(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-20
(45)【発行日】2025-01-06
(54)【発明の名称】超開放型メタマテリアルを使用した空気透過選択性音響消音装置
(51)【国際特許分類】
G10K 11/16 20060101AFI20241223BHJP
G10K 11/172 20060101ALI20241223BHJP
【FI】
G10K11/16 110
G10K11/172
G10K11/16 100
(21)【出願番号】P 2021505838
(86)(22)【出願日】2019-08-02
(86)【国際出願番号】 US2019044957
(87)【国際公開番号】W WO2020028838
(87)【国際公開日】2020-02-06
【審査請求日】2022-05-24
(32)【優先日】2019-06-18
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-08-03
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】301069856
【氏名又は名称】トラスティーズ オブ ボストン ユニバーシティ
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】シン ヂャン
(72)【発明者】
【氏名】レザ ガファリヴァルダヴァ
(72)【発明者】
【氏名】ステファン アンダーソン
【審査官】堀 洋介
(56)【参考文献】
【文献】特開2008-050989(JP,A)
【文献】米国特許出願公開第2016/0201530(US,A1)
【文献】特表2005-513355(JP,A)
【文献】実開昭51-094538(JP,U)
【文献】特開平06-147624(JP,A)
【文献】特開平02-309095(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G10K 11/16-11/172
(57)【特許請求の範囲】
【請求項1】
1つの第1の通路及び1つ又は複数の第2の通路を有する装置であって、
前記第1の通路は、第1の入口と第1の出口とを有し、当該第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の断面積(A1)を有し、
前記第1の通路は、当該第1の通路を介した前記波の伝播中に連続状態を持続させるように構成されており、
1つ又は複数の前記第2の通路は各々、当該第2の通路を介して前記対象周波数にある第2の波が伝播するように開放されていて、各々第2の入口と第2の出口とを有し、1つ又は複数の前記第2の通路は、第2の断面積(A2)を規定し、
1つ又は複数の前記第2の通路各々は、前記対象周波数において共鳴するように構成されており、
1つ又は複数の前記第2の出口から出る前記対象周波数にある前記第2の波が、前記第1の通路から出る前記対象周波数にある前記第1の波と弱め合って干渉し得るように、1つ又は複数の前記第2の通路各々は、前記第1の通路に対して相対的に配置されており、
当該装置が少なくとも0.6の開放率を有するように、前記第1の断面積(A1)は、前記第2の断面積(A2)よりも大きく、
ここで、前記開放率は、前記第1の断面積(A1)と前記第2の断面積(A2)との和(A1+A2)に対する前記第1の断面積(A1)の比率を意味し、即ち、
開放率=A1/(A1+A2)
である、
装置。
【請求項2】
前記第1の通路は、当該第1の通路を介して流体が流れるように開放されている、
請求項1に記載の装置。
【請求項3】
当該装置が少なくとも0.8の前記開放率を有するように、前記第1の断面積(A1)は、前記第2の断面積(A2)よりも大きい、
請求項1に記載の装置。
【請求項4】
当該装置が0.99の前記開放率を有するように、前記第1の断面積(A1)は、前記第2の断面積(A2)よりも大きい、
請求項1に記載の装置。
【請求項5】
前記第1の通路は、当該第1の通路を介した流体流の軸線を規定し、前記第2の出口各々は、ダクト外にある出口である、
請求項1に記載の装置。
【請求項6】
前記第1の通路は、当該第1の通路を介した流体流の軸線を規定し、前記第2の出口各々は、軸線方向に配向された出口である、
請求項1に記載の装置。
【請求項7】
前記第2の出口各々は、ダクト外にある出口である、
請求項6に記載の装置。
【請求項8】
前記第1の波及び前記第2の波各々は、音響波であり、前記弱め合う干渉によって前記対象周波数にある前記第1の波は、少なくとも94%減衰させられる、
請求項1に記載の装置。
【請求項9】
前記第1の波及び前記第2の波各々は、音響波であり、前記第2の出口各々から出る前記対象周波数にある音響エネルギーは、前記第1の通路から出る音響エネルギーと弱め合って干渉して、前記対象周波数にある音響を少なくとも24dB減衰させる、
請求項1に記載の装置。
【請求項10】
1つの第1の通路及び1つ又は複数の第2の通路を有する装置であって、
前記第1の通路は、当該第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の入口と第1の出口とを有し、前記第1の通路は、当該第1の通路を介した前記第1の波の伝播中に連続状態を持続させるように構成されており、
1つ又は複数の前記第2の通路は各々、第2の入口と第2の出口とを有し、軸線方向を規定する1つの軸線に沿って延在し、当該第2の通路を介して前記対象周波数にある第2の波が伝播するように開放されており、1つ又は複数の前記第2の通路各々は、前記対象周波数において共鳴するように構成されており、
1つ又は複数の前記第2の出口は、前記軸線方向において開放されており、
1つ又は複数の前記第2の出口から出る前記対象周波数にある前記第2の波が、前記第1の通路から出る前記対象周波数にある前記第1の波と弱め合って干渉し得るように、1つ又は複数の前記第2の通路は、前記第1の通路に対して相対的に配置されている、
装置。
【請求項11】
前記第2の出口から出る前記第2の波の伝播が、前記第1の通路から出る前記第1の波と前記対象周波数において弱め合って干渉して、前記第1の波の伝達を少なくとも94%低減することができるように、1つ又は複数の前記第2の通路各々は、前記第1の通路に対して相対的に配置されている、
請求項10に記載の装置。
【請求項12】
前記第2の出口から出る前記第2の波の伝播が、前記第1の通路から出る前記第1の波と前記対象周波数において弱め合って干渉して、前記第1の波を少なくとも24dB減衰させ得るように、1つ又は複数の前記第2の通路各々は、前記第1の通路に対して相対的に配置されている、
請求項10に記載の装置。
【請求項13】
前記第1の通路は、第1の断面積(A1)を有し、
1つ又は複数の前記第2の通路は、第2の断面積(A2)を規定し、
前記第1の面積(A1)と前記第2の面積(A2)との和に対する前記第1の面積(A1)の比率[A1/(A1+A2)]は、0.6よりも大きい、
請求項10に記載の装置。
【請求項14】
1つの第1の通路及び1つ又は複数の第2の通路を有する装置であって、
前記第1の通路は、当該第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の入口と、ダクト外にある容積体内に向けて開放されている第1の出口とを有し、
前記第1の通路は、当該第1の通路を介した前記波の伝播中に連続状態を持続させるように構成されており、
1つ又は複数の前記第2の通路は各々、1つの軸線に沿って延在し、当該第2の通路を介して前記対象周波数にある第2の波が伝播するように開放されていて、各々が第2の入口と、ダクト外にある前記容積体内に向けて開放されている第2の出口とを有し、
前記第2の通路各々は、前記対象周波数において共鳴するように構成されており、
1つ又は複数の前記第2の出口から出る前記対象周波数にある前記第2の波が、前記第1の通路から出る前記対象周波数にある前記第1の波と弱め合って干渉し得るように、1つ又は複数の前記第2の通路は、前記第1の通路に対して相対的に配置されている、
装置。
【請求項15】
前記第1の通路は、当該第1の通路を介して流体が流れるように開放されている、
請求項14に記載の装置。
【請求項16】
前記第1の波は、音響波であり、前記弱め合う干渉によって前記対象周波数にある前記音響波が減衰させられる、
請求項14に記載の装置。
【請求項17】
前記第1の通路は、第1の断面積(A1)を有し、1つ又は複数の前記第2の通路は、第2の断面積(A2)を規定し、当該装置が少なくとも0.8の開放率を有するように、前記第1の断面積(A1)は、前記第2の断面積(A2)よりも大きく、
ここで、前記開放率は、前記第1の断面積(A1)と前記第2の断面積(A2)との和(A1+A2)に対する前記第1の断面積(A1)の比率を意味し、即ち、
開放率=A1/(A1+A2)
である、
請求項14に記載の装置。
【請求項18】
前記第1の通路は、第1の断面積(A1)を有し、1つ又は複数の前記第2の通路は、第2の断面積(A2)を規定し、当該装置が少なくとも0.99の開放率を有するように、前記第1の断面積(A1)は、前記第2の断面積(A2)よりも大きく、
ここで、前記開放率は、前記第1の断面積(A1)と前記第2の断面積(A2)との和(A1+A2)に対する前記第1の断面積(A1)の比率を意味し、即ち、
開放率=A1/(A1+A2)
である、
請求項14に記載の装置。
【請求項19】
1つの第1の通路及び1つ又は複数の第2の通路を有する装置であって、
前記第1の通路は、当該第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の入口と第1の出口とを有し、前記第1の通路は、前記対象周波数にある波が存在しているときに連続状態を持続させるように構成されており、
1つ又は複数の前記第2の通路は各々、当該第2の通路を介して前記対象周波数にある第2の波が伝播するように開放されており、前記対象周波数において共鳴するように構成されていて、各々第2の入口と第2の出口とを有し、
1つ又は複数の前記第2の出口から出る前記対象周波数にある前記第2の波が、前記第1の通路から出る前記対象周波数にある前記第1の波と弱め合って干渉し得るように、1つ又は複数の前記第2の通路各々は、前記第1の通路に対して相対的に配置されている、
装置。
【請求項20】
前記第1の通路は、当該第1の通路を介して流体が流れるように開放されている、
請求項
19に記載の装置。
【請求項21】
前記第1の通路は、前記対象周波数において共鳴しないように構成されている、
請求項
19に記載の装置。
【請求項22】
前記第1の波は、音響波であり、前記弱め合う干渉によって前記対象周波数にある前記音響波が減衰させられて、前記第1の通路から出る前記音響波の伝達が少なくとも94%低減される、
請求項
19に記載の装置。
【請求項23】
前記第1の波は、音響波であり、前記弱め合う干渉によって前記対象周波数にある前記音響波が減衰させられて、前記第1の通路から出る前記音響波が少なくとも24dB減衰させられる、
請求項
19に記載の装置。
【請求項24】
前記第1の通路は、第1の断面積(A1)を有し、
前記第2の通路は、第2の断面積(A2)を規定し、
前記第1の面積(A1)と前記第2の面積(A2)との和に対する前記第1の面積(A1)の比率[A1/(A1+A2)]は、0.6よりも大きい、
請求項
19に記載の装置。
【請求項25】
前記第1の通路は、第1の断面積(A1)を有し、
前記第2の通路は、第2の断面積(A2)を規定し、
前記第1の面積(A1)と前記第2の面積(A2)との和に対する前記第1の面積(A1)の比率[A1/(A1+A2)]は、0.8よりも大きい、
請求項
19に記載の装置。
【請求項26】
前記第1の通路は、第1の断面積(A1)を有し、
前記第2の通路は、第2の断面積(A2)を規定し、
前記第1の面積(A1)と前記第2の面積(A2)との和に対する前記第1の面積(A1)の比率[A1/(A1+A2)]は、0.9よりも大きい、
請求項
19に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本願は、米国特許仮出願第62/714,246号、出願日:2018年8月3日、発明の名称:"Air-Transparent Selective Sound Silencer Using Ultra-Open Metamaterial"、発明者:Xin Zhang, Reza Ghaffarivardavagh及びStephan Anderson、並びに、米国特許仮出願第62/863,046号、出願日:2019年6月18日、発明の名称:"Air-Transparent Selective Sound Silencer Using Ultra-Open Metamaterial"、発明者:Xin Zhang, Reza Ghaffarivardavagh及びStephan Andersonの優先権を主張するものである。これらの先行出願各々の開示は、ここで参照したことによりその内容全体が本明細書に取り込まれるものとする。
【0002】
技術分野
本開示は音響抑制装置に関し、より具体的には、装置を介した音響伝達を抑制しながら、装置を介して空気を流すことも可能にする装置に関する。
【背景技術】
【0003】
背景技術
音響吸収遮蔽材及び音響偏向面など、種々の手段によって音響伝播を抑制することが知られている。例えばノイズキャンセリングヘッドホンなどいくつかの装置は、不所望な音響を不所望な音響の反転であるその音響の複製と混合することによって、不所望な音響の伝播を減衰させる。
【0004】
不所望な音響が既知の周波数を有する場合には、いくつかの装置は、不所望な音響をその音響の反転された複製(例えば、不所望な音響に対して180°反転の位相外れとなっている複製)と混合することによって、特定の周波数においてその不所望な音響を減衰させる。
【0005】
かかる従来技術によるいくつかの装置の種類は、「ハーシェルクインケ管」(又は「HQ管」)として知られている。HQ管は、音響を伝播させることができる第1のダクトと、音響を伝播させることができる第2のダクトを有する。伝播する音響信号は、第1のダクトと第2のダクトの双方に入り、それらのダクトが合流するまで両方のダクトを介して伝播し、第2のダクトを介して伝播した信号が、第1のダクトを介して伝播した信号と融合する。
【0006】
相応の波長(λ)を有する所与の周波数において、媒体中を伝播する音響信号を低減するHQ管の能力は、第1のダクトの長さ(L1)から現れるものでも第2のダクトの長さ(L2)から現れるものでもなく、その代わりに第1のダクトの長さと第2のダクトの長さとの差(即ち、L2-L1)に基づき現れる。HQ管の場合、第1のダクトと第2のダクトとの長さの差(即ち、L2-L1)は、音響信号の周波数の波長の2分の1(0.5λ)(又は、Nλ+0.5λ、ただし、Nは整数)であり、従って、これらのダクトが合流してそれらの個々の信号が融合するポイントにおいて、第2のダクト内を伝播する信号は、第1のダクト内の信号に対して180°の位相外れとなっている。例えば、第1のダクトは1.25λの長さを有することができ、第2のダクトは1.75λの長さを有することができ、従って、これらの長さの差は、1.75λ-1.25λ=0.5λである。
【0007】
特に、これが意味することは、両方のダクトの個々の長さの間で要求される差を保証するために、HQ管を製造するにはそれらのダクトを高精度で製造することが必要とされる、ということである。しかも、かかる装置は、流体を流すことができる開放空間の量と、音響伝播を減衰させるそれらの能力(即ち、それらの伝達損失)との間で、トレードオフが必要とされる。換言すれば、所望の音響性能を獲得するためには、開放面積量が犠牲にされる。
【0008】
従来技術のHQ管のいくつかの例について、以下において説明する。
【0009】
図1Aには、Venterに対する米国特許第4,683,978号明細書の第1図による従来技術の排気消音装置が概略的に示されている。
【0010】
Venterの装置(
図1A)において、内燃機関用の排気消音装置が全体的に参照符号10で表されている。排気消音装置10は、入口開口部12と、この入口開口部12から軸線方向に距離をおいて配置された出口開口部14を有する。この消音装置は、円筒形シェル(又はケーシング)16とシェル16内部のコア18を含む。コアは中央軸線方向管19を含み、これによって、少なくとも1つの軸線方向流路20が規定される。コアは少なくとも1つの螺旋バッフル21を有し、これにより、シェル16内部において軸線方向流路20の周囲に螺旋路22が規定される。軸線方向流路20は、上流側軸線方向入口20.1と横断方向出口24を有し、この横断方向出口24は、螺旋路の下流側半部において横断方向に外側へ螺旋路22内に向けられている。横断方向出口24は、軸線方向流路20の下流側端部において、螺旋バッフル21の最後の2つのベーン21.1と21.2との間に密集して配置された複数の開口部によって設けられている。
【0011】
Venterの消音装置10は、漏斗状入口接続部28により規定された円錐台状部分26.1を含む入口チャンバ26を有し、入口接続部28は円筒形シェル16の直径の約半分の軸線方向長さを有する。入口チャンバは、円筒形シェル16の直径の約半分の軸線方向長さを有する円筒形部分26.2も有する。同様に、この消音装置は、螺旋路よりも下流側に延在するやはり円錐台状の出口チャンバ30を有し、この出口チャンバ30は、円筒形シェル16の直径の約半分の軸線方向長さを同様に有する漏斗状出口接続部32によって規定されている。バッフル21は、螺旋路20を規定する目的で、中央軸線方向管19の周囲にウォームスクリュー状に巻回されている。軸線方向流路の上流側開口端部20.1は、入口チャンバ26の円筒形部分26.2の下流側端部に配置されている。軸線方向流路20を規定する中央軸線方向管19は、横断方向隔壁20.2により塞がれており、この隔壁20.2は、管19の上流側軸線方向入口20.1と整列されており、管19の横断方向出口24よりも下流にある。
【0012】
図示されているように、Venterの軸線方向流路20は、その横方向隔壁20.2によって覆われており、Venterの軸線方向流路20を介して伝播する波は、その横断方向出口24の孔を介して半径方向にしか軸線方向流路20から出られず、この出口は、その円筒形シェル(又はケーシング)16の境界内にある。その結果、軸線方向流路20を介して伝播する波と、その螺旋路22を介して伝播する波との合流は、消音装置10内においてしか発生し得ない。従って、Venterの軸線方向流路20とその螺旋路22との合流は、「ダクト内にある」と言い表すことができる。
【0013】
図1Bには、Graefensteinに対する米国特許第7,117,973号明細書の第2図によるガスダクト4用の従来技術の騒音抑制装置が概略的に示されている。
【0014】
Graefensteinのダクト4は、中央パイプ44を含み、パイプ44の外側面と接触して、3つの螺旋通路51、53、55が設けられている。
【0015】
図1Bに示されているように、螺旋通路51、53、55は、軸線方向(出口開口部16)において中央パイプ44と合流している。その結果、Graefensteinの中央パイプ44を介して伝播する波と、その3つの螺旋通路51、53、55を介して伝播する波との合流は、中央パイプ44内においてしか発生し得ない。従って、Graefensteinの中央パイプ44とその螺旋通路51、53、55との合流は、「ダクト内にある」と言い表すことができる。
【0016】
図1Cには、Brownに対する米国特許第9,500,108号明細書の第1図による従来技術の分流経路消音装置10が概略的に示されている。Brownの消音装置10は、(傾斜区間20を備えた)入口開口部64と出口開口部66を有する外側シェル12を含む。外側シェル12内部においてBrownの消音装置10は、内側管62の周囲に巻回されたバッフル63を含む。音響は、内側管62を介して方向28に伝播することができ、さらに、音響は、バッフル63により規定された通路を介して方向68に進行することができる。内側管62は、排出開口部67を有し、これは、外側シェル12の出口開口部66の近傍に、ただし、そこから距離をおいて、配置されている。
【0017】
図1Cに示されているように、Brownのバッフル63により形成された通路は、シェル(又はケーシング)12内部の空間内へと出ている。その結果、Brownの内側管62を介して伝播する波と、そのバッフル63により形成された通路を介して伝播する波との合流は、シェル(又はケーシング)12内においてしか発生し得ない。従って、Brownの内側管62とそのバッフル63により形成された通路との合流は、「ダクト内にある」と言い表すことができる。
【先行技術文献】
【特許文献】
【0018】
【文献】米国特許第4,683,978号明細書
【文献】米国特許第7,117,973号明細書
【文献】米国特許第9,500,108号明細書
【発明の概要】
【課題を解決するための手段】
【0019】
種々の実施形態の概要
例示的な実施形態によれば、消音装置は第1の伝達領域と第2の伝達領域を有し、各々入射波(例えば、対象周波数を含むスペクトルを有し、気体又は液体などの流体媒体中を伝播する音響信号)を受け取るように開放されている。
【0020】
第1の伝達領域は、入口(第1の入口)と出口(第1の出口)を有し、この第1の伝達領域を介して第1の入口から第1の出口へ波が伝播するように、また、この第1の伝達領域を介して第1の入口から第1の出口へ流体が流れるように、開放されている。これらの目的において、第1の伝達領域は、断面積(A1)を有する。第1の伝達領域は、この第1の領域を介して伝播する波が連続状態を持続するように構成されている。いくつかの実施形態によれば、第1の伝達領域は、これが対象周波数において共鳴しないように構成されている。
【0021】
第2の伝達領域は、入口(第2の入口)と出口(第2の出口)を有し、この第2の伝達領域を介して第2の入口から第2の出口へ波が伝播するように開放されている。例示的な実施形態によれば、第2の伝達領域は、対象周波数において共鳴するように構成されている。第2の伝達領域は断面積(A2)を有する。
【0022】
第2の出口から出る波が、第1の伝達領域から出る波と対象周波数において弱め合って干渉し得るように、第2の伝達領域は第1の伝達領域に対して相対的に配置されている。例示的な実施形態によれば、第2の出口から出る波は、第1の伝達領域から出る波と対象周波数において弱め合って干渉して、入射波を94%(又は24dB)減衰させる。
【0023】
例示的な実施形態によれば、装置が少なくとも0.6の開放率[即ち、A1/(A1+A2)は0.6以上]を有するように、第1の断面積(A1)は第2の断面積(A2)よりも大きい。いくつかの実施形態は、入射信号を減衰する上述の能力を維持しながら、0.99に至るまでを含め、0.8以上の開放率を有するように構成されている。
【0024】
いくつかの実施形態によれば、第2の出口各々は、信号が第2の出口から軸線方向に出るように配置されている。かかる実施形態の場合、出て行く信号からのエネルギーは、半径方向において第1の伝達領域には入らない。
【0025】
これに加えて、いくつかの実施形態によれば、第2の出口各々は、信号が第2の出口からダクト外にある空間へと出るように配置されている。いくつかの実施形態は、装置がその下流側に一体化されたダクトを有しておらず、従って、信号は、消音装置からダクト外にある空間へと出るという点において、ダクト外にある。
【0026】
装置の第1の例示的な実施形態は、1つの第1の通路及び1つ又は複数の第2の通路を有し、第1の通路は、第1の入口と第1の出口を有し、この第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の断面積を有し、1つ又は複数の第2の通路は各々、この第2の通路を介して対象周波数にある第2の波が伝播するように開放されていて、各々第2の入口と第2の出口を有し、1つ又は複数の第2の通路は第2の断面積を規定し、この場合、1つ又は複数の第2の出口から出る対象周波数にある第2の波が、第1の通路から出る対象周波数にある第1の波と弱め合って干渉し得るように、1つ又は複数の第2の通路各々は第1の通路に対して相対的に配置されており、さらに、この場合、装置が少なくとも0.6の開放率を有するように、第1の断面積は第2の断面積よりも大きい。
【0027】
いくつかの実装形態によれば、第1の通路は、この第1の通路を介して流体が流れるように開放されている。
【0028】
いくつかの実施形態によれば、装置が少なくとも0.8の開放率を有するように、第1の断面積は第2の断面積よりも大きい。いくつかのかかる実施形態によれば、装置は0.99の開放率を有する。
【0029】
いくつかの実施形態によれば、第1の通路は、この第1の通路を介した流体流の軸線を規定し、第2の出口各々は、ダクト外にある出口である。
【0030】
いくつかの実施形態によれば、第1の通路は、この第1の通路を介した流体流の軸線を規定し、第2の出口各々は、軸線方向に配向された出口であり、いくつかのかかる実施形態によれば、第2の出口各々は、ダクト外にある出口である。
【0031】
いくつかの実施形態によれば、第1の波及び第2の波各々は音響波であり、弱め合う干渉によって対象周波数にある第1の波が少なくとも94%減衰させられる。いくつかの実施形態によれば、第2の出口各々から出る対象周波数にある音響エネルギーは、第1の通路から出る音響エネルギーと弱め合って干渉して、対象周波数にある音響を少なくとも24dB減衰させる。
【0032】
装置の他の実施形態は、1つの第1の通路及び1つ又は複数の第2の通路を有し、第1の通路は、この第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の入口と第1の出口を有し、1つ又は複数の第2の通路は各々、第2の入口と第2の出口を有し、軸線方向を規定する1つの軸線に沿って延在し、この第2の通路を介して対象周波数にある第2の波が伝播するように開放されており、この場合、1つ又は複数の第2の出口は、軸線方向において開放されており、さらに、この場合、1つ又は複数の第2の出口から出る対象周波数にある第2の波が、第1の通路から出る対象周波数にある第1の波と弱め合って干渉し得るように、1つ又は複数の第2の通路は第1の通路に対して相対的に配置されている。
【0033】
これらの実施形態のいくつかによれば、1つ又は複数の第2の通路各々は、対象周波数において共鳴するように構成されており、第1の通路は、この第1の通路を介した第1の波の伝播中に連続状態を持続させるように構成されている。いくつかのかかる実施形態において、1つ又は複数の第2の通路各々は、対象周波数において共鳴するように構成されており、第1の通路は、対象周波数において共鳴しないように構成されている。
【0034】
いくつかの実施形態によれば、第2の出口から出る第2の波の伝播が、第1の通路から出る第1の波と対象周波数において弱め合って干渉して、第1の波の伝達を少なくとも94%低減することができるように、1つ又は複数の第2の通路各々は、第1の通路に対して相対的に配置されている。
【0035】
いくつかの実施形態によれば、第2の出口から出る第2の波の伝播が、第1の通路から出る第1の波と対象周波数において弱め合って干渉して、第1の波を少なくとも24dB減衰させることができるように、第2の通路各々は、第1の通路に対して相対的に配置されている。
【0036】
いくつかの実施形態によれば、第1の通路は、第1の断面積(A1)を有し、1つ又は複数の第2の通路は、第2の断面積(A2)を規定し、第1の面積(A1)と第2の面積(A2)との和に対する第1の面積(A1)の比率[A1/(A1+A2)]は、0.6よりも大きい。
【0037】
装置の他の実施形態は、1つの第1の通路及び1つ又は複数の第2の通路を有し、第1の通路は、この第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の入口と、ダクト外にある容積体内に向けて開放されている第1の出口を有し、1つ又は複数の第2の通路は各々、1つの軸線に沿って延在し、この第2の通路を介して対象周波数にある第2の波が伝播するように開放されていて、各々が第2の入口と、ダクト外にある容積体内に向けて開放されている第2の出口を有し、この場合、1つ又は複数の第2の出口から出る対象周波数にある第2の波が、第1の通路から出る対象周波数にある第1の波と弱め合って干渉し得るように、1つ又は複数の第2の通路は第1の通路に対して相対的に配置されている。
【0038】
いくつかのかかる実施形態によれば、第2の通路各々は、対象周波数において共鳴するように構成されており、第1の通路は、この第1の通路を介した波の伝播中に連続状態を持続させるように構成されている。
【0039】
いくつかの実施形態において、第2の通路各々は、対象周波数において共鳴するように構成されており、第1の通路は、対象周波数において共鳴しないように構成されている。
【0040】
いくつかの実装形態によれば、第1の通路は、この第1の通路を介して流体が流れるように開放されている。
【0041】
いくつかの実施形態によれば、第1の波は、音響波であり、弱め合う干渉によって対象周波数にある音響波が減衰させられる。
【0042】
いくつかの実施形態によれば、第1の通路は、第1の断面積を有し、1つ又は複数の第2の通路は、第2の断面積を規定し、装置が少なくとも0.8の開放率を有するように、第1の断面積は、第2の断面積よりも大きい。
【0043】
いくつかの実施形態によれば、第1の通路は、第1の断面積を有し、1つ又は複数の第2の通路は、第2の断面積を規定し、装置が少なくとも0.99の開放率を有するように、第1の断面積は、第2の断面積よりも大きい。
【0044】
装置のさらに他の実施形態は、1つの第1の通路及び1つ又は複数の第2の通路を有し、第1の通路は、この第1の通路を介して対象周波数にある第1の波が伝播するように開放されていて、第1の入口と第1の出口を有し、この場合、第1の通路は、対象周波数にある波が存在しているときに連続状態を持続させるように構成されており、1つ又は複数の第2の通路は各々、この第2の通路を介して対象周波数にある第2の波が伝播するように開放されており、対象周波数において共鳴するように構成されていて、各々第2の入口と第2の出口を有し、この場合、1つ又は複数の第2の出口から出る対象周波数にある第2の波が、第1の通路から出る対象周波数にある第1の波と弱め合って干渉し得るように、1つ又は複数の第2の通路各々は、第1の通路に対して相対的に配置されている。
【0045】
いくつかのかかる装置の場合、第1の通路は、この第1の通路を介して流体が流れるように開放されている。
【0046】
いくつかの実施形態によれば、第1の通路は、対象周波数において共鳴しないように構成されている。
【0047】
いくつかの実施形態によれば、第1の波は音響波であり、弱め合う干渉によって対象周波数にある音響波が減衰させられて、第1の通路から出る音響波の伝達が少なくとも94%低減される。
【0048】
いくつかの実施形態によれば、第1の波は音響波であり、弱め合う干渉によって対象周波数にある音響波が減衰させられて、第1の通路から出る音響波が少なくとも24dB減衰させられる。
【0049】
いくつかの実施形態によれば、第1の通路は、第1の断面積(A1)を有し、第2の通路は、第2の断面積(A2)を規定し、第1の面積(A1)と第2の面積(A2)との和に対する第1の面積(A1)の比率[A1/(A1+A2)]は、0.6よりも大きい。
【0050】
いくつかの実施形態によれば、第1の通路は、第1の断面積(A1)を有し、第2の通路は、第2の断面積(A2)を規定し、第1の面積(A1)と第2の面積(A2)との和に対する第1の面積(A1)の比率[A1/(A1+A2)]は、0.8よりも大きい。
【0051】
いくつかの実施形態によれば、第1の通路は、第1の断面積(A1)を有し、第2の通路は、第2の断面積(A2)を規定し、第1の面積(A1)と第2の面積(A2)との和に対する第1の面積(A1)の比率[A1/(A1+A2)]は、0.9よりも大きい。
【図面の簡単な説明】
【0052】
これまで述べてきた実施形態の特徴は、添付の図面を参考にして以下の詳細な説明を参照することによって、より容易に理解されるであろう。
【
図1A】従来技術の排気消音装置を概略的に示す図である。
【
図1B】従来技術のガスダクト用騒音抑制装置を概略的に示す図である。
【
図1C】従来技術の分流経路消音装置を概略的に示す図である。
【
図2A】メタマテリアル音響消音装置の1つの実施形態の断面図を概略的に示す図である。
【
図2B】種々のインピーダンス比のときのメタマテリアル消音装置100を介した音響エネルギーの伝達について示すグラフである。
【
図2C】種々の屈折率比のときのメタマテリアル消音装置100を介した音響エネルギーの伝達について示すグラフである。
【
図3A】メタマテリアル音響消音装置の実施形態を1つの視点から見た様子を概略的に示す図である。
【
図3B】メタマテリアル音響消音装置の実施形態を他の視点から見た様子を概略的に示す図である。
【
図3C】メタマテリアル音響消音装置の実施形態を他の視点から見た様子を概略的に示す図である。
【
図3D】
図3Aの実施形態を断面で見た様子を概略的に示す図である。
【
図4】
図4Aは、対象外周波数のときのメタマテリアル消音装置100を介した音響エネルギーの伝達について示すグラフであり、
図4Bは、対象周波数のときのメタマテリアル消音装置100を介した音響エネルギーの伝達について示すグラフであり、
図4Cは、メタマテリアル消音装置100を介した音響エネルギーの伝達及び反射について示すグラフであり、
図4Dは、種々の度合いの構造開放度を有する二層メタマテリアル消音装置100を介した音響透過率について示すグラフである。
【
図5A】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図5B】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図6A】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図6B】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図7】直列に配置された複数のメタマテリアル音響消音装置を有する消音装置システムの1つの実施形態を概略的に示す図である。
【
図8A】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図8B】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図9A】管内に配置されたメタマテリアル消音装置の1つの実施形態を概略的に示す図である。
【
図9B】管内に配置されたメタマテリアル消音装置の動作の結果を示すグラフである。
【
図10A】メタマテリアル音響消音装置を有する装置を概略的に示す図である。
【
図10B】複数のメタマテリアル音響消音装置を有する隔壁を概略的に示す図である。
【
図11A】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図11B】メタマテリアル音響消音装置の選択的な実施形態を概略的に示す図である。
【
図11C】密閉された自動車の車輪内部の騒音圧力を示すグラフである。
【
図11D】密閉された空気車輪内部に配置されたメタマテリアル消音装置の1つの実施形態を示すグラフである。
【
図11E】車輪が
図11Aのメタマテリアル消音装置1100を有していない場合の圧力に対して正規化された、車輪内部の圧力を示すグラフである。
【
図11F】空気車輪のハブ上に配置されたメタマテリアル消音装置の1つの実施形態を概略的に示す図である。
【発明を実施するための形態】
【0053】
特定の実施形態の詳細な説明
種々の実施形態に含まれる装置は、装置を介した騒音の伝播を低減する一方で、かつ、公知の装置よりもさらに著しくコンパクトなフォームファクタをもらす一方で、装置を介した十分な流体流(例えば空気流)を許容する。
【0054】
このことに加えて、実施形態によれば、装置が騒音伝播を低減するときの1つ又は複数の周波数、及び/又は、装置が騒音伝播を低減するときの1つ又は複数の周波数周辺の帯域幅のうちの一方又は両方を、設計者が指定及び調節することができるようになる。
【0055】
定義:
用語「ダクト外にある」とは、装置よりも下流の空間がダクト、例えば、装置の一体化部分であるダクトによって囲まれていない、ということを意味する。
【0056】
用語「音響波」は、断熱圧縮及び断熱減圧により流体を介して伝播する波である。
【0057】
用語「音響エネルギー」とは、音響波により搬送又は伝播されるエネルギーのことを意味する。
【0058】
用語「軸線方向」とは、軸線に対して平行な方向のことを意味する。
【0059】
用語「軸線方向に配向された」とは、ある軸線に関して、その軸線に対して平行な方向に配向された、ということを意味する。
【0060】
用語「流体流の軸線」とは、流体が流動可能な方向のことを意味する。
【0061】
用語「連続状態」とは、周波数スペクトルを有する信号に関して、そのスペクトル全体にわたる周波数において信号がエネルギーを維持する、ということである。
【0062】
用語「弱め合う干渉」又は「弱め合って干渉する」とは、1つの共通のポイントに入射する2つの個々の波が重なり合って、それぞれ個々の波の個々の振幅における差に等しい振幅を有する合成波が形成される現象のことを指す。
【0063】
用語「流体」とは、流動可能な任意の媒体のことを指し、この媒体を介して波が伝播可能であり、以下に限定されるものではないが、気体、液体又はこれらに組合せを含む。
【0064】
用語「自由区間」(又は「囲まれていない」空間)とは、メタマテリアル消音装置に関しては、メタマテリアル消音装置の外側の空間、メタマテリアル消音装置において音響エネルギーを受け取る際の出所となるダクトの外側の空間、又は、メタマテリアル消音装置の下流側におけるダクトの外側の空間のことを意味する。
【0065】
用語「開放率」とは、第1の面積(A1)を有する第1の伝達領域と、第2の面積(A2)を有する第2の伝達領域を備えた装置に関して、第1の面積と第2の面積との和(A1+A2)に対する第1の面積(A1)の比率のことを意味する[即ち、開放率=A1/(A1+A2)]。
【0066】
本開示及び本開示に添付された任意の請求項の目的について言えば、「開放率」とは、第1の断面積(A1)を有する第1の領域と、第2の断面積(A2)を有する第2の領域を備えた装置に関して、第1の断面積と第2の断面積との和(A1+A2)に対する第1の断面積(A1)の比率のことを意味する[即ち、開放率=A1/(A1+A2)]。
【0067】
用語「半径方向」とは、軸線に対して垂直な方向のことを意味する。
【0068】
「連続状態を持続させる」とは、信号が伝播する通路に関して、信号連続状態を維持しながら信号を通過させるようにこの通路が構成されている、ということを意味する。これとは対照的に、信号のスペクトル内のある1つの周波数において共鳴する通路である場合には、信号を信号連続状態では維持しないことになる。
【0069】
「セット」は、少なくとも1つの要素を含む。例えば、複数の通路からなるセットは、少なくとも1つの通路を含む。
【0070】
「対象周波数」は、弱め合う干渉を生成するように双向性のメタマテリアル消音装置を調整又は構成する際の対象となる音響エネルギーの周波数である。
【0071】
用語「透過率」とは、装置に入射する信号のエネルギーに関して、装置を通過するエネルギーと装置に入射するエネルギーとの比率のことを意味する。
【0072】
以下のいくつかの実施形態は、信号が伝播する流体媒体として、また、メタマテリアル消音装置を介して流れる流体媒体として、気体を用いて説明されている。ただし、流体媒体は液体であってもよいことから、実施形態は、流体媒体として気体に限定されるものではない。従って、この種の気体に関して説明される例示的な実施形態によって、かかる実施形態が限定されるものではない。
【0073】
図2A、図2B、図2C:横断方向二層メタマテリアル消音装置
図2Aには、メタマテリアル音響消音装置200の1つの実施形態を断面で見た様子が概略的に示されている。
【0074】
メタマテリアル音響消音装置200は、第1の伝達領域210を有し、この領域210によって、メタマテリアル消音装置200を介した気体の流れを可能にするように開放された開口部が規定される。
【0075】
この目的で第1の伝達領域210は、例えば、直線的な剛体のロッドのような固体の物体であっても、曲げることなく、また、メタマテリアル消音装置200とぶつかることなく、第1の伝達領域210を通過し得るように、開放されている。例えば、第1の伝達領域210は、中空円筒形状を有することができ、この形状は、内側半径方向面325及び厚さ227(“t”)を有する内側リング302によって規定される(この実施形態においては、厚さを円筒の高さとして考えてもよい)。例示的な実施形態の場合、厚さ227は、円筒形の高さでもあり、従って、第1の通路210の長さである。例示的な実施形態の場合、装置200の厚さ227は、対象周波数の波長の4分の1未満であり、いくつかの実施形態によれば、厚さ227は、対象周波数の波長の8分の1未満であり、さらに、いくつかの実施形態によれば、厚さ227は、対象周波数の波長の16分の1未満である。好ましい実施形態において、通路210、220は、対象周波数の波長の2分の1よりも短い。
【0076】
図2Aの実施形態の場合、第1の伝達領域210によって流体流軸線211が規定され、この流体流軸線211に沿って、流体(例えば、気体及び/又は液体)が第1の伝達領域210を介して、即ち、メタマテリアル消音装置200を介して、流動可能である。
【0077】
第1の伝達領域210は、気体環境にある場合には、第1の音響インピーダンス(Z1)と第1の音響屈折率(n1)を有する。第2の伝達領域220とは対照的に、第1の伝達領域210は、(例えば、その寸法に基づき)対象周波数において共鳴しないように構成されている。
【0078】
メタマテリアル消音装置200は、第2の伝達領域220を有する。一般に第2の伝達領域220は、1つ又は複数の導管からなるセットを含み、このセットにおける各導管は、対象周波数において共鳴するように構成されている。第2の伝達領域220は、入口と出口を有し、従って、波が第2の伝達領域220を介してその入口からその出口まで伝播可能となる。例示的な実施形態の場合、流体は、第2の伝達領域220を介してその入口からその出口まで流動可能である。
【0079】
メタマテリアル消音装置200のいくつかの注目すべき特性について、以下において説明する。
【0080】
開放度
第1の伝達領域210は、入射音響信号に面した第1の領域面積(“A1”)を有し、第2の伝達領域220は、入射音響信号に面した第2の領域面積(“A2”)を有する。
【0081】
第1の伝達領域210の面積(A1)と第2の伝達領域220の面積(A2)との和に対する第1の伝達領域210の面積(A1)の比率(A1/A1+A2)を、流体流に対するメタマテリアル消音装置200の開放度の測定量とみなすことができる。この比率を「開放」率と称することができ、例えば、液体流に対して開放されている装置の小数又はパーセンテージとして表現することができる。本明細書において説明する例示的な実施形態によれば、メタマテリアル消音装置200が少なくとも0.6(又は60%)又はそれ以上の開放率を有するようにすることができる。例えば、いくつかの実施形態は、総てについて信号を減衰させるその能力を維持しながら、0.7(70%)、0.8(80%)、0.9(90%)又はそれ以上、例えば0.99(99%)に至るまでの開放率を有する。かかるメタマテリアル消音装置を「超開放型メタマテリアル」(“UOM”)と称することができ、例えば40%を上回らない開放率であるならば有することができた従来技術の装置とは、極めて対照的である。
【0082】
インピーダンス及び屈折率
同様に、以下においてさらに詳細に説明するように、メタマテリアル消音装置200が流体(例えば気体)環境に配置される場合には、第1の伝達領域210は、第1の音響インピーダンス(これを“Z1”と称することができる)及び第1の音響屈折率(これを“n1”と称することができる)を有し、第2の伝達領域220は、第2の音響インピーダンス(これを“Z2”と称することができる)及び第2の音響屈折率(これを“n2”と称することができる)を有する。第1の音響インピーダンス(Z1)、第1の音響屈折率(n1)、第2の音響インピーダンス(Z2)及び第2の音響屈折率(n2)は、メタマテリアル消音装置200の物理的な寸法によって少なくとも部分的に決定される。
【0083】
透過率
透過率は、上流側221から下流側222へのメタマテリアル消音装置200を介した入射信号の波エネルギー(例えば音響エネルギー)の伝達の定量的測定値である。例えば、透過率を、メタマテリアル消音装置200により受け取られた(例えば、第1の伝達領域210に入力された)エネルギーに対する、メタマテリアル消音装置200から伝達された(例えば、メタマテリアル消音装置200の下流側222から出力された)エネルギーの比率と定めることができる。換言すれば、音響透過率は、入射されたエネルギーに対する伝達されたエネルギーの比率である。例えば、ある信号がメタマテリアル消音装置200に所与のエネルギー量で入射し、メタマテリアル消音装置200から伝達されたエネルギーが、第1の伝達領域210内に受け入れられたエネルギーの6パーセント(6%)に過ぎなければ、6/100又は0.06の比率となる。これらを入れ替えて言うならば、メタマテリアル消音装置200は、信号を94%又は24.4dB、減衰させている。ただし、dBは、20log(入力エネルギー/出力エネルギー)として計算される。この実施例においては、出力エネルギーに対する入力エネルギーの比率は、100/6=16.66であり、20log(16.66)=24.4dBである。
【0084】
図2B及び
図2Cの実施例は、別個の音響特性を有するメタマテリアル消音装置200の上流側221に入射した音響平面波に基づくものである。
【0085】
これらの実施例に関して以下のことを前提とする。即ち、メタマテリアル消音装置200は、厚さtと共にX軸に関して軸線対称の構成を有し、この構成において、第1の伝達領域210(r<223)は、Z1の音響インピーダンスとn1の屈折率を有し、第2の伝達領域220(223<r<224)は、Z2の音響インピーダンスとn2の屈折率を有する。なお、軸線対称の構成は、簡略化の目的で選択されているに過ぎず、一般性を損なうことなく、ハニカム形状の矩形のプリズムといったその他の構成を考察することができる、ということに留意されたい。上述のように、第1の伝達領域210と第2の伝達領域220との界面(r=223)は、固い境界であるとみなされ、この構造全体は、音響透過率を導出する目的で、Coの音速及びp0の密度を有する媒体で充填された剛性で円筒形の(即ち、断面が円形の)導波管内に閉じ込められているものとする。
【0086】
透過率を導出するための最初のステップとして、横断方向の場の変動を除くために、界面(x=0及びx=t)における音響圧力場及び速度場について以下の定義が採用される。
【数1】
【数2】
【0087】
ここで、p及びuは、それぞれ音響圧力場及び速度場である。P
1,2及びU
1,2は、第1の伝達領域210と第2の伝達領域220との界面における平均化された圧力及び体積速度である。次に、これらの領域が固い境界によって分離されているとみなす場合には、第1の領域210及び第2の領域220について、出力圧力及び出力速度を入力条件に結び付ける伝達行列を、分離された手法により記述することができる。
【数3】
【0088】
ここで、k
oは、ダクト内部の媒体に関連づけられた波数であり、ω/C
oとして定義され、n
1及びn
2は、それぞれ伝達領域210及び220の屈折率であり、tは、厚さであり、Z
1及びZ
2は、それぞれ伝達領域210及び220の特性インピーダンス値である。グリーン関数の手法を適用すれば、以下の関係を導出することができる。
【数4】
【0089】
ここで、グリーン関数は、
【数5】
と定義される。
【0090】
ここで、固有モードは、φn(r)=J0(knr)/J0(knr2)として定義され、ただし、波数knをJ(knr2)=0の解とする。
【0091】
上記の式を解くことにより、上述のように定義された平均化された圧力及び体積速度をただちに計算することができ、これらから音響透過率を以下のとおりにただちに導出することができる。
【数6】
【0092】
図2B及び
図2Cには、種々の値の屈折率及び音響インピーダンスについて二層メタマテリアル消音装置200からの透過率が、グラフで示されている。
図2Bには、特性インピーダンス比の作用が描かれており、これに関してフィルタリングのQ係数(即ち「品質係数」)を調整することができる。
図2Cには、屈折率比の作用が表されており、これに関してフィルタリングの周波数レジームを調節することができる。
【0093】
図2Bの場合、n
2/n
1=10が考察されており、4つの異なる値のインピーダンス比について透過率が無次元量n
2t/λ(λは、波長を表す)と対比して描かれている。
図2Cの場合、インピーダンス比は、一定に保持されたままであり(Z
2/Z
1=10)、3つの異なる値の屈折率比について透過率が描かれている。特に、これらの例に関して、導波管内のバックグラウンド媒体は、空気であるとみなされ、また、第1の伝達領域210内の媒体がこのバックグラウンド媒体と同一であるものとする。よって、第1の伝達領域210の特性音響インピーダンスをZ
i=ρ
oc
o/πr
1
2として導出することができ、反射率(n
1)は、単位元に等しい。
【0094】
図2B及び
図2Cから、以下のことを観察することができる。即ち、Z
2及びn
2の値について、伝達領域210の音響特性が伝達領域220とは異なるとすれば、非対称の伝達プロファイルが得られ、この場合、弱め合う干渉の結果として、ファノのような干渉に基づき透過率ゼロを生じさせることができる。弱め合う干渉は、第2の伝達領域220の共鳴状態であるn
2t≒λ/2の場合に現れる。2つの領域の屈折率(n
1及びn
2)に差異がある場合には、第1の伝達領域210は、連続状態を持続させることになり、その結果、ファノのような干渉が発生する。この状態の間、第2の伝達領域220を介して進行する音響波の部分が、この領域において共鳴により誘導された局所的なモードと相互に作用し合い、その結果、この領域を介して進行した後、位相外れ状態が生じる。領域210を介して進行する入射音響波の部分は、無視し得る程度の位相シフトを伴ってメタマテリアル200を通過し、従って、メタマテリアルの伝達側において、結果として弱め合う干渉が発生する。注目すべきは、弱め合う干渉は当初、領域220の第1の共鳴モードであるn
2t≒λ/2において発生するが、n
2t≒Nλ/2、ただし、Nは整数、である場合には、より高い共鳴モードにおいても発生することになる。
【0095】
図2Bから、それぞれ異なる値のインピーダンス比に対する透過率を比較することによって、2つの領域の特性音響インピーダンス間の差異が増加することにより、減衰性能の品質係数(Q係数)が増加することがわかる。この属性によって自由度がもたらされ、インピーダンスの差異を調節することによって、所望のフィルタリング帯域幅を実現することができる。興味深いことに、特性インピーダンス比によって著しく大きい数値(Z
2/Z
1=∞)がもたらされる場合には、フィルタリングが著しく狭帯域の特性であるとすれば、フィルタリング性能が抑制され、オリフィスのような挙動が実現される。しかしながら、同様の開放面積ジオメトリを有するオリフィス構造であると、結果として比較的不十分な音響フィルタリング性能となり、このことによって、伝達された音響波の減衰に関してわずかな低減しかもたらされなくなる。
【0096】
図2Cには、2つの媒体間の屈折率の差異が透過率に及ぼす作用が表されており、n
2t≒λ/2の場合に、高い度合いのフィルタリングが得られることが示されている。かくして発明者は、提案した構造において屈折率を調節すれば、高性能の音響減衰を任意の所望の周波数において実現することができる、ということを見出した。
【0097】
図2B及び
図2Cに示されているように、音響信号の透過率は、対象周波数においてはゼロ又はほぼゼロである。従って、ここで言えることは、弱め合う干渉により対象周波数において音響波が減衰され、音響波消音装置200の伝達が少なくとも94%低減される、ということである。
【0098】
なお、メタマテリアル消音装置200は、受動的な装置であり、この装置は、エネルギー供給を必要とせず、その代わりに入射信号におけるエネルギーのみを使用して動作する、ということに留意されたい。
【0099】
これまでの開示から、また、以下において提示される実施例を考慮すれば、メタマテリアル消音装置200の特性を、物理的な寸法(半径、厚さ、螺旋角度)及び他の特性(Z1、Z2、n1、n2)といったこの装置のパラメータの選択によって指定可能である、ということがわかる。例えば、かかるパラメータを情報に基づき選択することによって、設計者は、メタマテリアル消音装置200の対象周波数(この装置の減衰作用が最も顕著である周波数)、この対象周波数におけるその帯域幅、及び、その開放率を指定することができる。しかも、物理的な寸法を指定することによって、メタマテリアル消音装置200の第1の伝達領域210を、この第1の伝達領域210を介して伝播する波が連続状態を持続する(例えば、第1の伝達領域は、対象周波数において共鳴しない)(かかる第1の伝達領域を、連続状態を維持する又は持続すると言い表すことができる)ように、構成することができ、第2の伝達領域220を、これが対象周波数において共鳴するように構成することができる。
【0100】
図3A~図3D:メタマテリアル消音装置の円筒形の実施形態
図3Aには、円筒形二層メタマテリアル消音装置200の1つの実施形態(300)の正面図が概略的に示されている。
図3Bには、円筒形二層メタマテリアル消音装置300の側面破断図が概略的に示されており、
図3Cには、円筒形二層メタマテリアル消音装置300の背面図が概略的に示されている。
【0101】
図3Aのメタマテリアル消音装置300は、円筒形状を有し、外側表面326を備えた外側リング301を含む。外側リング301は、2つの伝達領域(又は「層」)210及び220を含む内部空間を規定している。
【0102】
この実施形態における第1の伝達領域210は、内側リング302を含み、内側半径223によって規定されている。
【0103】
好ましい実施形態によれば、内側リング302は、第1の伝達領域210を第2の伝達領域220から音響的に隔離しており、これは、第1の伝達領域210内の気体及び気体からの音響エネルギーが第2の伝達領域220へ伝達されることを実質的に阻止し、かつ、第2の伝達領域220内の気体及び気体からの音響エネルギーが第1の伝達領域210へ伝達されることを実質的に阻止することによって行われる。内側リング302を「音響的に剛体のスペーサ」と称することができる。例示的な実施形態によれば、内側リング302は、アクリロニトリル・ブタジエン・スチレン樹脂からなる。
【0104】
この実施形態の第2の伝達領域220は、外側半径224と内側半径223とによって規定されている。
図3A及び
図3Cに示されているように、第2の伝達領域220は、第1の側に上流面221を有し、第1の側とは反対の側に下流面222を有する。
【0105】
第2の伝達領域220は、螺旋通路341、342、343、344、346からなるセットを含む。螺旋通路セットの螺旋通路341~346各々は、上流面221に向けて開放されている対応する通路入口開口部(それぞれ331~336)、及び、下流面222に向けて開放されている対応する通路出口開口部(それぞれ351~356)を有する。
【0106】
第1の伝達領域210の上流面221は、内側半径223の2乗×πとして規定された面積(A1)を有する。図示されているように、第2の伝達領域220は、螺旋通路341~346からなるセットを含む。これらの螺旋通路341~346各々は、内側リング302と外側リング301(又は、内側半径223と外側半径224)との間の距離として規定された半径方向高さを有する。従って、断面(
図3AのX軸に沿って示した
図3D)で見ると、通路セットは、2π×[内側半径223と外側半径224との差の2乗]の面積(A2)を有する断面を表す。換言すれば、
図3Aのメタマテリアル消音装置300の第2の伝達領域220は、環状の形状であり、2π×[外側半径(224)の2乗]から2π×[内側半径(223)の2乗]を差し引いた面積[即ち、2π(R
2
2-R
1
2)、ただし、R
1は、内側半径223、R
2は、外側半径224]を有する。実際には、第2の伝達領域220は、
図3Aのメタマテリアル消音装置300が単一の螺旋ダクト(例えば341)だけしか有していないとしても、同等の面積(A2)を有することになる。その理由は、この単一の螺旋通路であっても、断面で見れば、2π×[内側半径223と外側半径224との差の2乗]の面積(A2)を有する断面を表すことになるからである。
【0107】
螺旋通路341~346を「共鳴通路」と称することができ、その理由は、動作中、上流面221に入射する音響波の1つ又は複数の周波数成分(各々1つの「対象周波数」)が、螺旋通路341~346の1つ又は複数において共鳴することになるからである。
【0108】
螺旋通路セットの螺旋通路341~346各々は、1つの螺旋軸線を有し、例示的な実施形態においては、螺旋通路341~346は、同一の螺旋軸線を有する。
【0109】
螺旋通路セットの螺旋通路341~346各々は、螺旋角度347を有する。
図3Aの実施形態の場合、螺旋通路341~346各々に対する螺旋角度347各々は、同一であるが、いくつかの実施形態において、螺旋通路341~346のいずれか1つ又は複数が、セット内の他の螺旋通路の1つ又は複数の螺旋角度347とは異なる螺旋角度347を有することができる。
【0110】
螺旋通路セットの螺旋通路341~346各々は、通路長さも有し、所与の螺旋通路の長さは、この螺旋通路の対応する通路入口開口部と対応する通路出口開口部との間の螺旋軸線に沿った距離である。例示的な実施形態によれば、螺旋通路セットの螺旋通路341~346各々は、サブ波長構造であり、この構造の場合には、その通路長さは、通路が消音装置として動作する周波数の波長よりも短い。しかも、いくつかの例示的な実施形態によれば、通路341~346各々の通路長は、通路が消音装置として動作する周波数の波長の2分の1(1/2)であり、好ましい実施形態によれば、かかる波長の2分の1(1/2)よりも短い(ただし、1/4よりも長い)。
【0111】
以下においては、460Hzの対象周波数を有するように構成された双向性メタマテリアル消音装置300の動作及びいくつかの特性について説明する。ただし、メタマテリアル消音装置200の動作及び特性は、一般に、この特定の実施形態に限定されるものではないことを理解されたい。これらの特性をもたらすために使用されたメタマテリアル消音装置300の実施形態は、5.2cmの厚さ(t)327、5.1cmの内側半径223、7cmの外側半径224、及び、8.2°の螺旋角度347を有するものであった。インピーダンス比Z2/Z1は7.5、屈折率比n2/n1は7であった。
【0112】
図4A~図4D:メタマテリアル消音装置の性能
例示的な動作の実施形態によれば、メタマテリアル消音装置300は、気体中を伝播する音響信号の経路内に配置されている。具体的には、メタマテリアル消音装置300は、音響信号が第1の伝達領域210及び第2の伝達領域220(この実施例においては、螺旋通路341~346の通路入口開口部331~336)に入射して入るように配置されている。第1の伝達領域210内において伝播する波の部分を第1の波と称することができ、第2の伝達領域220内において伝播する信号の部分を第2の波と称することができる。なお、音響信号からの音響エネルギーは、第1の伝達領域210の円筒に最初に入ることなく、通路入口開口部331~336に入る可能性があることに留意されたい。
【0113】
気体自体は、気体流軸線211に沿った方向に移動することができる。かかる方向を「下流」方向と称することができる。音響信号は、複数の周波数成分を含むスペクトルを有することができる。例示的な実施形態によれば、メタマテリアル消音装置300は、音響信号スペクトルの少なくとも1つの周波数(「対象周波数」)を減衰又は消音させながら、第1の伝達領域210を介して気体を通過させることができるように構成されている。
【0114】
既述のとおり、螺旋通路341~346を「共鳴通路」と称することができ、その理由は、動作中、上流面221に入射する音響波の1つ又は複数の周波数成分が、螺旋通路341~346の1つ又は複数において共鳴するからである。これと同時に音響信号は、共鳴することなく(即ち、「連続状態」で)第1の伝達領域210を介して伝播する。しかも、気体が移動しているとき、この気体は、実質的に妨害されることなく第1の伝達領域210を通過することができる。
【0115】
螺旋通路341~346からの音響エネルギーは、通路出口開口部351~356においてメタマテリアル消音装置300から出る。具体的には、音響エネルギーは、メタマテリアル消音装置300の下流面222から、メタマテリアル消音装置300よりも下流方向に位置する囲まれていない空間205へと出る。しかも、例示的な実施形態によれば、音響エネルギーは、メタマテリアル消音装置300の第2の通路220から接線方向へと出る。接線方向は、メタマテリアル消音装置300の中央から伸びた半径(223、224)に対して正接であり下流面222に対して実質的に平行な方向として規定されている。ただし、メタマテリアル消音装置300の第2の通路220から出るエネルギーの方向を、少なくとも半径方向ではないという点においては、それでもやはり、軸線方向(又は軸線に配向されている)と言い表すことができる。
【0116】
螺旋通路341~346各々からの音響エネルギーは、この音響エネルギーが出てくる通路の共鳴周波数と等しい周波数を有し、ファノ干渉によって、第1の伝達領域210からの気体においてこの周波数にある音響エネルギーを相殺する。
【0117】
メタマテリアル消音装置300の1つの実施形態の消音性能を視覚化する目的で、
図4A及び
図4Bには、メタマテリアル消音装置300を介した音響伝達が概略的に示されている。
図4A及び
図4Bには、メタマテリアル消音装置300の破断図が示されている。換言すれば、これらの図面においては、結果として生じる圧力場及び速度場を2次元(2D)で表すために、切断面が用いられる。
【0118】
図4Aは、双向性メタマテリアル消音装置に入射する平面波の第1の周波数の伝達について示すグラフである。
図4Bは、双向性メタマテリアル消音装置に入射する平面波の第2の周波数(「対象」周波数)の伝達について示すグラフである。
図4A及び
図4Bにおいて、背景色は、入射波の振幅により正規化された圧力場の絶対値を表現し、白線は、局所的な速度場の流れ及び配向を表す。
【0119】
図4Aには、黒矢印で示されているように、左側からメタマテリアル消音装置300に入射した400Hzの周波数を有する平面波が表されている。メタマテリアル消音装置300の構造の解析的及び実験的に予期される挙動によれば、400Hzの周波数レジームにおいて高い圧力伝達が結果として生じる。
【0120】
この状態において、メタマテリアル消音装置300の構造の螺旋部分220が、中央の開放部分210の音響インピーダンス(Z
1)に比較して著しく大きい音響インピーダンス(Z
2)を有するとすれば、入射波は、主として、メタマテリアル消音装置300の中央開放部分210を介して進行することになる。この挙動を、
図4Aに示した局所的な速度場の流れによって視覚的に確認することができ、この場合、メタマテリアル消音装置300の構造の前方及び後方の双方において、断面積の変化を除き、速度場は、最小限の妨害しか受けていない。
【0121】
図4Bには、左側から入射した平面波について同様の事例が表されているが、この場合には、周波数は、460Hzである。上述のようにして得られた理論的及び実験的な結果に基づき予期されることは、この周波数において、メタマテリアル消音装置300の螺旋部分220を介して伝達される波は、メタマテリアル消音装置300の中央開放部分210を介して進行する伝達された波に対して位相外れとなる、ということである。ここで得られた結果が表していることは、メタマテリアル消音装置300の伝達側(これらの図の右側)における弱め合う干渉の結果として、囲まれていない空間205においては、波の伝達が減衰されている、ということである。
【0122】
特に、メタマテリアル消音装置300の2つの領域210、220を介した位相外れ伝達について、白線で
図4Bに示した速度プロファイルを参照することにより、理解を深めることができる。直ちに認識されることは、メタマテリアル消音装置300の2つの領域210、220から伝達される波の局所的な音響速度は、互いに逆方向であり、その結果として、速度の流れに湾曲が目立ち、かつ、遠視野放射が減少している、ということである。ここで述べておきたいことは、ファノのような干渉に基づく弱め合う干渉の存在によって、メタマテリアル構造300は、開放端の音響終端の事例に似た状況を再現し、この場合、ほぼゼロの実効音響インピーダンスの結果として入射波の優勢な反射が生じる、ということである。
【0123】
換言すれば、
図4Aには、400Hzの周波数でメタマテリアル消音装置300に左側から入射した平面波から生じた入射波の大きさにより正規化された絶対圧力値が、カラーマップを用いて示されている。局所的な速度の流れが白線で示されている。この周波数において、伝達係数(伝達圧力と入射圧力との比率)は、約0.85であり、従って、音響波エネルギーの約72%が伝達される。
【0124】
図4Bには、圧力及び速度のプロファイルが、
図4Aで表された入射波と同等の振幅であるが460Hzの周波数を有する入射平面波と共に描かれている。この周波数においては、ファノのような干渉に基づいて、伝達された波は、著しく低減された振幅を有し、波は、効果的に消音された。この実施形態によれば、メタマテリアル消音装置300の2つの領域210、220から伝達された波の間の位相差の結果として、波の速度場の湾曲が発生し、遠視野放射が減少した。
【0125】
図4Cは、二層メタマテリアル消音装置300により伝達された音響エネルギーの正規化された量と、二層メタマテリアル消音装置300により反射させられた音響エネルギーの量を示すグラフである。図示されているように、460Hzの対象周波数において、著しくわずかな音響エネルギーしかメタマテリアル消音装置300により伝達されず(約5%未満)、他方、音響エネルギーの大部分は、メタマテリアル消音装置300により反射させられる(約94%又はそれ以上)。
【0126】
図4Dは、種々の度合いの構造開放度を有する二層メタマテリアル消音装置300を介した音響透過率について示すグラフである。透過率は、グリーン関数の手法を用いて解析的に導出された。特に、本明細書において考察する二層メタマテリアル消音装置の構造は、それらの横断方向二層メタマテリアルモデルにおいて同一の屈折率比であることを特徴とするが、それぞれ異なるインピーダンス比を有する。
【0127】
例示的な実施形態によれば、開放度パーセンテージは、音響インピーダンス比と相関しており、著しく高い開放度パーセンテージであったとしても、本実施形態の範囲内において消音を実現することができる。例えば、
図4Dに示されているように、(開放度が0.99又は99%に近づくほぼ完全な開放面積に迫る)著しく高いパーセンテージの開放面積を有する二層メタマテリアル消音装置300の場合であっても、消音される周波数帯域は、結果として狭まるとはいえ、消音機能は、そのまま存続する。以下の表は、開放度(開放面積/総面積、「開放度」の見出しが付された列)と、
図4Dに示したような種々の周波数における音響伝達(透過率)との関係を表している。
【表1】
【0128】
これまでの図面には、460Hzの対象周波数を有する消音装置200の実施形態が示されているが、実施形態は、この対象周波数を有する消音装置に限定されるものではない。上述のように消音装置200の対象周波数を、消音装置のパラメータの指定により設定することができる。
【0129】
図5A~図5B:非均一な通路を備えた円筒形メタマテリアル消音装置の実施形態
図5A及び
図5Bには、メタマテリアル消音装置200の他の実施形態(500)が概略的に示されている。この実施形態の場合、第2の伝達領域220における螺旋通路341~346は、同一の物理的な寸法を有していない。例えば、いくつかの通路は、他の通路よりも長い。それぞれ異なる通路長に適応するために、螺旋通路341~346のための通路入口331~336は、上流面221の周囲に不均一に配置されている。選択的に又は付加的に、通路出口351~356は、下流面222の周囲に不均一に配置されている。これに加えて、6つの通路341~346は、それぞれ異なる螺旋角度347を有する。この設計の場合、通路の正面角度が異なると、実効長(及びその結果として反射率、n)と断面(及びその結果としてインピーダンス、Z)の双方がそれぞれ異なる。従って、消音装置のこのモデルを、それぞれ異なる消音帯域幅を有する同時に複数の対象周波数に対して設計することができる。
【0130】
図6A~図6B:半径方向に配置された複数の導管を有する円筒形メタマテリアル消音装置の実施形態
図6A及び
図6Bには、メタマテリアル消音装置200の他の実施形態(600)が概略的に示されている。この実施形態の場合には、第2の伝達領域220における螺旋通路341~342は、内側リング302の周囲に巻回された個々の通路を含む。個々の通路341、342各々は、1つのトップパネル510と2つのサイドパネル511、512を有する。2つのサイドパネル各々は、内側リング302から半径方向において外側に向かって延在し、トップパネル510は、2つのサイドパネル511、512の半径方向において外側の端部の間に延在し、これによって、矩形の断面を有する螺旋通路が形成される。螺旋通路341、342は、同一とすることができ、又は、異なる螺旋角度及び/又は螺旋長さ、及び/又は、異なる断面積を有することができる。この実施形態が望ましいものとなり得るのは、中央通路210内の圧力損失を最小限に抑制することを目標とする場合である。この事例においては、通路入口開口部331、332及び通路出口開口部351、352は、半径方向に配置されており、この消音装置は、それぞれ異なる長さ(通路342は、0.75回転)(通路341は、1.1回転)を有する2つの通路341、342を特徴としている。通路の長さと通路の断面を調節することによって、マルチバンド又は適当な帯域幅を有するシングルバンドのいずれかの所望の消音を実現することができる。
【0131】
図7:直列に配置されたメタマテリアル消音装置を有する実施形態
図7には、複数の
図3Aに示したようなメタマテリアル消音装置200からなるスタック700が概略的に示されている。メタマテリアル消音装置200各々を、他の2つのメタマテリアル消音装置200とは異なる周波数を減衰するように構成することができる。スタック700における複数のメタマテリアル消音装置200は、スタック700が複数の目標周波数の伝達を減衰するよう構成されている、というような相乗効果を有する。
【0132】
図8A~図8B:第2の伝達領域が中央に配置された円筒形メタマテリアル消音装置の実施形態
図8A及び
図8Bには、メタマテリアル消音装置200の他の実施形態(800)が概略的に示されている。この実施形態は、第2の伝達領域220と、この第2の伝達領域220の半径方向において外側に配置された第1の伝達領域210を含む。第1の伝達領域210は、外側リング301により囲まれており、第2の伝達領域220の周囲で非共鳴路を規定している。この実施形態によれば、第2の伝達領域220は、1つ又は複数のスパー810により外側リング301から懸架されたハブである。
【0133】
図9A~図9B:管内に配置された円筒形メタマテリアル消音装置の実施形態
上述の実施形態(200;300;500;600;800)は、ダクト外にあり、既述の性能をもたらすために、また、既述の結果を得るために、外側ケーシングを必要とするが、
図9A及び
図9Bに関連して説明するように、例示的な実施形態をケーシング内に配置して使用することができる。
【0134】
図9Aには、管910内に配置されたメタマテリアル消音装置200の実施形態が概略的に示されている。メタマテリアル消音装置200を、本明細書において開示した円筒形消音装置のいずれかとすることができる。
図9Bは、管910内におけるメタマテリアル消音装置200の消音効果を示すグラフである。
【0135】
管910は、その端部に2つの開口部911及び912を有する円筒である。この実施形態について説明する目的で、管910の第1の端部911に音源(例えばスピーカ)920が配置されており、このようにして音源920により生成された音響信号が、第1の開口部を介して管910内に向かい、次いで、管910の他方の端部における第2の開口部912へと下流に向かって管910を伝播する。この実施形態における音響信号は、メタマテリアル消音装置200の対象周波数を含む複数の周波数の範囲をカバーするスペクトルを有する。音響負荷910(これを例えばキャップとすることができる)が、開口部912内に又はその上に配置されている。
【0136】
メタマテリアル消音装置200は、その上流面221が音源920に面するように管910内に配置されている。この実施形態におけるメタマテリアル消音装置200は、460Hzの対象周波数を有する。
【0137】
図9Aの場合、管910に複数のマイクロフォン931~935が取り付けられており、これらは、管910内の種々のポイントで音響信号の強度を測定するように配置されている。マイクロフォン931、932及び935は、メタマテリアル消音装置200よりも上流に配置されており、マイクロフォン933及び934は、メタマテリアル消音装置200よりも下流に配置されている。
図9Bに示されているように、メタマテリアル消音装置200は、このメタマテリアル消音装置よりも下流においては、対象周波数(460Hz)の音響信号を実質的に減衰する。具体的には、メタマテリアル消音装置200は、対象周波数よりも低い周波数にある音響信号の音響エネルギーの約90%を伝達し、対象周波数よりも高い周波数にある音響信号の音響エネルギーの約50%を伝達するが、対象周波数にある音響信号の音響エネルギーをほとんど全く伝達せず(ゼロパーセント又はほぼゼロパーセント)、対象周波数周囲の帯域内の音響信号の音響エネルギーの50%未満しか伝達しない。従って、
図9A及び
図9Bによって示されていることは、メタマテリアル消音装置200は、その下流面122が自由空間又は囲まれていない空間ではなく囲まれた空間であったとしても良好に動作する、ということである。例えば、上述の記載で示したような囲まれていない空間205内におけるメタマテリアル消音装置300の動作は、管910の内部のように囲まれた空間内における動作についても当てはまる。
【0138】
図10A及び図10B:メタマテリアル音響消音装置の実際の応用に関する実施形態
図10A及び
図10Bには、メタマテリアル消音装置200(例えば、300;500;600;800)の種々の実施形態の実際の応用について概略的に示されている。
図10Aには、管1010の出口1012に配置されたメタマテリアル消音装置200が概略的に示されている。管1010を音源とすることができ、又は、管101は、音源を含むことができる。例えば、管1010を、ほんの数例を挙げるに過ぎないが、自動車又はジェットエンジンの排気管とすることができる。メタマテリアル消音装置200は、上述のように、管1010から出る騒音を減衰するが、管1010から出る気体の流れ(例えば、排気ガス、ジェット噴流)を依然として可能にするように動作する。
【0139】
図10Bには、複数のメタマテリアル消音装置200(例えば、300;500;600;800)からなるセットを有する防音壁1020が概略的に示されている。かかるメタマテリアル消音装置200各々は、上述のように、防音壁1020に入射する騒音を減衰するように動作するが、防音壁1020を介した気体の流れを依然として可能にする。いくつかの実施形態によれば、複数のメタマテリアル消音装置200からなるセットは、動物がこれらのメタマテリアル消音装置200を通過することができるように、地表付近に配置されている。
【0140】
図11A~図11E:車輪内のメタマテリアル消音装置の実施形態
図11A及び
図11Bには、メタマテリアル消音装置1100の他の実施形態が概略的に示されている。この実施形態は、外側リング201を含み、これは、内部領域1101を規定する内側半径方向面225を有する。円弧型共鳴器1120が内側半径方向面225上に配置されており、これは、1つ又は複数の蛇行共鳴通路1141を含む。この例示的な実施形態の場合、円弧型共鳴器1120内に単一の通路1141が巻回されている。円弧型共鳴器1120は、外側リング201の中央において、この実施形態では、約45°の角度1147をなしている。他の実施形態によれば、角度1147を45°よりも大きく又は小さくすることができ、例えば、30°、60°、90°又は120°とすることができる。
【0141】
動作中、音響エネルギーが通路1141に入り、それらの通路内において共鳴する。次いで、音響エネルギーが円弧型共鳴器1120から出て、内部領域1101内において音響エネルギーを減衰させる。
【0142】
かかる実施形態の1つの応用は、自動車の車輪内におけるものである。この目的で
図11Cには、密閉された自動車の車輪1150内の騒音圧力が示されている。この実施形態によれば、3つの円弧型共鳴器1120を有するメタマテリアル消音装置が車輪1150内部に配置されている。
【0143】
図11Eは、車輪が
図11Aのメタマテリアル消音装置1100を有していない場合の圧力に対して正規化された、車輪内部の圧力を示すグラフ1160である。軌跡1161は、
図11Aのメタマテリアル消音装置1100が車輪1150内に収容されていないときの正規化された圧力を示す。これに対して、軌跡1162は、
図11Dに概略的に示されているように、
図11Aのメタマテリアル消音装置1100が車輪1150内に収容されているときの、車輪1150内の正規化された圧力を示す。図示されているように、メタマテリアル消音装置1100が車輪1150内に収容されていることによって、音響圧力が約90%低減される。
【0144】
図11Fには、車輪1150の実施形態が概略的に示されており、この車輪1150は、円弧型共鳴器1120を有し、これは、車輪1150の車輪ハブ1171上において、このハブに取り付けられたタイヤ1152内に配置されている。
【符号の説明】
【0145】
200 メタマテリアル音響消音装置
205 囲まれていない空間
210 第1の伝達領域(又は「通り抜け経路」)
211 気体流の方向
220 第2の伝達領域
221 メタマテリアル音響消音装置の上流面
222 メタマテリアル音響消音装置の下流面
223 内側半径
224 外側半径
301 外側リング
302 内側リング
325 メタマテリアル音響消音装置の内側半径方向面
326 メタマテリアル音響消音装置の外側半径方向面
327 厚さ
328 音響的に剛体の部材(又は音響的に剛体のスペーサ)
331~336 通路入口
341~346 通路
347 螺旋角度
351~356 通路出口
810 スパー
910 音響負荷
920 音源
931~935 マイクロフォン
1010 管(例えば中空円筒)
1011 円筒の第1の端部
1012 円筒の第2の端部
1020 防音壁
1101 内部領域
1120 円弧型共鳴器
1147 円弧角度
1150 車輪
1151 車輪ハブ
1152 タイヤ
【0146】
この段落に続く(及び本願の最後に提示した実際の請求項の前の)段落に列挙した潜在的な請求項によって、種々の実施形態を特徴づけることができる。それらの潜在的な請求項は、本願の文書説明の一部をなすものである。従って、以下の潜在的な請求項の保護対象を、本願又は本願に基づき優先権を主張するいずれかの出願に関わる後々の訴訟手続きにおいて、実際の請求項として提示することができる。かかる潜在的な請求項の包含が、実際の請求項は潜在的な請求項の保護対象をカバーしないことを意味するものであると解釈されるべきではない。よって、後々の訴訟手続きにおいてそれらの潜在的な請求項を提示しないという決定が、公衆に対する保護対象の寄贈であると解釈されるべきではない。
【0147】
限定を意図するものではないが、請求される可能性のある潜在的な保護対象(後で提示する実際の請求項との混同を避けるために、冒頭に文字“P”が付されている)は、以下のものを含む。
【0148】
P1
気体状の媒体中の音響波の伝達を低減するための横断方向二層装置であって、前記音響波は、所定の周波数及び対応する波長を有し、当該装置は、第1の伝達領域と第2の伝達領域を有し、
前記第1の伝達領域は、気体流軸線を規定し、当該気体流軸線に沿って気体が流れるように実質的に開放された非共鳴路を規定し、さらに、第1の音響インピーダンス(Z1)と第1の音響屈折率(n1)を有し、
前記第2の伝達領域は、軸線方向上流面及び当該上流面とは反対側の軸線方向下流面、並びに、前記波長の50%未満の厚さ(t)を有し、前記第2の伝達領域内に螺旋共鳴器通路セットを有し、当該螺旋共鳴器通路セット内の各螺旋共鳴器通路は、前記軸線方向上流面に対して開放された通路入口開口部、前記軸線方向下流面に対して開放された通路出口開口部、前記気体流軸線に平行な螺旋軸線、並びに、第2の音響インピーダンス(Z2)及び第2の音響屈折率(n2)を有し、
前記第2の音響屈折率(n2)と前記厚さ(t)との積は、前記波長の2分の1に等しく、
対比(Z2/Z1)は、少なくとも1でありかつ100未満である、
横断方向二層装置。
【0149】
P2
P1に記載の横断方向二層装置はさらに、前記第1の伝達領域を前記第2の伝達領域から音響的に分離するように配置された、音響的に剛体のスペーサを有する。
【0150】
P3
P2に記載の横断方向二層装置であって、前記音響的に剛体のスペーサは、アクリロニトリル・ブタジエン・スチレン樹脂からなる円筒を有する。
【0151】
P4
P1からP3のいずれか1つに記載の横断方向二層装置であって、前記軸線方向上流面は、前記螺旋軸線に対して垂直であり、かつ、前記軸線方向下流面は、前記螺旋軸線に対して垂直である。
【0152】
P5
P4に記載の横断方向二層装置であって、前記第2の伝達領域は、環状ボディを有し、当該環状ボディは、前記非共鳴路を規定する内側半径と1つのリングを規定する外側半径を有し、前記リングは、前記軸線方向上流面と前記軸線方向下流面を有する。
【0153】
P6
P5に記載の横断方向二層装置であって、前記非共鳴路は、第1の2次元面積(A1)を規定し、前記軸線方向上流面は、第2の2次元面積(A2)を規定し、前記第1の2次元面積(A1)と前記第2の2次元面積(A2)との和に対する前記第1の2次元面積の比率は、少なくとも0.6である(即ち、A1/(A1+A2)×100≧60%)。
【0154】
P7
P1からP6のいずれか1つに記載の横断方向二層装置であって、前記第1の伝達領域は、前記第2の伝達領域の半径方向において外側に配置されており、前記非共鳴路は、前記第2の伝達領域の周囲に配置されている。
【0155】
P8
P7に記載の横断方向二層装置であって、前記非共鳴路は、前記第2の伝達領域周囲において環状の形状を有する。
【0156】
P9
P7に記載の横断方向二層装置はさらに、外側リングと複数のスパーからなるセットを有し、
前記外側リングは、前記第2の伝達領域と同軸に当該第2の伝達領域の半径方向において外側に配置され、前記外側リングは、前記非共鳴路の半径方向において外側の境界を規定し、
前記複数のスパーからなるセットは、前記外側リングから前記第2の伝達領域まで延在し、前記外側リングから前記第2の伝達領域を懸架する。
【0157】
P10
P1からP9までのいずれか1つに記載の横断方向二層装置はさらに、内側面を有し内部領域(1101)を規定する外側リングを有し、前記第2の伝達領域は、365°未満の角度をなす円弧型共鳴器を有する。
【0158】
P11
P10に記載の横断方向二層装置であって、前記円弧型共鳴器は、45°未満の角度をなす。
【0159】
これまで述べてきた本発明の実施形態は、単に例示に過ぎないものであることを意図しており、当業者には、数多くの変形及び修正が明らかであろう。かかる変形及び修正は総て、添付のいずれかの請求項において規定されている本発明の範囲内にあることを意図している。