(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-19
(45)【発行日】2024-12-27
(54)【発明の名称】宇宙船推進システム及び操作方法
(51)【国際特許分類】
B64G 1/40 20060101AFI20241220BHJP
【FI】
B64G1/40 500
(21)【出願番号】P 2023522957
(86)(22)【出願日】2021-10-14
(86)【国際出願番号】 EP2021078449
(87)【国際公開番号】W WO2022079168
(87)【国際公開日】2022-04-21
【審査請求日】2024-06-05
(32)【優先日】2020-10-15
(33)【優先権主張国・地域又は機関】GB
【早期審査対象出願】
(73)【特許権者】
【識別番号】523132594
【氏名又は名称】アイサイ オサケユキチュア
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100123630
【氏名又は名称】渡邊 誠
(72)【発明者】
【氏名】コルチツ ヤクプ
(72)【発明者】
【氏名】デ オランダ ヨナタン
(72)【発明者】
【氏名】モドルゼフスキ ラファル
【審査官】諸星 圭祐
(56)【参考文献】
【文献】特開平11-082286(JP,A)
【文献】国際公開第2019/215335(WO,A1)
【文献】米国特許出願公開第2005/0046358(US,A1)
【文献】米国特許第06362574(US,B1)
【文献】米国特許第06279314(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
B64G 1/00-99/00
F03H 1/00-99/00
(57)【特許請求の範囲】
【請求項1】
少なくとも1基のスラスタを備えた宇宙船推進システムの操作方法であって、前記少なくとも1基のスラスタは、前記宇宙船を推進するためのイオン流を生成するためのイオン源と、電子を放出するための電子源とを備え、前記方法は、前記電子源を制御して電子の生成を抑制し、前記電子源をオフ状態からオン状態に漸進的にランプアップする及び/又は前記電子源をオン状態からオフ状態に漸進的にランプダウンすることで前記少なくとも1基のスラスタを操作することを含む、方法。
【請求項2】
前記少なくとも1基のスラスタの前記イオン源を制御して、前記電子源がオン状態になった後にイオン生成を開始すること、及び/又は前記電子源を制御して、前記イオン源がオフ状態になった後にランプダウンを開始することを含む、請求項1に記載の方法。
【請求項3】
前記イオン源を制御して、前記イオン源のオフ状態からオン状態に漸進的にランプアップする及び/又は前記イオン源のオン状態からオフ状態に漸進的にランプダウンするために前記イオン生成を抑制することを含む、請求項2に記載の方法。
【請求項4】
前記ランプアップ及び/又は前記ランプダウンが、1秒より長い、任意には5秒又は10秒より長い期間を有する、請求項1から3のいずれかに記載の方法。
【請求項5】
前記ランプアップ及び/又は前記ランプダウンが、10分より短い、任意には2分又は1分より短い期間を有する、請求項1から4のいずれかに記載の方法。
【請求項6】
前記推進システムが複数基のスラスタを備え、各々は前記宇宙船を推進するイオンを供給するためのイオン源と、少なくとも1基の電子源を備え、前記方法は、
請求項1から5のいずれか1つに記載の方法に従って各スラスタを操作することを含む、請求項1から5のいずれかに記載の方法。
【請求項7】
前記イオン源の前記操作を制御して、
全ての前記スラスタの前記電子源がオン状態になった後に開始することを含む、請求項6に記載の方法。
【請求項8】
前記各スラスタの前記イオン源を制御して、1つずつ、任意に1台がオン状態に達した後に操作を開始することを含む、請求項6又は7に記載の方法。
【請求項9】
前記各スラスタの前記電子源を制御して、1つずつ、任意に1台がオン状態に達した後に操作を開始することを含む、請求項6、7又は8に記載の方法。
【請求項10】
全ての前記スラスタを駆動するための前記電子源を制御して、
全ての前記イオン源を操作し終わった後、任意に1つずつ操作が終了した後に操作を継続することを含む、請求項6から9のいずれかに記載の方法。
【請求項11】
前記各スラスタの前記イオン源を制御して、1つずつ、任意に1台がオフ状態に達した後に操作を終了することを含む、請求項6から10のいずれかに記載の方法。
【請求項12】
イオンでなく電子を生成するために追加のスラスタを操作し、前記
追加のスラスタの前記電子源を操作して、
前記スラスタを駆動するためにいずれかの前記イオン源又は前記電子源の前記操作前に開始する、及び/又は前記
スラスタを駆動するために全ての前記イオン源又は全ての前記電子源の操作終了後に終了することを含む、請求項6から11のいずれかに記載の方法。
【請求項13】
少なくとも1基のスラスタを備える宇宙船推進システムであって、前記少なくとも1基のスラスタは、前記宇宙船を推進するイオン流を生成するためのイオン源、及び少なくとも1基の電子源、並びに
請求項1から12のいずれか1つに記載の方法に従って前記推進システムを操作するように構成されたコントローラを備える、システム。
【請求項14】
宇宙船推進システムコントローラ内のプロセッサ内に実装された場合、
請求項1から12のいずれか1つに記載の方法に従って前記
推進システムを操作する命令を含むコンピュータ読み取り可能媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、宇宙船推進に関する。本発明は、通信衛星及びその他の種類の宇宙船に使用され得る。
【背景技術】
【0002】
地球を周回する軌道上にある通信衛星は、例えば、物体の位置追跡、サイトの監視や、気候パターンの変化の観察などの様々な用途でますます使用されるようになっている。衛星及びその他宇宙船は、一般に、1台以上のイオンスラスタからなる電気推進システムを備える。イオンスラスタにおいて、中性ガスは、電子を引き抜くことでイオン化され、正イオンの流れを形成する。これらのイオンは、例えば、連続する複数のグリッド間の電位差により加速され、推力を生成する。そして、引き抜かれた電子は、このイオン流に注入され、ガスが再度中性になり、空間に分散し得るようにする。あるいは、これらのイオンは金属から抽出され、この場合、結果として生じる電子は、金属が負に帯電するのを避けるため放出され得る。引き抜かれた電子の供給源は、当技術分野ではニュートラライザーと参照される。
【0003】
特に明記しない限り、用語「スラスタ」は、本明細書では、宇宙船を推進するためのイオン流を生成するためのイオン源と、電子を放出するための、例えば、イオン流を中性化又は宇宙船の帯電を平衡化するための、少なくとも1基の電子源とを備える推進機構を指す。
【0004】
理想的には、軌道を周回する衛星には、最新の電子機器又はその他の設備を有し、これらは、最適状態で、かつ交換の必要なく長期間にわたって機能する必要がある。従って、宇宙船開発に関する多数の課題の1つは、その操作中のコンポーネントへの損傷を最小化することにある。
【0005】
本発明の複数の実施形態は、当該課題を解決することに限定されず、その他の課題の解決策を含み得る。
【発明の概要】
【0006】
本発明の一部の態様は、スラスタを備える宇宙船推進システムの操作方法を提供し、少なくとも1基のスラスタは、宇宙船を推進するためのイオン流を生成するためのイオン源と、電子を放出するための電子源とを備える。1つの方法は、電子源を制御して電子の生成を抑制し、電子源をオフ状態からオン状態に漸進的にランプアップする及び/又はオン状態からオフ状態に漸進的にランプダウンすることでスラスタを操作することを含む。
【0007】
この制御は、漸進的に増加又は減少する電圧、例えばランプであり得る制御信号を手段として用いるものであってよい。このように電子源を制御することで、電子放出の増加率又は減少率が、電子源のハードウェアコンポーネントの能力により抑制されるよりむしろ、例えば制御信号を介して接触的に抑制される。この能動制御の利点は、本発明の特定の複数の実施形態を参照してさらに説明される。
【0008】
本明細書でさらに説明される一部の方法は、イオン流の生成前に宇宙船を取り巻くプラズマに電子を注入すること、及びイオン流の生成開始後に電子の注入を継続することを含み得る。連続した注入は、実際には必ずしも測定されていないが、宇宙船を取り巻くプラズマに関して正電位に維持するためである。
【0009】
本発明の複数の方法は、単一のスラスタに実装され得る。複数基のスラスタを備えた宇宙船では、同一の方法が、2基以上のスラスタに実装され得る。
【0010】
推進システムが複数基のスラスタを備える場合、本発明の一部の実施形態の方法は、少なくとも1基のスラスタを予備又は「リザーブ」スラスタとして操作することを含み得る。少なくとも1基の予備のスラスタの電子源は、イオン流の生成前に、電子を宇宙船を取り巻くプラズマに注入するように操作され得る。そして、予備の1基又は複数基のスラスタにより生成された電子流が、所定の水準に達した後、1基又は複数基の駆動スラスタのイオン源及び電子源は、宇宙船を駆動するように操作され得て、一方で、予備のスラスタの操作を継続し、宇宙船を正電位に維持するために電子を注入する。この方法では、予備のスラスタのイオン源は操作されない。
【0011】
複数基のスラスタが運用される場合、以下の内、いずれか1つ以上が実行され、電子源の漸進的なオン又はオフを補足することができる。
- 各駆動スラスタの少なくとも1基の電子源を操作して、宇宙船を推進するためにイオン源を操作してイオン流を生成する前に、宇宙船を取り巻くプラズマに電子を注入する。
- 各駆動スラスタの少なくとも1基の電子源の操作を継続し、同一の駆動スラスタのイオン源の操作が終了後もプラズマへ電子を注入する。
- 複数基の駆動スラスタのそれぞれの電子源の操作を、複数基の駆動スラスタのいずれかのイオン源のいずれかの操作を任意に1つずつ開始する前に開始する。
- 全ての複数基の駆動スラスタの少なくとも1基の電子源の操作を、全てのイオン源の操作が終了後、任意に1つずつ操作が終了した後に、継続する。
- 複数台のイオン源の1つずつの操作を開始する。
- 複数台のイオン源の1つずつの操作を終了する。
【0012】
宇宙船推進システムは、本明細書に記載された複数の方法を実装するために設計され得、従って、本発明のさらなる態様によれば、少なくとも1基のスラスタであって、宇宙船を推進するためのイオン流を生成するための1台のイオン源と少なくとも1基の電子源とを備える少なくとも1基のスラスタ、及び本明細書に記載される複数の方法のいずれかによって推進システムを操作するように構成されたコントローラを備える宇宙船推進システムが提供される。
【0013】
本発明の複数の実施形態の複数の方法は、既存の宇宙船推進システムで実行され得る。従って、本発明のさらなる態様によれば、宇宙船推進システムコントローラ内のプロセッサ内に実装された場合、本明細書記載の複数の方法のいずかによりシステムを操作する複数の命令を含むコンピュータ読み取り可能な媒体が提供される。
【0014】
本概要は、概念の選択を簡素化された形態で導入するために提供されたものであり、これは以下「発明の詳細な説明」項で詳細に説明されることは理解されるであろう。
【0015】
本概要は、特許請求された主題の主要な機能又は不可欠な機能を特定することを意図されておらず、特許請求された主題の範囲を決定することも意図されていない。
【図面の簡単な説明】
【0016】
本発明の一部の実施形態は、例として、以下の図面を参照して説明される。
【0017】
【
図1】本発明の一部の実施形態の衛星のコンポーネントを表す模式図である。
【
図2】本発明の一部の実施形態の衛星の様々な透視図を示す。
【
図3】本発明の一部の実施形態の衛星の様々な透視図を示す。
【
図4】本発明の一部の実施形態の衛星の様々な透視図を示す。
【
図5】本発明の一部の実施形態のスラスタの模式図である。
【
図6】衛星の複数のコンポーネント、複数のコンポーネントの間に生じ得る電圧及び静電容量、並びに本発明の一部の実施形態に従って推進システムを操作することによる周囲のプラズマを示す。
【
図7】本発明の一部の実施形態に従った衛星のコンポーネント及び周囲のプラズマの電気特性の回路モデルを示す。
【
図8】本発明の一部の実施形態に従ったパッチと宇宙船フレームとの間の電位差の経時的変化を示すグラフである。
【
図9】本発明の一部の実施形態に従った電子源及びイオン源の操作のシーケンスを図解するタイミング図を示す。
【0018】
これらの複数の図面は、必ずしも正確な縮尺で描かれていないことは理解されるべきである。
【発明を実施するための形態】
【0019】
本発明は、以下の、記述的で限定的でないことを意図している複数の実施形態の詳細の説明により理解されるであろう。簡潔に表現するため、一部の公知の特徴方法並びにシステムの手順の構成要素及び回路は詳細には説明されない。
【0020】
本発明の複数の実施形態は、複数のシステム及び宇宙船推進システムの複数の操作方法を提供する。これらを詳細に議論する前に、本発明の複数の実施形態が実装され得る宇宙船の複数のコンポーネントが説明される。
【0021】
図1は、本発明の一部の実施形態の衛星のコンポーネントを表す模式図である。複数のコンポーネント間の一方向性の実線の矢印が、電源接続を示すために使用され、二方向性の実線の矢印が、RF信号接続を示すために使用され、点線がデータ接続を示すため使用されている。
【0022】
一部のコンポーネントは、衛星本体に位置し、長方形120により示され、一部は、翼に位置し、長方形130により示されている。
図1に示されている衛星は、電源101及び配電システム102を備える。電源101及び配電システム102は、推進システム190、推進コントローラ109、計算システム103及び通信システム104に電源を供給する。ここでは推進コントローラ109は独立した品目として示されるが、実際には、計算システム103の一部を形成し得る。推進コントローラは、推進コントローラ109に含まれている1台以上のプロセッサに実装されている制御ソフトウェアの使用を通じて、又は例えば、計算システムからの受信した命令に応えて、本発明の一部の実施形態の複数の方法を実装するように構成され得る。これらの複数の命令が、計算システム103から送信される場合、計算システムは、推進コントローラを含むものとみなされ得る。推進コントローラ109の複数の機能の1つは、推進システム190のスラスタのイオン源及び電子源に制御信号を出力することであってよく、以下詳細に説明される。
【0023】
電源101、配電システム102、計算システム103及び通信システム104は、当技術分野では集合的に衛星「バス」と参照される。通信システム104は、例えば衛星本体上に位置する1基以上のアンテナを含み得る。あるいは、通信システム104は、翼130上の1基以上のアンテナを介して信号を送受信し得る。
【0024】
また、
図1に示された電源101及び配電システム102は、非図示の、本体120に位置され得る1基以上のセンサーにも電源を供給し得る。複数台のセンサーが、当技術分野において衛星「ペイロード」と知られているものの一部を形成する。複数台のセンサーの台数及び種類は、衛星の意図される使用により変わり得る。
【0025】
地球観測衛星の場合、ペイロードは、1基以上のレーダーアンテナ106又はアンテナアレイを含み、それらは、1基以上の翼130に位置され得る。各アンテナ106又はアンテナアレイは、電源101から配電システム108を介して、例えば配電システム102を介して電源が供給される関連する増幅器107を有し得る。複数の配電システム102及び108の両方は、当技術分野で周知の制御論理を備え得る。
【0026】
衛星の複数のコンポーネントは、使用中に損傷を受け得て、衛星が軌道に投入されると、損傷の原因を究明することはより困難である。本発明者らは、損傷の特定の原因が、過電圧・過電流ストレス「EOS」として知られる、コンポーネントに印加される過電圧又はコンポーネントを流れる過電流又はコンポーネント中で散逸される電力にコンポーネントがさらされていることから生じていると仮定した。これは、即時の損傷又は誤動作を生じさせ得て、あるいは、コンポーネントの耐用期間を短縮する結果となり得る。一部のコンポーネントは、他のものに比べ損傷に対してより影響を受け受けやすい場合があり、特に、一部の種類のアンテナは他のものに比べ損傷に対してより影響を受け受けやすい場合がある。
【0027】
図解された例では、増幅器107は、配電システム108を介した計算システム103との二方向データ通信リンクを有し、受信したレーダー信号に関連するデータなど、データを計算システム103に送信するように構成され得る。データは、通信システム103により処理され得て、例えば、地球の等高線データを提供し、このデータは、次いで、前方伝送を目的として通信システム104に出力され得る。あるいは、生データが計算システム103によって、地上又は別の衛星のリモート計算システムによる処理のために通信システム104に出力され得る。計算システム103は、当業者に周知であるものとして、操作命令、データリクエストやその他の信号などのデータを、例えば配電システム108を介して、増幅器107に送信し得る。
【0028】
通信システム104は、無線周波数通信、光、例えばレーザー通信、又は当技術分野で公知であるその他のあらゆる形態の通信を使って、地上局又はその他の衛星と通信し得る。
【0029】
図2、3及び4は、
図1の複数のコンポーネントを含み得る衛星140の透視図であり、
図3に示すものは宇宙空間の軌道を周回している。
図2の衛星は、
図1の本体120コンポーネントの一部が収容され得る、又はその上に
図1のコンポーネントの一部が取付され得る本体110を備える。本体110は、複数のバスコンポーネントを収納又は支持し得るため、当技術分野では「バス」とも参照されている。本体110は、追加的に1台以上の電池を収納し得る。本体110は、例えば、複数のコンポーネントを収容し保護するために部分的に囲われてもよい。筐体は、その上に複数のコンポーネントが取付され得る表面を提供し得る。
図2の例では、本体110の長方形の表面上にソーラーパネル150が取り付けられており、追加のソーラーパネル155は、ストラット115によりパネル150上に取り付けられている。
【0030】
衛星140は、2つの対向する方向に本体110から延びる一般的に平面な構造を備え、2基の「翼」160を提供する。複数の翼160を備える構造は、本体110の長方形の表面上に取り付けられるか隣接するように示されている。
図4により最も明瞭に示されているように、輸送用に折り畳みができ、かつ配備時に広げることができるように構造は組み立て式に形成されている。本体110及び複数の翼160は、本明細書では集合的に宇宙船フレームと参照され、以下に詳細が説明される電気特性を有する。
【0031】
上記で説明した1基以上のアンテナは、衛星の「翼」上に取付され得る。1基のアンテナアレイ180が、図解を目的として
図4の衛星から取り外されて示され、当技術分野で公知であるパッチアンテナを含み得る。その他の複数のコンポーネントは、配電コンポーネント及び増幅器を含めて、当技術分野で公知のように複数の翼上に取付され得て、その例は、以前の特許出願GB-A2598793に記載されている。この以前の特許出願に記載された衛星の電力制御スイッチは、特に損傷の影響を受けやすいことが判明している。複数のコンポーネントの様々な配置により、様々なコンポーネントがより損傷の影響を受けやすくなり場合がある。
【0032】
衛星140は、生成された推進力で衛星を操縦するための推進システム190を備える。推進システム190は、
図3において最も明瞭に図示されており、この実施形態では、本体110上の、複数のソーラーパネル150に対向する表面上に取り付けられている。
【0033】
図3に示すように、推進システム190は必要な場合に衛星140を操縦するための推力を生成する複数基のスラスタ205、210、215、220を備える。
図3に示す複数基のスラスタ205、210、215、220は、本体の片側の複数個のコーナーに位置されており、等しい間隙を介し得る。しかし、本発明の一部の実施形態では、推進システムは異なる構成を有し得る。
【0034】
図3に示す複数基のスラスタのそれぞれは、宇宙船を推進するイオン流を生成するためのイオン源と、イオン流を中性化するためにイオン流に電子を注入するための少なくとも1基の電子源とを備え得る。本発明の複数の実施形態は、この一般的な種類のスラスタを備え得る。一例が
図5に示されている。
【0035】
図5に示すスラスタは、エミッタとも参照されるイオン流503を生成するためのイオン源501と、この例では、イオン源501の反対側に配置されたフィラメント507の形状の2台の電子源505とを備える。図示のように、1台の電子源が動作し、イオン流503を中性化するためにニュートラライザービーム電流509として知られる形状の電子を放出している。
【0036】
イオンは、当技術分野で公知である適切な電圧が印加されたエキストラクター511及びエキストラクターグリッド513を使用して、イオン源501から出て引き付けられる。これは、矢印515方向に推力と反力517を生成する。
【0037】
図5に示す当業者の周知で本発明に必須でないその他のコンポーネントは、ヒータ519、リザーバ521及び印刷回路基板525を含む。完全なスラスタアセンブリは、筐体550内に保持される。
【0038】
ニュートラライザー、すなわち電子源505の操作は、周囲のプラズマに関して宇宙船の急速な帯電を引き起こす場合がある。多量の負に帯電した電子を放出することで、宇宙船は、より多くの正イオンを有することになるため、全体として正の電荷を有することができる。特に、電子源505が単にスイッチオンし、電子源のハードウェアが許可する限り高速にそのオン状態に達することが許可された場合、この帯電は非常に急速に、例えば1msの期間に起きる場合がある。この急速帯電は、宇宙船に搭載されている損傷を受けやすい電子コンポーネント、特に、しかし排他的ではないが、翼の端部などスラスタ近傍にあるかに関わらず、衛星本体から離れた場所に取り付けられたアンテナアレイ及びその他のコンポーネントに損傷を与える恐れがある。同様の効果は、電子源がスイッチオフされた場合に逆転して起こり得る。
【0039】
従って、一部の実施形態によれば、電子源がオフからオンに遷移する速度は、電子放出を抑制するために制御され、それにより、宇宙船フレームが帯電する速度も制御される。同様にして、電子源がオンからオフに遷移する速度は、生成の即時終了を避けるために抑制され得る。
【0040】
本発明の複数の実施形態を詳細に説明する前に、
図6を参照して、損傷のあり得る原因が最初に詳細に議論される。
【0041】
図6は、衛星140の複数のコンポーネント、その間に生じ得る電圧及び静電容量、並びに推進システム190の操作による取り巻くプラズマを示す模式図である。特に、
図6は、推進システム190、601と示される宇宙船フレーム、612と示される電源スイッチングコンポーネントなどの電子コンポーネント、例えば、パッチアンテナ180などの衛星上の痕跡又は領域の形態での金属構造610及び取り巻くプラズマ600を示す。
【0042】
図6によれば、宇宙船フレーム601は、1個以上の電子コンポーネント612を介して金属痕跡/領域610と、及び推進システム190と結合される。複数の金属構造610と衛星フレーム601との間に生じ得る電位差は、関連する静電容量C1とともにV1と参照され、一方で複数の金属構造610とプラズマ600との間に生じ得る電位差は、関連する静電容量C2とともにV2と参照される。V1とV2との総和は、V3と示される。これら及びその他の電気的効果は、例えば公知のモデリングプログラムであるSPICEを用いて、
図7を参照して詳細に説明されるように、個別の離散アナログ要素に関してモデル化され得る。
【0043】
本発明者らは、コンポーネントの損傷の原因及び起こり得る不具合が、推進システムのコンポーネント、特に電子源だけでなくイオン源の、オン状態からオフ状態、又はその逆方向の急速な変化により生じる高い電圧差であると仮定した。特に、宇宙船フレーム601からの電子放出は、周囲のプラズマ600に関してフレーム601の電位が変化することにつながる。同時に、アンテナパッチ及びその他の金属痕跡などの複数の金属構造610と周囲のプラズマ600との間に、自然(寄生)静電容量C2が存在する。この静電容量C2は、プラズマに関してそれら複数の金属構造の電位V2を短期間維持し得る。それは、プラズマ600に関してフレーム610の電位が変わり、すなわちV3が増加し、複数の金属構造の電位が変わらず、すなわちV2が変化しない状況をもたらし得る。それは、フレーム610とパッチとの間に電圧差V1を引き起こす。このような電圧差は、過電圧・過電流ストレスによりコンポーネントに損傷を与えかねない。
【0044】
ここで重要なのは、この寄生静電容量C2が、電位V2を短期間一定に保持していることである。もしフレームの電位変化の変化率が十分に遅ければ、(静電容量C2が「維持」し得るより遅く)、複数のコンポーネント612への損傷のリスクは緩和されるであろう。
【0045】
図7は、衛星140の複数のコンポーネント及び取り巻くプラズマの電気特性のSPICE回路モデルをより詳細に示す。特に、
図7の回路内でモデル化された複数のコンポーネントは、推進システム190、衛星フレーム601、複数の電子コンポーネント612、金属構造610(金属領域及び/又は金属痕跡を表すためにパッチアンテナが使用されている)、取り巻くプラズマ600、及び例えば当技術分野で公知である多層絶縁ブランケットなどの被膜といった追加的な保護シース620を含む。宇宙では、プラズマは、地球上の地面と同等である。フレーム601、パッチ610及びシース620のいずれかが、コンデンサの一「端」を形成することができる。パッチ610は、直接、電気コンポーネントに接続され、パッチ上の電圧差が、例えば、損傷を受けやすいことが判明している半導体スイッチなどの複数の電子コンポーネントに影響を及ぼすため、特に興味深い。
【0046】
図7に示すように、推進システム190は、並列に逆向きで配置された一対のダイオードD1及びD2に接続された電流源I1として、及び推進システム全体が設置されているものとしてモデル化されている。推進システム190の複数のコンポーネント612への接続、すなわち、衛星フレーム601による電気接続は、1ミリオームの抵抗器R1としてモデル化される。
【0047】
図7によれば、フレーム601は、推進システム190を複数の電子コンポーネント612に接続する。モデルによれば、フレームとプラズマとの間の静電容量は、22nFのコンデンサーCFXとしてモデル化される。複数の電子コンポーネントは、RC回路としてモデル化され、ここでRはフレームとパッチとの間の定格3Gオームの抵抗RFPを表し、Cは、フレームとパッチとの間の定格36pFの静電容量CFPを表す。パッチはシースとプラズマとに接続され、108nFのコンデンサCPSとしてモデル化される。
【0048】
まとめると、
図7において、
- CFXは、フレームとプラズマの間の静電容量を表し、
- CFPは、フレームとパッチの間の静電容量を表し、
図6のC1に等価であり、
- RFPは、フレームとパッチの間の抵抗を表し、
- CPSは、パッチとシースの間の静電容量を表し、
- CSXは、シースとプラズマの間の静電容量を表し、
-
図7から(CPS+CSX)は
図6のC2と等価である。
【0049】
図6を参照して議論されていないシースは、追加の静電容量の原因であり、金属構造610と同じ方法で電圧の上昇をもたらし得ることが認められるであろう。従って、
図6の説明から認められることとして、複数のコンポーネントの危険な条件は、CSX>>CFPの場合に生じ得る。
【0050】
図8は、パッチとフレームとの間の電位差の時間変化を示すグラフである。
図8において、V(パッチ)は、
図6のV1と等価であり、V(フレーム)は
図6のV3と等価である。したがって、このグラフはV2の変化を示している。電子源が、時間1.0Ksにスイッチオンされると、V2は非常に急激に、ことによると最大250Vまで上昇し、その後低下する。この電圧スパイクは、複数のコンポーネントに損傷を生じ得て、又はPINダイオードなどの複数のコンポーネントの部品が損傷を受けることになる。この損傷は、複数の衛星の操作において観察されている。
【0051】
しかし、等価なコンデンサがその電荷を消散することで電圧が時間と共に低下し、従って、電子生成率が抑制され、電圧が蓄積しないためピークが生じないことが見て取れる。
【0052】
従って、本発明の一部の実施形態によれば、電子源は、電子源のオフ状態からオン状態に漸進的にランプアップするように電子生成を抑制するように制御される。
【0053】
通常、電子源は、オフ状態とオン状態との間にかかる時間が、電球をスイッチオンするのと似たやり方でハードウェアのみで抑制されるようにオン/オフ信号で制御される。本発明の一部の実施形態によれば、ランプアップの期間は、電子源をスイッチオンするのにかかる時間より長く、そのため、電子源のハードウェアの制約を超えて電子生成は抑制される。言い換えると、電子放出の増加率は、電子源の複数のハードウェアコンポーネントを介して受動的に抑制されるよりむしろ、制御信号を介して能動的に制御される。このようにして、オン状態とオフ状態の間の電子流増加は、より漸進的に行われ得る。
【0054】
図6及び
図7を参照して説明したものと同様の効果が、
図8の0Ksでの負の電圧スパイクで示されるように、電子源をスイッチオフした際に生じることが考えられる。従って、本発明の一部の実施形態によれば、電子源は、突然電子生成を終了することが許可されているよりむしろ、オン状態からオフ状態に漸進的にランプダウンするよう抑制され得る。
【0055】
この制御は、漸進的に増加又は減少する電圧、例えばランプであり得る制御信号を手段として用いるものであってよい。制御信号は、デジタル制御信号であってよい。従って、一部の実施形態によれば、方法は、推進システムハードウェアへの変更なしに実装され得る。あるいは、制御信号は、複数のハードウェアコンポーネントの使用を通じて実装され得る。
【0056】
イオン源及び電子源のいずれか、又は両方のオン状態及びオフ状態は、この技術分野で標準であるものとして、例えば、源の最大動作能力の90%及び10%として定義され得る。言い換えると、10%であるとき源はオフとみなされ、90%であるときオンとみなされる。
【0057】
スラスタは、例えば
図5に示されるように、1基以上の電子源を備え得る。この場合、各電子源は、同じ方法でオンにされ、任意には1つずつオンにされ、電子流の急速な増加をさらに回避する。
【0058】
推進システムを制御するための追加の技術が、電圧スパイクにより引き起こされる損傷を緩和するために複数提案されており、それらは、単独又は組み合わせて使用され得る。それらの技術は、一般的に次のようにまとめられ得る。
- イオン供給前の生成開始及び/又はイオン供給の終了後の継続による電子の「過供給」、
- オン状態からオフ状態に漸進的にランプアップする及び/又はオン状態からオフ状態に漸進的にランプダウンする、電子源と同じ方法でのスラスタのイオン源の制御、並びに
- 本明細書では予備電子源として示される、追加の電子源を、例えば非稼働のスラスタから操作する。これは、「過供給」のために使用され得て、稼働中のスラスタの複数のニュートラライザーの1台が緊急停止した場合に備えて、中性化電流の段階的な変化を回避する追加の利点を有する。
【0059】
従って、本発明の一部の態様によれば、加速された正に帯電したイオン流を生成する前に、宇宙船を取り巻くプラズマに電子が注入される。これは、ニュートラライザーで電流をラップアップし、加速された正に帯電したイオン流を生成する前に電子のプルームを生成することで達成され得る。さらに、電子は、正に帯電したイオン流が生成されている間に継続してプラズマに注入され得る。一部の実施形態によれば、電子量は、イオン源からのイオンを中性化するのに必要な量より多くてもよいことが認められよう。従って、例えば、駆動スラスタ内部のプラズマ中に注入される電子量を制御することで、又は駆動電子源の使用前に予備電子源をスイッチオンすることで、宇宙船は、取り巻くプラズマに関して正電位に維持され得て、宇宙船の敏感なコンポーネントへの損傷が低減され得る。
【0060】
イオン源の操作の開始前に電子が注入されるか否かにかかわらず、電子源又は源単独でのランプアップとランプダウンは、複数の宇宙船コンポーネントに損傷を与える恐れがある電位の突然の変化率を回避する上で有用である。
【0061】
図2から
図4に示した推進システムを例にとると、一部の実施形態によれば、ランプアップ又はランプダウンは、複数基のスラスタ205、210、215、220のいずれかのいずれかのニュートラライザーで行われ得る。複数基のスラスタが存在する場合、スラスタの全体性が、供給される電子量を決定する上で考慮され得る。
【0062】
電子の「過供給」のために、追加の電子源が使用されない場合、これは、例えば、1基以上のスラスタを、例えば75%のイオン放出に対して100%の電子放出である、電子放出より低いイオン放出率で操作することにより達成され得る。実際の比率は、実験的に及び/又はモデリングで決定され得て、限定されるものではないが、例えばプラズマ密度、温度(別名運動エネルギーで、それらの複数の電子がいかに高速で移動するか)及び宇宙船領域などの特定の操作条件に依存する。一部のサイズの宇宙船及び軌道には、おおよそ数ミリアンペアであり得る「過供給」の量が適している(宇宙船が大きくなると、より多くの電子を捕集し、軌道が低くなると、プラズマ密度が濃くなる)。
【0063】
電子の「過供給」のために追加の電子源が使用される場合、これは非稼働のスラスタからの電子源であってよい。従って、複数基のスラスタの操作において、1基以上を駆動スラスタとして操作することが選択され得て、及び1基以上を予備スラスタとして操作することが選択され得る。複数基の予備スラスタは、電子のみを供給するために選択され得て、従って、その推進能力は使用されない。このオプションは、例えば予備スラスタである追加の電子源は、より簡単な機能を実行するため、予期しない機能的不具合(一部のリセット又はその他の不具合)のリスクが低いという長所を有する。
【0064】
図9は、本発明の一部の実施形態に従って、操作のシーケンスを達成するために電子源及びイオン源に印加される複数の制御信号を図解するタイミング図である。
図9では、予備電子源は、バックアップニュートラライザーとして示され、複数基の駆動スラスタは、モジュール1、2、3と示されている。電子源及びイオン源に印加される複数の制御信号は、ある期間に渡ってランプアップ及びランプダウンし、電子又はイオンの生成を抑制し、オン状態からオフ状態に漸進的にランプアップし、その逆も同じであることが見て取れる。これは、制御下にある物品がオン状態からオフ状態又はその逆方向に遷移し得るより高速にオン状態からオフ状態に遷移するオン/オフスイッチとは対照的であり、流れの変化率は、品目のハードウェアによりのみ制限される。
【0065】
一般的に、シーケンスは、以下の複数の新機能を有し、これらの機能は単独又は任意の組み合わせで実装され得る。
- 宇宙船を推進するためにイオン源を操作してイオン流を生成する前に、各駆動スラスタの少なくとも1基の電子源を操作して宇宙船を取り巻くプラズマに電子を注入する。各モジュール1、2、3に対してニュートラライザービーム電流が、「推進」又はイオン流の前にスイッチオンされること見て取れる。
- プラズマに電子を注入するための各駆動スラスタの少なくとも1基の電子源の操作を、同一の駆動スラスタのイオン源の操作を終了した後も継続する。各モジュール1、2、3に対してニュートラライザービーム電流が、推力がスイッチオフされた後にスイッチオフされることが見て取れる。
- 全ての駆動スラスタの電子源の操作を、いずれかの駆動スラスタのいずれかのイオン源の操作を開始する前に、任意に1つずつ開始する。全てのモジュール1、2、3のビーム電流が、モジュール1、2、3のスラスタのいずれかがスイッチオンされる前にスイッチオンされ、次に複数基のスラスタがスイッチオンされる前に、複数のビーム電流がスイッチオンされることが見て取れる。
- 全ての駆動スラスタの少なくとも1基の電子源の操作を、全てのイオン源の操作が終了後、任意に1基ずつ操作を終了後も継続する。全てのモジュール1、2、3のスラスタが、モジュール1、2、3のいずれかのニュートラライザービーム電流がスイッチオフされる前にスイッチオフされ、次に、ニュートラライザービーム電流がスイッチオフされる前に複数基のスラスタがスイッチオフされることが見て取れる。
- 1つずつイオン源の操作を開始する。モジュール1、2、3のビーム電流は、1つずつ開始する。
- 1つずつイオン源の操作を終了する。モジュール1、2、3のビーム電流は1つずつ停止する。
- 少なくとも1基のスラスタを予備スラスタとして選択し、この予備スラスタのイオン源を操作して、いずれかの駆動スラスタのイオン源又は電子源を操作する前に開始する、及び/又は駆動スラスタの全てのイオン源又は電子源の操作の終了後に終了する。バックアップニュートラライザーは、モジュール1、2、3のいずれかのビーム電流又は推力の前にスイッチオンされ、モジュール1、2、3のいずれかのビーム電流又は推力の後にスイッチオフされる。
【0066】
図9のシーケンスによれば、ビーム電流をスイッチオン及びスイッチオフする、すなわち、操作を開始及び終了するための複数の制御信号のそれぞれは、各モジュール及びバックアップニュートラライザーに対して時間T
Nの経過とともにそれぞれラップアップされ、ランプダウンされる。ランプアップ又はランプダウンに必要とされるこの時間は、標準電流モデルを使用して計算され得る。
図9において、これは、全てのニュートラライザービーム電流のスイッチオン及びスイッチオンに対して同一であることが示されているが、必ずしもそうであるとは限らず、オン状態とオフ状態との間で、及びニュートラライザーごとに異なっていてもよい。推力(イオン源)のスイッチオン及びスイッチオフが時間T
Iの経過とともにそれぞれランプアップされランプダウンされるのと同様に、これは、各モジュールに対して同一であることが示されているが、必ずしもそうであるとは限らず、オン状態とオフ状態との間で、及び電子源ごとに異なっていてもよい。一部の実施形態によれば、イオン源又は電子源のランプアップ及び/又はランプダウンは、1秒より長い、任意には5秒より長い、又はさらには10秒より長い期間を有し得る。原則的に、イオン源又は電子源のランプアップ又はランプダウンの期間には、これが遅く達成されるほうがより良い結果が得られるため、上限は存在しない。実用目的では、上限は、10分であってよく、任意には2分又は1分であってよい。
図9に示された実施形態では、イオン源のランプ期間は、電子源のランプ期間より短い。
【0067】
図9において、それを通じて全てのモジュール、又は駆動スラスタ及びバックアップを含めた全てのニュートラライザーがオンとなる時間期間Dが存在することは注意されるであろう。Dは、公称推進時間を表し、宇宙船の飛行の所望される期間から決定される。
【0068】
別の個所で述べられているように、本発明の一部の実施形態は、1基以上のスラスタを予備スラスタとして選択することを含む。この予備スラスタは、電子源としてのみ操作され、イオンを放出しない。必要な場合に、予備スラスタの選択は、例えば、複数基のスラスタ上の摩耗量を均等化するためなど、駆動操作により異なっていてもよい。あるいは、予備スラスタは、高温になることが知られている又は発見されている複数のコンポーネント、例えば宇宙船サブシステムへのその近接性に基づいて選択され得る。予備スラスタとしてのスラスタの操作は、熱の生成量が少なく、そのため、追加の望ましくない熱を生成することはない。
【0069】
本発明の一実施形態によれば、衛星の軌道又は軌道経路は、限定されるものではなく、例えば、任意の静止軌道(GEO)、地球低軌道(LEO)地球中軌道(MEO)、極軌道及び太陽同期軌道(SSO)、遷移軌道及び静止遷移軌道(GTO)、ラグランジュ点(L点)を含み得る。しかし、本発明の一部の実施形態では、当業者は、ラボ内での衛星の試験(例えば、地上の試験ラボ)が、宇宙への打ち上げ前に必要とされ得ることをすぐに理解するであろう。
【0070】
本発明の複数の実施形態は、上記の特定の複数のコンポーネントだけでなく、衛星の様々な部品への損傷を軽減する上で有用であり得る。また、以下で議論される複数のコンポーネントのいずれかは、衛星の機能を制限する恐れのある損傷を受けやすい場合がある。
【0071】
図2から4に示されるように、衛星140上に搭載された複数のアンテナ又はアンテナアレイ180は、複数のRFコネクタ(非図示)を経由して、それらに又はそれらから伝達された複数のRF信号を受信又は送信するように構成される。これらは、スナップフィット又はプッシュコネクタなどの標準RFコネクタであってよい。複数のコネクタは、アンテナ又はアンテナアレイを搭載されている1台以上の増幅器(非図示)に接続し、ここで複数のRF信号は増幅される。受信モードでは、増幅された複数の信号は、増幅器により計算システムに出力され得る。センサー信号は送信のため、計算システム又は通信システムのいずれかでエンコードされ得る。
【0072】
地球観測衛星の場合、複数のセンサーは複数のレーダーアンテナを含み得る。また、複数のセンサーは、当業者には公知であるものとして、画像取得デバイス、温度センサーなどのいずれかを含み得る。電源は、例えば、低日照条件下で衛星が動作できるように設置された、例えば、1台上の電池の形態の、電力貯蔵を含み得る。これは、例えば衛星に搭載されている設備が、常時監視を行うことが求められている場合に有用である。
【0073】
また、本発明の一部の実施形態の複数の衛星は、これに限定されるものではないが、熱制御システム、衛星が正しい向きを向いていることを保証するための姿勢制御システムなど、本明細書ではさらに説明されない複数のシステムを備え得る。
【0074】
本明細書で使用されている用語「計算システム」は、処理能力を備え命令を実行し得る任意の装置又は集団を指す。当業者は、そのような処理能力が、多数の様々な装置に組み込まれており、従って、本明細書で使用するとき、用語「計算システム」は、PC、サーバー、及びその他の多くの装置を含み得ることを理解するであろう。
【0075】
本明細書で説明された複数のコンポーネントは、特に明記されない場合、必ずしも物理的に互いに離間しておらず、複数の図面で図解された複数のコンポーネントの機能は、異なる又は同一の物理的な装置の間で分散されるか、又は共有され得る。例えば、通信システムの一部の機能は、計算システムにより実行され得て、その逆も真である。
【0076】
上記記載した利点と長所は、1つの実施形態に関係し得る、又はいくつかの実施形態に関連し得ることは理解されるであろう。複数の実施形態は、言及された問題のいずれか又は全てを解決するもの、又は言及された利点と長所を有するものに限定されるものではない。
【0077】
「1つの」項目へのあらゆる参照は、それらの項目のうち1つ又はそれ以上を指す。本明細書で使用されている用語「備える」は、方法ステップ乃至は特定された要素を含むことを意味するが、そのようなステップ又は要素は、排他的なリスト及び追加のステップ又は要素を含み得る方法又は装置を備えるものではない。
【0078】
本明細書で使用されるものとして、用語「コンポーネント」及び「システム」は、プロセッサにより実行された場合に特定の機能を実行させるコンピュータ実行可能な命令で構成されるコンピュータ読み込み可能なデータ記憶装置を包含し得る。コンピュータ実行可能な命令は、ルーチン、関数などを含み得る。また、コンポーネント又はシステムは、単一の装置上に局在化され得るか、又はいくつかの装置に渡って分散され得ることも理解されたい。
【0079】
さらに、発明の詳細な説明又は特許請求の範囲で用語「含む」が使用されている限り、当該の用語は、「備える」が特許請求の範囲で転換語として採用されている場合に、用語「備える」が解釈されるのと同様の方法で包括的であることが意図される。
【0080】
複数の図面は例示的な複数の方法を図解する。複数の方法は、特定のシーケンスで実行される一連の行為として示され、説明されているが、複数の方法は、特に明記されない場合、シーケンスの順序により制限されないことは理解され、認識されるべきである。例えば、一部の行為は、本明細書で説明されているのとは異なる順序で生じ得る。加えて、ある行為は、別の行為と同時に生じ得る。さらに、一部の実例では、本明細書に記載された方法を実装するために全ての行為が求められない場合がある。
【0081】
実施形態に関する上記記述は、例としてのみ与えられたものであり、様々な修正が当業者により行われ得ることが理解されよう。上記で説明されたものは、1つ以上の実施形態の例が含まれる。もちろん、前述の態様を説明する目的で、上記の複数の装置又は方法の想像し得る全ての修正及び改変を説明するのは不可能であるが、当業者は、様々な態様の多数の更なる修正と置換が可能であることを認識し得る。従って、記載された態様は、添付の特許請求の範囲に該当するそのような全ての変更、修正及び変形を包含することが意図されている。