(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-16
(45)【発行日】2024-12-24
(54)【発明の名称】3D心内活動提示
(51)【国際特許分類】
A61B 5/367 20210101AFI20241217BHJP
A61B 5/00 20060101ALI20241217BHJP
A61B 5/33 20210101ALI20241217BHJP
A61B 5/343 20210101ALI20241217BHJP
A61B 5/352 20210101ALI20241217BHJP
【FI】
A61B5/367
A61B5/00 G
A61B5/33 100
A61B5/343
A61B5/352
【外国語出願】
(21)【出願番号】P 2020154335
(22)【出願日】2020-09-15
【審査請求日】2023-09-06
(32)【優先日】2019-09-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511099630
【氏名又は名称】バイオセンス・ウエブスター・(イスラエル)・リミテッド
【氏名又は名称原語表記】Biosense Webster (Israel), Ltd.
(74)【代理人】
【識別番号】100088605
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】シュムエル・アウアーバッハ
(72)【発明者】
【氏名】スタニスラフ・ゴールドバーグ
(72)【発明者】
【氏名】オーデッド・バロン
【審査官】▲高▼原 悠佑
(56)【参考文献】
【文献】米国特許出願公開第2019/0125186(US,A1)
【文献】特開2019-076744(JP,A)
【文献】特開2017-185223(JP,A)
【文献】特開2015-139708(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/24-5/398
(57)【特許請求の範囲】
【請求項1】
医療システムであって、
生体の心臓の心腔内に挿入されるように構成され、前記心臓の前記心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含む、カテーテルと、
ディスプレイと、
処理回路であって、前記カテーテルから信号を受信し、前記信号に応答して、
それぞれのサンプリング時間における前記信号の電圧値をサンプリングし、
(a)それぞれの前記カテーテル電極のそれぞれの位置、及び(b
)それぞれの
前記サンプリング時間におけ
るそれぞれの
前記場所で
のそれぞれの
前記カテーテル電極によって感知される前記組織の電気的活動を示すそれぞれのサンプリングされた前記電圧値に応答して、前記サンプリング時間のそれぞれにおける前記カテーテル電極上の前記組織の
前記電気的活動を描出するそれぞれの湾曲した三次元表面を計算し、
それぞれの
前記三次元表面を経時的に前記ディスプレイにレンダリングするように構成された、処理回路と、を備
え、
前記カテーテルは、遠位端を有するシャフトと、前記カテーテル電極が配置された遠位端アセンブリと、を備え、
それぞれの前記カテーテル電極のそれぞれの前記位置が、前記シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である、医療システム。
【請求項2】
前記処理回路が
、サンプリングされた
前記電圧値のそれぞれに応答して
、それぞれの
前記三次元表面のそれぞれの領域を色付けするように構成されている、請求項1に記載のシステム。
【請求項3】
前記処理回路が、前記サンプリング時間のそれぞれにおけ
るサンプリングされた
前記電圧値のそれぞれに応答して、前記カテーテル電極のそれぞれの前記投影位置のそれぞれからの、前記平面に垂直なそれぞれの変位を計算するように構成されており、
前記処理回路は、前記投影位置のそれぞれからの、前記平面に垂直な前記変位のそれぞれに応答して、前記サンプリング時間
のそれぞれにおける前記カテーテル電極上の前記組織の前記電気的活動を描出す
るそれぞれの湾曲した
前記三次元表面をフィッティングするように構成されている、請求項1に記載のシステム。
【請求項4】
前記処理回路が、前記変位のそれぞれに応答して
、それぞれの
前記三次元表面のそれぞれの領域を色付けするように構成されている、請求項3に記載のシステム。
【請求項5】
前記処理回路が、
それぞれの
前記サンプリング時間における前記信号の前記電圧値を、毎秒10回を超えるレートでサンプリングし、
それぞれの
前記三次元表面を前記ディスプレイに経時的にレンダリングするように構成されており、前記三次元表面の新しいものが少なくとも10分の1秒毎に表示されることにより、レンダリングされた前記三次元表面が、前記カテーテル電極上の前記組織の前記電気的活動に関連する活性化波のアニメーションを提供する、請求項1に記載のシステム。
【請求項6】
前記三次元表面のものの視野角を変更するためのユーザ入力を受信するように構成されたインターフェースを更に備え、前記処理回路は、受信された前記ユーザ入力に応答して、異なる視野角で前記三次元表面のものをレンダリングするように構成されている、請求項1に記載のシステム。
【請求項7】
それぞれの
前記カテーテル電極
のそれぞれの
前記位置が、前記カテーテルの静的コンピュータモデルに由来するそれぞれの位置である、請求項1に記載のシステム。
【請求項8】
前記処理回路は
、それぞれの
前記カテーテル電極
のそれぞれの
前記位置を計算するように構成されている、請求項1に記載のシステム。
【請求項9】
処理回路の作動方法であって、
前記処理回路が、生体の心臓の心腔に挿入されるように構成され、前記心臓の前記心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含むカテーテルからの信号を受信することと、
前記処理回路が、前記信号に応答して、それぞれのサンプリング時間における前記信号の電圧値をサンプリングすることと、
前記処理回路が、(a)それぞれの前記カテーテル電極のそれぞれの位置、及び(b
)それぞれの
前記サンプリング時間におけ
るそれぞれの
前記場所で
のそれぞれの
前記カテーテル電極によって感知される前記組織の電気的活動を示すそれぞれのサンプリングされた前記電圧値に応答して、前記サンプリング時間のそれぞれにおける前記カテーテル電極上の前記組織の
前記電気的活動を描出するそれぞれの湾曲した三次元表面を計算することと、
前記処理回路が、それぞれの
前記三次元表面を経時的にディスプレイにレンダリングすることと、を含
み、
前記カテーテルは、遠位端を有するシャフトと、前記カテーテル電極が配置された遠位端アセンブリと、を備え、
それぞれの前記カテーテル電極のそれぞれの前記位置が、前記シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である、処理回路の作動方法。
【請求項10】
前記処理回路が、サンプリングされた
前記電圧値のそれぞれに応答して
、それぞれの
前記三次元表面のそれぞれの領域を色付けすることを更に含む、請求項
9に記載の
処理回路の作動方法。
【請求項11】
前記処理回路が、前記サンプリング時間のそれぞれにおけ
るサンプリングされた
前記電圧値のそれぞれに応答して、前記カテーテル電極のそれぞれの前記投影位置のそれぞれからの、前記平面に垂直なそれぞれの変位を計算することと、
前記処理回路が、前記投影位置のそれぞれからの、前記平面に垂直な前記変位のそれぞれに応答して、前記サンプリング時間
のそれぞれにおける前記カテーテル電極上の前記組織の前記電気的活動を描出す
るそれぞれの湾曲した
前記三次元表面をフィッティングすることと、を更に含む、請求項
9に記載の
処理回路の作動方法。
【請求項12】
前記処理回路が、前記変位のそれぞれに応答して
、それぞれの
前記三次元表面のそれぞれの領域を色付けすることを更に含む、請求項
11に記載の
処理回路の作動方法。
【請求項13】
前記処理回路が、それぞれの
前記サンプリング時間における前記信号の前記電圧値を、毎秒10回を超えるレートでサンプリングすることを更に含み、前記レンダリングすることは、
前記処理回路が、それぞれの
前記三次元表面を前記ディスプレイに経時的にレンダリングすることを含み、前記三次元表面の新しいものが少なくとも10分の1秒毎に表示されることにより、レンダリングされた前記三次元表面が、前記カテーテル電極上の前記組織の前記電気的活動に関連する活性化波のアニメーションを提供する、請求項
9に記載の
処理回路の作動方法。
【請求項14】
前記処理回路が、前記三次元表面のものの視野角を変更するためのユーザ入力を受信することと、
前記処理回路が、受信された前記ユーザ入力に応答して、異なる視野角で前記三次元表面のものをレンダリングすることと、を更に含む、請求項
9に記載の
処理回路の作動方法。
【請求項15】
それぞれの
前記カテーテル電極
のそれぞれの
前記位置が、前記カテーテルの静的コンピュータモデルに由来するそれぞれの位置である、請求項
9に記載の
処理回路の作動方法。
【請求項16】
前記処理回路が、それぞれの
前記カテーテル電極
のそれぞれの
前記位置を計算することを更に含む、請求項
9に記載の
処理回路の作動方法。
【請求項17】
プログラム命令が格納された非一時的なコンピュータ可読媒
体であって、前記
プログラム命令が、中央処理装置(CPU)によって読み取られると、前記CPUに、
生体の心臓の心腔に挿入されるように構成され、前記心臓の前記心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含む、カテーテルからの信号を受信させ、
前記信号に応答して、それぞれのサンプリング時間における前記信号の電圧値をサンプリングさせ、
(a)それぞれの前記カテーテル電極のそれぞれの位置、及び(b
)それぞれの
前記サンプリング時間におけ
るそれぞれの
前記場所で
のそれぞれの
前記カテーテル電極によって感知される前記組織の電気的活動を示すそれぞれのサンプリングされた前記電圧値に応答して、前記サンプリング時間のそれぞれにおける前記カテーテル電極上の前記組織の
前記電気的活動を描出するそれぞれの湾曲した三次元表面を計算させ、
それぞれの
前記三次元表面を経時的にディスプレイにレンダリングさ
せ、
前記カテーテルは、遠位端を有するシャフトと、前記カテーテル電極が配置された遠位端アセンブリと、を備え、
それぞれの前記カテーテル電極のそれぞれの前記位置が、前記シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である、非一時的なコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は医療システムに関し、排他的にではないが具体的には、電気的活動の分析に関する。
【背景技術】
【0002】
心臓内のある箇所における電気的活動は、心腔内の複数の箇所での電気的活動を同時に測定するための多電極カテーテルを前進させることによって測定することができる。外部ベストを使用することなどの他の方法により、心臓の活動の兆候を提供することができる。1つ又は複数の電極により測定される、時間的に変化する電位から得られる記録は、電位図として知られている。電位図は、単極誘導又は双極誘導によって測定され得、例えば、局所活性化時間(local activation time、LAT)として知られる、ある点における電気伝搬の開始を判定するために使用される。
【0003】
Kuoらの米国特許第5,782,773号は、複数の心臓信号の3D提示のための三次元心電図表示方法を記載している。この方法では、3D矩形座標系は、心臓信号の3D提示を表示するように定義される。更に、振幅表示スキーム、好ましくは振幅対色マッピングテーブルが、振幅の様々な量子化レベルを指定された明確な色に割り当てるように定義される。グラフィック処理及び表示手段によって、心臓信号の3D提示を生成し、表示することができる。医師は、斜視図、断面図、及び上面矩形図を含む様々な図における3Dグラフを観察することを選択することができる。これにより、医師は、心臓信号の1つ又は2つの3D提示のみを観察することによって、心臓疾患の診断を行うことが可能になる。医師はしたがって、豊富な数の心臓信号の全体的な一体図を有することができ、それによって患者の心臓状態をより容易に診断することができる。
【0004】
Luoの米国特許出願公開第2011/0021936号は、負荷試験監視システム用の医療データを表示するためのデバイス及び方法を記載している。分析用のヒト心臓の電気インパルスデータを表示するためのコンピュータ実装方法及び装置は、患者上に配置するように適合された複数の電極リード線による心臓負荷試験中に生成された心臓電気インパルスデータを受信することと、データに基づいて複数の表示窓用のパラメータを計算することと、複数の表示窓が配置されたメインディスプレイを提供することと、を含む。三次元カラーマッピングプロットは、複数の表示窓のうちの1つに表示され、二次元カラーマッピングプロットは、複数の表示窓のうちの別のものに表示される。また、複数の表示窓のうちの1つには、少なくとも1つのリード線からの生リード線データのプロットが表示される。
【0005】
Markowitzらの米国特許出願公開第2012/0130232号は、複数の場所を識別し、マッピング器具の複数の場所を保存するように動作可能なシステムによってマッピングされ得る患者の体積を記載している。マッピング器具は、1つ又は2つ以上の電極を含むことができ、これらの電極は、感知又は測定時の電極の三次元位置に関連付けられ得る電圧を感知することができる。したがって、体積のマップは、他の画像化機器を用いずに、複数の点の感知に基づいて決定することができる。植込み型医療器具は、次いで、マッピングデータに関連して操作され得る。
【0006】
Acutus Medical Inc.の国際公開第2017/192769号は、心臓情報の獲得及び分析に有用な位置特定システム及び方法を記載している。位置特定システム及び方法は、例として、心臓マッピング、心臓異常の診断及び治療を実施するシステムと共に、そのような種類の情報の検索、処理、及び解釈において使用することができる。位置特定システム及び方法は、多軸座標系を確立するために使用される電極の対に対して、高いインピーダンス入力、改善された隔離、及び比較的高い駆動電流を使用する。軸は、位置特定を改善するために回転及びスケーリングすることができる。
【発明の概要】
【課題を解決するための手段】
【0007】
本開示の実施形態によれば、生体の心臓の心腔に挿入されるように構成されたカテーテルを含み、心臓の心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極と、ディスプレイと、処理回路であって、カテーテルからの信号を受信し、信号に応答して、それぞれのサンプリング時間における信号の電圧値をサンプリングし、(a)それぞれのカテーテル電極のそれぞれの位置、及び(b)それぞれのサンプリング時間におけるそれぞれの場所でのそれぞれのカテーテル電極によって感知される組織の電気的活動を示すそれぞれのサンプリングされた電圧値に応答して、サンプリング時間のそれぞれにおけるカテーテル電極上の組織の電気的活動を描出するそれぞれの湾曲した三次元表面を計算し、それぞれの三次元表面を経時的にディスプレイにレンダリングするように構成された、処理回路と、を含む、医療システムが提供される。
【0008】
更に、本開示の実施形態によれば、処理回路は、サンプリングされた電圧値のそれぞれに応答して、それぞれの三次元表面のそれぞれの領域を色付けするように構成されている。
【0009】
なお更に、本開示の実施形態によれば、それぞれのカテーテル電極のそれぞれの位置は、平面の上に投影されたそれぞれの投影位置であり、処理回路は、サンプリング時間のそれぞれにおけるサンプリングされた電圧値のそれぞれに応答して、カテーテル電極のそれぞれの投影位置のそれぞれからの、平面に対して垂直な、それぞれの変位を計算するように構成されており、処理回路は、投影位置のそれぞれからの、平面に垂直な変位のそれぞれに応答して、サンプリング時間のそれぞれにおけるカテーテル電極上の組織の電気的活動を描出する、それぞれの湾曲した三次元表面をフィッティングするように構成されている。
【0010】
加えて、本開示の実施形態によれば、処理回路は、変位のそれぞれに応答して、それぞれの三次元表面のそれぞれの領域を色付けするように構成されている。
【0011】
その上、本開示の実施形態によれば、処理回路は、それぞれのサンプリング時間における信号の電圧値を、毎秒10回を超えるレートでサンプリングし、三次元表面の新しいものが少なくとも10分の1秒毎に表示されながら、それぞれの三次元表面を経時的にディスプレイにレンダリングするように構成されており、その結果、レンダリングされた三次元表面が、カテーテル電極上の組織の電気的活動に関連する活性化波のアニメーションを提供する。
【0012】
更に、本開示の実施形態によれば、システムは、三次元表面のものの視野角を変更するためのユーザ入力を受信するように構成されたインターフェースを含み、処理回路は、受信されたユーザ入力に応答して、異なる視野角で三次元表面のものをレンダリングするように構成されている。
【0013】
なお更に、本開示の実施形態によれば、カテーテルは、遠位端を有するシャフトと、カテーテル電極が配置された遠位端アセンブリと、を含み、それぞれのカテーテル電極のそれぞれの位置は、カテーテルの静的コンピュータモデルに由来するそれぞれの位置である。
【0014】
加えて、本開示の実施形態によれば、それぞれのカテーテル電極のそれぞれの位置は、シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である。
【0015】
その上、本開示の実施形態によれば、カテーテルは、遠位端を有するシャフトと、カテーテル電極が配置された遠位端アセンブリとを含み、処理回路は、それぞれのカテーテル電極のそれぞれの位置を計算するように構成されている。
【0016】
更に、本開示の実施形態によれば、それぞれのカテーテル電極のそれぞれの位置は、シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である。
【0017】
また、本開示の別の実施形態によれば、生体の心腔に挿入されるように構成され、心臓の心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含む、カテーテルからの信号を受信することと、信号に応答して、それぞれのサンプリング時間における信号の電圧値をサンプリングすることと、(a)それぞれのカテーテル電極のそれぞれの位置、及び(b)それぞれのサンプリング時間におけるそれぞれの場所でのそれぞれのカテーテル電極によって感知される組織の電気的活動を示すそれぞれのサンプリングされた電圧値に応答して、サンプリング時間のそれぞれにおけるカテーテル電極上の組織の電気的活動を描出するそれぞれの湾曲した三次元表面を計算することと、それぞれの三次元表面を経時的にディスプレイにレンダリングすることと、を含む、医療方法も提供される。
【0018】
なお更に、本開示の実施形態によれば、本方法は、サンプリングされた電圧値のそれぞれに応答して、それぞれの三次元表面のそれぞれの領域を色付けすることを含む。
【0019】
加えて、本開示の実施形態によれば、それぞれのカテーテル電極のそれぞれの位置は、平面上に投影されたそれぞれの投影位置であり、本方法は、サンプリング時間のそれぞれにおけるサンプリングされた電圧値のそれぞれに応答して、カテーテル電極のそれぞれの投影位置のそれぞれからの、平面に対して垂直な、それぞれの変位を計算することと、投影位置のそれぞれからの、平面に垂直な変位のそれぞれに応答して、サンプリング時間のそれぞれにおけるカテーテル電極上の組織の電気的活動を描出するそれぞれの湾曲した三次元表面をフィッティングすることと、を更に含む。
【0020】
更に、本開示の実施形態によれば、本方法は、変位のそれぞれに応答して、それぞれの三次元表面のそれぞれの領域を色付けすることを含む。
【0021】
更に、本開示の実施形態によれば、本方法は、それぞれのサンプリング時間における信号の電圧値を、毎秒10回を超えるレートでサンプリングすることを含み、レンダリングすることは、三次元表面の新しいものが少なくとも10分の1秒毎に表示されながら、それぞれの三次元表面を経時的にディスプレイにレンダリングすることを含み、その結果、レンダリングされた三次元表面は、カテーテル電極上の組織の電気的活動に関連する活性化波のアニメーションを提供する。
【0022】
なお更に、本開示の実施形態によれば、本方法は、三次元表面のものの視野角を変更するためのユーザ入力を受信することと、受信したユーザ入力に応答して、異なる視野角で三次元表面のものをレンダリングすることと、を含む。
【0023】
加えて、本開示の実施形態によれば、カテーテルは、遠位端を有するシャフトと、カテーテル電極が配置された遠位端アセンブリとを含み、それぞれのカテーテル電極のそれぞれの位置は、カテーテルの静的コンピュータモデルに由来するそれぞれの位置である。
【0024】
その上、本開示の実施形態によれば、それぞれのカテーテル電極のそれぞれの位置は、シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である。
【0025】
更に、本開示の実施形態によれば、カテーテルは、遠位端を有するシャフトと、カテーテル電極が配置された遠位端アセンブリとを含み、本方法は、それぞれのカテーテル電極のそれぞれの位置を計算することを更に含む。
【0026】
なお更に、本開示の実施形態によれば、それぞれのカテーテル電極のそれぞれの位置は、シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である。
【0027】
また、本開示の更に別の実施形態によれば、プログラム命令が記憶された非一過性コンピュータ可読媒体であって、この命令は、中央処理装置(CPU)によって読み取られると、CPUに、生体の心腔に挿入されるように構成され、心臓の心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含む、カテーテルから信号を受信させ、信号に応答して、それぞれのサンプリング時間における信号の電圧値をサンプリングさせ、(a)それぞれのカテーテル電極のそれぞれの位置、及び(b)それぞれのサンプリング時間におけるそれぞれの場所でのそれぞれのカテーテル電極によって感知される組織の電気的活動を示すそれぞれのサンプリングされた電圧値に応答して、サンプリング時間のそれぞれにおけるカテーテル電極上の組織の電気的活動を描出するそれぞれの湾曲した三次元表面を計算させ、それぞれの三次元表面を経時的にディスプレイにレンダリングさせる、非一過性コンピュータ可読媒体を含む、ソフトウェア製品も提供される。
【図面の簡単な説明】
【0028】
本発明は、添付の図面と併せて、以下の詳細な説明から理解されよう。
【
図1】本発明の実施形態に基づいて構築され、かつ動作可能である心臓分析システムの部分絵画部分ブロック図である。
【
図2A】
図1のシステムで使用するための平面への電極の投影位置を示す概略図である。
【
図2B】
図1のシステムで使用するための平面への電極の投影位置を示す概略図である。
【
図3】
図1のシステムでサンプリングされた心臓信号の概略図である。
【
図4A】
図1のシステムによってレンダリングされた電気的活動を描出する湾曲した三次元表面の概略図である。
【
図4B】
図1のシステムによってレンダリングされた電気的活動を描出する湾曲した三次元表面の概略図である。
【
図4C】
図1のシステムによってレンダリングされた電気的活動を描出する湾曲した三次元表面の概略図である。
【
図4D】
図1のシステムによってレンダリングされた電気的活動を描出する湾曲した三次元表面の概略図である。
【
図4E】
図1のシステムによってレンダリングされた電気的活動を描出する湾曲した三次元表面の概略図である。
【
図4F】
図1のシステムによってレンダリングされた電気的活動を描出する湾曲した三次元表面の概略図である。
【
図5】
図1のシステムの動作方法におけるステップを含むフローチャートである。
【発明を実施するための形態】
【0029】
概論
複雑なマルチスプラインカテーテル(例えば、Biosense Webster,Inc.(Irvine、CA USA)のPENTARAY(登録商標)カテーテル、又はバスケットカテーテル)又はリニアカテーテル上の複数電極からの電気的活動信号を、医師にとって直感的な手法で提示することは、電極の幾何学的分布に起因して困難である。複数の心内電位図(intracardiac electrogram、IEGM)を示す等の二次元(two-dimensional、2D)リストに電気的活動を提示することは、カテーテルの幾何学的形状を反映しない。
【0030】
本発明の実施形態は、それぞれのサンプリング時間におけるカテーテル電極上の組織の電気的活動を描出する、それぞれの湾曲した三次元表面を含む三次元(three-dimensional、3D)提示を提供することによって、上記の問題を解決する。
【0031】
カテーテルの電極から受信される心内(Intracardiac、IC)信号が収集され、異なるサンプリング時間でサンプリングされる。サンプリング時間のうちの1つにおけるカテーテル電極の電気的活動は、湾曲した3D表面として3D提示上にプロットされる。3D提示は、3つの軸(x、y及びz)又は任意の他の好適な座標系によって定義されてもよい。x軸及びy軸は、(例えば、x軸及びy軸によって定義される平面に電極位置を投影することによって)カテーテルの電極の2D位置を示す。Z軸は、サンプリングされた時間における電極によって捕捉された電気的活動の電圧を示す。湾曲した3D表面は、3D表面を、カテーテル電極の電極位置のx-y座標及びサンプリングされた電圧のそれぞれのz座標によって定義されるデータ点にフィッティングすることによって計算される。3D表面のフィッティングは、上述のデータ点間を内挿する(及び任意選択的に外挿する)ことによって実行されてもよい。3D表面の領域は、任意選択的に、領域に関連する電圧レベルに従って色付けされてもよい。
【0032】
3D提示は(例えば、単一サンプリング時間の場合)静的であってもよく、又は、医師に有用な診断ツールを提供するカテーテルの電極上の活性化波として、電気的活動がどのように移動するかを示す動的(例えば、ビデオ)であってもよい。
【0033】
上述の実施形態では、任意の好適なカテーテル、例えば、マルチスプラインカテーテル(例えば、Biosense Webster,Inc.(Irvine、CA USA)のPENTARAY(登録商標)カテーテル、若しくはバスケットカテーテル)、又は他の多電極カテーテル(例えば、バルーンカテーテル、若しくはラッソ式カテーテル)が使用されてもよい。
【0034】
カテーテルは、生体の心臓の心腔に挿入される。カテーテルは、遠位端を有するシャフトと、カテーテル電極が配置された遠位端アセンブリと、を含んでもよい。カテーテル電極は、心臓の心腔内のそれぞれの場所で組織に接触する。処理回路は、カテーテルから信号を受信し、信号に応答して、それぞれのサンプリング時間における信号の電圧値をサンプリングする。
【0035】
いくつかの実施形態では、処理回路は、例えば、位置変換器(位置センサ又はカテーテルのセンサ又は外部に配置されたセンサ(複数可)など)から受信した信号(複数可)に応答して、それぞれのカテーテル電極のそれぞれの位置を計算する。
【0036】
他の実施形態では、以下に記載される計算に使用されるそれぞれのカテーテル電極の位置は、カテーテルの静的コンピュータモデルに由来する。例えば、使用されるカテーテルが偏向可能なスプラインを有するマルチスプラインカテーテルである場合、以下に記載される計算に使用される位置は、スプラインがそれぞれのサンプリング時間において実際は偏向されている場合であっても、非偏向位置にある偏向可能なスプラインの位置に基づいてもよい。
【0037】
位置が、受信された信号(複数可)から計算されるか、又は静的コンピュータモデル若しくは任意の他の好適なソースに由来するかに関わらず、カテーテル電極の位置は、典型的には、平面(例えば、上記のx-y軸)上に投影された投影位置である。いくつかの実施形態では、平面は、カテーテルのシャフトの軸に垂直である。
【0038】
処理回路は、サンプリング時間のそれぞれにおけるカテーテル電極上の組織の電気的活動を描出するそれぞれの湾曲した三次元表面を計算する。三次元表面のうちの任意の1つは、サンプリング時間のうちの対応する1つの電気的活動を描出するものであり、複数のサンプリング時間ではないことに留意されたい。異なるサンプリング時間のサンプリングされた電圧は、異なる三次元表面をもたらす。三次元表面は、(a)それぞれのカテーテル電極のそれぞれの位置(例えば、二次元位置座標)、及び(b)それぞれのサンプリング時間における(組織上の)それぞれの場所でのそれぞれのカテーテル電極によって感知される組織の電気的活動を示すそれぞれのサンプリングされた電圧値に応答して、計算される。例えば、1つの三次元表面は、(a)それぞれのカテーテル電極のそれぞれの位置(例えば、二次元位置座標)、及び(b)それぞれのサンプリング時間の1つにおいてサンプリングされたそれぞれのサンプリングされた電圧値に応答して、計算される。
【0039】
いくつかの実施形態では、処理回路は、サンプリングされた電圧値のそれぞれに応答して、それぞれの三次元表面のそれぞれの領域を色付けする。
【0040】
いくつかの実施形態では、処理回路は、それぞれのサンプリング時間におけるそれぞれのサンプリングされた電圧値に応答して、それぞれのカテーテル電極のそれぞれの投影位置から、平面に垂直な(例えば、x-y軸から離れるz軸に沿って)、それぞれの変位を計算する。各変位は、デカルト座標系が使用されるとき、z軸座標を提供する。例えば、変位znは、カテーテルの電極番号nによって感知された信号の時間t1でサンプリングされる、サンプリングされた電圧に従って計算される。電極番号nは、x-y軸によって定義される平面上の位置座標xn、ynを有する。したがって、時間t1の3D提示における電極番号nのデータ点は、座標xn、yn、znを有する。処理回路は、例えば、座標系内の各電極の電気的活動を提示するデータ点に従って、投影位置のそれぞれからの、平面に垂直な、それぞれの計算した変位に応答して、それぞれのサンプリング時間におけるカテーテル電極上の組織の電気的活動を描出するそれぞれの湾曲した三次元表面をフィッティングする。いくつかの実施形態では、処理回路は、変位のそれぞれに応答して、それぞれの三次元表面のそれぞれの領域を色付けする。
【0041】
処理回路は、それぞれの三次元表面を経時的にディスプレイにレンダリングするように構成されている。いくつかの実施形態では、処理回路は、それぞれの三次元表面を経時的にディスプレイにレンダリングし、三次元表面の新しいものが、十分に頻繁に(例えば、少なくとも10分の1秒毎に)表示され、その結果、レンダリングされた三次元表面が、カテーテル電極上の組織の電気的活動に関連する活性化波のアニメーションを提供する。
【0042】
ユーザインターフェースは、三次元表面の視野角を変更するためのユーザ入力を受信してもよく、これは次いで、受信されたユーザ入力に応答して異なる視野角でレンダリングされてもよい。
【0043】
システムの説明
ここで、本発明の実施形態に従って構築され、動作可能である心臓分析システム10の部分描写、部分ブロック図である
図1を参照する。
【0044】
ここで、図面を見ると、最初に参照する
図1は、電気的活動を計算及び評価するために、任意選択的には、生体の心臓12にアブレーション手技を実施するために、本発明の開示された実施形態に従って構築され、動作可能である心臓分析システム10の描写説明図である。このシステムは、カテーテルなどのカテーテル14を備え、そのカテーテルは、操作者16により、患者の血管系を通じて心臓12の心腔又は血管構造の中に経皮的に挿入される。操作者16は、通常、医師であり、カテーテル14の遠位先端部18を、例えば、アブレーション標的部位において、又は心臓12の1つ又は複数の心腔の表面にわたる複数のサンプル場所において経時的に電位を取得するために、心臓壁に接触させる。電気的活性マップは、米国特許第6,226,542号、同第6,301,496号、同第6,892,091号に開示されている方法に従って、準備されてもよい。システム10の要素を具現化する1つの市販品はCARTO(登録商標)3システム(Biosense Webster,Inc.から入手可能)として入手可能である。このシステムは、本明細書で説明する発明の原理を具体化するために当業者によって修正される場合がある。
【0045】
例えば電気的活性マップの評価によって異常と判定された領域は、例えば、心筋に高周波エネルギーを印加する遠位先端部18の1つ又は複数の電極に、カテーテル内のワイヤを通じて高周波電流を流すことなどにより熱エネルギーを加えることによってアブレーションすることができる。エネルギーは、組織に吸収され、それを電気的興奮性が恒久的に失われる温度(通常、約50℃)まで加熱する。成功裏に行われた場合、この処置によって心臓組織に非伝導性の損傷部が形成され、この損傷部が、不整脈を引き起こす異常な電気経路を遮断する。本発明の原理は、異なる心腔に適用されて、多数の異なる心不整脈を診断及び治療することができる。
【0046】
カテーテル14は、通常、操作者16がカテーテル14の遠位先端部18を所望どおりに操作、位置決め、及び配向してアブレーションすることを可能にするための、上部に好適な制御部を有するハンドル20を含む。操作者16を補助するために、カテーテル14の遠位部分には、コンソール24内に配置された処理回路22に信号を供給する位置センサ(図示せず)が収容されている。処理回路22は、後述のようないくつかの処理機能を果たすことができる。
【0047】
アブレーションエネルギー及び電気信号を、遠位先端部18に又はその付近に位置するカテーテル電極32を通して、コンソール24に至るケーブル34を介して、心臓12へ及び心臓12から伝達することができる。このようにして、電極32は、心臓12の心腔とそれぞれの場所で組織に接触し、それぞれの場所において経時的に電位を捕捉するように構成されている。追加的に、又は別の方法として、他の電極が、心臓12の1つ又は複数の心腔の表面にわたる複数のサンプル場所において経時的に電位を取得するように構成されてもよい。ペーシング信号及び他の制御信号は、コンソール24から、ケーブル34及び電極32を通して、心臓12へと伝達することができる。カテーテル14は、心臓12の1つ又は複数の心腔の表面にわたる複数のサンプル場所において経時的に電位を取得するように構成された電極を有する診査装置として、アブレーションの能力を有さずに実現されてもよい。
【0048】
ワイヤ接続部35は、コンソール24を、体表面電極30、並びにカテーテル14の位置座標及び配向座標を測定するための位置決めサブシステムの他の構成要素と連結する。処理回路22又は別のプロセッサ(図示せず)は、位置決めサブシステムの要素であってもよい。米国特許第7,536,218号に教示されているように、電極32及び身体表面電極30を使用して、アブレーション部位における組織インピーダンスを測定してもよい。生体電気情報のためのセンサ、例えば、温度センサ(図示せず)、典型的には、熱電対又はサーミスタが、電極32の各々の上又はその近くに取り付けられてもよい。
【0049】
コンソール24には通常、1つ又は複数のアブレーション電力発生装置25が収容されている。カテーテル14は、例えば、高周波エネルギー、超音波エネルギー、及びレーザー生成光エネルギーなどの任意の周知のアブレーション技術を使用して心臓にアブレーションエネルギーを伝えるように適合させることができる。このような方法は、米国特許第6,814,733号、同第6,997,924号、及び同第7,156,816号に開示されている。
【0050】
一実施形態では、位置決めサブシステムは、磁場発生コイル28を使用して、所定の可動範囲に磁場を発生させ、カテーテル14におけるこれらの磁場を感知することによって、カテーテル14の位置及び向きを判定する磁気式位置追跡装置を含む。位置決めサブシステムは、米国特許第7,756,576号及び同第7,536,218号に記載されている。
【0051】
上述したように、カテーテル14はコンソール24に結合され、これにより操作者16は、カテーテル14の機能を観察及び調節することができる。処理回路22は、適切な信号処理回路を備えたコンピュータとして具現化されてもよい。処理回路22は、ディスプレイスクリーン37を含むディスプレイ29を駆動するように結合されている。信号処理回路は、カテーテル14からの信号を受信、増幅、フィルタリング、及びデジタル化することができ、その信号には、電気、温度、及び接触力センサなどのセンサ、並びにカテーテル14内の遠位に位置する場所感知電極(図示せず)により生成された信号が含まれる。デジタル化された信号は、コンソール24及び位置決めサブシステムによって受信及び使用されて、カテーテル14の位置及び向きを計算し、電極からの電気信号を分析する。
【0052】
電気解剖学的マップを生成するために、処理回路22は、典型的には、電気解剖学的マップジェネレータ、画像登録プログラム、画像若しくはデータ分析プログラム、及びディスプレイ29上にグラフィカル情報を提示するように構成されたグラフィカルユーザインターフェースを含む。
【0053】
実際には、処理回路22のこれらの機能の一部又は全てを、単一の物理的構成要素内に組み込むか、あるいは複数の物理的構成要素を使用して実装することが可能である。これらの物理的構成要素は、ハードワイヤードデバイス又はプログラマブルデバイス、あるいはこれら2つの組み合わせを備えてもよい。いくつかの実施形態では、処理回路の機能の少なくともいくつかは、適切なソフトウェアの制御下でプログラム可能なプロセッサによって実行されてもよい。このソフトウェアは、例えばネットワークを介して電子的形態でデバイスにダウンロードされてもよい。あるいは又は更に、このソフトウェアは、光学的メモリ、磁気的メモリ、又は電子的メモリなどの有形の非一時的なコンピュータ可読媒体に記憶されていてもよい。
【0054】
コンソール24はまた、例えば、以下に限定されないが、ポインティングデバイス(ペン型マウスなど)、キーボード、及び/又はディスプレイスクリーン37内に実現されたタッチ式スクリーンなどの任意の好適なユーザ入力デバイスを介して、操作者16からの入力命令を受信するためのインターフェース39を含んでもよい。
【0055】
簡略化のため図には示されていないが、通常、システム10には、他の要素も含まれる。例えば、システム10は、心電図(electrocardiogram、ECG)モニタを含んでもよく、この心電図モニタは、ECG同期信号をコンソール24に提供するために、身体表面電極30から信号を受信するように結合されている。上述のように、システム10は通常、被験者の身体の外部に取り付けられた外部貼付け式の基準パッチの上に、あるいは内部に置かれたカテーテルの上に、基準位置センサを更に有し、その基準位置センサは、心臓12の中に挿入され、心臓12に対して定位置に維持される。アブレーション部位を冷却するためにカテーテル14を通して液体を循環させるための従来のポンプ及びラインが提供されてもよい。システム10は、MRIユニット又は同様のものなどの外部の画像診断装置から画像データを受信してもよく、画像を生成及び表示するための処理回路22に組み込まれ、又はそれよって起動することができる画像プロセッサを含む。
【0056】
ここで、
図1のシステム10で使用するための平面40への電極32の投影位置を示す概略図である
図2A~Bを参照する。
図2Aに示すカテーテル14は、遠位端62を有するシャフト44と、電極32が上に配置されたマルチスプラインを含む遠位端アセンブリ64とを含む。任意の好適な遠位端アセンブリ、例えば、バスケット遠位端アセンブリ、バルーン遠位端アセンブリ、又はラッソ式遠位端アセンブリを使用できるが、これらに限定されない。
【0057】
図2Aは、平面40に対して垂直な、かつカテーテル14のシャフト44の軸45に平行な方向に投影することによって、平面40上への、位置42-1、42-2の上への電極32-1及び32-2のそれぞれの投影を示す。電極32は、平面40の上に、任意の好適な方向に投影されてもよい。
図2Bは、カテーテル14の全ての電極32の投影位置42(簡略化のためにいくつかの標識のみ)を示す。電極32-1の位置42-1は、x軸及びy軸上に位置すると定義される、平面40内の座標x1、y1を有する。
【0058】
ここで、
図1のシステム20でサンプリングされた心内(IC)信号46の概略図である
図3を参照する。それぞれのIC信号46は、それぞれの電極32(
図1)から受信される。
図3は、電極32-1(
図2A)から受信した信号46の例を示す。
図3は、約-0.1ミリボルトの電圧に対応する1200ミリ秒でサンプリングされた信号46を示す。同様に、この実施例では、他の電極32から受信した信号も1200ミリ秒でサンプリングされて、他の電極32の電圧を見つける。
【0059】
ここで、
図1のシステム10によってレンダリングされた電気的活動を描出する湾曲した三次元表面48の概略図である
図4Aを参照する。
図4Aは、x-y軸58上にある平面40上に投影された電極32(
図2A)の位置42の一部を示す。例えば、電極32-1(
図2A)の位置42-1は、平面40上に示されている。
図3に示すように、時間1200ミリ秒における電極32-1のサンプリングされた電圧は、-0.1ミリボルトである。三次元表面48のデータ点50-1は、位置42-1及び-0.1ボルトの関連するサンプル電圧に由来する。平面40に垂直な(例えば、z軸60に沿った)方向の平面40からのデータ点50-1の変位52-1は、時間1200ミリ秒で電極32-1のサンプリングされた電圧に基づいて計算される。同様に、それぞれのデータ点50(簡略化のために一部のみ示される)は、それぞれの投影位置42及び計算されたそれぞれの変位52に基づいて計算される。三次元表面48は、データ点50に基づいて内挿及び任意選択的に外挿を含み得る、任意の好適な表面フィッティング方法を使用してデータ点50にフィッティングされる。
図4Aは、変位及び電圧それぞれの好適な単位で標識されたx-y軸58及びz軸60を示す。
【0060】
三次元表面48の領域54は、領域54に関連する電圧値に従って異なる色で色付けされている。例えば、領域54-1は赤色であってもよく、一方、領域54-2は黄色であってもよい。
図4Aは、色と電圧値との間のマッピングを提供する凡例56を含む。
【0061】
ここで、
図1のシステム10によってレンダリングされた電気的活動を描出した湾曲した三次元表面48の概略図である
図4B~Fを参照する。
図4Bに示す三次元表面48は、例えば1250ミリ秒のサンプリング時間において、別のサンプリング時間における電極32(
図2A)上の電気的活動を表す。
図4Cは、三次元表面48のもののどちらかというと上部を示す。
図4Dは、z軸が見えなくなるように、三次元表面48のものを上から直接示す。
図4E及び
図4Fは、三次元表面48の更なる例である。
【0062】
ここで、
図1のシステム10の動作方法におけるステップを含むフローチャート70である
図5を参照する。
【0063】
カテーテルは、生体の心臓12(
図1)の心腔に挿入される(ブロック72)。それぞれのカテーテル電極32(
図2A)は、心臓12の心腔内のそれぞれの場所で組織と接触する。カテーテル電極32の一部は、組織と接触していてもよく、一方、他の電極32は組織と接触しない。場合によっては、全ての電極32が、組織と接触していてもよい。
【0064】
処理回路22(
図1)は、カテーテル14(
図1)から信号46(
図3)を受信し(ブロック74)、信号46に応答して、それぞれのサンプリング時間における信号46の電圧値をサンプリングし(ブロック76)、それぞれの湾曲した三次元表面48(
図4A~F)を計算し、三次元表面48をディスプレイ29にレンダリングするように構成されている。これらのステップは、以下でより詳細に記載される。
【0065】
各電極32の信号46は、典型的には、それぞれのサンプリング時間のそれぞれにおいてサンプリングされる。いくつかの実施形態では、処理回路は、それぞれのサンプリング時間における信号46の電圧値を、毎秒10回を超えるレートでサンプリングするように構成されている。他の実施形態では、サンプリングレートは、毎秒10回以下である。
【0066】
いくつかの実施形態では、処理回路22は、例えば、カテーテルの一部及び/又は身体パッチ若しくは外部位置センサなどの外部装置の一部であり得る、位置変換器(図示せず)から受信される少なくとも1つの信号に応答して、それぞれのカテーテル電極32のそれぞれの位置42(
図2A~B)を計算する(ブロック78)ように構成されている。他の実施形態では、以下に記載される計算に使用されるそれぞれのカテーテル電極32のそれぞれの位置42は、カテーテル14の静的コンピュータモデルに由来するそれぞれの位置42である。
【0067】
それぞれのカテーテル電極32のそれぞれの位置42は、平面40の上に投影されたそれぞれの投影位置42であってもよい(
図2A~B)。いくつかの実施形態では、それぞれのカテーテル電極32のそれぞれの位置42は、シャフト44の軸45に垂直である平面40の上に投影されたそれぞれの投影位置42である(
図2A~B)。
【0068】
処理回路22は、サンプリング時間のそれぞれにおけるカテーテル電極32上の組織の電気的活動を描出するそれぞれの湾曲した三次元表面48(
図4A~F)を計算する(ブロック80)ように構成されている。三次元表面48のうちのいずれか1つは、サンプリング時間のうちの1つであって複数のサンプリング時間ではない電気的活動を描出することに留意されたい。異なるサンプリング時間のサンプリングされた電圧は、異なる三次元表面48をもたらす。三次元表面48は、(a)それぞれのカテーテル電極32の(例えば、二次元座標によって表される)それぞれの位置42、及び(b)それぞれのサンプリング時間における(組織上の)それぞれの場所でのそれぞれのカテーテル電極32によって感知される組織の電気的活動を示すそれぞれのサンプリングされた電圧値に応答して、計算される。
【0069】
いくつかの実施形態では、処理回路22は、サンプリング時間のそれぞれにおけるサンプリングされた電圧値のそれぞれに応答して、カテーテル電極32のそれぞれの投影位置42のそれぞれからの、平面40(
図4A)に対して垂直な、それぞれの変位52(
図4A)を計算する(ブロック82)ように構成されている。(x-y軸58(
図4A)の)位置42からの(z軸60(
図4A)の)変位52は、x、y、z座標を有するデータ点50(
図4A)を定義する。処理回路22は、投影位置42のそれぞれからの、平面40に垂直な変位52のそれぞれに応答して、サンプリング時間のそれぞれにおけるカテーテル電極32上の組織の電気的活動を描出する、それぞれの湾曲した三次元表面48をフィッティングする(ブロック84)ように構成されている。換言すれば、処理回路22は、(例えば、x、y、z座標を有する)データ点50のそれぞれの1つに応答して、サンプリング時間のそれぞれにおけるカテーテル電極32上の組織の電気的活動を描出する、それぞれの湾曲した三次元表面48をフィッティングするように構成されている。例えば、1つの三次元表面48について、処理回路22は、それぞれのデータ点50をもたらす1つのサンプリング時間におけるサンプリングされた電圧値のそれぞれの1つに応答して、カテーテル電極32のそれぞれの1つの投影位置42のそれぞれからの、平面40(
図4A)に垂直なそれぞれの変位52(
図4A)を計算し、変位52(すなわち、データ点50)のそれぞれに応答して、そのサンプリング時間におけるカテーテル電極32上の組織の電気的活動を描出する湾曲した三次元表面48をフィッティングするように構成されている。
【0070】
処理回路22は、それぞれの三次元表面48をディスプレイ29(
図1)に経時的にレンダリングする(ブロック86)ように構成されている。いくつかの実施形態では、処理回路22は、それぞれの三次元表面48を経時的にディスプレイ29にレンダリングするように構成されており、(例えば、次のサンプリング時間に対応する)三次元表面48のうちの新しい1つが、少なくとも10分の1秒毎に表示され、その結果、レンダリングされた三次元表面48が、カテーテル電極32上の組織の電気的活動に関連する活性化波のアニメーションを提供する。いくつかの実施形態では、処理回路22は、三次元表面48のうちの新しい1つが、その10分の1秒毎未満のレートで表示されるように、それぞれの三次元表面48をディスプレイ29に経時的にレンダリングするように構成されている。
【0071】
いくつかの実施形態では、処理回路は、サンプリングされた電圧値のそれぞれ又は変位52(
図4A)のそれぞれに応答して、それぞれの三次元表面48のそれぞれの領域54(
図4A)を色付けする(ブロック88)ように構成されている。
【0072】
インターフェース39(
図1)は、三次元表面48のものの視野角を変更するためのユーザ入力を受信する(ブロック90)ように構成されている。処理回路22は、受信されたユーザ入力に応答して異なる視野角で三次元表面48のものをレンダリングする(ブロック92)ように構成されている。
【0073】
本明細書で任意の数値又は数値の範囲について用いる「約」又は「およそ」という用語は、構成要素の部分又は構成要素の集合が、本明細書で述べるその意図された目的に沿って機能することを可能とする、好適な寸法の許容誤差を示すものである。より具体的には、「約」又は「およそ」は、列挙された値の±20%の値の範囲を指し得、例えば、「約90%」は、71%~99%の値の範囲を指し得る。
【0074】
本発明の様々に異なる特徴が、明確性のために別個の実施形態の文脈において記載されているが、これらが単一の実施形態中に組み合わせて提供されてもよい。逆に、簡潔にするために単一の実施形態の文脈において記載されている本発明の様々な特徴が、別々に又は任意の好適な部分的組み合わせとして提供されてもよい。
【0075】
上に記載される実施形態は、例として引用されており、本発明は、上記の明細書に特に図示及び記載されたものによって限定されない。むしろ、本発明の範囲は、上記の明細書に記載される様々な特徴の組み合わせ及び部分的組み合わせの両方、並びに前述の記載を読むと当業者が思い付くであろう先行技術に開示されていないその変形及び修正を含む。
【0076】
〔実施の態様〕
(1) 医療システムであって、
生体の心臓の心腔内に挿入されるように構成され、前記心臓の前記心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含む、カテーテルと、
ディスプレイと、
処理回路であって、前記カテーテルから信号を受信し、前記信号に応答して、
それぞれのサンプリング時間における前記信号の電圧値をサンプリングし、
(a)それぞれの前記カテーテル電極のそれぞれの位置、及び(b)前記それぞれのサンプリング時間における前記それぞれの場所での前記それぞれのカテーテル電極によって感知される前記組織の電気的活動を示すそれぞれのサンプリングされた前記電圧値に応答して、前記サンプリング時間のそれぞれにおける前記カテーテル電極上の前記組織の電気的活動を描出するそれぞれの湾曲した三次元表面を計算し、
前記それぞれの三次元表面を経時的に前記ディスプレイにレンダリングするように構成された、処理回路と、を備える、医療システム。
(2) 前記処理回路が、前記サンプリングされた電圧値のそれぞれに応答して、前記それぞれの三次元表面のそれぞれの領域を色付けするように構成されている、実施態様1に記載のシステム。
(3) 前記それぞれのカテーテル電極の前記それぞれの位置が、平面上に投影されたそれぞれの投影位置であり、
前記処理回路が、前記サンプリング時間のそれぞれにおける前記サンプリングされた電圧値のそれぞれに応答して、前記カテーテル電極のそれぞれの前記投影位置のそれぞれからの、前記平面に垂直なそれぞれの変位を計算するように構成されており、
前記処理回路は、前記投影位置のそれぞれからの、前記平面に垂直な前記変位のそれぞれに応答して、前記サンプリング時間の前記それぞれにおける前記カテーテル電極上の前記組織の前記電気的活動を描出する前記それぞれの湾曲した三次元表面をフィッティングするように構成されている、実施態様1に記載のシステム。
(4) 前記処理回路が、前記変位のそれぞれに応答して、前記それぞれの三次元表面のそれぞれの領域を色付けするように構成されている、実施態様3に記載のシステム。
(5) 前記処理回路が、
前記それぞれのサンプリング時間における前記信号の前記電圧値を、毎秒10回を超えるレートでサンプリングし、
前記それぞれの三次元表面を前記ディスプレイに経時的にレンダリングするように構成されており、前記三次元表面の新しいものが少なくとも10分の1秒毎に表示されることにより、レンダリングされた前記三次元表面が、前記カテーテル電極上の前記組織の前記電気的活動に関連する活性化波のアニメーションを提供する、実施態様1に記載のシステム。
【0077】
(6) 前記三次元表面のものの視野角を変更するためのユーザ入力を受信するように構成されたインターフェースを更に備え、前記処理回路は、受信された前記ユーザ入力に応答して、異なる視野角で前記三次元表面のものをレンダリングするように構成されている、実施態様1に記載のシステム。
(7) 前記カテーテルは、遠位端を有するシャフトと、前記カテーテル電極が配置された遠位端アセンブリと、を備え、
前記それぞれのカテーテル電極の前記それぞれの位置が、前記カテーテルの静的コンピュータモデルに由来するそれぞれの位置である、実施態様1に記載のシステム。
(8) 前記それぞれのカテーテル電極の前記それぞれの位置が、前記シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である、実施態様7に記載のシステム。
(9) 前記カテーテルは、遠位端を有するシャフトと、前記カテーテル電極が配置された遠位端アセンブリと、を備え、
前記処理回路は、前記それぞれのカテーテル電極の前記それぞれの位置を計算するように構成されている、実施態様1に記載のシステム。
(10) 前記それぞれのカテーテル電極の前記それぞれの位置が、前記シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である、実施態様9に記載のシステム。
【0078】
(11) 医療方法であって、
生体の心臓の心腔に挿入されるように構成され、前記心臓の前記心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含むカテーテルからの信号を受信することと、
前記信号に応答して、それぞれのサンプリング時間における前記信号の電圧値をサンプリングすることと、
(a)それぞれの前記カテーテル電極のそれぞれの位置、及び(b)前記それぞれのサンプリング時間における前記それぞれの場所での前記それぞれのカテーテル電極によって感知される前記組織の電気的活動を示すそれぞれのサンプリングされた前記電圧値に応答して、前記サンプリング時間のそれぞれにおける前記カテーテル電極上の前記組織の電気的活動を描出するそれぞれの湾曲した三次元表面を計算することと、
前記それぞれの三次元表面を経時的にディスプレイにレンダリングすることと、を含む、方法。
(12) 前記サンプリングされた電圧値のそれぞれに応答して、前記それぞれの三次元表面のそれぞれの領域を色付けすることを更に含む、実施態様11に記載の方法。
(13) 前記それぞれのカテーテル電極の前記それぞれの位置が、平面上に投影されたそれぞれの投影位置であり、前記方法は、
前記サンプリング時間のそれぞれにおける前記サンプリングされた電圧値のそれぞれに応答して、前記カテーテル電極のそれぞれの前記投影位置のそれぞれからの、前記平面に垂直なそれぞれの変位を計算することと、
前記投影位置のそれぞれからの、前記平面に垂直な前記変位のそれぞれに応答して、前記サンプリング時間の前記それぞれにおける前記カテーテル電極上の前記組織の前記電気的活動を描出する前記それぞれの湾曲した三次元表面をフィッティングすることと、を更に含む、実施態様11に記載の方法。
(14) 前記変位のそれぞれに応答して、前記それぞれの三次元表面のそれぞれの領域を色付けすることを更に含む、実施態様13に記載の方法。
(15) 前記それぞれのサンプリング時間における前記信号の前記電圧値を、毎秒10回を超えるレートでサンプリングすることを更に含み、前記レンダリングすることは、前記それぞれの三次元表面を前記ディスプレイに経時的にレンダリングすることを含み、前記三次元表面の新しいものが少なくとも10分の1秒毎に表示されることにより、レンダリングされた前記三次元表面が、前記カテーテル電極上の前記組織の前記電気的活動に関連する活性化波のアニメーションを提供する、実施態様11に記載の方法。
【0079】
(16) 前記三次元表面のものの視野角を変更するためのユーザ入力を受信することと、
受信された前記ユーザ入力に応答して、異なる視野角で前記三次元表面のものをレンダリングすることと、を更に含む、実施態様11に記載の方法。
(17) 前記カテーテルは、遠位端を有するシャフトと、前記カテーテル電極が配置された遠位端アセンブリと、を備え、
前記それぞれのカテーテル電極の前記それぞれの位置が、前記カテーテルの静的コンピュータモデルに由来するそれぞれの位置である、実施態様11に記載の方法。
(18) 前記それぞれのカテーテル電極の前記それぞれの位置が、前記シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である、実施態様17に記載の方法。
(19) 前記カテーテルは、遠位端を有するシャフトと、前記カテーテル電極が配置された遠位端アセンブリと、を備え、前記方法は、前記それぞれのカテーテル電極の前記それぞれの位置を計算することを更に含む、実施態様11に記載の方法。
(20) 前記それぞれのカテーテル電極の前記それぞれの位置が、前記シャフトの軸に垂直な平面上に投影されたそれぞれの投影位置である、実施態様19に記載の方法。
【0080】
(21) プログラム命令が格納された非一時的なコンピュータ可読媒体を含むソフトウェア製品であって、前記命令が、中央処理装置(CPU)によって読み取られると、前記CPUに、
生体の心臓の心腔に挿入されるように構成され、前記心臓の前記心腔内のそれぞれの場所で組織に接触するように構成されたカテーテル電極を含む、カテーテルからの信号を受信させ、
前記信号に応答して、それぞれのサンプリング時間における前記信号の電圧値をサンプリングさせ、
(a)それぞれの前記カテーテル電極のそれぞれの位置、及び(b)前記それぞれのサンプリング時間における前記それぞれの場所での前記それぞれのカテーテル電極によって感知される前記組織の電気的活動を示すそれぞれのサンプリングされた前記電圧値に応答して、前記サンプリング時間のそれぞれにおける前記カテーテル電極上の前記組織の電気的活動を描出するそれぞれの湾曲した三次元表面を計算させ、
前記それぞれの三次元表面を経時的にディスプレイにレンダリングさせる、ソフトウェア製品。