固有情報は管制装置10の操作者が目的地設定部11に設定してもよいが、遵守車両7Aから目的地を含む移動体情報Aを受信し、目的地設定部11が、受信した移動体情報Aに含まれる車両固有情報と目的地を対応付けて大域経路計画部13に通知してもよい。
【0088】
大域経路計画部13は、目的地設定部11から受け付けた遵守車両7Aの目的地、通信部12から受け付けた遵守車両7Aの移動体情報A、及び管制走行ルート地
図19を用いて大域経路を計画する。大域経路計画部13は計画した大域経路を干渉地点特定部15に通知する。
【0089】
図7は、大域経路の計画に用いられる管制走行ルート地
図19の内容例を示す図である。管制走行ルート地
図19は、交通規則が変化しない区間を最小単位とした、各区間における経路情報の集合によって表現される道路構造データベースである。
【0090】
管制走行ルート地
図19を構成する区間(
図7の例の場合、地点K1から地点K2までの区間、地点K2から地点K3までの区間、地点K3から地点K7までの区間、地点K2から地点K5までの区間、地点K4から地点K5までの区間、及び地点K5から地点K6までの区間の6区間)には、それぞれ区間における制限速度、車線数、曲率、幅員、勾配、及び区間における車線が交差する場合に優先車線であるのか、それとも非優先車線であるのかといった車線優先度等の交通規則情報が設定されている。
【0091】
更に、管制走行ルート地
図19を構成する各区間は、仮想的に設定された経由点の集合である経由点列によって車両7の経路6を表している。経由点とは、経路6上における車両7の位置を表す指標の1つであり、各々の経由点には経由点IDが一意に設定されているため、経由点IDから経路6上における車両7の位置が特定される。
【0092】
なお、管制走行ルート地
図19には干渉地点Xを予め規定している干渉地点情報が含まれる。
【0093】
図8は、干渉地点Xの例を示す図である。干渉地点Xには例えば
図8(A)に示すように、優先車線8Aと非優先車線8Bが交差する交差点や、一般道や高速道路でみられるような、
図8(B)に示す優先車線8Aと非優先車線8Bが合流する合流点が含まれる。干渉地点Xとは、車両7同士が干渉範囲まで接近するような箇所のことであるため、干渉地点Xは必ずしも点で表されるわけではなく、一定の大きさを有する領域で表されることもある。すなわち、干渉地点Xは干渉領域の一例である。
【0094】
図9は、干渉地点情報の一例を示す図であり、干渉地点情報は、例えば干渉地点X毎に干渉地点Xを一意に識別するための干渉地点ID、干渉地点Xの位置、干渉地点Xに対応する経由点を一意に識別するための経由点ID、並びに、干渉地点Xの1つ手前の経由点の位置及び経由点IDを、同じ干渉地点Xを共有する優先車線8Aと非優先車線8Bのそれぞれについて規定した情報である。
【0095】
前述した遵守車両7Aにおける車両走行ルート地
図26も管制走行ルート地
図19と同じ情報で構成されるが、車両走行ルート地
図26は、遵守車両7Aが実際に走行する上で必要な情報で、かつ、管制走行ルート地
図19には含まれない情報を含んでもよい。
【0096】
なお、管制走行ルート地
図19に必ずしも干渉地点情報が含まれている必要はなく、この場合、管制装置10は、管制走行ルート地
図19に含まれる経由点列の情報から干渉地点情報を生成すればよい。また、管制走行ルート地
図19は必ずしも管制装置10に含まれる必要はなく、管制装置10は、通信部12を通じて管制装置10とは異なる外部装置から管制走行ルート地
図19を取得してもよい。
【0097】
図6における大域経路計画部13は、目的地設定部11から受け付けた遵守車両7Aの車両固有情報と目的地、移動体情報Aに含まれる遵守車両7Aの位置情報と車両固有情報、及び管制走行ルート地
図19に基づいて、遵守車両7A毎に管制走行ルート地
図19上で遵守車両7Aの現在位置から目的地までの経路6である大域経路を探索する。すなわち、大域経路は、管制走行ルート地
図19を構成する各区間の経由点列をつないだ経路6として表される。
【0098】
図10は、共に遵守車両7Aである車両P及び車両Qの大域経路の一例を示す図である。複数の経路6の中から車両Pの現在位置と車両Pの目的地をつなぐ1つの経路6Pが車両Pの大域経路として選択され、車両Qの現在位置と車両Qの目的地をつなぐ1つの経路6Qが車両Qの大域経路として選択された状況を表している。
【0099】
なお、大域経路計画部13における遵守車両7Aの大域経路の探索に用いる探索方法はどのような方法であってもよく、例えばダイクストラ探索といった公知の探索方法が用いられる。
【0100】
遵守車両7Aであれば予め目的地が決められるため、管制装置10が主体となって大域経路計画部13で遵守車両7Aの大域経路を計画することができる。遵守車両7Aは大域経路に基づいて決定した局所経路を走行することから、管制装置10は自らが計画した大域経路によって、遵守車両7Aの経路6を知ることができる。
【0101】
一方、準遵守車両7Bの場合、運転手が経路6を決定することから目的地が予め決められていないことがある。また、非遵守車両7Cも運転手が運転していれば準遵守車両7Bと同様に運転手が経路6を決定することから、目的地が予め決められていないことがある。更に、非コネクテッド車両7Dの場合、管制装置10とデータ通信を行うことができないため、管制装置10にはそもそも非コネクテッド車両7Dが向かおうとしている目的地を取得する手段がない。
【0102】
したがって、管制装置10は大域経路計画部13で準遵守車両7B、非遵守車両7C、及び非コネクテッド車両7Dの大域経路を計画することができない。
【0103】
その代わりに管制装置10は、走行経路予測部14で準遵守車両7B、非遵守車両7C、及び非コネクテッド車両7Dの走行経路を予測する。
【0104】
具体的には、走行経路予測部14は、準遵守車両7B、非遵守車両7C、及び非コネクテッド車両7D、すなわち、手動車両における各々の移動体情報B、移動体情報C、及び移動体情報Dに含まれる位置情報と速度から走行経路を予測する。例えば走行経路予測部14は、手動車両の現在位置から特定の距離(例えば100m)までを移動体情報で示される速度で走行するものとし、特定の距離に対応する車線8の区間の経由点列をつないだ経路6を手動車両の走行経路として干渉地点特定部15に通知する。
【0105】
しかしながら、手動車両の目的地は不明であるため、走行経路予測部14は、車線8が分岐する場合には大域経路と異なり、車線8が分岐する毎に枝分かれするすべての経路6の組み合わせを走行経路として取り扱う。
【0106】
図11は、車両Pが手動車両である場合の走行経路の一例を示す図である。
図11に示すように車両Pの走行先が2つに分岐している場合、走行経路予測部14は、車両Pが分岐点で何れの方向に分岐するか不明であるため、経路6P-1及び経路6P-2を共に車両Pの走行経路とする。
【0107】
なお、既に説明したように、準遵守車両7Bの移動体情報B及び非遵守車両7Cの移動体情報Cは無線通信装置3を通じて取得され、非コネクテッド車両7Dの移動体情報Dは収集装置9を通じて取得される。
【0108】
収集装置9で撮影される画像には非コネクテッド車両7D以外の種類の車両7も含まれる場合がある。この場合、収集装置9から取得した何れの移動体情報が非コネクテッド車両7Dの移動体情報Dであるのか区別がつかないことがある。したがって、走行経路予測部14は、例えば通信部12を通じて取得した移動体情報A、移動体情報B、及び移動体情報Cに含まれる何れかの位置情報と、収集装置9から取得した車両7の移動体情報に含まれる位置情報が一致していると認められる予め定めた範囲内まで接近している場合、収集装置9から通知された移動体情報によって表される車両7は、通信部12から取得した移動体情報によって表される遵守車両7A、準遵守車両7B、及び非遵守車両7Cの何れかであると判定し、非コネクテッド車両7Dの移動体情報Dと区別すればよい。
【0109】
干渉地点特定部15は、大域経路計画部13から受け付けた遵守車両7Aの大域経路と、走行経路予測部14でそれぞれ予測した準遵守車両7B、非遵守車両7C、及び非コネクテッド車両7Dの走行経路に基づいて、各経路6における干渉地点Xを特定する。また、干渉地点特定部15は、各車両7の経路6と各々の経路6における干渉地点Xを仮想交通ルール生成部18に通知する。
【0110】
異常検知部16は、通信部12及び収集装置9から各車両7の移動体情報を受け付け、受け付けた移動体情報によって表される接近車両の移動に関する状態の変化から、接近車両について移動に関する異常が発生したか否かを検知する。
【0111】
ここで「接近車両」とは、特定の車両7に対して移動体情報を受け付けた各車両7のうち、干渉地点Xにおいて特定の車両7と予め定めた範囲まで接近する可能性がある車両7のことである。また、接近車両の「移動に関する異常」とは、接近車両が管制装置10で予測していない想定外の移動を行うことである。
【0112】
特定の車両7に接近する車両7について移動に関する異常が発生していることがわかれば、管制装置10は特定の車両7に対して、干渉地点Xで接近する車両7と干渉しないように移動に関する制約をより強めた仮想交通ルールを送信することで、干渉地点Xで特定の車両7が接近車両と干渉することを抑制することができる。
【0113】
しかしながら、特定の車両7が手動車両である場合、必ずしも運転手が仮想交通ルールに従って手動車両を運転するとは限らず、特に特定の車両7が非コネクテッド車両7Dであれば、仮想交通ルールを受信することもできない。すなわち、特定の車両7は仮想交通ルールに従った運転が行われる遵守車両7Aであることが好ましい。したがって、本実施形態に係る異常検知部16は、遵守車両7Aに接近する手動車両を接近車両として認識し、手動車両について移動に関する異常が発生したか否かを検知する。
【0114】
異常検知部16は、接近車両の移動に関する異常の発生の有無を表す判定結果を仮想交通ルール生成部18に通知する。
【0115】
なお、以降では、接近車両の移動に関する異常のことを、単に接近車両の「異常」ということにする。接近車両における異常の検知方法については後ほど詳細に説明する。
図6では、収集装置9からの移動体情報Dの通知先をわかりやすく表すため、移動体情報Dが収集装置9から走行経路予測部14及び異常検知部16に通知されているが、実際には通信部12を経由して走行経路予測部14及び異常検知部16に通知される。
【0116】
仮想交通ルール生成部18は、通信部12から受け付けた各車両7の移動体情報、干渉地点特定部15から受け付けた各車両7の経路6、すなわち、大域経路及び走行経路と、各々の経路6における干渉地点X、並びに、異常検知部16から受け付けた接近車両の異常に関する判定結果を用いて、遵守車両7A及び準遵守車両7Bに対する仮想交通ルールを生成する。仮想交通ルール生成部18は、本実施形態に係る生成部に相当する。
【0117】
具体的には、仮想交通ルール生成部18は、まず各車両7の移動体情報、各車両7の経路6、及び各々の経路6における干渉地点Xを用いて、遵守車両7Aの大域経路における干渉地点Xで干渉しあう遵守車両7Aと他の車両7について、各々の干渉地点Xにおける干渉時間tを推定し、各干渉地点Xにおいて車両7同士の干渉が回避されるような通過優先順位を遵守車両7Aに対して規定する。
【0118】
同様に、仮想交通ルール生成部18は、各車両7の移動体情報、各車両7の経路6、及び各々の経路6における干渉地点Xを用いて、準遵守車両7Bの走行経路における干渉地点Xで干渉しあう準遵守車両7Bと他の車両7について、各々の干渉地点Xにおける干渉時間tを推定し、各干渉地点Xにおいて車両7同士の干渉が回避されるような通過優先順位を準遵守車両7Bに対して規定する。
【0119】
その上で、仮想交通ルール生成部18は、接近車両の異常に関する判定結果を参照し、遵守車両7Aの大域経路における干渉地点Xで遵守車両7Aに干渉する可能性のある接近車両に対して異常が検知されている場合には、フェールセーフの設計思想に基づいて、接近車両の異常に関する判定結果を参照する前に生成した仮想交通ルールよりも、干渉地点Xで接近車両と干渉しづらくなるように移動に関する制約を強めた強化仮想交通ルールを生成する。強化仮想交通ルールは、本実施形態に係る強化制約条件に相当する。
【0120】
仮想交通ルール生成部18は、遵守車両7Aに対しては大域経路と仮想交通ルールを含んだ管制情報を生成し、準遵守車両7Bに対しては仮想交通ルールを含んだ管制情報を生成し、通信部12に対して各々の遵守車両7A及び準遵守車両7Bと対応付けられた管制情報の送信依頼を行う。これにより、無線通信装置3から該当する遵守車両7A及び準遵守車両7Bに対して、各々の遵守車両7A及び準遵守車両7Bと対応付けられた管制情報が送信されることになる。
【0121】
なお、仮想交通ルール及び強化仮想交通ルールについての詳細な生成方法については後ほど説明する。
【0122】
次に、管制装置10及び車両7の制御装置における各々の電気系統の要部構成例について説明する。
【0123】
図12は、管制装置10における電気系統の要部構成例を示す図である。
図12に示すように、管制装置10は例えばコンピュータ30を用いて構成される。
【0124】
コンピュータ30は、
図6に示した管制装置10に係る各機能部の処理を担うプロセッサの一例であるCPU(Central Processing Unit)31、コンピュータ30を管制装置10として機能させる管制プログラムを記憶するROM(Read Only Memory)32、CPU31の一時的な作業領域として使用されるRAM(Random Access Memory)33、不揮発性メモリ34、及び入出力インターフェース(I/O)35を備える。そして、CPU31、ROM32、RAM33、不揮発性メモリ34、及びI/O35がバス36を介して各々接続されている。
【0125】
不揮発性メモリ34は、不揮発性メモリ34に供給される電力が遮断されても、記憶したデータが維持される記憶装置の一例であり、例えば半導体メモリが用いられるが、ハードディスクを用いてもよい。また、不揮発性メモリ34は、必ずしもコンピュータ30に内蔵されている必要はなく、例えばUSB(Universal Serial Bus)メモリやメモリカードのようにコンピュータ30に着脱可能な可搬型の記憶媒体を用いてもよい。
【0126】
I/O35には、例えば通信ユニット37、入力ユニット38、及び表示ユニット39が接続される。
【0127】
通信ユニット37は通信網5に接続され、無線通信装置3及び収集装置9や、通信網5と接続された外部装置との間でデータ通信を行う通信プロトコルを備える。
【0128】
入力ユニット38は、管制装置10の操作者からの指示を受け付けてCPU31に通知するユニットであり、例えばボタン、タッチパネル、キーボード、及びマウス等が用いられる。指示が音声で行われる場合には、入力ユニット38としてマイクが用いられることがある。
【0129】
表示ユニット39は、CPU31によって処理された情報を表示する装置であり、例えば液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、及びプロジェクタ等が用いられる。
【0130】
管制装置10が無人のデータセンター等に設置されている場合のように情報の表示を必要としない状況では、表示ユニット39がI/O35に接続されないこともある。また、必要に応じてプリンタユニットのような他のユニットがI/O35に接続されることがある。
【0131】
一方、
図13は、非コネクテッド車両7Dを除く車両7の制御装置における電気系統の要部構成例を示す図である。車両7の制御装置も管制装置10と同様に、例えばコンピュータ40を用いて構成される。
【0132】
コンピュータ40は、
図2~
図4にそれぞれ示した各種類の車両7の制御装置に係る各機能部の処理を担うプロセッサの一例であるCPU41、コンピュータ40を各種類の車両7に対応した制御装置として機能させる制御プログラムを記憶するROM42、CPU41の一時的な作業領域として使用されるRAM43、不揮発性メモリ44、及びI/O45を備える。そして、CPU41、ROM42、RAM43、不揮発性メモリ44、及びI/O45がバス46を介して各々接続されている。
【0133】
I/O45には、例えば通信ユニット47、入力ユニット48、表示ユニット49、内界センサ51、外界センサ52、及び走行装置53が接続される。
【0134】
通信ユニット47は無線通信装置3との間でデータ通信を行う通信プロトコルを備える。
【0135】
入力ユニット48は、車両7の運転手からの指示を受け付けてCPU41に通知するユニットであり、例えばボタン、タッチパネル、及びポインティングデバイス等が用いられる。指示が音声で行われる場合には、入力ユニット48としてマイクが用いられることがある。
【0136】
表示ユニット49は、CPU41によって処理された情報を表示する装置であり、例えば液晶ディスプレイ、有機ELディスプレイ、及びプロジェクタ等が用いられる。
【0137】
走行装置53は、例えばハンドル、アクセル、及びブレーキのように車両7の走行状態に影響を与える操作装置の操作量を調整すると共に、操作量を車両7の状態としてCPU41に通知する装置であり、遵守車両7Aの場合、CPU41によって操作量が制御され、準遵守車両7Bの場合、運転手によって操作量が制御される。非遵守車両7Cの場合には自動運転機能を備えていてもいなくてもよいため、操作装置の操作量は運転モードに応じてCPU41によって制御されることもあれば、運転手によって制御されることもあるが、既に説明したように、運転手が非遵守車両7Cを手動運転している例について説明していることから、本実施形態における非遵守車両7Cの操作装置の操作量は運転手によって制御される。
【0138】
なお、I/O45には、管制装置10から受信した管制情報の内容を音声で通知するスピーカーや、触覚によって通知するデバイスを接続してもよい。車両7が準遵守車両7Bの場合、運転手に管制情報を伝達する少なくとも1つのデバイスがI/O45に接続される。内界センサ51及び外界センサ52の機能については既に説明した通りであり、例えば準遵守車両7Bのように自動運転機能を備えていない車両7の場合、必ずしもI/O45に外界センサ52が接続されていないこともある。
【0139】
次に、管制システム1における管制装置10の動作について詳細に説明する。
【0140】
図14は、各車両7から移動体情報を受け付けた場合に、管制装置10のCPU31によって実行される管制処理の流れの一例を示すフローチャートである。
【0141】
管制処理を規定する管制プログラムは、例えば管制装置10のROM32に予め記憶されている。管制装置10のCPU31は、ROM32に記憶される管制プログラムを読み込み、管制処理を実行する。
【0142】
なお、以降では説明の便宜上、管制システム1の管制対象となる車両7が車両P及び車両Qの場合について管制装置10の動作について説明するが、管制対象となる車両7が3台以上の場合であっても、各々の車両7について同様の処理を行えばよい。
【0143】
ステップS10において、CPU31は、移動体情報によって通知される車両7の運転機能に基づいて、車両Pと車両Qの種類を判定する。説明の便宜上、車両Pを手動車両とし、車両Qを自動車両とする。
【0144】
ステップS20において、CPU31は、自動車両である車両Qから受信した移動体情報に含まれる車両Qの位置情報と、車両Qの目的地に基づいて、車両Qの大域経路を生成する。
【0145】
ステップS30において、CPU31は、手動車両である車両Pから受信した移動体情報に含まれる車両Pの位置情報と車両Pの速度に基づいて、車両Pの走行経路を生成する。
【0146】
なお、分岐点の手前の地点で手動車両の速度が減速した場合、分岐点を直進するよりも折れ曲がる蓋然性が高いことから、CPU31は、折れ曲がる方向に進む経路6だけを車両Pの走行経路として生成してもよい。
【0147】
ステップS40において、CPU31は、車両Pの経路6を示す経由点が、車両Qの経路6を示す経由点から干渉範囲以内まで接近するような地点、すなわち、車両Pと車両Qの干渉地点Xを特定する。具体的には、CPU31は、ステップS20で取得した車両Qの大域経路(単に「車両Qの経路6」という)と、ステップS30で取得した車両Pの走行経路(単に「車両Pの経路6」という)が交差又は合流する地点の経由点や、車両Pの経路6と車両Qの経路6が干渉範囲以内まで接近して並走するような領域の経由点を、車両Pと車両Qの干渉地点Xとして特定する。
【0148】
なお、
図9に示したような干渉地点情報を参照することができる場合、CPU31は、車両Pと車両Qの各々の経路6に、干渉地点情報で干渉地点Xとして設定されている同一の経由点が含まれていれば、当該経由点によって表される地点を車両Pと車両Qの干渉地点Xとしてもよい。
【0149】
ステップS50において、CPU31は、ステップS40で特定した車両Pと車両Qの各干渉地点Xについて、車両Pと車両Qの干渉時間tを算出する。
【0150】
干渉時間tは、車両P及び車両Qのそれぞれの現在位置から干渉地点Xまでの経路6に沿った距離(以降、「干渉地点Xまでの距離」という)と、車両P及び車両Qのそれぞれの速度から算出することができる。しかしながら、交通事情等により車両P及び車両Qは一定の速度で走行することができないため、実際には車両P及び車両Qの速度は変動する。
【0151】
たとえば、“v”を車両P及び車両Qにおけるそれぞれの速度、“l”を干渉地点Xまでの距離、“α”及び“β”を車両P及び車両Qの速度変化に対応する正数のマージン、“ε”を他の値よりも0に近い正定数とすれば、車両P及び車両Qの速度の変動量を考慮した干渉地点Xにおける干渉時間tは(1)式で算出される。
【0152】
【0153】
なお、tbeginは車両P及び車両Qが最も早く干渉地点Xを通過する場合の時刻であり、tendは、車両P及び車両Qが最も遅く干渉地点Xを通過する場合の時刻である。このように、車両P及び車両Qの各干渉地点Xにおける干渉時間tは、tbegin以上tend未満の期間で表される。以降では、車両Pの干渉地点Xにおける干渉時間tを「干渉時間tp」と表し、車両Qの干渉地点Xにおける干渉時間tを「干渉時間tq」と表す。干渉時間tの算出方法は上記に限定されず、ドライバモデルや車両挙動モデルを用いた予測等を用いてもよい。
【0154】
図15は、特定の干渉地点Xに対する車両Pの干渉時間t
pと、車両Qの干渉時間t
qの一例を示す図である。
【0155】
このようにして、CPU31は各干渉地点Xについて、車両Pの干渉時間tp及び車両Qの干渉時間tqを算出する。
【0156】
ステップS60において、CPU31は、ステップS40で特定した車両Pと車両Qの各干渉地点Xにおける通過優先順位を設定する。
【0157】
通過優先順位が上、すなわち、通過優先順位が優先に設定された車両7は、干渉地点Xを優先的に通過することができ、通過優先順位が下、すなわち、通過優先順位が非優先に設定された車両7は、通過優先順位が優先に設定された車両7の干渉地点Xにおける干渉時間tの間は、当該干渉地点Xに進入しないようにする制約が設定される。
【0158】
このように、各干渉地点Xにおける通過優先順位と干渉時間tを対応付け、車両Pと車両Qが走行することができる時間と場所を制約することで、各干渉地点Xにおいて車両Pと車両Qの干渉が回避されることになる。
【0159】
各干渉地点Xにおける通過優先順位と、通過優先順位が優先に設定された車両7の干渉時間tの対応付け、すなわち、通過優先順位が非優先に設定された車両7にとっての干渉地点Xへの進入禁止時間が仮想交通ルールとなる。仮想交通ルールは、車両7が干渉地点Xで他の車両7と干渉しないように、干渉時間tと干渉地点Xの位置情報を用いて車両7が走行することができる時間と場所を制約する時空間制約の一例である。
【0160】
以降では、干渉地点Xにおいて通過優先順位が優先に設定されているのか、それとも非優先に設定されているのかを表す状態を“sx”で表す。干渉地点Xにおける状態sxは“0”又は“1”の値をとり、CPU31は、干渉地点Xにおいて車両Pが優先の場合には状態sx=0に設定し、車両Qが優先の場合には状態sx=1に設定する。
【0161】
図16は、状態s
x=0に設定された干渉地点Xでの仮想交通ルールを模式化した模式図である。
【0162】
この場合、車両Pの干渉時間tpがtp
begin以上tp
end未満までの期間で表されるとすれば、車両Pは、干渉時間tpの間は干渉地点Xを車両Qに優先して通過することができる。しかしながら、車両Qは、干渉時間tpに干渉地点Xに進入すると車両Pと干渉する恐れがあるため、干渉時間tpの間は干渉地点Xへ進入しないようにする必要がある。
【0163】
一方、
図17は、状態s
x=1に設定された干渉地点Xでの仮想交通ルールを模式化した模式図である。
【0164】
この場合、車両Qの干渉時間tqがtq
begin以上tq
end未満までの期間で表されるとすれば、車両Qは、干渉時間tqの間は干渉地点Xを車両Pに優先して通過することができる。しかしながら、車両Pは、干渉時間tqに干渉地点Xに進入すると車両Qと干渉する恐れがあるため、干渉時間tqの間は干渉地点Xへ進入しないようにする必要がある。
【0165】
すなわち、干渉地点Xでの通過優先順位が非優先に設定された車両7は、同じ干渉地点Xにおいて通過優先順位が優先に設定された車両7の干渉時間tに当該干渉地点Xへ進入しないようにすれば、車両7同士の干渉を回避して目的地まで到達することができる。
【0166】
このように、仮想交通ルールは、干渉地点Xにおける状態sxと干渉地点Xにおける進入禁止時間(すなわち、干渉地点Xにおいて通過優先順位が優先に設定されている車両7の干渉時間t)の組み合わせを干渉地点X毎に設定した情報によって表される。
【0167】
各干渉地点Xにおいて、車両P及び車両Qの通過優先順位をどのように決定するかは、目的関数C(S)を評価することによって行われる。
【0168】
CPU31は、例えば不揮発性メモリ34に予め記憶されている目的関数C(S)を用いて、車両P及び車両Qの通過優先順位を決定する。目的関数C(S)は、車両7が移動することによって発生する交通コストを表す関数である。交通コストとは、個々の車両7に対するコストだけでなく、車両7が走行することで他の車両7の走行に与える影響も加味したコストであり、車両7の交通効率を表す。
【0169】
したがって、CPU31は、目的関数C(S)が最小となるような状態ベクトルSを設定する。目的関数C(S)が最小になれば交通コストも最小となるため、管制システム1が管制を行う範囲の交通効率が向上する。
【0170】
なお、目的関数C(S)における“S”は管制システム1が管理する範囲内に車両Pと車両Qの干渉地点XがN地点(Nは正の整数)ある場合において、各干渉地点Xにおける状態sxの集合をベクトルとして表したものであり「状態ベクトル」と呼ばれる。状態ベクトルSは、S=(s1, s2,・・, si,・・,sN)で表される。
【0171】
以降では、目的関数C(S)を用いて車両P及び車両Qの通過優先順位を決定する決定方法について説明する。
【0172】
目的関数C(S)は例えば(2)式で表される。
【0173】
【0174】
ここで、Csingle(S)は、各干渉地点Xを通過する車両P及び車両Qに対する管制制御を特徴付けるコストである。Cconsistency(S)は、車両P及び車両Qに設定される通過優先順位の時間方向の一貫性に関するコストである。Cmulti(S)は、干渉地点X間の整合性や相互作用に関するコストである。ωc及びωmは、目的関数C(S)に対してCconsistency(S)、及びCmulti(S)が与える影響度を調整するための重みである。
【0175】
(2)式において、Csingle(S)は、各干渉地点Xを通過する車両7(この場合、車両P及び車両Q)に対して定義され、(3)式及び(4)式で表される。
【0176】
【0177】
すなわち、Csingle(S)は、干渉地点X毎に干渉地点Xにおける干渉時間tが早い車両7、すなわち、干渉地点Xの予想通過時間が早い車両7の通過優先順位を優先に設定した場合に低くなるような値をとる。
【0178】
CPU31は、車両7が走行する車線8の優先度、車両7が走行する車線8における車列の長さや交通密度、車両7がこれまでに待機した時間、及び緊急車両などの車両7自身の優先度を考慮してCsingle(S)の重み付けを行ってもよい。例えば(4)式によれば、ある干渉地点Xiにおいて車両Pの通過優先順位が優先に設定されているにも関わらず、車両Pの干渉時間tpが車両Qの干渉時間tqより遅い場合、Csingle(si;tp,tq)は“1”に設定されるが、更に、車両Pが非優先道路を走行している場合には、Csingle(si;tp,tq)が1より大きい値となるように重み付けを行えばよい。
【0179】
すなわち、本来、優先通過順位を優先に設定した方がよいと考えられる状況において、優先通過順位を非優先にするような設定を行う場合、及び優先通過順位を非優先に設定した方がよいと考えられる状況において、優先通過順位を優先にするような設定を行った場合、CPU31は、Csingle(S)が大きくなるように重み付けを行ってもよい。
【0180】
(2)式において、車両7に設定される通過優先順位の時間方向の一貫性に関するコストを表すCconsistency(S)は、(5)式及び(6)式で表される。
【0181】
【0182】
状態sxは、予め定めた時間単位(例えば1秒)毎に、時系列に沿ってその時点の移動体情報等を参考にしながら最適な値が設定されるが、sx
(T)は時刻Tの時点で設定した状態sxを表し、sx
(T-1)は時刻Tよりも1単位前の時刻T-1に設定した状態sxを表す。
【0183】
同じ車両7に関して通過優先順位を表す優先と非優先が頻繁に切り替わらない方が、車両7は車線8を効率よく走行することができる。したがって、Cconsistency(S)は、時系列に沿って繰り返し計算された時間的に隣り合う状態sxが同じ値であれば小さくなるように設定され、異なる値であれば大きくなるような値をとる。
【0184】
ここでは一例として、1単位前の時刻に設定した状態sx
(T-1)との関係性から状態sx
(T)を設定した場合の一貫性に関するコストを算出したが、CPU31は、例えばM単位前(Mは2以上の正の整数)までの各時刻における状態sxとの関係性から状態sx
(T)を設定した場合の一貫性に関するコストを算出してもよい。具体的には、CPU31は、干渉地点X毎に時刻TからM単位前までの期間で優先と非優先が切り替わった数を算出し、各干渉地点Xにおける優先と非優先の切り替わり回数が多くなるにつれてCconsistency(S)の値が大きくなるように、Cconsistency(S)を計算してもよい。
【0185】
(2)式において、干渉地点X間の整合性や相互作用に関するコストを表すCmulti(S)は、(7)式及び(8)式で表される。
【0186】
【0187】
ここで、wi,jは2つの干渉地点Xi、Xjの協調度を表す値であり、wi,j≧0に設定される。干渉地点Xの協調度とは、一方の干渉地点Xの通過優先順位を他方の干渉地点Xの通過優先順位に連動させて同じ状態に設定した方がよいと考えられる度合いのことを表す。
【0188】
wi,j=0は干渉地点Xi、Xjが協調する必要がないことを表し、wi,jが大きくなるにつれて2つの干渉地点Xi、Xjを協調して扱った方がよいことを表す。
【0189】
図18は、複数の干渉地点Xを協調させて取り扱った方がよい例を示す図である。
図18に示すように、非優先車線8Bを走行する車両Pが、他の車両7が走行する片側1車線の優先車線8Aを横切って直進する場合、車両Pは、干渉地点X
1及び干渉地点X
2を通過する必要がある。
【0190】
こうした状況において、車両Pに対して干渉地点X1における状態s1を“0”に設定し、干渉地点X2における状態s2を“1”に設定すると、干渉地点X2で他の車両7と干渉してしまうことを回避するため、車両Pが優先車線8A上に停止してしまうことがある。この場合、車両Pは優先車線8Aを走行する車両7の流れを妨げてしまうことになる。
【0191】
したがって、車両7が通過し始めたら通過し終えるまで停止しない方がよい箇所に複数の干渉地点Xが存在する場合には、各々の干渉地点Xの状態sxを同じ値に設定して、干渉地点X同士を協調させた方がよい。
【0192】
各々の干渉地点Xの組み合わせに対するwi,jは予め計算され、例えば不揮発性メモリ34に記憶されている。CPU31は、不揮発性メモリ34に記憶されているwi,jを参照してCmulti(S)を計算すればよい。
【0193】
ここでは一例として、2つの干渉地点Xの協調度に基づくCmulti(S)の計算について説明したが、3つ以上の干渉地点Xの協調度を用いてCmulti(S)の計算を行ってもよい。
【0194】
このように目的関数C(S)は車両7に対する管制制御の内容、干渉地点Xにおける通過優先順位の時間方向の一貫性、干渉地点X間の整合性や相互作用を反映したコスト、及び車線8の優先度を組み合わせて構成されるが、CPU31が各車両7の干渉地点Xにおける通過優先順位を決定するために用いる目的関数C(S)は上述した目的関数C(S)に限られない。交通環境、安全性、交通効率を表す他の要素を反映した目的関数C(S)を用いてもよい。
【0195】
CPU31は、取り得るすべての状態ベクトルSを目的関数C(S)に代入して目的関数C(S)を最小にする状態ベクトルSを決定してもよいが、勾配法等の公知の最適化手法を用いて、目的関数C(S)を最小にする状態ベクトルSを決定してもよい。更には、Cmulti(S)が目的関数C(S)に与える影響が、Csingle(S)及びCconsistency(S)が目的関数C(S)に与える影響より少なければ、CPU31は、目的関数C(S)からCmulti(S)を削除した部分問題に分割して、目的関数C(S)を最小にする状態ベクトルSを決定してもよい。また、状態ベクトルSをS=(Sa,Sb)、ただしSa=(s1,・・・,si)、Sb=(si+1,・・・,sN)と分割したときに、Cmulti(S)=Cmulti(Sa)+Cmulti(Sb)であれば、CPU31は、目的関数C(S)を部分問題C(Sa)とC(Sb)に分割して、それぞれを最小にする状態ベクトルSa、Sbを決定してもよい。
【0196】
図14のステップS70において、CPU31は、自動車両である車両Qに対する仮想交通ルールを生成すると共に、手動車両である車両Pが仮想交通ルールの必要な車両7、すなわち、車両Pが準遵守車両7Bであれば、車両Pに対する仮想交通ルールを生成する仮想交通ルール生成処理を実行する。なお、仮想交通ルール生成処理については後ほど詳細に説明する。
【0197】
ステップS80において、CPU31は、車両P及び車両Qの種類に応じて管制情報の生成の有無、及び管制情報の内容を決定する。
【0198】
具体的には、自動車両である車両Qに対して、CPU31は、大域経路及び仮想交通ルールを含む管制情報を生成する。車両Pが仮想交通ルールの必要な手動車両、すなわち、準遵守車両7Bである場合、CPU31は、車両Pに対して仮想交通ルールを含む管制情報を生成する。車両Pが仮想交通ルールを必要としない手動車両、すなわち、非遵守車両7C若しくは非コネクテッド車両7Dである場合、CPU31は、車両Pに対して管制情報を生成しない。
【0199】
CPU31は無線通信装置3を通じて、生成した管制情報を管制情報の生成対象となった車両7にそれぞれ送信するための制御を行う。
【0200】
この場合、CPU31は、最新の移動体情報から管制情報の生成対象となった車両7の位置を把握し、当該車両7の現在位置に最も近い無線通信装置3から管制情報が送信されるように、管制情報を送信する無線通信装置3を指定する。無線通信装置3の位置情報は、例えば不揮発性メモリ34に予め記憶されている。
【0201】
【0202】
管制情報を受信した車両7では、管制情報に含まれる仮想交通ルールに従った運転が行われるため、干渉地点Xでの車両7同士の干渉が回避されることになる。
【0203】
次に、先ほど概略について言及した
図14のステップS70における仮想交通ルール生成処理の説明を行う。
図19は、仮想交通ルール生成処理の流れの一例を示すフローチャートである。
【0204】
ステップS100において、CPU31は、
図14のステップS40で特定した車両Pと車両Qの各干渉地点X、
図14のステップS50で算出した各干渉地点Xにおける干渉時間t、及び
図14のステップS60で設定した各干渉地点Xにおける状態s
xを用いて仮想交通ルールを生成する。具体的には、CPU31は、各干渉地点Xの位置を表す位置情報(例えば干渉地点ID)と、各干渉地点Xにおける状態s
xと、状態s
x及び干渉時間tから得られる各干渉地点Xへの進入禁止時間とを対応付けた仮想交通ルールを生成する。CPU31は、各干渉地点Xの位置を表す位置情報に干渉地点Xの範囲を含めてもよい。干渉地点Xの範囲は、進入禁止時間に車両7が進入することができない範囲であることから「進入禁止範囲20」とも呼ばれる。
【0205】
生成した仮想交通ルールに従って車両P及び車両Qが干渉地点Xに進入すれば、干渉地点Xで車両Pと車両Qが干渉することを回避することができる。しかしながら、車両Pは手動車両であるため、車両Pに対する仮想交通ルールを生成しても、車両Pの運転手が仮想交通ルールに従って車両Pを運転するとは限らない。したがって、車両Pの速度が急に変化し、干渉地点Xにおける車両Pの干渉時間t
pが
図14のステップS50で算出した干渉時間t
pからずれることも想定される。
【0206】
図20は、こうした車両Pの速度変化によって引き起こされる交通流の事例を説明する図である。
図20において車両Pは優先道路を走行し、車両Qは非優先道路を走行している。
【0207】
干渉地点Xにおいて車両Pの通過優先順位が優先に設定された仮想交通ルールに従って走行する車両Qは、干渉地点Xの手前で停止し、車両Pが干渉地点Xを通過するまで待機する(
図20(A)参照)。
【0208】
この状況において、例えば障害物を避けようとして車両Pが一時的に急減速し、車両Pの移動体情報によって表される時刻Tにおける車両Pの速度が、時刻Tから1単位前の時刻T-1における車両Pの速度よりも急激に低下した場合、車両Pが干渉地点Xを通過し始める時間tp
beginが遅くなり、車両Pが干渉地点Xを通過しないにもかかわらず、車両Qは干渉地点Xの手前で停止し続ける状況が発生してしまう。
【0209】
したがって、管制装置10は、車両Qに対して車両Qの通過優先順位を優先に設定した新たな仮想交通ルールを生成して車両Qに送信したとする。新たな仮想交通ルールを受信した車両Qは仮想交通ルールに従って走行を開始し、干渉地点Xに進入することになる(
図20(B)参照)。
【0210】
これに対して、障害物を避けたことによって走行に支障がなくなった車両Pが速度を上げてきた場合、車両Pが干渉地点Xを通過し始める時間tp
beginが早まるため、管制装置10は車両Qに対して、車両Pの通過優先順位を優先に設定した新たな仮想交通ルールを生成して車両Qに送信することになる。
【0211】
その結果、車両Qは車両Pの通過を待とうとして干渉地点Xに進入した状態で停止し、車両Pの通行の妨げとなることがある(
図20(C)参照)。
【0212】
図21は、
図20で説明した車両Pの速度変化に対して生成される、車両Qの仮想交通ルールの一例を示す図である。
【0213】
図21(A)は、車両Pの速度変化を示すグラフであり、期間IT
1は車両Pが一時的に急減速する前の期間を表し、期間IT
2は車両Pが急減速している期間を表し、期間IT
3は車両Pが加速して速度を上げてきた期間を表す。
【0214】
図21(B)は、期間IT
2における車両Pの速度変化に伴い、期間IT
2の間だけ車両Qに対して車両Qの通過優先順位を優先に設定した、
図19のステップS100で生成される仮想交通ルールの一例を表す。先ほど説明したように、車両Qは
図21(B)に示す仮想交通ルールに従って干渉地点Xに進入すると、期間IT
3における車両Pの加速により車両Pと干渉する可能性が発生する。
【0215】
したがって、本発明に係る管制装置10は、
図19のステップS110以降の処理により、期間IT
2に車両Pが一時的に急減速するといった想定外の状態変化が発生した場合、その後に車両Pが加速するかもしれないという最悪の事態を考慮したフェールセーフの設計思想に基づいた強化仮想交通ルールを生成する。
【0216】
具体的には、管制装置10は、
図21(A)に示した車両Pの速度変化のように、期間IT
2における車両Pの減速により車両Pが干渉地点Xを通過し始める時間が予測した時間t
p
beginより遅れるような場合であっても、期間IT
2に車両Qの通過優先順位を優先に設定しないようにする
図21(C)に示すような強化仮想交通ルールを生成する。
【0217】
そのために、
図19のステップS110において、CPU31は、車両Qに対する接近車両で、かつ、手動車両である車両Pの移動体情報から車両Pの速度を取得する。車両Pの速度は、車両Qに接近する接近移動体の状態に関する状態値の一例である。CPU31が車両Pの速度を取得している間も時間は経過しているため、ステップS110で取得した車両Pの移動体情報は、既に1単位前の時刻T-1における車両Pの移動体情報を表していることになる。
【0218】
ステップS120において、CPU31は、ステップS110で取得した1単位前の時刻T-1における車両Pの移動体情報から、1単位後の時刻Tにおいて車両Pが取り得る速度の範囲を予測し、時刻Tにおける車両Pの速度の予測範囲を設定する。設定した速度の予測範囲の上限速度をvupperと表し、下限速度をvlowerと表す。なお、速度の予測には、時刻T-1における車両Pの速度や加速度、並びに、運転手のアクセルやブレーキの操作量を用いて時刻Tにおける車両Pの速度を予測してもよく、また、過去の各時刻とその時刻における車両Pの速度を組み合わせた学習データをサポートベクターマシンで機械学習することで時刻Tにおける車両Pの速度を予測してもよい。
【0219】
ステップS130において、CPU31は、時刻Tに対応した時点が到来したタイミングで取得した車両Pの移動体情報から車両Pの現在速度を取得する。
【0220】
ステップS140において、CPU31は、ステップS130で取得した車両Pの現在速度が、ステップS120で設定した速度の予測範囲内に含まれているか否かを判定する。車両Pの現在速度が予測範囲内に含まれていない場合には、ステップS150に移行する。
【0221】
図22は、車両Pの現在速度が予測範囲内に含まれていない状態例を示す図である。
図19のステップS100で生成した仮想交通ルールは、時刻Tにおける車両Pの現在速度V
Tが予測範囲内に入ることを前提にして生成した仮想交通ルールである。すなわち、
図22に示すように、時刻Tにおける車両Pの現在速度V
Tが時刻T-1における速度V
T-1を含む移動体情報から予測された予測範囲内に含まれない場合、
図19のステップS100で生成した仮想交通ルールに従って車両Qが走行すると、車両Pの現在速度V
Tが予測範囲内に含まれる場合と比較して、車両Qが干渉地点Xで車両Pと干渉したり、干渉地点Xで車両Pの通行を妨害したりする確率が高まる。したがって、ステップS150において、CPU31は、車両Pに異常が発生したと判定する。
【0222】
車両Pに異常が発生していることから、ステップS160において、CPU31は、強化仮想交通ルールを生成する。
【0223】
例えばCPU31は、車両Pの速度変化にあわせて、ステップS100で生成した車両Qに対する仮想交通ルールよりも車両Qの進入禁止時間を長く設定して、車両Qが車両Pと干渉地点Xで干渉しづらくなるように制約を強めた強化仮想交通ルールを生成する。
【0224】
図23は、車両Qに対する強化仮想交通ルールの一例を示す図である。
図23に示すように、車両Pの速度が予測範囲の下限速度v
lowerよりも遅い場合、CPU31は、ステップS100で生成した車両Qの仮想交通ルールに対して、車両Qの進入禁止時間を延長時間δだけ後方に延長した強化仮想交通ルールを生成する。
図23において、元のt
p
endは、車両Pの異常を検知する前に算出された干渉時間t
pのt
p
endを表しており、新たなt
p
endは、車両Pの異常を検知した際の車両Pの速度から想定される干渉時間t
pのt
p
endを表している。
【0225】
また、車両Pの速度が予測範囲の上限速度v
upperよりも早い場合、CPU31は、
図19のステップS100で生成した車両Qの仮想交通ルールに対して、車両Qの進入禁止時間を延長時間δだけ前方に延長した強化仮想交通ルールを生成する。当然のことながら、CPU31は、車両Pの速度が今後も予測範囲を超えて不規則に変化する可能性を考慮して、ステップS100で生成した車両Qの仮想交通ルールに対して、車両Qの進入禁止時間を前方及び後方にそれぞれ延長時間δだけ延長してもよい。この場合、CPU31は、前方に延長する延長時間δと後方に延長する延長時間δを異なる値に設定してもよい。
【0226】
以上により、
図19に示す仮想交通ルール生成処理を終了する。
【0227】
一方、
図19のステップS140の判定処理で、
図24に示すように車両Pの現在速度V
Tが予測範囲内に含まれていると判定された場合、ステップS170に移行する。
【0228】
この場合、ステップS100で生成した車両Qの仮想交通ルールに従って車両Qが走行すれば、干渉地点Xにおける車両Pとの干渉を回避することができる。したがって、
図19のステップS170において、CPU31は、車両Pに異常は発生しておらず正常であると判定する。また、車両Pに異常が発生していないことから強化仮想交通ルールを生成する必要がないため、CPU31は、ステップS160で強化仮想交通ルールを生成することなく
図19に示す仮想交通ルール生成処理を終了する。
【0229】
図19に示す仮想交通ルール生成処理では、車両Qに接近する車両Pに異常が発生しているか否かを判定するための判定対象である車両Pの状態に関する状態値として車両Pの速度を用いたが、車両Pの速度の代わりに、例えば車両Pの加速度、車両Pが干渉地点Xを通過する通過時間t
p、及び車両Pの位置を用いてもよい。更に、CPU31は、例えば車両Pの速度、車両Pの加速度、車両Pが干渉地点Xを通過する通過時間t
p、及び車両Pの位置といった複数の状態値に対してそれぞれ予測範囲を設定し、何れか1つの状態値が予測範囲に含まれない場合、又は予め定めた数(例えば2つ)の状態値が予測範囲に含まれない場合に、車両Pに異常が発生していると判定してもよい。
【0230】
車両Pの異常の判定対象となる各々の状態値の予測に、車両Pの移動体情報だけでなく、管制走行ルート地
図19に含まれる交通規則情報のうち、例えば車両Pが走行する道路の制限速度、車線数、曲率、幅員、勾配、及び車線優先度といった、車両Pが走行している道路の規制や形状を表す情報を用いてもよい。
【0231】
なお、車両Pが非コネクテッド車両7Dである場合には、車両Pの速度、車両Pの加速度、車両Pが干渉地点Xを通過する通過時間tp、及び車両Pの位置といった車両Pの異常の判定対象となる状態値は、収集装置9で撮影された画像に基づいて測定される。したがって、収集装置9で撮影した画像の画質が低下するにつれて、車両Pの異常の判定対象となる状態値の測定精度も低下する。測定精度が低下した状態値を用いて車両Pの異常の有無を判定すれば、その判定結果の信頼性も低下する。
【0232】
したがって、CPU31は、
図19のステップS140で車両Pの異常の判定対象となる状態値が予測範囲内に含まれると判定された場合であっても、状態値の測定精度が予め定めた基準精度より低くなっていると考えられる場合には、フェールセーフの設計思想に基づき、車両Pに異常が発生していると判定することが好ましい。
【0233】
画像の画質は気象状況の影響を受ける。例えば雨や霧のときに収集装置9で撮影した画像の画質は、晴天のときに収集装置9で撮影した画像の画質より低下することがある。
【0234】
また、画像の画質は収集装置9の稼働状態の影響を受ける。例えば収集装置9に何らかの故障が発生している状態で撮影された画像の画質は、故障が発生していない状態で撮影された画像の画質より低下することがある。
【0235】
したがって、収集装置9が設置されている地域の降雨量が基準値より多い場合、収集装置9が設置されている地域で霧の発生が通知されている場合、及び収集装置9から故障通知が通知された場合の少なくとも1つの事象が発生すれば、CPU31は、車両Pの異常の判定対象となる状態値の測定精度が予め定めた基準精度より低くなっていると判定すればよい。CPU31は、例えば通信網5に接続された外部装置から気象情報を取得する。
【0236】
また、CPU31は、予測した状態値と実際の状態値の誤差が予め定める値よりも大きくなっているような場合には、状態値の測定精度が予め定めた基準精度より低くなっていると判定してもよい。
【0237】
なお、車両Pの異常の判定対象となる状態値を収集装置9で撮影した画像に基づいて測定しない準遵守車両7B及び非遵守車両7Cが車両Pである場合であっても、予測した状態値と実際の状態値の誤差が予め定める値よりも大きくなっていれば、CPU31は、状態値の測定精度が予め定めた基準精度より低くなっていると判定すればよい。
【0238】
これまで
図19のステップS160で強化仮想交通ルールを生成する場合、干渉地点Xで車両Pと車両Qが干渉しづらくなるように、
図19のステップS100で生成した車両Qの仮想交通ルールにおける進入禁止時間を延長する例について説明した。しかしながら、CPU31は進入禁止時間を延長するのではなく、干渉地点Xの範囲、すなわち、車両Qの進入禁止範囲20を、ステップS100で生成した車両Qの仮想交通ルールで表される進入禁止範囲20よりも広く設定してもよい。
【0239】
図25は干渉地点Xを中心にして設定された進入禁止範囲20の一例を示す図である。
図25において、進入禁止範囲20Aは、
図19のステップS100で生成した車両Qの仮想交通ルールによって表される進入禁止範囲20を表し、進入禁止範囲20Bは、強化仮想交通ルールによって表される進入禁止範囲20を表す。このように、進入禁止範囲20Bを進入禁止範囲20Aより広く設定することで、車両Pと車両Qが干渉地点Xで干渉しづらくなる。
【0240】
また、CPU31は、車両Pにおける異常の検知回数に応じて、強化仮想交通ルールにおける制約の強さを調整してもよい。
【0241】
同じ車両Pに関して異常が複数回検知されているということは、当該車両Pの運転手は頻繁に車線8を変更したり、急停車や急発進を繰り返したりする傾向があるということになる。すなわち、異常の検知回数が多い車両Pほど走行状態が予測しづらいため、車両Qが仮想交通ルールに従って走行したとしても、異常を一度も検知していない車両Pに比べて干渉地点Xで干渉する確率が高くなる。
【0242】
したがって、CPU31は、車両Pの異常の検知回数が多くなるにつれて、
図19のステップS100で生成した車両Qに対する仮想交通ルールよりも、車両Qが車両Pと干渉地点Xで干渉しづらくなるように制約を強めた強化仮想交通ルールを生成することが好ましい。例えばCPU31は、車両Pの異常の検知回数が多くなるにつれて延長時間δを長く設定したり、進入禁止範囲20を広く設定したりすればよい。
【0243】
<強化仮想交通ルール生成の変形例>
手動車両である車両Pが、受信した仮想交通ルールに従って走行を行うコネクテッド車両である場合、すなわち、車両Pが遵守車両7A及び準遵守車両7Bである場合には、CPU31は、車両Qだけでなく車両Pに対しても強化仮想交通ルールを生成してもよい。
【0244】
車両P及び車両Qに対して強化仮想交通ルールを生成することで、車両Qにのみ強化仮想交通ルールを生成する場合よりも、更に車両Pと車両Qが干渉地点Xで干渉しづらくなる。
【0245】
図26は、
図16に示したように、車両Pの通過優先順位が優先に設定されている状況において、車両Pに異常が検知された場合に生成される強化仮想交通ルールの一例を示す図である。
【0246】
図26に示すように、CPU31は、車両P及び車両Qに対して干渉時間t
pと干渉時間t
qが重複している重複期間を含むように進入禁止時間を設定した強化仮想交通ルールを生成する。車両Pに対する進入禁止時間は“τ”で表され、τ=t
p
end-t
q
begin+τ
0である。ここで“τ
0”は安全マージンであり、0以上の実数値をとる。安全マージンτ
0が大きくなるにつれて干渉地点Xにおける車両Pの進入禁止時間が長くなるため、干渉地点Xで車両Pと車両Qが干渉する確率をより低下させることができる。
【0247】
なお、安全マージンτ0は、車両Pが走行している道路の形状や干渉地点Xの見通し状況を表す情報を加味して設定される値である。例えば、見通しの悪い干渉地点Xの場合には安全マージンτ0が基準値より大きく設定される。また、安全マージンτ0は固定値である必要はなく、例えば車両Pが走行している道路周辺の地域で雨が降り、干渉地点Xの見通しが悪くなったと考えられる場合には、安全マージンτ0を更に大きくしてもよい。また、CPU31は、夜間の安全マージンτ0を昼間の安全マージンτ0より大きくするなど、車両Pが走行する時間帯によって安全マージンτ0の大きさを調整してもよい。
【0248】
一方、CPU31は、車両Qについては、
図19のステップS100で生成した車両Qの仮想交通ルールに対して車両Qの進入禁止時間を延長時間δだけ延長した強化仮想交通ルールを生成する。この場合の延長時間δはδ=max(τ,δ
min)で表される。すなわち、延長時間δは、車両Pに対する進入禁止時間τと、延長時間δに対して予め定められている延長時間δの下限値δ
minのうち、いずれか長い方の時間に設定される。
【0249】
なお、延長時間δの下限値δminも安全マージンτ0と同様に、車両Qが走行している道路の形状や見通し状況を表す情報を加味して設定される値である。例えば、見通しの悪い干渉地点Xの場合には下限値δminを基準値より大きくすることが好ましい。下限値δminも安全マージンτ0と同様に固定値である必要はなく、干渉地点X周辺の気象状況や車両Qが走行する時間帯により下限値δminを調整してもよい。
【0250】
既に説明したように、
図19のステップS100で生成される仮想交通ルールでは、干渉地点Xにおける車両Pの通過優先順位が優先に設定されている場合、
図16に示したように、車両Pは干渉時間t
p全域に亘って干渉地点Xに進入可能と設定され、車両Qは干渉時間t
p全域に亘って干渉地点Xに進入禁止と設定されるといった排他的な設定が行われる。
【0251】
これに対して、本強化仮想交通ルールの生成に係る変形例を適用した場合には、干渉時間tp内に車両Pと車両Qが共に干渉地点Xに進入禁止となる時間帯が設定される。このように、車両Pと車両Qの進入禁止時間が重複するように設定された強化仮想交通ルールが生成されることで、車両P及び車両Qの何れか一方の車両7が強化仮想交通ルールに従わずに誤って干渉地点Xに進入したとしても、干渉地点Xで車両7同士が干渉することを回避することができる。
【0252】
なお、車両Pの干渉時間tpは、車両Pの位置が干渉地点Xから遠いほど干渉時間tpを算出するのに考慮すべき要素が多くなるため長くなり、干渉地点Xに近づくほど干渉時間tpの算出精度が上がり短くなる。同じことは車両Qの干渉時間tqについてもいえる。すなわち、干渉時間tpと干渉時間tqが重複している重複期間は、車両P及び車両Qがそれぞれ干渉地点Xに近づくにつれて短くなる。干渉時間tpと干渉時間tqの重複期間が短くなれば、それに伴い車両Pに対する進入禁止時間τも短くなり、強化仮想交通ルールに従って走行する車両Pは干渉地点Xの手前で停止した後、すぐに発進するような挙動をとることになる。
【0253】
こうした数秒程度の短期間の停車は車両Pの円滑な走行を妨げることから、CPU31は、干渉時間tpと干渉時間tqの重複期間の長さに応じて強化仮想交通ルールの生成内容を変更してもよい。
【0254】
具体的には、干渉地点Xにおける車両Pの通過優先順位が優先に設定されている状況において、車両Pに対する進入禁止時間τが予め定めた閾値τ
thを超える場合、
図26に示したように、CPU31は、車両Pに対して進入禁止時間τを設定した強化仮想交通ルールを生成すると共に、車両Qに対して車両Qの進入禁止時間を延長時間δだけ延長した強化仮想交通ルールを生成する。
【0255】
一方、干渉地点Xにおける車両Pの通過優先順位が優先に設定されている状況において、車両Pに対する進入禁止時間τが閾値τth以下の場合、CPU31は、車両Pに対しては強化仮想交通ルールを生成せずに、車両Qに対してのみ、車両Qの進入禁止時間を延長時間δだけ延長した強化仮想交通ルールを生成する。すなわち、CPU31は、車両Pに対して進入禁止時間τを設定しない代わりに、車両Qの進入禁止時間を延長時間δだけ延長する。
【0256】
なお、進入禁止時間τが閾値τth以下となる位置まで車両Pが車両Qに近づいていることを、「車両Pが車両Qに接近している」という。
【0257】
図27は、進入禁止時間τが閾値τ
th以下の場合における車両P及び車両Qのそれぞれの走行を制約する制約条件の一例を示す図である。車両Pの制約条件として、
図19のステップS100で生成した車両Pの仮想交通ルールが適用され、車両Qの制約条件として、
図19のステップS100で生成した車両Qの仮想交通ルールに対して車両Qの進入禁止時間を延長時間δだけ延長した強化仮想交通ルールが適用される。
【0258】
本強化仮想交通ルールの生成に係る変形例においても、CPU31は、車両Pの異常の検知回数が多くなるにつれて延長時間δが長くなるように、延長時間δの下限値δmin及び安全マージンτ0の少なくとも一方の値を調整してもよい。
【0259】
ここまで干渉地点Xにおける車両Pの通過優先順位が優先に設定されている状況における強化仮想交通ルールの生成に係る変形例について説明してきたが、干渉地点Xにおける車両Pの通過優先順位が非優先に設定されている場合についても、CPU31は、車両P及び車両Qに対して干渉時間tpと干渉時間tqが重複している重複期間を含むように進入禁止時間を設定した強化仮想交通ルールを生成する。
【0260】
図28は、車両Pの通過優先順位が非優先に設定されている状況において、車両Pに異常が検知された場合に生成される強化仮想交通ルールの一例を示す図である。
【0261】
この場合、CPU31は、車両Qに対して干渉時間t
pと干渉時間t
qが重複している重複期間を含むように設定した進入禁止時間τを含んだ強化仮想交通ルールを生成する。一方、CPU31は、車両Pについては、
図19のステップS100で生成した車両Pの仮想交通ルールに対して車両Pの進入禁止時間を延長時間δだけ延長した強化仮想交通ルールを生成する。
【0262】
当然のことながら、車両Qに対する進入禁止時間τが閾値τ
th以下である場合には、CPU31は、
図29に示すように車両Qに対して強化仮想交通ルールを生成せずに、車両Pに対してのみ、車両Pの進入禁止時間を延長時間δだけ延長した強化仮想交通ルールを生成する。
【0263】
本実施形態では、管制システム1が車両7を管制する例について説明したが、管制システム1の管制対象は車両7に限られず、移動体であればどのようなものであってもよい。移動体には歩行者、自転車、オートバイ、車いす、キックボード、船舶、及びドローン等の飛行体が含まれる。
【0264】
こうした移動体も、車両7と同じように、移動体が備える機能及び移動体の状態によって、遵守移動体、準遵守移動体、非遵守移動体、及び非コネクテッド移動体に分類される。
【0265】
以上、実施形態を用いて本発明について説明したが、本発明は実施形態に記載の範囲には限定されない。本発明の要旨を逸脱しない範囲で実施形態に多様な変更又は改良を加えることができ、当該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。例えば、本発明の要旨を逸脱しない範囲で処理の順序を変更してもよい。
【0266】
実施形態では、一例として管制装置10における管制処理をソフトウェアで実現する形態について説明したが、
図14及び
図19に示したフローチャートと同等の処理を、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はPLD(Programmable Logic Device)に実装し、ハードウェアで処理させるようにしてもよい。この場合、各々の処理をソフトウェアで実現した場合と比較して、処理の高速化が図られる。
【0267】
このように、管制装置10のCPU31や車両7の制御装置におけるCPU41を例えばASIC、FPGA、PLD、GPU(Graphics Processing Unit)、及びFPU(Floating Point Unit)といった特定の処理に特化した専用のプロセッサに置き換えてもよい。
【0268】
また、実施形態における管制装置10のCPU31や車両7の制御装置におけるCPU41の動作は、それぞれ1つのCPU31及びCPU41によって実現される形態の他、複数のCPU31及び複数のCPU41によって実現されてもよい。更に、実施形態における管制装置10のCPU31や車両7の制御装置におけるCPU41の動作は、それぞれ物理的に離れた位置に存在するコンピュータ30におけるCPU31やコンピュータ40におけるCPU41の協働によって実現されるものであってもよい。
【0269】
また、上述した実施形態では、管制装置10のCPU31が読み込む管制プログラムがROM32にインストールされ、車両7の制御装置におけるCPU41が読み込む制御プログラムがROM42にインストールされている形態について説明したが、これに限定されるものではない。本発明に係る管制プログラム及び制御プログラムは、コンピュータ30及びコンピュータ40で読み取り可能な記憶媒体に記録された形態で提供することも可能である。例えば管制プログラム及び制御プログラムを、CD(Compact Disc)-ROM、又はDVD(Digital Versatile Disc)-ROM等の光ディスクに記録した形態で提供してもよい。また、管制プログラム及び制御プログラムをUSB(Universal Serial Bus)メモリやメモリカード等の可搬型の半導体メモリに記録した形態で提供してもよい。ROM32、ROM42、不揮発性メモリ34、不揮発性メモリ44、CD-ROM、DVD-ROM、USB、及びメモリカードは非一時的(non-transitory)記憶媒体の一例である。
【0270】
更に、管制装置10及び車両7の制御装置は、通信網5に接続される外部装置からそれぞれ管制プログラム及び制御プログラムをダウンロードするようにしてもよい。この場合、管制装置10のCPU31及び車両7の制御装置におけるCPU41は、それぞれ外部装置からダウンロードした管制プログラム及び制御プログラムを読み込んで管制処理及び車両7の制御処理を実行する。
【0271】
以上の実施形態に関し、更に以下の付記を開示する。
【0272】
(付記項1)
メモリと、
前記メモリに接続された少なくとも1つのプロセッサと、
を含み、
前記プロセッサは、
移動時間及び空間を規定した制約条件を受信する自律移動体を含んだ各々の移動体の状態を表す移動体情報を受信し、
移動体情報を受信した各々の移動体のうち、干渉領域において前記自律移動体と予め定めた範囲まで接近する可能性がある接近移動体の状態の変化から、前記接近移動体について移動に関する異常が発生したか否かを検知し、
異常が検知された場合、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記干渉領域への進入を禁止する進入禁止時間が長くなるようにして、前記接近移動体と前記干渉領域で干渉しづらくなるように制約を強めた前記制約条件である強化制約条件を前記自律移動体に対して生成する
管制装置。
【0273】
(付記項2)
仮想交通ルール生成処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
前記仮想交通ルール生成処理は、
移動体の状態を表す移動体情報を受信した移動体であって、移動時間及び空間を規定した制約条件を受信する自律移動体を含んだ各々の移動体のうち、干渉領域において前記自律移動体と予め定めた範囲まで接近する可能性がある接近移動体の状態の変化から、前記接近移動体について移動に関する異常が発生したか否かを検知し、
異常が検知された場合、前記異常検知部で異常が検知される前に生成した前記制約条件よりも、前記干渉領域への進入を禁止する進入禁止時間が長くなるようにして、前記接近移動体と前記干渉領域で干渉しづらくなるように制約を強めた前記制約条件である強化制約条件を前記自律移動体に対して生成する
非一時的記憶媒体。
【符号の説明】
【0274】
1 管制システム、3 無線通信装置、5 通信網、6(6P、6Q) 経路、7 車両、7A 遵守車両、7B 準遵守車両、7C 非遵守車両、7D 非コネクテッド車両、8 車線、8A 優先車線、8B 非優先車線、9 収集装置、9A インフラセンサ、9B 状態検出部、10 管制装置、11 目的地設定部、12 通信部、13 大域経路計画部、14 走行経路予測部、15 干渉地点特定部、16 異常検知部、18 仮想交通ルール生成部、19 管制走行ルート地図、20(20A、20B) 進入禁止範囲、21A(21B、21C) 位置推定部、22A(22B、22C) 状態管理部、23A(23B、23C) 無線通信部、24 局所経路計画部、25A(25B、25C) 制御部、26 車両走行ルート地図、27 仮想交通ルール伝達部、30(40) コンピュータ、31(41) CPU、32(42) ROM、33(43) RAM、34(44) 不揮発性メモリ、35(45) I/O、36(46) バス、37(47) 通信ユニット、38(48) 入力ユニット、39(49) 表示ユニット、51 内界センサ、52 外界センサ、53 走行装置、δ 延長時間、δmin 延長時間の下限値、τ 進入禁止時間、τ0 安全マージン、τth 進入禁止時間の閾値、C(S) 目的関数、K1~K7 地点、S 状態ベクトル、X 干渉地点