IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ HOYA株式会社の特許一覧 ▶ 豪雅光電科技(威海)有限公司の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-17
(45)【発行日】2024-12-25
(54)【発明の名称】光学ガラスおよび光学素子
(51)【国際特許分類】
   C03C 3/19 20060101AFI20241218BHJP
   C03C 3/21 20060101ALI20241218BHJP
   G02B 1/00 20060101ALI20241218BHJP
【FI】
C03C3/19
C03C3/21
G02B1/00
【請求項の数】 3
(21)【出願番号】P 2021003357
(22)【出願日】2021-01-13
(65)【公開番号】P2022108395
(43)【公開日】2022-07-26
【審査請求日】2023-09-22
(73)【特許権者】
【識別番号】000113263
【氏名又は名称】HOYA株式会社
(73)【特許権者】
【識別番号】522503632
【氏名又は名称】豪雅光電科技(威海)有限公司
(74)【代理人】
【識別番号】110001494
【氏名又は名称】前田・鈴木国際特許弁理士法人
(72)【発明者】
【氏名】桑谷 俊伍
【審査官】酒井 英夫
(56)【参考文献】
【文献】国際公開第2019/082419(WO,A1)
【文献】特開平06-016450(JP,A)
【文献】特開2005-053743(JP,A)
【文献】特開昭58-025607(JP,A)
【文献】特公昭46-003462(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
C03C 1/00-14/00,
INTERGLAD
(57)【特許請求の範囲】
【請求項1】
ガラス成分としてB23およびK2Oを含み、
25の含有量が43.5~60.0質量%であり、
23の含有量とP25の含有量との質量比[B23/P25]が0.39以下であり、
Na2Oの含有量が5.0~40.0質量%であり、
BaOの含有量が15.0質量%以下であり、
MgO、CaO、SrOおよびBaOの合計含有量[MgO+CaO+SrO+BaO]が18.0質量%以下であり、
ZnOの含有量が15.0質量%以下であり、
Nb25の含有量が25.0質量%以下であり、
WO3の含有量が5.0質量%以下であり、
Bi23の含有量が10.0質量%以下であり、
Li2Oの含有量が1質量%以下であり、
Ta25の含有量が1.0質量%以下であり、
Na2Oの含有量とK2Oの含有量との質量比[Na2O/K2O]が1.30~2.70であり、
TiO2、Nb25、WO3、Bi23およびTa25の合計含有量[TiO2+Nb25+WO3+Bi23+Ta25]が3.0~30.0質量%であり、
TiO2、Nb25、WO3、Bi23、Ta25およびZnOの合計含有量[TiO2+Nb25+WO3+Bi23+Ta25+ZnO]が3.0~33.0質量%であり、
下記(i)および(ii)のうち1以上を満たし、
(i)Nb 2 5 の含有量が1.0質量%以上である。
(ii)TiO 2 の含有量が5.0質量%以上である。
Pbを実質的に含まない、光学ガラス。
【請求項2】
MgO、CaO、SrOおよびBaOの合計含有量[MgO+CaO+SrO+BaO]が3.04質量%以下である、請求項1に記載の光学ガラス。
【請求項3】
請求項1または2に記載の光学ガラスからなる光学素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学ガラスおよび光学素子に関する。
【背景技術】
【0002】
屈折率ndが1.55~1.68の範囲にあって、かつ高分散の光学ガラスは、光学系の設計において、色収差を補正し、光学系を高機能化、コンパクト化する上で利用価値が高い。
【0003】
特許文献1~3には、アッベ数νdが比較的低い光学ガラスが開示されている。しかしながら、特許文献1~3の光学ガラスは屈折率ndが大きい。また、特許文献4に開示された光学ガラスについて光学恒数を調べたところ、アッベ数νdは比較的低いものの、屈折率ndは高いことがわかった。すなわち、特許文献1~4では、屈折率ndが1.55~1.68の範囲にあって、かつ高分散の光学ガラスは提案されていない。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2016-74581号公報
【文献】特開2018-70414号公報
【文献】国際公開第2013/031385号
【文献】特表2020-505311号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、本発明は、屈折率ndが1.55~1.68の範囲にあり、高分散な光学ガラス、ならびに前記光学ガラスからなる光学素子を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の要旨は以下のとおりである。
(1)ガラス成分としてBおよびKOを含み、
の含有量が35.0~60.0質量%であり、
の含有量とPの含有量との質量比[B/P]が0.39以下であり、
NaOの含有量が5.0~40.0質量%であり、
BaOの含有量が15.0質量%以下であり、
MgO、CaO、SrOおよびBaOの合計含有量[MgO+CaO+SrO+BaO]が18.0質量%以下であり、
ZnOの含有量が15.0質量%以下であり、
Nbの含有量が25.0質量%以下であり、
WOの含有量が5.0質量%以下であり、
Biの含有量が10.0質量%以下であり、
TiO、Nb、WO、BiおよびTaの合計含有量[TiO+Nb+WO+Bi+Ta]が3.0~30.0質量%であり、
TiO、Nb、WO、Bi、TaおよびZnOの合計含有量[TiO+Nb+WO+Bi+Ta+ZnO]が3.0~33.0質量%である、光学ガラス。
【0007】
(2)上記(1)に記載の光学ガラスからなる光学素子。
【発明の効果】
【0008】
本発明によれば、屈折率ndが1.55~1.68の範囲にあり、高分散な光学ガラス、ならびに前記光学ガラスからなる光学素子を提供できる。
【発明を実施するための形態】
【0009】
本発明および本明細書において、光学ガラスのガラス組成は、特記しない限り、酸化物基準で表示する。ここで「酸化物基準のガラス組成」とは、ガラス原料が熔融時にすべて分解されて光学ガラス中で酸化物として存在するものとして換算することにより得られるガラス組成をいい、各ガラス成分の表記は慣習にならい、SiO、TiOなどと記載する。ガラス成分の含有量および合計含有量は、特記しない限り質量基準であり、「%」は「質量%」を意味する。
【0010】
ガラス成分の含有量は、公知の方法、例えば、誘導結合プラズマ発光分光分析法(ICP-AES)、誘導結合プラズマ質量分析法(ICP-MS)等の方法で定量することができる。また、本明細書および本発明において、構成成分の含有量が0%とは、この構成成分を実質的に含まないことを意味し、該成分が不可避的不純物レベルで含まれることを許容する。
【0011】
また、本明細書では、屈折率は、特記しない限り、ヘリウムのd線(波長587.56nm)における屈折率ndをいう。
【0012】
また、アッベ数νdは、分散に関する性質を表す値として用いられるものであり、以下の式で表される。ここで、nFは青色水素のF線(波長486.13nm)における屈折率、nCは赤色水素のC線(656.27nm)における屈折率である。
νd=(nd-1)/(nF-nC) ・・・(1)
【0013】
本実施形態に係る光学ガラスについて詳細に説明する。
【0014】
本実施形態に係る光学ガラスは、ガラス成分としてBを含む。Bの含有量の下限は、好ましくは0.3%であり、さらには0.6%、0.8%、1.0%の順により好ましい。また、Bの含有量の上限は、好ましくは15%であり、さらには13.0%、11.0%、10.0%の順により好ましい。
【0015】
は、ガラスのネットワーク形成成分であり、ガラスの熱的安定性を改善する働きを有する。Bの含有量を上記範囲とすることで、ガラスの熱的安定性および耐失透性を改善できる。一方、Bの含有量が多すぎると、ガラスの熱的安定性および耐失透性が低下する傾向がある。
【0016】
本実施形態に係る光学ガラスは、ガラス成分としてKOを含む。KOの含有量の下限は、好ましくは3.0%であり、さらには5.0%、7.0%、8.5%、9.00%、9.20%の順により好ましい。また、KOの含有量の上限は、好ましくは20.0%であり、さらには17.0%、15.0%、14.0%の順により好ましい。
【0017】
Oは、ガラスの熱的安定性および熔解性を改善する働きを有する。KOの含有量を上記範囲とすることで、熱的安定性および熔解性に優れる光学ガラスが得られる。一方、KOの含有量が少なすぎると、熱的安定性および熔解性が低下するおそれがある。また、KOの含有量が多すぎると、熱的安定性が低下するおそれがある。
【0018】
本実施形態に係る光学ガラスにおいて、Pの含有量は35.0~60.0%である。Pの含有量の下限は、好ましくは40.0%であり、さらには41.0%、42.0%、43.0%、43.5%、45.5%の順により好ましい。また、Pの含有量の上限は、好ましくは60.0%であり、さらには58.0%、56.0%、55.0%の順により好ましい。
【0019】
は、ガラスのネットワーク形成成分であり、ガラス中に高分散成分を多く含有するために必須の成分である。Pの含有量を上記範囲とすることで、熱的安定性に優れ、所望の光学恒数を有する光学ガラスが得られる。一方、Pの含有量が少なすぎると、所望の光学恒数を有する光学ガラスが得られないおそれがある。また、Pの含有量が多すぎると、ガラスの熱的安定性が悪化するおそれがある。
【0020】
本実施形態に係る光学ガラスにおいて、Bの含有量とPの含有量との質量比[B/P]は0.39以下である。該質量比の上限は、好ましくは0.34であり、さらには0.30、0.27、0.25の順により好ましい。また、該質量比の下限は、好ましくは0.005であり、さらには0.01、0.015、0.02の順により好ましい。
【0021】
質量比[B/P]を上記範囲とすることで、熱的安定性に優れる光学ガラスが得られる。一方、該質量比が大きすぎると、ガラスの熱的安定性が悪化するおそれがある。
【0022】
本実施形態に係る光学ガラスにおいて、NaOの含有量は5.0~40.0%である。NaOの含有量の下限は、好ましくは10%であり、さらには12.0%、13.5%、15.0%、16.5%、17.5%、18.0%の順により好ましい。また、NaOの含有量の上限は、好ましくは30.0%であり、さらには27.0%、25.0%、23.0%の順により好ましい。
【0023】
NaOは、ガラスの熱的安定性および熔解性を改善する働きを有する。NaOの含有量を上記範囲とすることで、熱的安定性および熔解性に優れる光学ガラスが得られる。一方、NaOの含有量が少なすぎると、熱的安定性および熔解性が低下するおそれがある。また、NaOの含有量が多すぎると、熱的安定性が低下するおそれがある。
【0024】
本実施形態に係る光学ガラスにおいて、BaOの含有量は15.0%以下である。BaOの含有量の上限は、好ましくは13.0%であり、さらには11.0%、9.0%、7.0%の順により好ましい。また、BaOの含有量は少ない方が好ましく、その下限は、好ましくは0%であり、さらには1.0%、2.0%、3.0%の順に少ない方がより好ましい。BaOの含有量は0%でもよい。
【0025】
BaOは、ガラスの熱的安定性および耐失透性を改善する働きを有するガラス成分でもある。BaOの含有量を上記範囲とすることで、熱的安定性および耐失透性に優れる光学ガラスが得られる。一方、BaOの含有量多すぎると、ガラスの高分散性が損なわれ、また、ガラスの熱的安定性および耐失透性が低下するおそれがある。
【0026】
本実施形態に係る光学ガラスにおいて、MgO、CaO、SrOおよびBaOの合計含有量[MgO+CaO+SrO+BaO]は18.0%以下である。該合計含有量の上限は、好ましくは16.0%であり、さらには14.0%、12.0%、10.0%の順により好ましい。また、該合計含有量は少ない方が好ましく、その下限は、好ましくは0%であり、さらには1.0%、2.0%、3.0%の順に少ない方がより好ましい。該合計含有量は0%でもよい。
【0027】
合計含有量[MgO+CaO+SrO+BaO]を上記範囲とすることで、高分散化を妨げることなく熱的安定性および耐失透性を維持できる。一方、該合計含有量が大きすぎると、ガラスの高分散性が損なわれ、また、ガラスの熱的安定性および耐失透性が低下するおそれがある。
【0028】
本実施形態に係る光学ガラスにおいて、ZnOの含有量は15.0%以下である。ZnOの含有量の上限は、好ましくは13.0%であり、さらには11.0%、9.0%、7.0%の順により好ましい。また、ZnOの含有量は少ない方が好ましく、その下限は、好ましくは0%であり、さらには1.0%、2.0%、3.0%の順に少ない方がより好ましい。ZnOの含有量は0%でもよい。
【0029】
ZnOの含有量を上記範囲とすることで、ガラスの熱的安定性を改善でき、また、ガラスの比重の増大を抑制できる。さらに、所望の光学恒数を有する光学ガラスが得られる。
【0030】
本実施形態に係る光学ガラスにおいて、Nbの含有量は25.0%以下である。Nbの含有量の上限は、好ましくは20.0%であり、さらには15.0%、10.0%、7.0%、5.0%の順により好ましい。また、Nbの含有量は少ない方が好ましく、その下限は、好ましくは0%であり、さらには1.0%、2.0%、3.0%の順に少ない方がより好ましい。Nbの含有量は0%でもよい。
【0031】
Nbは、高屈折率化および高分散化に寄与する成分である。したがって、Nbの含有量は上記範囲とすることで、所望の光学恒数を有する光学ガラスが得られる。一方、Nbの含有量が多すぎると、ガラスの熱的安定性が低下し、また、ガラスの着色が強まるおそれがある。
【0032】
本実施形態に係る光学ガラスにおいて、WOの含有量は5.0%以下である。WOの含有量の上限は、好ましくは4.5%であり、さらには4.0%、3.5%、3.0%の順により好ましい。また、WOの含有量は少ない方が好ましく、その下限は、好ましくは0%であり、さらには0.5%、1.0%、1.5%の順に少ない方がより好ましい。WOの含有量は0%でもよい。
【0033】
WOの含有量を上記範囲とすることで、ガラスの透過率を高めることができ、また、ガラスの比重の増大を抑制できる。
【0034】
本実施形態に係る光学ガラスにおいて、Biの含有量は10.0%以下である。Biの上限は、好ましくは8.0%であり、さらには7.0%、6.0%、5.0%の順により好ましい。また、Biの含有量は少ない方が好ましく、その下限は、好ましくは0%であり、さらには1.0%、1.5%、2.0%の順に少ない方がより好ましい。Biの含有量は0%でもよい。
【0035】
Biの含有量を上記範囲とすることで、ガラスの熱的安定性を改善でき、またガラスの比重の増大を抑制できる。一方、Biの含有量が多すぎると、比重が増大し、またガラスの着色が増大するおそれがある。
【0036】
本実施形態に係る光学ガラスにおいて、TiO、Nb、WO、BiおよびTaの合計含有量[TiO+Nb+WO+Bi+Ta]は3.0~30.0%である。該合計含有量の下限は、好ましくは6.0%であり、さらには8.0%、10.0%、12.0%の順により好ましい。また、該合計含有量の含有量の上限は、好ましくは29.0%であり、さらには27.0%、25.0%、22.0%、20.0%、18.0%の順により好ましい。
【0037】
TiO、Nb、WO、BiおよびTaは、ガラスの高分散化に寄与する成分である。したがって、合計含有量[TiO+Nb+WO+Bi+Ta]を上記範囲とすることで、所望の光学恒数を有する光学ガラスが得られる。また、ガラスの熱的安定性も改善できる。一方、該合計含有量が多すぎると、所望の光学恒数を有する光学ガラスが得られないおそれがあり、また、ガラスの熱的安定性が低下し、ガラスの着色が強まるおそれがある。
【0038】
本実施形態に係る光学ガラスにおいて、TiO、Nb、WO、Bi、TaおよびZnOの合計含有量[TiO+Nb+WO+Bi+Ta+ZnO]は3.0~33.0%である。該合計含有量の下限は、好ましくは6.0%であり、さらには8.0%、10.0%、12.0%の順により好ましい。また、該合計含有量の含有量の上限は、好ましくは29.0%であり、さらには27.0%、25.0%、22.0%、20.0%、18.0%の順により好ましい。
【0039】
合計含有量[TiO+Nb+WO+Bi+Ta+ZnO]を上記範囲とすることで、所望の光学恒数を有する光学ガラスが得られる。また、ガラスの熱的安定性も改善できる。一方、該合計含有量が多すぎると、所望の光学恒数を有する光学ガラスが得られないおそれがあり、また、ガラスの熱的安定性が低下し、ガラスの着色が強まるおそれがある。
【0040】
本実施形態に係る光学ガラスにおける上記以外のガラス成分の含有量および比率について、以下に非制限的な例を示す。
【0041】
TiO、Nb、WO、BiおよびTaの合計含有量と、P、B、SiO、LiO、NaO、KOおよびCsOの合計含有量との質量比[(TiO+Nb+WO+Bi+Ta)/(P+B+SiO+LiO+NaO+KO+CsO)]の上限は、好ましくは0.45であり、さらには0.43、0.40、0.37、0.35、0.33の順により好ましい。また、該質量比の下限は、好ましくは0.10であり、さらには0.12、0.14、0.15の順により好ましい。
【0042】
所望の光学恒数を有する光学ガラスを得る観点から、質量比[(TiO+Nb+WO+Bi+Ta)/(P+B+SiO+LiO+NaO+KO+CsO)]は上記範囲とすることが好ましい。
【0043】
本実施形態に係る光学ガラスにおいて、TiOの含有量と、PおよびBの合計含有量との質量比[TiO/(P+B)]の下限は、好ましくは0.10であり、さらには0.16、0.21、0.24の順により好ましい。また、該質量比の上限は、好ましくは0.40であり、さらには0.37、0.35、0.33の順により好ましい。
【0044】
TiOは、高屈折率高分散化成分の中でも、特に高分散化の作用が大きい成分である。しかしTiOの含有量が多くなると、熱的安定性、耐失透性が低下するおそれがある。したがって、高分散であり、熱的安定性および耐失透性に優れる光学ガラスを得る観点から、質量比[TiO/(P+B)]は上記範囲とすることが好ましい。
【0045】
本実施形態に係る光学ガラスにおいて、P、BおよびSiOの合計含有量と、LiO、NaO、KOおよびCsOの合計含有量との質量比[(P+B+SiO)/(LiO+NaO+KO+CsO)]の下限は、好ましくは0.80であり、さらには1.00、1.20、1.30の順により好ましい。また、該質量比の上限は、好ましくは2.60であり、さらには2.40、2.20、2.10の順により好ましい。
【0046】
熱的安定性に優れる光学ガラスを得る観点から、質量比[(P+B+SiO)/(LiO+NaO+KO+CsO)]は上記範囲とすることが好ましい。
【0047】
本実施形態に係る光学ガラスにおいて、TiOの含有量と、TiO、Nb、WO、BiおよびTaの合計含有量との質量比[TiO/(TiO+Nb+WO+Bi+Ta)]の下限は、好ましくは0.20であり、さらには0.30、0.40、0.50の順により好ましい。また、該質量比の上限は、好ましくは0.90であり、さらには0.80、0.70、0.60の順により好ましい。該質量比は1.00でもよい。
【0048】
TiOは、高屈折率高分散化成分の中でも、特に高分散化の作用が大きい成分である。したがって、所望の光学恒数を有し、かつ熱的安定性および耐失透性に優れる光学ガラスを得る観点から、質量比[TiO/(TiO+Nb+WO+Bi+Ta)]は上記範囲とすることが好ましい。
【0049】
本実施形態に係る光学ガラスにおいて、NaOの含有量とKOの含有量との質量比[NaO/KO]の下限は、好ましくは0.80であり、さらには1.00、1.20、1.30の順により好ましい。また、該質量比の上限は、好ましくは2.70であり、さらには2.50、2.30、2.20の順により好ましい。
【0050】
ガラスの熱的安定性および耐失透性を改善する観点から、質量比[NaO/KO]は上記範囲とすることが好ましい。特に、屈折率の過度な低下や化学的耐久性の低下を抑制する観点から、該質量比の下限は上記範囲とすることが好ましい。
【0051】
本実施形態に係る光学ガラスにおいて、Alの含有量の上限は、好ましくは15.0%であり、さらには11.0%、8.0%、6.0%の順により好ましい。また、Alの含有量の下限は、好ましくは0%であり、さらには0.5%、1.0%、1.5%の順により好ましい。Alの含有量は0%でもよい。
【0052】
ガラスの耐失透性が低下するのを抑制する観点から、Alの含有量は上記範囲とすることが好ましい。
【0053】
本実施形態に係る光学ガラスにおいて、SiOの含有量の上限は、好ましくは5.0%であり、さらには4.0%、3.0%、2.0%の順により好ましい。SiOの含有量の下限は、好ましくは0%である。SiOの含有量は0%でもよい。
【0054】
SiOは、ガラスのネットワーク形成成分であり、ガラスの熱的安定性、化学的耐久性、耐候性を改善し、熔融ガラスの粘度を高め、熔融ガラスを成形しやすくする働きを有する。一方、SiOの含有量が多いと、ガラスの耐失透性が低下する傾向がある。そのため、ガラスの熱的安定性および耐失透性等を改善する観点から、SiOの含有量の上限は上記範囲であることが好ましい。
【0055】
なお、ガラスの熔融に石英ガラス製坩堝などの石英ガラス製の熔融器具を使用することがある。この場合、熔融器具からガラス熔融物に少量のSiOが溶け込むため、ガラス原料がSiOを含んでいなくても作製したガラスは少量のSiOを含有する。石英ガラス製の熔融器具からガラスに混入するSiOの量は熔融条件にもよるが、例えば、全ガラス成分の含有量の合計に対し、0.5~1質量%程度である。SiO以外のガラス成分の含有比は一定のまま、SiOの量が0.5~1質量%程度増加する。なお、熔解条件によって上記量は増減する。SiOの含有量によって、屈折率、アッベ数などの光学特性が変化するので、SiO以外のガラス成分の含有量を微調整して所望の光学特性を有する光学ガラスを得る。
【0056】
本実施形態に係る光学ガラスにおいて、TiOの含有量の下限は、好ましくは0%であり、さらには5.0%、9.0%、12.0%の順により好ましい。TiOの含有量は0%でもよい。また、TiOの含有量の上限は、好ましくは30.0%であり、さらには25.0%、21.0%、18.0%の順により好ましい。
【0057】
TiOは、高分散化に大きく寄与する。一方、TiOは、比較的ガラスの着色を増大させやすい。また、TiOは、熔融ガラスを成形、徐冷して光学ガラスを得る過程で、ガラス内における結晶生成を促進させ、ガラスの透明性を低下(白濁)させる。したがって、TiOの含有量は上記範囲であることが好ましい。
【0058】
本実施形態に係る光学ガラスにおいて、Taの含有量の上限は、好ましくは10.0%であり、さらには5.0%、3.0%、1.0%の順により好ましい。また、Taの含有量の下限は、好ましくは0%である。Taの含有量は0%でもよい。
【0059】
Taは、ガラスの熱的安定性および耐失透性を改善する働きを有するガラス成分である。一方、Taは、屈折率を上昇させ、ガラスを高分散化させる。また、Taの含有量が多くなると、ガラスの熱的安定性が低下し、ガラスを熔融するときに、ガラス原料の熔け残りが生じやすくなる。そのため、Taの含有量は上記範囲であることが好ましい。さらに、Taは、他のガラス成分と比較し、極めて高価な成分であり、Taの含有量が多くなるとガラスの生産コストが増大する。さらに、Taは他のガラス成分と比べて分子量が大きいため、ガラスの比重を増大させ、結果的に光学素子の重量を増大させるおそれがある。
【0060】
本実施形態に係る光学ガラスにおいて、LiOの含有量の上限は、好ましくは5%であり、さらには3%、2%、1%の順により好ましい。LiOの含有量の下限は、好ましくは0%である。LiOの含有量は0%でもよい。
【0061】
LiOは、ガラス転移温度Tgを下げる働きを有する。一方、LiOの含有量が多くなると、耐酸性が低下する。したがって、LiOの含有量は上記範囲であることが好ましい。
【0062】
本実施形態に係る光学ガラスにおいて、LiO、NaOおよびKOの合計含有量[LiO+NaO+KO]の上限は、好ましくは45.0%であり、さらには42.0%、39.0%、37.0%の順により好ましい。また、該合計含有量の下限は、好ましくは10.0%であり、さらには15.0%、19.0%、22.0%の順により好ましい。
【0063】
LiO、NaOおよびKOは、いずれもガラスの熱的安定性を改善する働きを有する。しかし、これらの含有量が多くなると、化学的耐久性、耐候性が低下する。そのため、LiO、NaOおよびKOの合計含有量[LiO+NaO+KO]は上記範囲であることが好ましい。
【0064】
本実施形態に係る光学ガラスにおいて、CsOの含有量の上限は、好ましくは5%であり、さらには3%、2%、1%の順により好ましい。また、CsOの含有量の下限は、好ましくは0%である。CsOの含有量は0%でもよい。
【0065】
CsOは、ガラスの熱的安定性を改善する働きを有するが、含有量が多くなると、ガラスの熱的安定性、化学的耐久性、耐候性が低下する。そのため、CsOの含有量は、上記範囲であることが好ましい。
【0066】
本実施形態に係る光学ガラスにおいて、MgOの含有量の上限は、好ましくは10.0%であり、さらには8.0%、7.0%、6.0%、5.0%の順により好ましい。また、MgOの含有量の下限は、好ましくは0%である。MgOの含有量は0%でもよい。
【0067】
本実施形態に係る光学ガラスにおいて、CaOの含有量の上限は、好ましくは10.0%であり、さらには8.0%、7.0%、6.0%、5%の順により好ましい。また、CaOの含有量の下限は、好ましくは0%である。CaOの含有量は0%でもよい。
【0068】
本実施形態に係る光学ガラスにおいて、SrOの含有量の上限は、好ましくは10.0%であり、さらには8.0%、7.0%、6.0%、5.0%の順により好ましい。また、SrOの含有量の下限は、好ましくは0%である。SrOの含有量は0%でもよい。
【0069】
MgO、CaO、SrO、BaOは、いずれもガラスの熱的安定性および耐失透性を改善する働きを有するガラス成分である。しかし、これらガラス成分の含有量が多くなると、高分散性が損なわれ、また、ガラスの熱的安定性および耐失透性が低下する。そのため、これらガラス成分の各含有量は、それぞれ上記範囲であることが好ましい。
【0070】
本実施形態に係る光学ガラスにおいて、ZrOの含有量の上限は、好ましくは10.0%であり、さらには8.0%、7.0%、6.0%、5.0%の順により好ましい。また、ZrOの含有量の下限は、好ましくは0%である。ZrOの含有量は0%でもよい。
【0071】
ZrOは、ガラスの熱的安定性および耐失透性を改善する働きを有するガラス成分である。しかし、ZrOの含有量が多すぎると、熱的安定性が低下する傾向を示す。そのため、ガラスの熱的安定性および耐失透性を良好に維持する観点から、ZrOの含有量は上記範囲であることが好ましい。
【0072】
本実施形態に係る光学ガラスにおいて、Scの含有量の上限は、好ましくは2%である。また、Scの含有量の下限は、好ましくは0%である。
【0073】
本実施形態に係る光学ガラスにおいて、HfOの含有量の上限は、好ましくは2%である。また、HfOの含有量の下限は、好ましくは0%である。
【0074】
Sc、HfOは、いずれも屈折率ndを高める働きを有し、また高価な成分である。そのため、Sc、HfOの各含有量は上記範囲であることが好ましい。
【0075】
本実施形態に係る光学ガラスにおいて、Luの含有量の上限は、好ましくは2%である。また、Luの含有量の下限は、好ましくは0%である。
【0076】
Luは、屈折率ndを高める働きを有する。また、分子量が大きいことから、ガラスの比重を増加させるガラス成分でもある。そのため、Luの含有量は上記範囲であることが好ましい。
【0077】
本実施形態に係る光学ガラスにおいて、GeOの含有量の上限は、好ましくは2%である。また、GeOの含有量の下限は、好ましくは0%である。
【0078】
GeOは、屈折率ndを高める働きを有し、また、一般的に使用されるガラス成分の中で、突出して高価な成分である。したがって、ガラスの製造コストを低減する観点から、GeOの含有量は上記範囲であることが好ましい。
【0079】
本実施形態に係る光学ガラスにおいて、Laの含有量の上限は、好ましくは10.0%であり、さらには8.0%、7.0%、6.0%、5.0%の順により好ましい。また、Laの含有量の下限は、好ましくは0%である。Laの含有量は0%であってもよい。
【0080】
Laの含有量が多くなるとガラスの熱的安定性および耐失透性が低下し、製造中にガラスが失透しやすくなる。したがって、熱的安定性および耐失透性の低下を抑制する観点から、Laの含有量は上記範囲であることが好ましい。
【0081】
本実施形態に係る光学ガラスにおいて、Gdの含有量の上限は、好ましくは10.0%であり、さらには8.0%、7.0%、6.0%、5.0%の順により好ましい。また、Gdの含有量の下限は、好ましくは0%である。
【0082】
Gdの含有量が多くなり過ぎるとガラスの熱的安定性および耐失透性が低下し、製造中にガラスが失透しやすくなる。また、Gdの含有量が多くなり過ぎるとガラスの比重が増大し、好ましくない。したがって、ガラスの熱的安定性および耐失透性を良好に維持しつつ、比重の増大を抑制する観点から、Gdの含有量は上記範囲であることが好ましい。
【0083】
本実施形態に係る光学ガラスにおいて、Yの含有量の上限は、好ましくは10.0%であり、さらには8.0%、7.0%、6.0%、5.0%の順により好ましい。また、Yの含有量の下限は、好ましくは0%である。Yの含有量は0%であってもよい。
【0084】
の含有量が多くなり過ぎるとガラスの熱的安定性および耐失透性が低下する。したがって、熱的安定性および耐失透性の低下を抑制する観点から、Yの含有量は上記範囲であることが好ましい。
【0085】
本実施形態に係る光学ガラスにおいて、Ybの含有量の上限は、好ましくは2%である。また、Ybの含有量の下限は、好ましくは0%である。
【0086】
Ybは、La、Gd、Yと比べて分子量が大きいため、ガラスの比重を増大させる。ガラスの比重が増大すると、光学素子の質量が増大する。例えば、質量の大きいレンズをオートフォーカス式の撮像レンズに組み込むと、オートフォーカス時にレンズの駆動に要する電力が増大し、電池の消耗が激しくなる。したがって、Ybの含有量を低減させて、ガラスの比重の増大を抑えることが望ましい。
【0087】
また、Ybの含有量が多すぎるとガラスの熱的安定性および耐失透性が低下する。ガラスの熱的安定性の低下を防ぎ、比重の増大を抑制する観点から、Ybの含有量は上記範囲であることが好ましい。
【0088】
本実施形態に係る光学ガラスは、主として上述のガラス成分、すなわち、必須成分としてB、KO、P、NaO、任意成分としてZnO、Nb、WO、Bi、Al、SiO、TiO、Ta、LiO、CsO、MgO、CaO、SrO、BaO、ZrO、Sc、HfO、Lu、GeO、La、Gd、Y、およびYbで構成されていることが好ましく、上述のガラス成分の合計含有量は、95%以上が好ましく、98%以上より好ましく、99%以上がさらに好ましく、99.5%以上が一層好ましい。
【0089】
本実施形態に係る光学ガラスにおいて、TeOの含有量の上限は、好ましくは2%である。また、TeOの含有量の下限は、好ましくは0%である。
【0090】
TeOは毒性を有することから、TeOの含有量を低減させることが好ましい。そのため、TeOの含有量は上記範囲であることが好ましい。
【0091】
なお、本実施形態に係る光学ガラスは、基本的に上記ガラス成分により構成されることが好ましいが、本発明の作用効果を妨げない範囲において、その他の成分を含有することも可能である。また、本発明において、不可避的不純物の含有を排除するものではない。
【0092】
<その他の成分組成>
Pb、As、Cd、Tl、Be、Seは、いずれも毒性を有する。そのため、本実施形態に係る光学ガラスがこれら元素をガラス成分として含有しないことが好ましい。
【0093】
U、Th、Raはいずれも放射性元素である。そのため、本実施形態に係る光学ガラスがこれら元素をガラス成分として含有しないことが好ましい。
【0094】
V、Cr、Mn、Fe、Co、Ni、Cu、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tmは、ガラスの着色を増大させ、蛍光の発生源となり得る。そのため、本実施形態に係る光学ガラスがこれら元素をガラス成分として含有しないことが好ましい。
【0095】
Sb(Sb)、Sn(SnO)、Ce(CeO)は清澄剤として機能する任意に添加可能な元素である。このうち、Sb(Sb)は、清澄効果の大きな清澄剤である。しかし、Sb(Sb)は酸化性が強く、Sb(Sb)の添加量を多くしていくと、精密プレス成形のときに、ガラスに含まれるSb(Sb)がプレス成形型の成形面を酸化する。そのため、精密プレス成形を重ねるうちに、成形面が著しく劣化し、精密プレス成形ができなくなる。また、成形した光学素子の表面品質が低下する。また、Sn(SnO)、Ce(CeO)は、Sb(Sb)と比較し、清澄効果が小さい。さらに、Ce(CeO)は、多量に添加するとガラスの着色が強まる。したがって、清澄剤を添加する場合は、添加量に注意しつつ、Sb(Sb)を添加することが好ましい。
【0096】
下記清澄剤の含有量については、酸化物換算した値を示す。
Sbの含有量は、外割り表示とする。すなわち、Sb、SnOおよびCeO以外の全ガラス成分の合計含有量を100質量%としたときのSbの含有量は、好ましくは1質量%以下であり、さらには0.2質量%以下、0.05質量%以下、0.02質量%以下、0.01質量%以下の順により好ましい。Sbの含有量は0質量%であってもよい。
【0097】
SnOの含有量も、外割り表示とする。すなわち、SnO、SbおよびCeO以外の全ガラス成分の合計含有量を100質量%としたときのSnOの含有量は、好ましくは1質量%以下、より好ましくは0.2質量%以下、さらに好ましくは0.02質量%以下である。SnOの含有量は0質量%であってもよく、SnOは実質的に含まれないことが好ましい。SnOの含有量を上記範囲とすることによりガラスの清澄性を改善できる。
【0098】
CeOの含有量も、外割り表示とする。すなわち、CeO、Sb、SnO以外の全ガラス成分の合計含有量を100質量%としたときのCeOの含有量は、好ましくは1質量%以下、より好ましくは0.2質量%以下、さらに好ましくは0.02質量%以下である。CeOの含有量は0質量%であってもよく、CeOは実質的に含まれないことが好ましい。CeOの含有量を上記範囲とすることによりガラスの清澄性を改善できる。
【0099】
(ガラス特性)
<屈折率nd>
本実施形態に係る光学ガラスにおいて、屈折率ndは、好ましくは1.55~1.68であり、さらには1.55~1.65、または1.57~1.64の範囲でもよい。
【0100】
屈折率ndは各ガラス成分の含有量を適宜調整することにより所望の値にすることができる。相対的に屈折率ndを高める働きを有する成分(高屈折率化成分)は、Nb、TiO、WO、Bi、Ta、ZrO、La等である。一方、相対的に屈折率ndを低くする働きを有する成分(低屈折率化成分)は、P、SiO2、B、LiO、NaO、KO等である。したがって、P、B、SiO、LiO、NaO、KOおよびCsOの合計含有量に対するTiO、Nb、WO、BiおよびTaの合計含有量の質量比[(TiO+Nb+WO+Bi+Ta)/(P+B+SiO+LiO+NaO+KO+CsO)]を増加させることにより屈折率ndを高めることができ、該質量比を減少させることにより屈折率ndを低下させることができる。
【0101】
<アッベ数νd>
本実施形態に係る光学ガラスにおいて、アッベ数νdは、好ましくは25~50であり、より好ましくは28~45である。
【0102】
アッベ数νdは、各ガラス成分の含有量を適宜調整することにより所望の値にすることができる。相対的にアッベ数νdを低くする成分、すなわち高分散化成分は、Nb、TiO、WO、Bi、Ta、ZrO等である。一方、相対的にアッベ数νdを高くする成分、すなわち低分散化成分は、P、SiO2、B、LiO、NaO、KO、La、BaO、CaO、SrO等である。
【0103】
<ガラスの比重>
本実施形態に係る光学ガラスにおいて、比重は、好ましくは3.20以下であり、さらには、3.10以下、2.95以下の順により好ましい。比重の下限は特に限定されないが、通常2.50である。ガラスの比重を低減することができれば、レンズの重量を減少できる。その結果、レンズを搭載するカメラレンズのオートフォーカス駆動の消費電力を低減できる。
【0104】
<ガラス転移温度Tg>
本実施形態に係る光学ガラスのガラス転移温度Tgは、好ましくは520℃以下であり、さらには500℃以下、480℃以下、470℃以下の順により好ましい。ガラス転移温度Tgの下限は、通常300℃であり、好ましくは350℃である。
【0105】
ガラス転移温度Tgの上限が上記範囲を満たすことにより、ガラスの成型温度およびアニール温度の上昇を抑制することができ、プレス成形用設備およびアニール設備への熱的ダメージを軽減できる。また、ガラス転移温度Tgの下限が上記範囲を満たすことにより、所望のアッベ数、屈折率を維持しつつ、ガラスの熱的安定性を良好に維持しやすくなる。
【0106】
<ガラスの光線透過性>
本実施形態に係る光学ガラスの光線透過性は、着色度λ5により評価できる。
厚さ10.0mm±0.1mmのガラス試料について波長200~700nmの範囲で分光透過率を測定し、外部透過率が5%となる波長をλ5とする。
【0107】
本実施形態に係る光学ガラスのλ5は、好ましくは390nm以下であり、より好ましくは380nm以下であり、さらに好ましくは375nm以下である。
【0108】
λ5が短波長化された光学ガラスを用いることで、好適な色再現を可能とする光学素子を提供できる。
【0109】
<平均線膨張係数α100-300
本実施形態に係る光学ガラスにおいて、100~300℃における平均線膨張係数α100-300の下限は、好ましくは100×10-7-1であり、さらには120×10-7-1、130×10-7-1、140×10 -7 -1の順により好ましい。また、平均線膨張係数α100-300の上限は、ガラスの安定性を保持し所望の光学特性を得る観点から、210×10-7-1を例示でき、好ましくは205×10-7-1であり、さらには200×10-7-1、195×10-7-1、190×10-7-1の順により好ましい。
【0110】
平均線膨張係数α100-300は、JOGIS08-2019の規定に基づいて測定する。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とする。試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように加熱し、温度と試料の伸びを1秒刻みで測定する。平均線膨張係数α100-300は100~300℃における線膨張係数の平均値である。
なお、本明細書では、平均線膨張係数αを[℃-1]の単位で表しているが、単位として[K-1]を用いた場合でも平均線膨張係数αの数値は同じである。
【0111】
(光学ガラスの製造)
本発明の実施形態に係る光学ガラスは、上記所定の組成となるようにガラス原料を調合し、調合したガラス原料により公知のガラス製造方法に従って作製すればよい。例えば、複数種の化合物を調合し、十分混合してバッチ原料とし、バッチ原料を石英坩堝や白金坩堝中に入れて粗熔解(ラフメルト)する。粗熔解によって得られた熔融物を急冷、粉砕してカレットを作製する。さらにカレットを白金坩堝中に入れて加熱、再熔融(リメルト)して熔融ガラスとし、さらに清澄、均質化した後に熔融ガラスを成形し、徐冷して光学ガラスを得る。熔融ガラスの成形、徐冷には、公知の方法を適用すればよい。
【0112】
なお、ガラス中に所望のガラス成分を所望の含有量となるように導入することができれば、バッチ原料を調合するときに使用する化合物は特に限定されないが、このような化合物として、酸化物、炭酸塩、硝酸塩、水酸化物、フッ化物等が挙げられる。
【0113】
(光学素子等の製造)
本発明の実施形態に係る光学ガラスを使用して光学素子を作製するには、公知の方法を適用すればよい。例えば、ガラス原料を熔融して熔融ガラスとし、この熔融ガラスを鋳型に流し込んで板状に成形し、本発明に係る光学ガラスからなるガラス素材を作製する。得られたガラス素材を適宜、切断、研削、研磨し、プレス成形に適した大きさ、形状のカットピースを作製する。カットピースを加熱、軟化して、公知の方法でプレス成形(リヒートプレス)し、光学素子の形状に近似する光学素子ブランクを作製する。光学素子ブランクをアニールし、公知の方法で研削、研磨して光学素子を作製する。
【0114】
作製した光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしてもよい。
【0115】
光学素子としては、球面レンズなどの各種レンズ、プリズム、回折格子などが例示できる。
【0116】
以下に本発明を実施例により説明するが、本発明は以下の実施例のみに限定されるものでは無い。
【0117】
(実施例)
[ガラスサンプルの作製]
表1(1)、(2)に示す試料No.1~32の組成を有するガラスとなるように、各成分に対応する化合物原料、すなわち、リン酸塩、炭酸塩、酸化物等の原料を秤量し、十分混合して調合原料とした。該調合原料を白金製坩堝に投入し、大気雰囲気下で900~1350℃に加熱して熔融し、攪拌により均質化、清澄して熔融ガラスを得た。該熔融ガラスを成形型に鋳込んで成形し、徐冷して、ブロック形状のガラスサンプルを得た。
なお、調合原料を石英ガラス製坩堝に投入し、熔融した後、白金製坩堝へ移してさらに加熱して熔融し、攪拌により均質化、清澄して得た熔融ガラスを成形型に鋳込んで成形、徐冷してもよい。
【0118】
[ガラスサンプルの評価]
得られたガラスサンプルについて、以下に示す方法にて、ガラス組成、比重、屈折率nd、アッベ数νd、λ5、ガラス転移温度Tg、平均線膨張係数α100-300を測定し、また、耐失透性を評価した。結果を、表2(1)、(2)に示す。
【0119】
〔1〕ガラス組成
得られたガラスサンプルについて、誘導結合プラズマ発光分光分析法(ICP-AES)で各ガラス成分の含有量を測定した。
【0120】
〔2〕比重
日本光学硝子工業会規格JOGIS-05に基づいて測定した。
【0121】
〔3〕屈折率ndおよびアッベ数νd
日本光学硝子工業会規格JOGIS-01に基づいて測定した。
【0122】
〔4〕λ5
ガラスサンプルを、厚さ10mmで、互いに平行かつ光学研磨された平面を有するように加工し、波長280nmから700nmまでの波長域における分光透過率を測定した。光学研磨された一方の平面に垂直に入射する光線の強度を強度Aとし、他方の平面から出射する光線の強度を強度Bとして、分光透過率B/Aを算出した。分光透過率が5%になる波長をλ5とした。なお、分光透過率には試料表面における光線の反射損失も含まれる。
【0123】
〔5〕ガラス転移温度Tg
ガラス転移温度Tgは、示差走査型熱量計DSC3300SA(ネッチ・ジャパン株式会社(NETZSCH Japan))を用いて固体状態のガラスを昇温したときのDSCチャートに基づいて求めた。
【0124】
〔6〕平均線膨張係数α100-300
得られたガラスサンプルについて、JOGIS08-2019の規定を参照して平均線膨張係数を測定した。平均線膨張係数は、熱機械分析装置TMA4000SE(ネッチ・ジャパン株式会社(NETZSCH Japan))を使用し測定した。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とした。測定中は試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように昇温させながら、温度と試料の伸びを1秒刻みで測定した。100~300℃における線膨張係数の平均値を平均線膨張係数α100-300とした。
【0125】
〔7〕耐失透性
得られたガラスサンプルについて、結晶または白濁の有無を光学顕微鏡で確認した。光学顕微鏡の観察倍率は、10~100倍とした。ガラス内部に、結晶も白濁も確認されなかった場合は「良」、結晶および白濁の少なくとも一方が確認された場合は「不良」と判定した。実施例の試料No.1~32はいずれも「良」の判定であった。実施例の試料No.1~32は、耐失透性に優れたガラスであることが確認された。
【0126】
【表1(1)】
【0127】
【表1(2)】
【0128】
【表2(1)】
【0129】
【表2(2)】
【0130】
(実施例2)
実施例1で得られたガラスサンプルを、切断、研削してカットピースを作製した。カットピースをリヒートプレスによりプレス成形して、光学素子ブランクを作製した。光学素子ブランクを精密アニールし、所要の屈折率になるよう屈折率を精密に調整した後、公知の方法で研削、研磨することで、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズ、凹メニスカスレンズ、凸メニスカスレンズ等の各種レンズが得られた。
【0131】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0132】
例えば、上記に例示されたガラス組成に対し、明細書に記載の組成調整を行うことにより、本発明の一態様にかかる光学ガラスを作製できる。
また、明細書に例示または好ましい範囲として記載した事項の2つ以上を任意に組み合わせることは、もちろん可能である。