(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-17
(45)【発行日】2024-12-25
(54)【発明の名称】半導体集積回路装置
(51)【国際特許分類】
H02H 3/087 20060101AFI20241218BHJP
G05F 1/573 20060101ALI20241218BHJP
H03K 17/08 20060101ALI20241218BHJP
【FI】
H02H3/087
G05F1/573
H03K17/08
(21)【出願番号】P 2020201399
(22)【出願日】2020-12-04
【審査請求日】2023-11-07
(73)【特許権者】
【識別番号】000006220
【氏名又は名称】ミツミ電機株式会社
(74)【代理人】
【識別番号】100090033
【氏名又は名称】荒船 博司
(74)【代理人】
【識別番号】100093045
【氏名又は名称】荒船 良男
(72)【発明者】
【氏名】高野 陽一
【審査官】杉田 恵一
(56)【参考文献】
【文献】特開2007-174490(JP,A)
【文献】特開2012-085382(JP,A)
【文献】特開2013-097505(JP,A)
【文献】特開2013-165603(JP,A)
【文献】特開2019-087699(JP,A)
【文献】米国特許出願公開第2008/0055808(US,A1)
【文献】米国特許出願公開第2009/0256616(US,A1)
【文献】国際公開第2007/074828(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G05F 1/573
H02H 3/087
H03K 17/08
(57)【特許請求の範囲】
【請求項1】
直流電圧が入力される電圧入力端子と電圧出力端子との間に接続された出力トランジスタと、前記出力トランジスタをオン状態またはオフ状態に制御する制御回路と、を備えた半導体集積回路装置であって、
前記
出力トランジスタに流れる電流に基づいて前記出力トランジスタに所定値以上の電流が流れたことを検出可能な過電流検出回路と、
タイマー回路と、を備え、
前記タイマー回路は、
定電流源と、該定電流源の電流を転写するカレントミラー回路と、該カレントミラー回路の電流によって充放電されるコンデンサと、で構成され、
前記過電流検出回路が出力電流の過電流状態を検出したことに応じて
計時動作を開始して、所定時間を計時すると信号を出力し、前記制御回路は前記信号が出力されたことに応じて前記出力トランジスタを
一時的にオフ状態にさせることを特徴とする半導体集積回路装置。
【請求項2】
前記出力トランジスタに流れている電流を比例縮小した電流を生成可能な比例電流生成回路を備え、
前記過電流検出回路は、前記比例電流生成回路により生成された電流に基づいて前記出力トランジスタに所定値以上の電流が流れたことを検出することを特徴とする請求項1に記載の半導体集積回路装置。
【請求項3】
前記過電流検出回路が出力電流の過電流状態を検出したことに応じて前記出力トランジスタを間欠的にオフ状態にさせるための信号を生成し出力するリトライ回路を備え、
前記制御回路は前記リトライ回路から出力される信号に基づいて前記出力トランジスタを一時的にオフさせる制御を繰り返すように構成されていることを特徴とする請求項
2に記載の半導体集積回路装置。
【請求項4】
所定の信号を入力するための第1外部端子と、
前記第1外部端子に入力された信号と前記リトライ回路から出力される信号とを入力とするロジック回路と、備え、
前記制御回路は、前記ロジック回路から出力される信号に基づいて前記出力トランジスタを制御するように構成されていることを特徴とする請求項
3に記載の半導体集積回路装置。
【請求項5】
第2外部端子を備え、
前記コンデンサは前記第2外部端子に接続された外付けのコンデンサにより構成されていることを特徴とする請求項4に記載の半導体集積回路装置。
【請求項6】
前記出力トランジスタにより流される出力電流が所定値以上流れないように制限するカレントリミット回路を備え、
前記カレントリミット回路が検知して動作する出力電流の前記所定値は、前記過電流検出回路が過電流状態を検出する電流値よりも高い値に設定されていることを特徴とする請求項
2~5のいずれかに記載の半導体集積回路装置。
【請求項7】
前記半導体集積回路装置はハイサイドスイッチ用の半導体集積回路装置であり、
前記比例電流生成回路は、
前記出力トランジスタと並列に接続され前記出力トランジスタの制御端子に印加される制御信号と同一の信号が制御端子に印加された第1トランジスタと、
前記電圧入力端子と接地点との間に、前記第1トランジスタと直列をなすように接続された第2トランジスタおよび電流-電圧変換手段と、
前記出力トランジスタの出力側の電位と前記第1トランジスタおよび第2トランジスタの接続ノードの電位とを入力とする差動増幅回路と、
を備え、前記差動増幅回路の出力が前記第2トランジスタの制御端子に印加され、前記電流-電圧変換手段により電流-電圧変換された電圧が前記過電流検出回路に供給されるように構成されていることを特徴とする請求項
2~6のいずれかに記載の半導体集積回路装置。
【請求項8】
前記半導体集積回路装置はリニアレギュレータ用の半導体集積回路装置であり、
前記比例電流生成回路は、
前記出力トランジスタと並列に接続され前記出力トランジスタの制御端子に印加される制御信号と同一の信号が制御端子に印加された第1トランジスタと、
前記電圧入力端子と接地点との間に、前記第1トランジスタと直列をなすように接続された電流-電圧変換手段と、
を備え、前記電流-電圧変換手段により電流-電圧変換された電圧が前記過電流検出回路に供給されるように構成されていることを特徴とする請求項
2~6のいずれかに記載の半導体集積回路装置。
【請求項9】
第3外部端子を備え、
前記電流-電圧変換手段は、前記第3外部端子に接続された外付けの抵抗素子であることを特徴とする請求項7または8に記載の半導体集積回路装置。
【請求項10】
チップの温度が所定値以上になったことを検出した場合に、前記出力トランジスタをオフさせるための信号を生成し出力するサーマルシャットダウン回路を備えることを特徴とする請求項1~9のいずれかに記載の半導体集積回路装置。
【請求項11】
前記コンデンサが外付け素子として接続される第2外部端子を備え、
前記タイマー回路は、入力が前記第2外部端子に接続されたコンパレータを有し、
前記カレントミラー回路は、前記コンパレータの出力により、オンまたはオフし、
前記リトライ回路は、
前記過電流検出回路が出力電流の過電流状態を第1の期間継続して検出したことに応じて前記出力トランジスタを間欠的にオフ状態にさせるための信号を生成して出力し、
前記制御回路は、
前記過電流検出回路が過電流状態を検出したことに応じて前記タイマー回路が前記コンデンサを第1の定電流源により充電する計時動作を開始して前記第1の期間を経過すると前記出力トランジスタをオンからオフに切り替え、
前記タイマー回路が前記コンデンサを第2の定電流源により放電する計時動作を開始して第2の期間を経過すると前記出力トランジスタをオフからオンに切り替え、
過電流状態が解消されるまで前記出力トランジスタをオン/オフさせる制御を繰り返すことを特徴とする請求項3に記載の半導体集積回路装置。
【請求項12】
直流電圧が入力される電圧入力端子と電圧出力端子との間に接続された出力トランジスタと、前記出力トランジスタをオン状態またはオフ状態に制御する制御回路と、を備えた半導体集積回路装置であって、
前記出力トランジスタに流れている電流を比例縮小した電流を生成可能な比例電流生成回路と、
前記比例電流生成回路により生成された電流に基づいて前記出力トランジスタに固定の第1の所定電流値以上の電流が流れたことを検出可能な過電流検出回路と、
前記過電流検出回路が出力電流の過電流状態を第1の期間継続して検出したことに応じて前記出力トランジスタを間欠的にオフ状態にさせるための信号を生成し出力するリトライ回路と、
前記出力トランジスタにより流される出力電流が前記第1の所定電流値よりも高い第2の所定電流値以上流れないように制限するカレントリミット回路と、を備え、
前記第1の期間は、前出力トランジスタをオン状態にした直後にラッシュ電流が流れる期間よりも長く設定されていることを特徴とする半導体集積回路装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電圧入力端子と出力端子との間に接続されたスイッチ用または出力用のトランジスタおよび該トランジスタを過電流から保護する過電流保護回路を備えた半導体集積回路装置(IC)に関し、例えばハイサイドスイッチICやリニアレギュレータ用IC(電源用IC)に利用して有効な技術に関する。
【背景技術】
【0002】
電源と負荷との間に接続され負荷に電源電圧を供給したり遮断したりする機能を有するハイサイドスイッチICや、直流電圧入力端子と出力端子との間に設けられたトランジスタを制御して所望の電位の直流電圧を出力するICとしてリニアレギュレータを構成する電源用ICがある。
また、ハイサイドスイッチICや電源用ICにおいては、トランジスタを過電流から保護する過電流保護回路を設けることがある。
【0003】
従来、過電流保護回路には、
図5(A)に示すような垂下型特性を有する回路と、
図5(B)に示すようなフの字特性を有する回路がある。さらに、過電流状態が解消すると定常状態に自動復帰する機能を有するものや、一旦過電流状態を検出すると電流を遮断し続けるラッチオフ機能を有するものがある。
また、電源と負荷との間に接続され負荷に電源電圧を供給したり遮断したりするトランジスタを過電流から保護する過電流保護回路を設けるようにした発明として、特許文献1に記載されているものがある。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
図5(A)に示されている垂下型特性を有する過電流保護回路は、出力ショート時に最大電力となり許容損失を超えてしまうことがある。一方、
図5(B)に示されているフの字特性を有する過電流保護回路は、ハーフショート時に大きな電流が流れ続けて許容損失を超えてしまうことがあるという課題がある。なお、許容損失を超えると、過熱保護機能が動作して出力電流を遮断する制御を行うのが一般的である。
【0006】
ここで、一般的な過熱保護機能による動作においては、ジャンクション(チップ接合面)の温度が150℃に達すると電流を遮断し、100℃で復帰する制御を実行した場合、ジャンクションの温度は100~150℃になる。そのため、瞬間的なショートが発生した場合は問題ないが、負荷の継続的なショートが発生した場合には100℃以上の温度を維持してしまう。その結果、デバイスの寿命が低下したり、素子破壊が生じたりすることがあるという課題がある。
【0007】
この発明は上記のような課題に着目してなされたもので、その目的とするところは、電圧入力端子と出力端子との間に接続されたトランジスタおよび過電流保護回路を備えたハイサイドスイッチICや電源用ICのような半導体集積回路装置において、過熱保護機能によることなく許容損失を超える前に出力電流を遮断できるようにすることにある。
本発明の他の目的は、過電流状態が解消すると定常状態に自動復帰することができる半導体集積回路装置を提供することにある。
本発明のさらに他の目的は、デバイス起動時に出力トランジスタがオンすることで出力端子に接続されている安定化用のコンデンサを所定電圧まで充電する一時的なラッシュ電流を誤って過電流として検出して出力電流を遮断することのない半導体集積回路装置を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明は、
直流電圧が入力される電圧入力端子と電圧出力端子との間に接続された出力トランジスタと、前記出力トランジスタをオン状態またはオフ状態に制御する制御回路と、を備えた半導体集積回路装置において、
前記出力トランジスタに流れている電流を比例縮小した電流を生成可能な比例電流生成回路と、
前記比例電流生成回路により生成された電流に基づいて前記出力トランジスタに所定値以上の電流が流れたことを検出可能な過電流検出回路と、
前記過電流検出回路が出力電流の過電流状態を検出したことに応じて前記出力トランジスタを間欠的にオフ状態にさせるための信号を生成し出力するリトライ回路と、を備える ように構成したものである。
【0009】
上記のような構成を有する半導体集積回路装置によれば、出力ショートなどによって過電流状態が発生した場合に、出力トランジスタがオン状態とオフ状態とを繰り返すことにより、過熱保護機能によることなく許容損失を超える前に出力電流を遮断し、チップを保護することができるとともに、過電流状態が解消すると定常状態に自動復帰することができる。ここで、前記制御回路は前記リトライ回路から出力される信号に基づいて前記出力トランジスタを一時的にオフさせる制御を繰り返すように構成するとよい。
【0010】
また、望ましくは、所定の信号を入力するための第1外部端子と、
前記第1外部端子に入力された信号と前記リトライ回路から出力される信号とを入力とするロジック回路と、備え、
前記制御回路は、前記ロジック回路から出力される信号に基づいて前記出力トランジスタを制御するように構成する。
かかる構成によれば、外部端子に入力された信号に基づいて出力トランジスタをオン状態またはオフ状態に制御するように構成された半導体集積回路装置において、過電流状態が発生した場合に、過熱保護機能によることなく許容損失を超える前に出力電流を遮断し、チップを保護することができる。そのため、既存のハイサイドスイッチICや電源用ICのような半導体集積回路装置に容易に適用することができる。
【0011】
また、望ましくは、前記リトライ回路は、タイマー回路を備え、
前記タイマー回路は、前記過電流検出回路が過電流状態を検出したことに応じて計時動作を開始して所定時間を計時すると前記ロジック回路へ信号を出力し、
前記ロジック回路は、前記タイマー回路からの信号に基づいて前記制御回路へ前記出力トランジスタを一時的にオフさせるための信号を供給するように構成する。
かかる構成によれば、タイマー回路からの信号に基づいて制御回路へ出力トランジスタを一時的にオフさせるための信号を供給するため、過電流状態が発生した場合に、正確かつ確実に所定時間の経過で出力トランジスタをオフさせて出力電流を遮断することができる。また、タイマー回路を備えるため、半導体集積回路装置が動作を開始する際に出力コンデンサを充電するために流れるラッシュ電流を、過電流検出回路が誤って過電流状態の発生として検出してしまうのを回避することができる。
【0012】
さらに、望ましくは、第2外部端子を備え、
前記タイマー回路は、定電流源と、該定電流源の電流を転写するカレントミラー回路と、該カレントミラー回路の電流によって充放電されるコンデンサと、を備え、
前記コンデンサは前記第2外部端子に接続された外付けのコンデンサにより構成する。
上記のような構成によれば、外部端子に接続する外付けのコンデンサによってタイマー回路が計時する時間を任意に設定することができ、デバイスの使い勝手が向上する。
【0013】
また、望ましくは、前記出力トランジスタにより流される出力電流が所定値以上流れないように制限するカレントリミット回路を備え、
前記カレントリミット回路が検知して動作する出力電流の前記所定値は、前記過電流検出回路が過電流状態を検出する電流値よりも高い値に設定されているように構成する。
かかる構成によれば、過電流検出回路が過電流状態を判定するための電流値よりも大きな出力電流が流れた場合に、カレントリミット回路により出力トランジスタをオフさせて出力電流を遮断して、チップ温度が異常に高くなるのを未然に防止することができる。
【0014】
また、望ましくは、前記半導体集積回路装置はハイサイドスイッチ用の半導体集積回路装置であり、
前記比例電流生成回路は、
前記出力トランジスタと並列に接続され前記出力トランジスタの制御端子に印加される制御信号と同一の信号が制御端子に印加された第1トランジスタと、
前記電圧入力端子と接地点との間に、前記第1トランジスタと直列をなすように接続された第2トランジスタおよび電流-電圧変換手段と、
前記出力トランジスタの出力側の電位と前記第1トランジスタおよび第2トランジスタの接続ノードの電位とを入力とする差動増幅回路と、
を備え、前記差動増幅回路の出力が前記第2トランジスタの制御端子に印加され、前記電流-電圧変換手段により電流-電圧変換された電圧が前記過電流検出回路に供給されるように構成する。
かかる構成によれば、ハイサイドスイッチICにおいて、過熱保護機能によることなく許容損失を超える前に出力電流を遮断し、チップを保護することができるとともに、過電流状態が解消すると定常状態に自動復帰することができるようになる。
【0015】
あるいは、前記半導体集積回路装置はリニアレギュレータ用の半導体集積回路装置であり、
前記比例電流生成回路は、
前記出力トランジスタと並列に接続され前記出力トランジスタの制御端子に印加される制御信号と同一の信号が制御端子に印加された第1トランジスタと、
前記電圧入力端子と接地点との間に、前記第1トランジスタと直列をなすように接続された電流-電圧変換手段と、
を備え、前記電流-電圧変換手段により電流-電圧変換された電圧が前記過電流検出回路に供給されるように構成する。
かかる構成によれば、リニアレギュレータ用ICのような電源用ICにおいて、過熱保護機能によることなく許容損失を超える前に出力電流を遮断し、チップを保護することができるとともに、過電流状態が解消すると定常状態に自動復帰することができる。
【0016】
さらに、望ましくは、第3外部端子を備え、
前記電流-電圧変換手段は、前記第3外部端子に接続された外付けの抵抗素子であるようにする。
かかる構成によれば、外部端子に接続する抵抗素子によって、過電流検出回路が過電流状態を判定するための電流値を任意に設定することができ、デバイスの使い勝手が向上する。
【0017】
また、望ましくは、チップの温度が所定値以上になったことを検出した場合に、前記出力トランジスタをオフさせるための信号を生成し出力するサーマルシャットダウン回路を備えるように構成する。
かかる構成によれば、リトライ回路から出力される信号によって出力トランジスタがオンとオフを繰り返す期間が長くなることによって、チップ温度が異常に高くなったような場合に、出力トランジスタをオフさせて出力電流を遮断し、チップ温度が所定温度以上に上昇するのを防止して、チップを保護することができる。
【発明の効果】
【0018】
本発明によれば、電圧入力端子と出力端子との間に接続されたトランジスタおよび過電流保護回路を備えたハイサイドスイッチICや電源用ICのような半導体集積回路装置において、過熱保護機能によることなく許容損失を超える前に出力電流を遮断することができる。また、過電流状態が解消すると定常状態に自動復帰することができる。さらに、デバイス起動時に出力トランジスタがオンすることで出力端子に接続されている安定化用のコンデンサを所定電圧まで充電する一時的なラッシュ電流を誤って過電流として検出して出力電流を遮断することのないという効果がある。
【図面の簡単な説明】
【0019】
【
図1】本発明を適用したハイサイドスイッチICの一実施形態を示す回路構成図である。
【
図2】実施形態のハイサイドスイッチICの内部回路の動作タイミングを示すタイミングチャートである。
【
図3】実施形態のハイサイドスイッチICを構成する過電流検出回路の具体例を示す回路図である。
【
図4】本発明を適用したリニアレギュレータ用ICの一実施形態を示す回路構成図である。
【
図5】(A)は垂下型特性の過電流保護回路の電圧-電流特性を示す特性図、(B)はフの字特性の過電流保護回路の電圧-電流特性を示す特性図である。
【発明を実施するための形態】
【0020】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
(第1実施例)
図1は、本発明を適用したハイサイドスイッチICの一実施形態を示す。なお、
図1において、一点鎖線で囲まれた部分は、単結晶シリコンのような半導体チップ上に半導体集積回路(IC)10として形成され、該IC10の出力端子OUTに出力安定化用のコンデンサCoが接続されている。
【0021】
本実施形態のハイサイドスイッチIC10においては、
図1に示すように、直流電圧VDDが印加される電圧入力端子INと出力端子OUTとの間に、PチャンネルMOSトランジスタからなるスイッチ用のトランジスタM1が接続されている。また、IC10には、外部のマイコン(CPU)などからの信号が入力されるチップ制御用の端子CEと、端子CEの電位を入力とするロジック回路11およびロジック回路11の出力によってトランジスタM1のゲート制御信号を生成する制御回路12が設けられており、制御回路12は端子CEの電位に応じてトランジスタM1をオン状態またはオフ状態にするゲート制御信号を生成する。
【0022】
制御回路12は、NチャンネルMOSトランジスタM11~M14からなりロジック回路11からの出力信号によってオン、オフされるオン/オフ機能付きのカレントミラー回路CM1と、該カレントミラー回路CM1の1次側トランジスタM11と直列に接続されたPチャンネルMOSトランジスタM2および定電流源CC3と、カレントミラー回路CM1の2次側トランジスタM12と直列に接続された電流-電圧変換用の抵抗R1とにより構成されている。M13,M14はオン/オフ用のトランジスタである。ロジック回路11は、チップ制御用の端子CEの論理電位を反転するインバータINV1と、インバータINV1の出力をさらに反転するインバータINV2と、インバータINV1の出力と後述のリトライ回路16からの信号とを入力とするNANDゲートG1とにより構成されている。
【0023】
制御回路12においては、ロジック回路11の出力によってトランジスタM14がオンされると、定電流源CC3の電流I3がM14に流れることでM11、M12がオフして抵抗R1に電流が流れなくなる。すると、抵抗R1を介してトランジスタM1のゲート端子に直流電圧VDDが印加されてM1がオフ状態にされる。一方、ロジック回路11の出力によってトランジスタM14がオフされると、定電流源CC3の電流I3がM11に流れることでM12および抵抗R1に電流が流れるようになって、トランジスタM1のゲート端子に抵抗R1で降下した電圧が印加されてM1がオン状態にされる。
【0024】
また、本実施形態のハイサイドスイッチIC10には、参照電圧Vrefを発生するための基準電圧回路13と、トランジスタM2と直列に接続され基準電圧回路13に動作電流を流す定電流源CC1とが設けられている。基準電圧回路13は、バンドギャップ、直列の抵抗およびツェナーダイオードなどで構成することができる。
さらに、本実施形態のハイサイドスイッチIC10には、過電流保護回路14と、出力電流Ioutを制限するカレントリミット回路15を構成するコンパレータ(電圧比較回路)CMP2と、リトライ回路16と、過電流保護回路14の出力によってリトライ回路16の電流回路をオン、オフ制御するスイッチ・トランジスタM10が設けられている。
【0025】
過電流保護回路14は、トランジスタM1によって出力端子OUTへ向かって流される出力電流Ioutに比例した電流Iout’を生成する比例電流生成回路14Aと、生成された電流Iout’を電圧に変換する電流-電圧変換回路14Bと、変換された電圧に基づいて過電流状態を検出する過電流検出回路14Cとを備えており、過電流検出回路14Cの出力OCP_OUTが上記スイッチ・トランジスタM10のゲート端子に入力されるように構成されている。
また、IC10には、比例電流生成回路14Aにより生成された電流Iout’をチップ外部へ流すための外部端子SCが設けられており、電流-電圧変換回路14Bはこの外部端子SCと接地点との間に接続された外付けの抵抗素子Rscによって構成されている。過電流検出回路14Cは、この抵抗素子Rscによって変換された電圧Vscと予め設定された参照電圧Vref_OCPとを比較するコンパレータCMP1によって構成されている。コンパレータCMP1とCMP2には、ヒステリシス特性を有する使用される。抵抗Rscはオンチップの素子であっても良い。
【0026】
カレントリミット回路15を構成するコンパレータCMP2には、抵抗素子Rscによって変換された電圧と予め設定された参照電圧Vref_CLとが入力されており、電流Iout’すなわち出力電流Ioutが所定の電流値を超えるとコンパレータCMP2の出力CL_OUTがハイレベルに変化する。コンパレータCMP2の出力CL_OUTは、制御回路12のカレントミラー回路CM1の1次側トランジスタM11と並列に接続されたトランジスタM13のゲート端子に入力されており、コンパレータCMP2の出力CL_OUTがハイレベルに変化するとM13がオンされることで、M11,M12および抵抗R1の電流が減少され、それによって出力用のトランジスタM1のゲート・ソース間電圧が小さくされ、所定値以上の出力電流Ioutが流れないように制限されることとなる。つまり、コンパレータCMP2とトランジスタM13とによってカレントリミット回路15が構成される。
【0027】
なお、カレントリミット回路15の参照電圧Vref_CLは過電流検出回路14Cの参照電圧Vref_OCPよりも大きな値に設定され、過電流保護が働く電流よりも大きな出力電流が流れた際にカレントリミット回路が機能するように構成されている。この場合、例えばトランジスタM13の素子サイズ(ゲート幅)を、M11,M12のサイズよりも小さくすることで、M13がオンされM13に電流IM13が流れた際にM11,M12にも定電流源CC3の電流I3との差分の電流(I3-IM13)が流れることで、出力トランジスタM1のゲート電圧がVDDよりも低くなり、M1にクランプされた電流が流れるようにすることができる。または、抵抗R1の値を調整しても良い。
【0028】
リトライ回路16は、NチャンネルMOSトランジスタM4,M5からなるカレントミラー回路CM2と、トランジスタM2と直列に接続された定電流源CC2と、定電流源CC2の電流が1次側に流されるカレントミラー回路CM2と、PチャンネルMOSトランジスタM7,M8からなりカレントミラー回路CM2の2次側の電流を折り返すカレントミラー回路CM3と、カレントミラー回路CM3のトランジスタM8と直列に接続されたトランジスタM6およびM6と並列に接続されたトランジスタM3と、トランジスタM3,M6のドレイン電圧と所定の参照電圧Vref_Retryと比較するヒステリシス・コンパレータCMP3と、コンパレータCMP3の出力を反転するインバータINV3を備える。
【0029】
そして、インバータINV3の出力Retry_OUTは、カレントミラー回路CM3のトランジスタM7と並列に接続されたスイッチ・トランジスタM9のゲート端子とロジック回路11のNANDゲートG1に入力されている。また、IC10には、カレントミラー回路CM3のトランジスタM8とトランジスタM3,M6のドレイン端子との接続ノードN1に接続された外部端子PCTが設けられ、この外部端子PCTにはタイマー回路を構成する外付けのコンデンサCTが接続されている。
【0030】
ハイサイドスイッチIC(または後述のリニアレギュレータIC)の定常時における動作は、制御端子CEのレベルがハイレベルとなると、インバータINV1を介してトランジスタM2は常時オン、M3は常時オフする。過電流状態で無い場合、コンパレータCMP1の出力はロウレベルとなりトランジスタM10はオン、カレントミラー回路CM3はオフする。カレントミラー回路CM2はオンのためトランジスタM6はオンでノードN1はロウレベルとなり、リトライ回路16は動作していない状態となる。また、ノードN1がロウレベルのため、コンパレータCMP3の出力はロウレベル、Retry_OUTはハイレベルでトランジスタM9はオフとなる。
【0031】
過電流状態となった場合、外付け抵抗Rscに流れる電流が増加してコンパレータCMP1の入力である端子SCの電圧VscがVref_OCPを超え、CMP1の出力がハイレベルとなり、M10がオフしてリトライ回路16が動作する。そして、トランジスタM9がオフのため、カレントミラー回路CM3のトランジスタM7がオンされ、M8に電流Isouceが流れる。すると、トランジスタM6の電流Isink(<Isouce)との差電流(Isouce-Isink)によってコンデンサCTが充電され、ノードN1の電位(=端子PCTの電位VCT)が徐々に上昇する。そして、ノードN1の電位(VCT)が参照電圧Vref_Retryを超えると、コンパレータCMP3の出力がハイレベルに変化し、トランジスタM9がオンされることによって、カレントミラー回路CM3のトランジスタM7,M8に流れる電流が遮断される。
【0032】
すると、トランジスタM6の電流IsinkによってコンデンサCTの電荷が放電され、ノードN1の電位すなわち端子PCTの電位VCTが徐々に降下する。そして、端子PCTの電位VCTが参照電圧Vref_Retryよりも低くなると、コンパレータCMP3の出力がロウレベルに変化し、トランジスタM9がオフされることによって、カレントミラー回路CM3のトランジスタM7,M8に電流が流れる。上記動作を繰り返すことで、端子PCTの電位VCTは三角波状に変化する。
一方、コンパレータCMP3の出力の変化によって、端子CEがハイレベルであることを条件に、ロジック回路11のNANDゲートG1の出力がハイ/ロウに変化し、制御回路12のトランジスタM14がオン/オフされ、出力用のトランジスタM1がオン/オフされる。つまり、過電流検出回路14Cが過電流を検出した場合は、リトライ回路16によって間欠的に過電流保護動作を行い、過電流が流れ続けることでチップ温度が上昇するのが抑制される。また、過電流状態が解除された後は、定常動作に自動復帰することができる。
【0033】
次に、出力端子OUTまたは負荷で短絡(ショート)が発生した場合におけるハイサイドスイッチIC10の内部回路の動作を、
図2のタイミングチャートを用いて説明する。なお、コンパレータCMP3はヒステリシス特性を有するので、以下の説明では、コンパレータCMP3の高い方のしきい値電圧をVref_Retry_H、低い方のしきい値電圧をVref_Retry_Lと記す。
【0034】
先ず、タイミングt1で制御端子CEの電位がハイレベルに立ち上がると、インバータINV1の出力がロウレベルに変化してトランジスタM2がオンされて定電流源CC3に電流が流される。このときリトライ回路16のコンパレータCMP3の出力はロウレベルで、インバータINV3の出力Retry_OUTはハイレベルであるため、NANDゲートG1の出力がロウレベルとなり、トランジスタM14がオフされている。そのため、制御回路12のカレントミラー回路CM1に電流が流れて抵抗R1に電流が流され、出力トランジスタM1のゲート電圧が下がることでM1はオン状態にされて出力電流Ioutが流れ出力電圧Voutが立ち上がった定常状態T1となる。
【0035】
上記定常状態T1において、出力側でショートが発生したとすると、出力電流Ioutと比例電流生成回路14Aにより生成される比例電流Iout’が増加して、過電流保護回路14およびカレントリミット回路15によって過電流状態が検出され、コンパレータCMP1の出力OCP_OUTとCMP2の出力CL_OUTがハイレベルに変化する(タイミングt2)。すると、リトライ回路16のコンパレータCMP3の出力OCP_OUTによってトランジスタM10がオフされて、カレントミラー回路CM3のトランジスタM7がオンされ、M8に電流Isouceが流れ、M6の電流Isink(<Isouce)との差電流(Isouce-Isink)によってコンデンサCTが充電され、ノードN1の電位すなわち端子PCTの電位VCTが徐々に上昇する(期間T2)。
【0036】
そして、端子PCTの電位VCTがコンパレータCMP3の参照電圧Vref_Retry_Hに達すると(タイミングt3)、コンパレータCMP3の出力がハイレベル、インバータINV3の出力Retry_OUTがロウレベルに変化し、トランジスタM9がオンされることによって、カレントミラー回路CM3のトランジスタM7,M8に流れる電流が遮断される。すると、トランジスタM6の電流IsinkによってコンデンサCTの電荷が放電され、端子PCTの電位VCTが徐々に降下する(期間t3-t4)。
【0037】
その後、端子PCTの電位VCTの電位が参照電圧Vref_Retry_Lに達すると(タイミングt4)、コンパレータCMP3の出力がロウレベル、インバータINV3の出力Retry_OUTがハイレベルに変化し、トランジスタM9がオフされることによって、カレントミラー回路CM3のトランジスタM7,M8に電流が流れコンデンサCTが充電される。上記動作を繰り返すことで、端子PCTの電位VCTは三角波状に変化する(リトライ動作期間T3)。なお、端子PCTの電位VCTが上昇してショートを検出している期間(T2)においては、一時的に出力トランジスタM1に電流が流れて、出力電圧Voutが僅かに高くなる。
【0038】
その後、タイミングt5でショート状態が解除されたとすると、端子PCTの電位VCTが参照電圧Vref_Retry_Lに達した時点(タイミングt6)で、インバータINV3の出力Retry_OUTがハイレベルに変化し、トランジスタM9がオフされることによって、カレントミラー回路CM3のトランジスタM7,M8に電流が流れ、出力トランジスタM1がオンされて、出力電圧Voutが上昇して定常状態となり、制御端子CEの電位が下がるタイミングt7までその状態を維持する。
【0039】
なお、出力トランジスタM1がオンされた直後は、出力端子に向かって大きなラッシュ電流が流れることとなるが、その時間は短いため、リトライ回路16においてコンデンサCTを充電する電流が流れたとしても、端子PCTの電位VCTが参照電圧Vref_Retryに達する前に過電流保護回路14のコンパレータCMP1の出力OCP_OUTが立ち下がることで、トランジスタM10がオンされてリトライ回路16の動作が停止される。つまり、コンデンサCTの値を、タイマー回路の計時時間がラッシュ電流時間より長くなるように設定することにより、IC起動時にラッシュ電流が流れたとしても、誤って過電流を検出して過電流保護機能が働くのを回避することができる。
また、タイミングt1,t6でインバータINV3の出力Retry_OUTがハイレベルに変化することによって、NANDゲートG1の出力がハイレベルに変化してその状態を維持するため、制御回路12のトランジスタM14がオフされ、カレントミラー回路CM1のトランジスタM11,M12および抵抗R1に電流が流れ続けて、出力トランジスタM1がオン状態を維持し、出力電圧Voutが定常状態となる。
【0040】
図3には、過電流保護回路14を構成する比例電流生成回路14Aの具体的な回路例が示されている。なお、
図3においては、基準電圧回路13およびカレントリミット回路15の図示を省略している。
図3に示すように、比例電流生成回路14Aは、出力用のトランジスタM1の素子サイズの1/nのサイズを有しソース端子がM1のソース端子に結合されるとともにゲート端子にM1のゲート電圧と同一の電圧が印加されたPチャンネルMOSトランジスタM15と、トランジスタM1のドレイン電圧VaとM15のドレイン電圧Vbとを入力とする差動アンプAMP1と、トランジスタM15のドレイン端子と外部端子SCとの間に接続されたPチャンネルMOSトランジスタM16を備え、M16のゲート端子に差動アンプAMP1の出力電圧が印加されている。同一サイズのn個のトランジスタを並列接続してトランジスタM1を構成し、トランジスタM15は1個のトランジスタで構成するようにしても良い。
【0041】
差動アンプAMP1は、トランジスタM15のドレイン電圧VbがM1のドレイン電圧Vaと同一になるようにトランジスタM16を動作させる。具体的には、差動アンプAMP1がM1のドレイン電圧VaとM15のドレイン電圧Vbとの電位差に応じてトランジスタM16のゲート電圧を制御し、M16のドレイン電流がVaとVbの電位差に応じて増減し、それによってM15のドレイン電流が変化するという帰還がかかることによってVbがVaと同一になる。
【0042】
そして、VbがVaと同一であれば、M15とM1のソース電圧、ドレイン電圧およびゲート電圧が同一になる。その結果、M15のドレイン電流すなわち外部端子SCから外付けの抵抗素子Rscへ流される電流Iout’は、M1とM15のサイズ比に応じて出力電流Ioutを比例縮小した大きさになる。そして、電流Iout’が抵抗素子Rscへ流されることで抵抗Rscに生じた電圧Vscが過電流検出用のコンパレータCMP1に入力され、出力電流Ioutの過電流状態を検出できるようになる。
【0043】
(第2実施例)
図4は、本発明を適用した電源用ICとしてのリニアレギュレータ用ICの一実施形態を示す。なお、
図1において、一点鎖線で囲まれた部分は、単結晶シリコンのような半導体チップ上に半導体集積回路(IC)10’として形成され、該IC10’の出力端子OUTに出力安定化用のコンデンサCoが接続されて安定な直流電圧を供給する直流電源装置として機能する。
【0044】
本実施形態のリニアレギュレータ用IC10’においては、
図4に示すように、直流電圧VDDが印加される電圧入力端子INと出力端子OUTとの間に、PチャンネルMOSトランジスタからなる電圧制御用の出力トランジスタM1が接続され、出力端子OUTと接地電位が印加されるグランド端子GNDとの間には、出力電圧Voutを分圧するブリーダ抵抗R11,R12が直列に接続されている。
【0045】
この出力分圧用の抵抗R11,R12により分圧された電圧VFBが、上記出力トランジスタM1のゲート端子を制御する制御回路12としての誤差アンプAMP2の非反転入力端子にフィードバックされている。そして、誤差アンプAMP2は、出力のフィードバック電圧VFBと所定の参照電圧Vrefとの電位差に応じて出力用のトランジスタM1を制御して、出力電圧Voutが所望の電位になるように制御する。
【0046】
また、本実施形態のリニアレギュレータ用IC10’には、上記誤差アンプAMP2の反転入力端子に印加される参照電圧Vrefを発生するための基準電圧回路13と、カレントリミット回路15と、誤差アンプ17や基準電圧回路13に動作電流を流すバイアス回路18と、チップの温度が所定温度以上に上昇した場合に誤差アンプAMP2の動作を停止させてトランジスタM1をオフさせるサーマルシャットダウン回路19と、過電流間欠検出回路20とが設けられている。CEは、ICの動作をオン/オフする制御信号が入力される外部端子である。バイアス回路18は、カレントミラー回路などで構成することができる。
過電流間欠検出回路20は、
図1に示すハイサイドスイッチICにおけるロジック回路11と過電流保護回路14を構成する過電流検出回路14Cとリトライ回路16とを含みそれらと同様な機能を有する回路として構成される。
【0047】
さらに、本実施形態のリニアレギュレータ用IC10’においては、過電流保護回路を構成する比例電流生成回路として、出力用のトランジスタM1と並列に接続されたトランジスタM15が設けられ、トランジスタM15のゲート端子に出力用のトランジスタM1のゲート端子に印加される電圧と同じ誤差アンプAMP2の出力電圧が印加され、トランジスタM1とカレントミラー回路を構成している。トランジスタM15は、出力用のトランジスタM1のサイズ(ゲート幅)の1/nのサイズを有するものが使用され、M15にはM1のドレイン電流の1/nのドレイン電流が流れるようにされる。
また、トランジスタM15のドレイン端子は、チップの外部にて電流-電圧変換するための抵抗Rscを接続するための外部端子SCに接続されている。
【0048】
上記のような構成を有する本実施形態のリニアレギュレータ用IC10’においては、過電流間欠検出回路20が、
図1に示すハイサイドスイッチICのロジック回路11、過電流検出回路14Cおよびリトライ回路16と同様に動作して、過電流状態が発生した場合に、間欠的に過電流の検出動作と出力用のトランジスタM1をオフする過電流保護動作を行なってICチップを保護するとともに、過電流状態が解消されるとそれを検知して定常状態に自動復帰することができる。
また、本実施形態のリニアレギュレータ用IC10’においては、サーマルシャットダウン回路19を設けているため、上記間欠検出動作および保護動作を繰り返している間にチップ温度が上昇した場合やリトライ回路16に不具合が生じた場合には、サーマルシャットダウン回路19が動作して出力用のトランジスタM1をオフすることで、ICチップを二重に保護することができる。
【0049】
以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、
図1に示すハイサイドスイッチIC10の実施形態には、サーマルシャットダウン回路19が設けられていないが、
図4のリニアレギュレータ用IC10’と同様にサーマルシャットダウン回路19を設けるようにしても良い。また、逆に、
図4のリニアレギュレータ用ICにおいて、サーマルシャットダウン回路19を省略した構成とすることも可能である。
【0050】
さらに、前記実施形態においては、ハイサイドスイッチIC10やリニアレギュレータ用IC10’の内部回路を構成するトランジスタとしてMOSトランジスタを使用したものを示したが、MOSトランジスタの代わりにバイポーラ・トランジスタを使用するようにしてもよい。また、コンデンサCTは、外付け素子でなくICチップ上に形成されたものであっても良い。また、出力用のMOSトランジスタM1は、Pチャンネル形またはNチャンネル形のどちらでも良い。
【0051】
また、ハイサイドスイッチIC10とリニアレギュレータ用IC10’において、過電流検出回路14Cが過電流を検出したりカレントリミット回路15やサーマルシャットダウン回路19が電流異常やチップ温度異常を検出したりした場合に、検出信号を外部へ出力するための外部端子と検出信号出力回路を設けるようにしても良い。
さらに、前記実施形態においては、本発明をハイサイドスイッチIC10とリニアレギュレータ用IC10’に適用した場合について説明したが、本発明はそれらのICに限定されず、例えば2次電池の充電用ICなど、電圧入力端子と電圧出力端子との間に接続されたトランジスタを備えた半導体集積回路装置に広く利用することができる。
【符号の説明】
【0052】
10…ハイサイドスイッチIC、10’…リニアレギュレータ用IC、11…ロジック回路、12…制御回路、13…基準電圧回路、14…過電流保護回路、14A…比例電流生成回路、14B…電流-電圧変換回路、15…カレントリミット回路、16…リトライ回路、17…誤差アンプ、18…バイアス回路、19…サーマルシャットダウン回路、M1…出力トランジスタ、CMP1…過電流検出用コンパレータ、CMP2…カレントリミット回路用コンパレータ、CT…タイマー回路用コンデンサ、Rsc…電流-電圧変換用抵抗