(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-16
(45)【発行日】2024-12-24
(54)【発明の名称】電源回路及び画像形成装置
(51)【国際特許分類】
H02M 1/08 20060101AFI20241217BHJP
G03G 21/00 20060101ALI20241217BHJP
【FI】
H02M1/08 331A
G03G21/00 398
(21)【出願番号】P 2021106299
(22)【出願日】2021-06-28
【審査請求日】2024-02-14
(73)【特許権者】
【識別番号】000000295
【氏名又は名称】沖電気工業株式会社
(74)【代理人】
【識別番号】100116964
【氏名又は名称】山形 洋一
(74)【代理人】
【識別番号】100120477
【氏名又は名称】佐藤 賢改
(74)【代理人】
【識別番号】100135921
【氏名又は名称】篠原 昌彦
(74)【代理人】
【氏名又は名称】半田 淳一
(72)【発明者】
【氏名】中澤 一夫
【審査官】安池 一貴
(56)【参考文献】
【文献】特開2008-065033(JP,A)
【文献】特開昭61-102133(JP,A)
【文献】米国特許出願公開第2014/0044447(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 1/08
G03G 21/00
(57)【特許請求の範囲】
【請求項1】
商用電源から電流の供給を受けて、ヒータをオン又はオフするトライアックと、
前記商用電源から前記トライアックへの電流の供給をオン又はオフするスイッチと、
前記トライアック及び前記スイッチを制御することで、前記ヒータをコントロールするヒータコントロール部と、
前記商用電源からの直流を検出する直流検出回路と、
前記直流検出回路が直流を検出した場合に、前記ヒータコントロール部が、前記トライアックをオンにしようとしても、前記トライアックがオンにならないようにするとともに、前記ヒータコントロール部が、前記スイッチをオンにしようとしても、前記スイッチがオンにならないようにする直流保護回路と、を備えること
を特徴とする電源回路。
【請求項2】
前記直流検出回路は、前記商用電源からの電流の供給路から分岐された分岐路にコンデンサを設けることで、前記コンデンサの後段に電流が流れなくなった場合に、前記商用電源からの直流を検出すること
を特徴とする請求項1に記載の電源回路。
【請求項3】
前記直流検出回路は、
前記分岐路に接続された第一の抵抗と、
前記分岐路に接続された第二の抵抗と、
前記商用電源からの電圧が予め定められた閾値以上である場合に、前記第二の抵抗に前記商用電源からの電流を流し、前記商用電源からの電圧が予め定められた閾値未満である場合に、前記商用電源からの電流が前記第二の抵抗に流れないように、前記商用電源からの電流が前記第二の抵抗を迂回して流れるようにする切替回路と、を備えること
を特徴とする請求項2に記載の電源回路。
【請求項4】
前記直流保護回路は、
前記直流検出回路が直流を検出した場合に、前記トライアックをオンにするために、前記ヒータコントロール部から前記トライアックに送る信号であるトライアックオン信号を遮断する第一のスイッチング素子と、
前記直流検出回路が直流を検出した場合に、前記スイッチをオンにするために、前記ヒータコントロール部から前記スイッチに送る信号であるスイッチオン信号を遮断する第二のスイッチング素子と、を備えること
を特徴とする請求項1から3の何れか一項に記載の電源回路。
【請求項5】
前記直流検出回路は、前記商用電源からの直流を検出した場合には、ローレベルの信号を、前記商用電源からの交流を検出した場合には、ローレベルとハイレベルとが交互に切り替わる信号を検出信号として前記直流保護回路に与え、
前記直流保護回路は、
前記検出信号がローレベルの信号である場合に、ハイレベルとなる信号を、前記検出信号がローレベルとハイレベルとが交互に切り替わる信号である場合に、ローレベルとなる信号を制御信号として出力する制御回路と、
前記制御信号がハイレベルである場合に、前記トライアックをオンにするために、前記ヒータコントロール部から前記トライアックに送る信号であるトライアックオン信号を遮断し、前記制御信号がローレベルである場合に、前記トライアックオン信号を通過させる第一のスイッチング素子と、
前記制御信号がハイレベルである場合に、前記スイッチをオンにするために、前記ヒータコントロール部から前記スイッチに送る信号であるスイッチオン信号を遮断し、前記制御信号がローレベルである場合に、前記スイッチオン信号を通過させる第二のスイッチング素子と、を備えること
を特徴とする請求項1に記載の電源回路。
【請求項6】
前記制御回路は、コンデンサを備え、前記検出信号がハイレベルである期間に前記コンデンサに充電を行わせることで、前記検出信号がローレベルとハイレベルとが交互に切り替わる信号である場合に、ローレベルとなる信号を前記制御信号として出力すること
を特徴とする請求項5に記載の電源回路。
【請求項7】
前記ヒータと、
請求項1から6の何れか一項に記載の電源回路と、を備えること
を特徴とする画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電源回路及び画像形成装置に関する。
【背景技術】
【0002】
異常な入力電圧が入力されて、機器及び電源回路の故障を減らすために、その機器に保護回路を設けることが行われている。
【0003】
例えば、特許文献1に記載されている画像形成装置は、直流検出部と、入力電源異常判定部とを有する。そして、直流検出部が直流を検出した際に、画像形成装置が画像形成動作に移行していた場合、入力電源異常判断部は、ヒータコントロール信号をオンしないようにしている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の画像形成装置では、入力電源異常判断部がヒータコントロール信号をオンさせるか否かを判断する。このため、入力電源異常判断部がヒータをオンにしてもよいと判断してから、画像形成装置は、画像形成動作へと移行していたため、画像形成動作を開始するまでに時間がかかってしまっていた。
【0006】
そこで、本開示の一又は複数の態様は、直流の流入を検出しながらも、すぐにヒータをオンにできるようにすることを目的とする。
【課題を解決するための手段】
【0007】
本開示の一態様に係る電源回路は、商用電源から電流の供給を受けて、ヒータをオン又はオフするトライアックと、前記商用電源から前記トライアックへの電流の供給をオン又はオフするスイッチと、前記トライアック及び前記スイッチを制御することで、前記ヒータをコントロールするヒータコントロール部と、前記商用電源からの直流を検出する直流検出回路と、前記直流検出回路が直流を検出した場合に、前記ヒータコントロール部が、前記トライアックをオンにしようとしても、前記トライアックがオンにならないようにするとともに、前記ヒータコントロール部が、前記スイッチをオンにしようとしても、前記スイッチがオンにならないようにする直流保護回路と、を備えることを特徴とする。
【0008】
本開示の一態様に係る画像形成装置は、ヒータと、上記の電源回路とを備えることを特徴とする。
【発明の効果】
【0009】
本開示の一又は複数の態様によれば、直流の流入を検出しながらも、すぐにヒータをオンにすることができる。
【図面の簡単な説明】
【0010】
【
図1】実施の形態1及び2に係る画像形成装置の構成を概略的に示す縦断面図である。
【
図2】実施の形態1及び2に係る画像形成装置における低圧電源及びメイン制御部の構成を概略的に示すブロック図である。
【
図3】実施の形態1における直流検出回路の回路図である。
【
図5】(A)及び(B)は、ハードウェア構成例を示すブロック図である。
【
図6】画像形成装置の印刷開始時の動作を示すフローチャートである。
【
図7】実施の形態2における直流検出回路の回路図である。
【発明を実施するための形態】
【0011】
実施の形態1.
図1は、実施の形態1に係る画像形成装置100の構成を概略的に示す縦断面図である。
実施の形態1に係る画像形成装置100は、ブラック、イエロー、マゼンタ、及びシアンの4色の現像剤であるトナーを重ね合わせて印刷することで、カラー画像を得るカラー画像形成装置の例である。しかしながら、画像形成装置100は、このような例に限定されず、画像形成装置100は、ブラック一色のモノクロ画像形成装置、又は、他の色を用いたカラー画像形成装置であってもよい。
【0012】
図1において、符号の最後に付された大文字「K」は、ブラック、大文字「Y」は、イエロー、大文字「M」は、マゼンタ、大文字「C」は、シアンを意味するものとする。なお、以下の説明において、これらの色を特に区別する必要がない場合には、これらの大文字を省略する。
【0013】
図示するように、画像形成装置100は、像担持体としての感光ドラム2K、2Y、2M、2Cと、帯電部としての帯電器3K、3Y、3M、3Cと、露光部としての露光器4K、4Y、4M、4Cと、現像部としての現像器5K、5Y、5M、5Cとを備える。
【0014】
また、画像形成装置100は、転写部としての転写ローラ6K、6Y、6M、6Cと、転写ベルト8と、ドライブローラ9と、アイドルローラ10と、定着部としての定着器11と、第一搬送ローラ対12a、12bと、第二搬送ローラ対13a、13bと、排出ローラ対14a、14bと、ホッピングローラ15と、書き出しセンサ16と、排出センサ17と、支持プレート部材18と、スプリング19とを備える。
【0015】
さらに、画像形成装置100は、低圧電源30と、メイン制御部40と、表示部50とを備える。
なお、以下では、メイン制御部40を単に制御部ともいう。また、低圧電源30を電源部ともいう。
【0016】
感光ドラム2は、画像を担持する。例えば、感光ドラム2は、帯電器3により一様に帯電されて、露光器4により露光される。これにより、感光ドラム2には、静電潜像が形成される。そして、感光ドラム2に形成された静電潜像に、現像器5により現像剤を付着させることで、転写用の画像である現像剤像としてのトナー像が形成される。
【0017】
帯電器3は、対応する感光ドラム2をマイナスに帯電させる。
露光器4は、対応する感光ドラム2に露光することで、その感光ドラム2に静電潜像を書き込む。
現像器5は、対応する感光ドラム2上の静電潜像に現像剤であるトナーを付着させることで、静電潜像を可視化する。ここでのトナーは、例えば、マイナスに帯電されている。
【0018】
転写ローラ6は、無端のベルト状に形成された転写ベルト8の内側に配置されており、転写ベルト8を挟んで、対応する感光ドラム2に押し当てられるようにバネ等の弾性部材(図示せず)により付勢されている。
【0019】
転写ベルト8は、ドライブローラ9と、アイドルローラ10との外周面により支持されている。そして、転写ベルト8は、これらのドライブローラ9及びアイドルローラ10の間で引っ張られ、感光ドラム2と、転写ベルト8とが接する面が平らとなるようにされている。
【0020】
ドライブローラ9は、図示しない駆動装置に接続されており、軸を中心として回転する。
アイドルローラ10は、ドライブローラ9の回転に連動して転写ベルト8が移動すると、この転写ベルト8の移動に連動してドライブローラ9の回転方向と同じ方向に回転する。
【0021】
定着器11は、内部に熱源としてのヒータ20を備えた定着ローラ21と、付勢手段により定着ローラ21に押し付けられるバックアップローラ22と、定着器11の温度を検出する温度検出部としてのサーミスタ23とを有する。定着器11は、記録媒体24に転写されたトナー画像を、熱と圧力とにより定着する。ヒータ20は、トナー画像が転写された記録媒体24を加熱するために発熱する。
【0022】
サーミスタ23は、定着器11の温度を検出し、その温度をメイン制御部40に通知する。メイン制御部40は、その温度を、定着器11の温度を一定に保つようにヒータ20のオン及びオフをコントロールするために使用する。
【0023】
図1の破線は、記録媒体24の搬送経路である。その搬送経路に沿って、第一搬送ローラ対12a、12b、第二搬送ローラ対13a、13b及び書き出しセンサ16が、転写ベルト8よりも上流側に配置されており、排出センサ17及び排出ローラ対14a、14bが、定着器11の下流側に配置されている。
【0024】
書き出しセンサ16及び排出センサ17は、記録媒体24が搬送経路に沿って搬送されてきた際に、記録媒体24の予め定められた位置、例えば、書き出しセンサ16は、記録媒体24の先端位置、排出センサ17は、その後端位置を検知して、その検知信号をメイン制御部40に与える。
【0025】
支持プレート部材18の上面には、記録媒体24が載せられる。
支持プレート部材18の下方には、支持プレート部材18を上方に押し上げる付勢部材であるスプリング19が設けられている。そして、支持プレート部材18の上面に載せられた記録媒体24は、スプリング19の付勢力によりホッピングローラ15に押し付けられる。
ホッピングローラ15は、記録媒体24をその搬送経路に押し出す方向に回転することで、それを搬送経路に押し出す。
【0026】
なお、感光ドラム2、ホッピングローラ15、第一搬送ローラ対12a、12b、第二搬送ローラ対13a、13b、ドライブローラ9、定着器11(定着ローラ21及びバックアッフローラ11b)、排出ローラ対14a、14bは、図示しないモータ等により回転させられる。
【0027】
図2は、実施の形態1に係る画像形成装置100における低圧電源30及びメイン制御部40の構成を概略的に示すブロック図である。
図2は、電源回路としての低圧電源30及びメイン制御部40から、実施の形態1の特徴に関する部分を抜粋した回路構成を示している。
【0028】
AC電源としての商用電源60は、電源コード61に接続される。
電源コード61は、インレット62に接続され、インレット62は、低圧電源30の入力部31に接続される。
【0029】
入力部31のLINE側は、FuseA101に接続される。
FuseA101は、フィルタ102に接続され、入力部31のNEUTRAL側は、フィルタ102に接続される。
【0030】
フィルタ102は、FuseB103と、リレー104とに接続される。
リレー104は、ヒータ用AC出力部32のLINE側に接続される。ヒータ用AC出力部32には、ヒータ20が接続される。
【0031】
FuseB103は、整流ブリッジ105の入力側に接続され、フィルタ102は、整流ブリッジ105の別の入力側と、トライアック106と、抵抗107と、抵抗108とに接続される。
抵抗108は、双方向フォトカプラ109に接続される。
【0032】
双方向フォトカプラ109は、リレー104に接続される。双方向フォトカプラ109のエミッタは、低圧電源30のGNDに接続される。双方向フォトカプラ109のコレクタは、抵抗110と、低圧電源30のR-CHK端子33に接続される。
【0033】
抵抗110は、低圧電源30の+5V端子34に接続される。
整流ブリッジ105の出力側の+極は、力率改善回路120のコンデンサ121と、トランス122とに接続される。
【0034】
ヒータ回路トライアックON-OFF部としてのトライアック106は、抵抗111と、ヒータ用AC出力部32のNEUTRAL側に接続される。
抵抗111は、トライアック106のゲートピンと、フォトトライアック112とに接続される。
抵抗107は、フォトトライアック112に接続される。
【0035】
フォトトライアック112のカソードは、メイン制御部40に含まれているヒータコントロール部41のACON-N端子44に接続される。
フォトトライアック112のアノードは、直流保護回路160の後述するトランジスタ161のコレクタに接続され、トランジスタ161のエミッタは、ヒータコントロール部41のH-GUARD端子45に接続される。
【0036】
整流ブリッジ105の出力側の-極は、コンデンサ121と、トランス122の入力側に接続される。
トランス122の出力側は、ダイオード123のアノードに接続される。
トランス122の他の出力側は、抵抗124に接続され、抵抗124は、コンデンサ125に接続される。
【0037】
力率改善回路制御IC126のOUTピンは、FET(Field Effect Transistor)127のゲートに接続される。
FET127のドレインは、ダイオード123のアノードに接続される。FET127のソースは、力率改善回路制御IC126のISピンと、抵抗128とに接続される。
【0038】
力率改善回路制御IC126のFBピンは、抵抗129aと、抵抗129bとに接続される。
コンデンサ125と、抵抗129bと、抵抗128と、力率改善回路制御IC126のGNDピンは、整流ブリッジ105の出力側の-極に接続される。
ダイオード123のカソードは、メイントランス113と、サブトランス114と、電解コンデンサ115の+極と、抵抗116と、抵抗129aとに接続される。
【0039】
メイン電源制御IC117のOUTピンは、FET118のゲートに接続される。
メイントランス113は、FET118のドレインに接続される。
【0040】
FET118のソースは、メイン電源制御IC117のISピンと、抵抗119とに接続される。
メイン電源制御IC117のFBピンは、フォトカプラ130のコレクタに接続される。
メイン電源制御IC117のGNDピンと、抵抗119と、電解コンデンサ115の-極と、フォトカプラ130のエミッタとは、整流ブリッジ105の出力側の-極に接続される。
【0041】
メイン電源制御IC117のVCCピンは、力率改善回路制御IC126のVCCピンと、制御IC電源供給切替部180のトランジスタ181のエミッタとに接続される。
抵抗182は、トランジスタ181のコレクタに接続される。抵抗182は、フォトカプラ183のコレクタに接続される。
【0042】
フォトカプラ183のエミッタは、トランジスタ181のベースに接続される。フォトカプラ183のアノードは、抵抗184に接続される。
抵抗184は、低圧電源30の+5V端子34に接続される。
フォトカプラ183のカソードは、トランジスタ185のコレクタに接続され、トランジスタ185のベースは、抵抗186に接続される。抵抗186は、低圧電源30のPOWER SAVE-N端子35に接続される。
トランジスタ185のエミッタは、低圧電源30のGNDに接続される。トランジスタ181のコレクタは、サブ電源制御IC131のVCCピンに接続される。
【0043】
サブ電源制御IC131のOUTピンは、FET132のゲートに接続される。
サブトランス114は、FET132のドレインに接続される。
FET132のソースは、サブ電源制御IC131のISピンと、抵抗133とに接続される。
サブ電源制御IC131のVINピンは、抵抗116に接続される。
サブ電源制御IC131のFBピンは、フォトカプラ146のコレクタに接続される。
【0044】
サブトランス114の補助巻き線は、ダイオード134のアノードに接続され、ダイオード134のカソードは、サブ電源制御IC131のVCCピンと、電解コンデンサ135の+極に接続される。
サブトランス114の補助巻き線は、電解コンデンサ135の-極と、サブ電源制御IC131のGNDピンと、フォトカプラ146のエミッタと、抵抗133と、整流ブリッジ105の出力側の-極とに接続される。
【0045】
メイントランス113の出力側は、ダイオード136のアノードに接続され、ダイオード136のカソードは、電解コンデンサ137の+極と、抵抗138と、抵抗139aと、低圧電源30の+24V端子36とに接続される。
メイントランス113の他の出力側は、可変シャントレギュレータ140のアノードと、電解コンデンサ137の-極と、抵抗139bとに接続される。
フォトカプラ130のアノードは、抵抗138に接続される。
フォトカプラ130のカソードは、可変シャントレギュレータ140のカソードに接続される。
【0046】
可変シャントレギュレータ140のリファレンスは、抵抗139aと、抵抗139bとに接続される。
サブトランス114の出力側は、ダイオード141のアノードに接続され、ダイオード141のカソードは、電解コンデンサ142の+極と、抵抗143と、抵抗144aと、抵抗184と、低圧電源30の+5V端子34とに接続される。
【0047】
サブトランス114の他の出力側は、可変シャントレギュレータ145のアノードと、電解コンデンサ142の-極と、抵抗144bと、低圧電源30のGNDとに接続される。
フォトカプラ146のアノードは、抵抗143に接続される。
フォトカプラ146のカソードは、可変シャントレギュレータ145のカソードに接続される。
【0048】
可変シャントレギュレータ145のリファレンスは、抵抗144aと、抵抗144bとに接続される。
低圧電源30の+24V端子36は、メイン制御部40の電圧変換部42の入力に接続される。低圧電源30の+5V端子34は、メイン制御部40の電源コントロール部43の入力に接続される。
【0049】
低圧電源30のGNDは、メイン制御部40の電圧変換部42のGNDと、電源コントロール部43とに接続される。電源コントロール部43は、画像形成装置100の主電源をオン又はオフにするためのメインソフトスイッチ25に接続されている。
メイン制御部40の中にある電圧変換部42にて電圧変換された電圧は、メイン制御部40の各回路に供給される。
【0050】
低圧電源30のACON-N端子44は、メイン制御部40にあるヒータコントロール部41に接続される。
ヒータコントロール部41は、定着器11内において定着器温度を検出するサーミスタ23に接続される。
低圧電源30のR-CHK端子33は、メイン制御部40にあるヒータコントロール部41に接続される。
【0051】
整流ブリッジ105の出力側の+極は、直流検出回路150の部分P01に接続される。整流ブリッジ105の出力側の-極は、直流検出回路150の部分P02に接続される。
【0052】
直流検出回路150の部分P03は、直流保護回路160の部分P13に接続され、直流検出回路150の部分P04は、直流保護回路160の部分P14に接続される。
【0053】
直流保護回路160の部分P11は、フォトトライアック112のアノードに接続され、直流保護回路160の部分P12は、低圧電源30のH-GUARD端子45に接続される。
直流保護回路160の部分P15は、リレーON/OFF回路190の一端に接続され、リレーON/OFF回路190の他端は、低圧電源30のRLY-ON端子37に接続される。
【0054】
直流保護回路160の部分P16は、低圧電源30のACZEROX-N端子38に接続され、直流保護回路160の部分P17は、低圧電源30のGNDに接続される。
直流保護回路160の部分P18は、低圧電源30の+5V端子34に接続される。
【0055】
ACZEROX-N端子38と、RLY-ON端子37と、H-GUARD端子45と、ACON-N端子44と、R-CHK端子33とは、メイン制御部40にあるヒータコントロール部41に接続される。
【0056】
図3は、実施の形態1における直流検出回路150の回路図である。
直流検出回路150の部分P01は、コンデンサ152の一端に接続され、コンデンサ152の他端は、抵抗153の一端に接続される。
抵抗153の他端は、フォトカプラ154のアノードに接続され、フォトカプラ154のカソードは直流検出回路150の部分P02に接続される。
【0057】
フォトカプラ154のコレクタは、直流検出回路150の部分P03に接続され、フォトカプラ154のエミッタは、直流検出回路150の部分P04に接続される。
コンデンサ152と、抵抗153とで構成された回路151が直流検出部となる。
【0058】
この回路例では、直流検出回路150は、直流を検出する回路として動作するほか、ゼロクロス検出回路しても使用できる。
【0059】
図4は、直流保護部としての直流保護回路160を示す回路図である。
直流保護回路160の部分P11は、トランジスタ161のコレクタに接続される。
直流保護回路160の部分P12は、トランジスタ161のエミッタと、抵抗162に接続される。
直流保護回路160の部分P13は、抵抗163と、抵抗164とに接続される。
直流保護回路160の部分P14及び部分P17は、GNDに接続される。
直流保護回路160の部分P15は、トランジスタ165のエミッタと、抵抗166とに接続される。
直流保護回路160の部分P16は、抵抗164に接続される。
直流保護回路160の部分P18は、+5V端子34に接続される。
【0060】
抵抗163は、トランジスタ167のベースピンに接続され、トランジスタ167のコレクタは、抵抗168と、抵抗169とに接続される。
抵抗169は、トランジスタ170のベースに接続される。
トランジスタ170のコレクタは、抵抗171と、コンデンサ172と、抵抗173と、抵抗174とに接続される。
【0061】
抵抗173は、抵抗162と、トランジスタ161のベースとに接続される。
抵抗174は、トランジスタ165のベースと、抵抗166とに接続される。
抵抗168と、抵抗171と、抵抗164とは、+5V端子34に接続される。
トランジスタ167のエミッタと、トランジスタ170のエミッタと、トランジスタ165のエミッタと、コンデンサ172とは、GNDに接続される。
【0062】
抵抗163、トランジスタ167、抵抗169、トランジスタ170及びコンデンサ172により、トランジスタ161及びトランジスタ165のスイッチングを制御するための制御回路175が構成される。
【0063】
図2に戻り、ヒータ回路リレーON-OFF部としてのリレーON/OFF回路190は、リレー104のコイル191と、ダイオード192とを備える。
コイル191の一端は、ダイオード192のアノードに接続され、コイル191の他端は、ダイオード192のカソードに接続される。
【0064】
以上のように、低圧電源30は、商用電源60から電流の供給を受けて、ヒータ20をオン又はオフするトライアック106と、商用電源60からトライアック106への電流の供給をオン又はオフするスイッチとして機能するリレー104と、トライアック106及びリレー104を制御することで、ヒータ20をコントロールするヒータコントロール部41と、商用電源60からの直流を検出する直流検出回路150と、直流検出回路150が直流を検出した場合に、ヒータコントロール部41が、トライアック106をオンにしようとしても、トライアック106がオンにならないようにするとともに、ヒータコントロール部41が、リレー104をオンにしようとしても、リレー104がオンにならないようにする直流保護回路160とを備える。
【0065】
ここで、直流検出回路150は、商用電源60からの電流の供給路から分岐された分岐路にコンデンサ152を設ける。これにより、直流検出回路150は、コンデンサ152の後段に電流が流れなくなった場合に、商用電源60からの直流を検出することができる。
図2の例では、商用電源60からメイン制御部40に電流が供給される供給路において、整流ブリッジ105の後段の点d1及び点d2の間に分岐路が形成されている。
【0066】
また、直流保護回路160は、直流検出回路150が直流を検出した場合に、トライアック106をオンにするために、ヒータコントロール部41からトライアック106に送る信号であるトライアックオン信号としてのACON-N信号を遮断する第一のスイッチング素子としてのトランジスタ161と、直流検出回路150が直流を検出した場合に、リレー104をオンにするために、ヒータコントロール部41からリレー104に送る信号であるスイッチオン信号としてのRLY-ON信号を遮断する第二のスイッチング素子としてのトランジスタ165とを備える。
【0067】
具体的には、直流検出回路150は、商用電源60からの直流を検出した場合には、ローレベルの信号を検出信号として直流保護回路160に出力し、商用電源60からの交流を検出した場合には、ローレベルとハイレベルとが交互に切り替わる信号を検出信号として直流保護回路160に出力する。
そして、直流保護回路160は、その検出信号がローレベルの信号である場合に、ハイレベルとなる信号を制御信号として出力し、その検出信号がローレベルとハイレベルとが交互に切り替わる信号である場合に、ローレベルとなる信号を制御信号として出力する制御回路175を備える。トランジスタ161は、制御信号がハイレベルである場合に、ACON-N信号を遮断し、制御信号がローレベルである場合に、ACON-N信号を通過させる。また、トランジスタ165は、制御信号がハイレベルである場合に、RLY-ON信号を遮断し、制御信号がローレベルである場合に、RLY-ON信号を通過させる。
ここでは、制御回路175は、コンデンサ172を備え、検出信号がハイレベルである期間にそのコンデンサ172に充電を行わせることで、検出信号がローレベルとハイレベルとが交互に切り替わる信号である場合に、ローレベルとなる信号を制御信号として出力する。
【0068】
以上に記載されたメイン制御部40の一部又は全部は、例えば、
図5(A)に示されているように、メモリ80と、メモリ80に格納されているプログラムを実行するCPU(Central Processing Unit)等のプロセッサ81とにより構成することができる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。
【0069】
また、メイン制御部40の一部又は全部は、例えば、
図5(B)に示されているように、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等の処理回路82で構成することもできる。
以上のように、メイン制御部40は、処理回路網で構成することができる。
【0070】
次に、
図2~
図4を用いて、画像形成装置100の動作を説明する。
印刷(画像形成)時のヒータ20のON-OFF制御は、メイン制御部40のヒータコントロール部41の出力信号であるRLY-ON信号にてリレー104を制御すること、及び、その出力信号であるACON-N信号にて、トライアック106を制御することで行われる。RLY-ON信号は、RLY-ON端子37を介して、低圧電源30に入力され、ACON-N信号は、ACON-N端子44を介して、低圧電源30に入力される。
【0071】
一般的に、トライアックは、交流が入力されると、そのON-OFFコントロールを行うことができるが、直流が入力されると、ONは可能であるが、OFFを行うことができない。そのため、印刷中に供給される電源が、直流に切り替わってしまうと、トライアックをOFFすることができず、ONが継続することになり、ヒータがONのままになってしまう。
【0072】
リレーについても同様で、一般的なリレーは、直流の場合はOFF時に接点間にアーク放電が継続して発生してしまい、回路をOFFすることができず、ONのままになってしまう。
【0073】
電源供給側の事故により商用電源60としての供給元より直流が供給された場合の動作は次の通りとなる。
【0074】
供給された直流は、電源コード61、インレット62、低圧電源30の入力部31、FuseA101、フィルタ102、FuseB103、整流ブリッジ105、コンデンサ121、トランス122、ダイオード123及び抵抗116を通りサブ電源制御IC131に供給される。直流が供給されると、サブ電源制御IC131が起動し、FET132のスイッチング動作を開始する。その時、サブトランス114の補助巻き線に電圧が生じる。その電圧は、ダイオード134にて整流され、電解コンデンサ135にて平滑化されて、サブ電源制御IC131に入力され、動作電源VCCとして使用される。
【0075】
FET132がスイッチング動作を開始すると、サブトランス114の2次側に電圧が生じる。2次側に生じた電圧は、ダイオード141にて整流され、電解コンデンサ142で平滑化されて、降圧された直流電圧が得られる。その電圧は、抵抗144aと、抵抗144bと、可変シャントレギュレータ145と、抵抗143と、フォトカプラ146とによって、サブ電源制御IC131のFBピンにフィードバックされ、サブトランス114の2次側が+5Vの出力になるように制御される。
【0076】
サブ電源制御IC131のISピンは、電流の状況を監視した電圧の入力を受ける。過電流の場合、サブ電源制御IC131が動作を停止し、+5V端子34への出力を停止する。
【0077】
低圧電源30から+5Vが出力されると、電源コントロール部43が動作を始める。
電源コントロール部43は、POWERSAVE-N信号をHレベルの出力に切り替える。POWERSAVE-N信号は、POWER SAVE-N端子35から低圧電源30に入力される。
【0078】
POWERSAVE-N信号がHレベルになると、抵抗186を介して、トランジスタ185のベースに電流が流れ、トランジスタ185がONとなる。
トランジスタ185がONになると、+5V端子34に接続されている抵抗184からフォトカプラ183の発光側に電流が流れる。
【0079】
フォトカプラ183の発光側に電流が流れると、フォトカプラ183のフォトトランジスタがONになる。これにより、サブトランス114の補助巻き線から出力された電圧が抵抗182を介して、トランジスタ181のベースに電流が流れ、トランジスタ181がONとなる。
【0080】
トランジスタ181がONになると、サブトランス114の補助巻き線から出力された電圧がメイン電源制御IC117のVCCピンと、力率改善回路制御IC126のVCCピンとに供給される。
力率改善回路制御IC126のVCCピンに電圧が供給されると、力率改善回路制御IC126の動作が開始される。
力率改善回路制御IC126の動作が開始されると、力率改善回路制御IC126のOUTピンからスイッチング信号が出力され、FET127がスイッチング動作を開始する。
【0081】
FET127がスイッチング動作を開始すると、トランス122が発生する逆起電力により、インレット62に入力された電圧が昇圧され、その昇圧された電圧が、ダイオード123で整流され、電解コンデンサ115にて平滑化される。その電圧は、抵抗129aと、抵抗129bとにより分圧され、分圧された電圧が力率改善回路制御IC126のFBピンに入力される。力率改善回路制御IC126は、FBピンに入力された電圧により、フィーバック制御を行い、力率改善回路120からの出力が一定電圧に保たれる。
【0082】
メイン電源制御IC117のVCCピンに電圧が供給されると、メイン電源制御IC117の動作が開始される。メイン電源制御IC117の動作が開始されると、メイン電源制御IC117のOUTピンからスイッチング信号が出力され、FET118がスイッチング動作を開始する。FET118がスイッチング動作を開始すると、メイントランス113が動作を開始し、メイントランス113の2次側に電圧が生じる。
【0083】
その2次側に生じた電圧は、ダイオード136にて整流され、電解コンデンサ137で平滑化され、降圧された直流電圧が得られる。その電圧は、抵抗139aと、抵抗139bと、可変シャントレギュレータ140と、抵抗138と、フォトカプラ130とによって、メイン電源制御IC117のFBピンにフィードバックされる。メイン電源制御IC117は、FBピンに入力された電圧により、+24V端子36からの出力が+24Vとなるように制御する。メイン電源制御IC117のISピンは、電流の状況を監視した電圧の入力を受けて、その電圧が過電流を示す場合、メイン電源制御IC117が動作を停止しして、+24V端子36からの出力を停止する。
【0084】
ここまでの動作は、供給される電源が直流及び交流どちらの場合でも、同様の動作となる。言い換えると、供給される電源が交流であっても直流であっても、出力される電圧は降圧された直流電圧となり、その電圧がメイン制御部40に供給される。
【0085】
以上のような動作により電圧がメイン制御部40に供給された後に、画像形成装置100が印刷状態に移行した場合の動作を、
図6を用いて説明する。
【0086】
図6は、画像形成装置100の印刷開始時の動作を示すフローチャートである。
まず、画像形成装置100が印刷状態に移行すると、ヒータコントロール部41は、RLY-ON端子37から出力するRLY-ON信号を0Vにセットする(S10)。この状態は、リレー104の接点がOFFとなっている状態である。
【0087】
次に、ヒータコントロール部41は、R-CHK端子33から出力されるR-CHK信号の立下り数のカウントを始める(S11)。
カウントを行う時間は、1サイクル(50Hz:20ms)とし、ヒータコントロール部41は、20msが経過したか否かを判断する(S12)。そして、カウントされた時間が20msを経過した場合(S12でYes)には、処理はステップS13に進む。
【0088】
ステップS13では、ヒータコントロール部41は、R-CHK信号の立下り数のカウントが0を超えているか否かを判断する。R-CHK信号の立下り数のカウントが0を超えているとリレー104の接点が溶着していることになる。このため、ヒータコントロール部41は、R-CHK信号の立下り数のカウントが0を超えている場合(S13でYes)には、処理をステップS14に進め、エラー処理を行う。ここでは、エラー処理として画像形成装置100の印刷が停止される。R-CHK信号の立下り数のカウントが0の場合(S13でNo)には、問題がないので、処理はステップS15に進む。
【0089】
ステップS15では、ヒータコントロール部41は、RLY-ON信号を5Vにセットし、リレー104をONにする。
【0090】
次に、ヒータコントロール部41は、図示していないヒータONタイマーをセットして、ヒータオン時間の計測を開始する(S16)。
【0091】
そして、ヒータコントロール部41は、H-GUARD端子45から出力されるH-GUARD信号を+5V、ACON-N端子44から出力されるACON-N信号をLレベルにセットし、トライアック106をONにする(S17)。トランジスタ170のコレクタ電圧は、Lレベルになると直流保護回路160のトランジスタ161がONとなるため、H-GUARD信号を5Vにセットすると電流を流すことができる。このため、トライアック106はONになる。
【0092】
次に、ヒータコントロール部41は、図示していないヒータONタイマー時間を確認し、ヒータON時間が予め定められている閾値をオーバーしているか否かを判断する(S18)。ヒータON時間が予め定められている閾値をオーバーしている場合(S18でYes)には、不具合が起きている可能性が高いため、ヒータコントロール部41は、処理をステップS14に進め、エラー処理を行う。ここでも、エラー処理として画像形成装置100の印刷が停止される。一方、ヒータON時間が予め定められている閾値をオーバーしていない場合(S18でNo)には、処理はステップS19に進む。
【0093】
ステップS19では、ヒータコントロール部41は、サーミスタ23の温度を確認し、その温度が印刷目標温度に達しているか否かを判断する。その温度が印刷目標温度に達していない場合(S19でNo)には、処理はステップS17に戻り、その温度が印刷目標温度に達している場合(S19でYes)には、処理はステップS20に進む。
【0094】
ステップS20では、ヒータコントロール部41よりACON-N信号をHレベルにセットしトライアック106をOFFにする。
以降、印刷制御は続く。
【0095】
ここで、ステップS15において、入力部31に交流が印加される場合には、リレー104はONになるが、入力部31に直流が印加される場合には、リレー104はONにならない。これは、直流検出回路150と、直流保護回路160とによるものである。これらの回路動作としては次の通りとなる。
【0096】
まず、入力部31に直流電圧が印加された場合について説明する。
入力部31に直流電圧が印加される場合、直流検出回路150の抵抗153にプラス側の電圧、フォトカプラ154のカソードにマイナス側の電圧が印加される。直流検出回路150には、コンデンサ152があるため、直流電圧はカットされる。このため、抵抗153及びフォトカプラ154の発光側に電流が流れず、フォトカプラ154のフォトトランジスタはONしない。
【0097】
フォトカプラ154のフォトトランジスタがONしないと、フォトカプラ154のフォトトランジスタのコレクタは、直流保護回路160の抵抗164にて+5Vでプルアップされているため、Hレベルになる。この場合、直流保護回路160の抵抗163に電圧がかかるため、直流保護回路160のトランジスタ167にベース電流が流れ、トランジスタ167はON状態となる。
【0098】
トランジスタ167がON状態となると、トランジスタ167のコレクタ電圧はLレベルになる。トランジスタ167のコレクタ電圧がLレベルになると、直流保護回路160のトランジスタ170はOFF状態となる。
【0099】
トランジスタ170がOFF状態となると、トランジスタ170のコレクタ電圧はHレベルになる。トランジスタ170のコレクタ電圧がHレベルになると、直流保護回路160のトランジスタ165がOFF状態となるため、RLY-ON信号が5Vにセットされても、コイル191に電流を流すことができないためリレー104はONしない。
【0100】
次に、入力部31に交流電圧が印加された場合について説明する。
直流検出回路150の抵抗153と、フォトカプラ154のカソードとの間に全波整流された電圧が印加される。直流検出回路150には、コンデンサ152があるが、入力される電圧が直流ではないため、電圧はカットされず抵抗153、フォトカプラ154の発光側に電流が流れる。
【0101】
この時、全波整流された電圧なのでフォトカプラ154のフォトトランジスタは、ON-OFFを繰り返す。
フォトカプラ154のフォトトランジスタがON-OFFを繰り返すと、フォトカプラ154のフォトトランジスタのコレクタは、直流保護回路160の抵抗164で+5Vにプルアップされているため、H-Lレベルを繰り返す。
【0102】
直流保護回路160の抵抗163の電圧がH-Lレベルとなるため、直流保護回路160のトランジスタ167にベース電流が流れる及び流れないが繰り返される。これにより、トランジスタ167はON状態-OFF状態を繰り返す。
【0103】
トランジスタ167がON状態-OFF状態を繰り返すと、トランジスタ167のコレクタ電圧もH-Lレベルを繰り返す。トランジスタ167のコレクタ電圧がH-Lレベルを繰り返すと、直流保護回路160のトランジスタ170はON状態-OFF状態を繰り返す。
【0104】
トランジスタ170がON状態の時は、トランジスタ170のコレクタ電圧はLレベルとなる。それがOFF状態の時は、トランジスタ170に接続されているコンデンサ172への充電が完了するまで122bのコレクタ電圧はLレベルを維持する。これにより、この時のトランジスタ170のコレクタ電圧は、常にLレベルとなる。
【0105】
トランジスタ170のコレクタ電圧がLレベルになると、直流保護回路160のトランジスタ165がONとなるため、RLY-ON信号が5Vにセットされると、コイル191に電流を流すことができるため、リレー104はONになる。
【0106】
また、ステップS17においても、入力部31に交流電圧が印加される場合には、トライアック106はONになるが、入力部31に直流電圧が印加される場合には、トライアック106はONにならない。これは、直流検出回路150と、直流保護回路160とによるものである。これらの回路動作は、次の通りとなる。
【0107】
まず、直流電圧が印加される場合について説明する。
入力部31に直流電圧が印加される場合、直流検出回路150の抵抗153にプラス側の電圧、フォトカプラ154のカソードにマイナス側の電圧が印加される。直流検出回路150は、コンデンサ152を備えるため、直流電圧はカットされ、抵抗153及びフォトカプラ154の発光側に電流が流れない。このため、フォトカプラ154のフォトトランジスタはONにならない。
【0108】
フォトカプラ154のフォトトランジスタがONにならないと、フォトカプラ154のフォトトランジスタのコレクタは、直流保護回路160にある抵抗164にて+5Vでプルアップされているため、Hレベルとなる。このため、直流保護回路160の抵抗163に電圧がかかり、直流保護回路160のトランジスタ167にベース電流が流れ、トランジスタ167はON状態となる。
【0109】
トランジスタ167がON状態になると、トランジスタ167のコレクタ電圧は、Lレベルになる。トランジスタ167のコレクタ電圧がLレベルになると、直流保護回路160のトランジスタ170はOFF状態になる。
【0110】
トランジスタ170がOFF状態になると、トランジスタ170のコレクタ電圧は、Hレベルになる。トランジスタ170のコレクタ電圧がHレベルになると、直流保護回路160のトランジスタ161がOFFとなる。このため、H-GUARD信号が5Vにセットされても、コイル191に電流を流すことができず、トライアック106はONにならない。
【0111】
次に、入力部31に交流電圧が印加された場合について説明する。
直流検出回路150の抵抗153と、フォトカプラ154のカソードとの間に全波整流された電圧が印加される。直流検出回路150には、コンデンサ152があるが、入力される電圧が直流ではないため、電圧はカットされず抵抗153、フォトカプラ154の発光側に電流が流れる。
【0112】
この時、全波整流された電圧なのでフォトカプラ154のフォトトランジスタは、ON-OFFを繰り返す。フォトカプラ154のフォトトランジスタがON-OFFを繰り返すと、フォトカプラ154のフォトトランジスタのコレクタは、直流保護回路160の抵抗164で+5Vでプルアップされているため、H-Lレベルを繰り返す。
【0113】
直流保護回路160の抵抗163の電圧がH-Lレベルとなると、直流保護回路160のトランジスタ167にベース電流も流れる、流れないを繰り返す。これにより、トランジスタ167は、ON状態-OFF状態を繰り返す。
【0114】
トランジスタ167がON状態-OFF状態を繰り返すと、トランジスタ167のコレクタ電圧もH-Lレベルを繰り返す。トランジスタ167のコレクタ電圧がH-Lレベルを繰り返すと、直流保護回路160のトランジスタ170は、ON状態-OFF状態を繰り返す。
【0115】
トランジスタ170がON状態の時は、トランジスタ170のコレクタ電圧はLレベルとなる。それがOFF状態の時は、トランジスタ170に接続されているコンデンサ172への充電が完了するまで122bのコレクタ電圧は、Lレベルを維持する。このため、この時のトランジスタ170のコレクタ電圧は常にLレベルとなる。
【0116】
トランジスタ170のコレクタ電圧がLレベルになると、直流保護回路160のトランジスタ161がON状態となる。このため、H-GUARD信号が5Vにセットされると、コイル191に電流を流すことができるため、トライアック106はONになる。
【0117】
以上のように、実施の形態1によれば、直流検出がハードウェアにて行われるため、印刷開始時に毎回実施するファームウェアによる直流検出監視時間をなくすことができる。このため、ウォームアップ時間及びファーストプリントアウト時間への影響がなくなり、素早い印刷開始を実現することができる。
【0118】
実施の形態2.
図1に示されているように、実施の形態2に係る画像形成装置200の構成は、低圧電源70を除いて、実施の形態1に係る画像形成装置100と同様である。
【0119】
図2に示されているように、実施の形態2に係る画像形成装置200は、低圧電源70及びメイン制御部40を備える。
実施の形態2に係る画像形成装置200のメイン制御部40は、実施の形態1に係る画像形成装置100のメイン制御部40と同様である。
また、実施の形態2における低圧電源70は、直流検出回路250を除いて、実施の形態1における低圧電源30と同様に構成されている。
【0120】
図7は、実施の形態2における直流検出回路250の回路図である。
直流検出回路250は、コンデンサ152と、抵抗153と、フォトカプラ154と、ダイオード255と、抵抗256と、切替部としての切替回路257とを備える。
実施の形態2における直流検出回路250のコンデンサ152、抵抗153及びフォトカプラ154は、実施の形態1における直流検出回路150のコンデンサ152、抵抗153及びフォトカプラ154と同様である。
【0121】
直流検出回路250の部分P01は、ダイオード255のアノードと、切替回路257のダイオード257aのアノードに接続される。
ダイオード255のカソードは、コンデンサ152の一端に接続され、コンデンサ152の他端は、切替回路257のFET257bのドレインと、抵抗256の一端とに接続される。
ここでは、一つのダイオード255が用いられているが、全波整流のためのダイオードブリッジがダイオード255の代わりに用いられてもよい。
【0122】
抵抗256の他端は、切替回路257のFET257bのソースと、抵抗153の一端とに接続される。
抵抗153の他端は、フォトカプラ154のアノードに接続される。
【0123】
切替回路257のダイオード257aのカソードは、コンデンサ257cと、ツェナーダイオード257dのカソードと、抵抗257eと、抵抗257fとに接続される。
抵抗257eは、FET257bのゲートと、トランジスタ257gのコレクタとに接続される。
抵抗257fは、トランジスタ257hのコレクタと、抵抗257iとに接続され、抵抗257iは、トランジスタ257gのベースに接続される。
【0124】
ツェナーダイオード257dのアノードは、抵抗257jに接続され、抵抗257jは、抵抗257kと、抵抗257lとに接続される。
抵抗257lは、トランジスタ257hのベースに接続される。
直流検出回路250の部分P02は、コンデンサ257cと、抵抗257kと、トランジスタ257hのエミッタと、トランジスタ257gのエミッタとに接続される。
【0125】
切替回路257では、ツェナーダイオード257dにより電圧を検出するようにしているが、電圧を検出できれば他の電圧検出回路又は素子が用いられてもよい。
また、スイッチ素子としてFET257bが用いられているが、スイッチ素子として使用できるのであればFET又はトランジスタ等の半導体だけでなくメカニカルリレー等が用いられてもよい。
なお、直流検出回路250は、ゼロクロス検出回路としても使用できる。
【0126】
次に、直流検出回路250の動作について、特に、実施の形態1と異なる動作について説明する。
直流検出回路250は、電源が入力されていると常に電力を消費している。これは、直流検出回路250が常時直流を検出しているためである。この点においては、実施の形態2も実施の形態1と同様である。
【0127】
図2に示されている電源回路は、入力電圧が幅広く対応できるユニバーサル電源である。このような電源は、AC100VからAC240V入力まで対応可能となる。
図3に示されている実施の形態1における直流検出回路150では、抵抗153の抵抗値が固定であるため、AC100Vが入力された場合よりもAC240Vが入力された場合の方が消費電力は高くなってしまう。
【0128】
実施の形態2では、AC100Vが入力された場合と、AC240Vが入力された場合とで、消費電力が変わらないように、切替回路257が設けられている。
【0129】
直流検出回路250の部分P01と、部分P02とに電圧が印加されると、ダイオード255と、コンデンサ152と、抵抗256又は切替回路257のFET257bのドレイン-ソース間と、抵抗153と、フォトカプラ154とに電流が流れる。
【0130】
抵抗256及びFET257bのドレイン-ソース間のどちらに電流が流れるかは、直流検出回路250の部分P01及び部分P02に印加される電圧の電圧値による。
入力される電圧が180V未満の場合、FET257bのドレイン-ソース間に電流が流れ、入力された電圧が200V以上の場合、抵抗256に電流が流れる。この動作は、次によるものである。
【0131】
直流検出回路250の部分P01及び部分P02に電圧が印加されると、その電圧は、ダイオード257aにて半波整流され、コンデンサ257cにて直流電圧に平滑化される。
【0132】
平滑化された直流電圧が200V以上の場合、ツェナーダイオード257dにツェナー電流が流れる。ここでは、例えば、ツェナーダイオード257dのツェナー電圧は、180Vであるものとする。この場合、抵抗257j及び抵抗257kにツェナー電流が流れ、抵抗257lにも電流が流れる。これにより、トランジスタ257hのベース電流が流れ、トランジスタ257hはON状態となる。
【0133】
これにより、抵抗257iに電流が流れず、トランジスタ257gにベース電流が流れないため、トランジスタ257gは、OFF状態となる。
トランジスタ257gがOFF状態であると、FET257bのゲートの電圧は、高い電圧をキープする。ここでのFET257bは、PチャネルのFETであるためON状態にはならない。
【0134】
一方、コンデンサ257cにて平滑化された直流電圧が200V未満の場合、ツェナーダイオード257dにツェナー電流が流れない。この場合、抵抗257jと抵抗257kとにツェナー電流が流れず、抵抗257lにも電流が流れない。このため、トランジスタ257hのベース電流が流れないため、トランジスタ257hは、OFF状態となる。
【0135】
これにより抵抗257f及び抵抗257iに電流が流れ、トランジスタ257gのベースに電流が流れ、トランジスタ257gは、ON状態となる。
トランジスタ257gがON状態になると、FET257bのゲートの電圧は低い電圧となり、FET257bは、ON状態となる。
【0136】
以上のように、入力電圧が200V以上の場合は、抵抗256及び抵抗153の2つの制限抵抗となり、入力電圧が200V未満の場合は、抵抗256に並列に接続されたFET257bがON状態となるので、抵抗256がバイパスされ、抵抗153のみが制限抵抗となる。ここでの例は、ツェナーダイオード257dのツェナー電圧が180Vとしているが、この電圧値は一例であり、他のツェナー電圧にして、切り替え電圧を調整することも可能である。
【0137】
実施の形態2では、直流検出回路250は、分岐路に接続された第一の抵抗としての抵抗153と、分岐路に接続された第二の抵抗としての抵抗256と、商用電源60からの電圧が予め定められた閾値以上である場合に、抵抗256に商用電源60からの電流を流し、商用電源60からの電圧が予め定められた閾値未満である場合に、商用電源60からの電流が抵抗256に流れないように、商用電源60からの電流が抵抗256を迂回して流れるようにする切替回路257とを備える。
【0138】
実施の形態1のように直流検出回路150の制限抵抗が固定の場合、入力電圧が200Vを超える電圧が印加されると、100Vが印加されるときよりも直流検出回路150にて消費される消費電力が大きくなる。
これに対して、実施の形態2では、切替回路257を備えることで、入力電圧が200Vを超えた場合に、制限抵抗値も大きくなるので、入力電圧が200Vを超えても、100Vの電圧が入力された時と同様の消費電力とすることができる。
【0139】
また、実施の形態2でも、直流検出をハードウェアにて行うため、印刷開始時に毎回実施するファームウェアによる直流検出監視時間がなくなり、ウォームアップ時間及びファーストプリントアウト時間への影響がなくなり、素早い印刷開始を実現することができる。
【0140】
以上に記載した実施の形態1及び2では、カラープリンタを例に説明したが、ヒータ回路を用いたモノクロプリンタ又はマルチファンクションプリンタにも、実施の形態1又は2を適用することができる。
【符号の説明】
【0141】
100,200 画像形成装置、 2 感光ドラム、 3 帯電器、 4 露光器、 5 現像器、 6 転写ローラ、 8 転写ベルト、 9 ドライブローラ、 10 アイドルローラ、 11 定着器、 12a,12b 第一搬送ローラ対、 13a,13b 第二搬送ローラ対、 14a,14b 排出ローラ対、 15 ホッピングローラ、 16 書き出しセンサ、 17 排出センサ、 18 支持プレート部材、 19 スプリング、 30 低圧電源、 40 メイン制御部、 41 ヒータコントロール部、 50 表示部、 60 商用電源、 104 リレー、 106 トライアック、 150 直流検出回路、 152 コンデンサ、 153 抵抗、 154 フォトカプラ、 255 ダイオード、 256 抵抗、 257 切替回路、 160 直流保護回路、 161,165,167,170 トランジスタ、 162,163,164,166,168,169,171,173,174 抵抗、 172 コンデンサ、 175 制御回路。