(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-20
(45)【発行日】2025-01-06
(54)【発明の名称】定置形ガスタービンのタービン翼
(51)【国際特許分類】
F01D 5/18 20060101AFI20241223BHJP
F01D 5/20 20060101ALI20241223BHJP
F02C 7/18 20060101ALI20241223BHJP
F02C 7/00 20060101ALI20241223BHJP
F01D 25/00 20060101ALI20241223BHJP
【FI】
F01D5/18
F01D5/20
F02C7/18 A
F02C7/00 D
F01D25/00 X
(21)【出願番号】P 2022532872
(86)(22)【出願日】2020-12-04
(86)【国際出願番号】 EP2020084603
(87)【国際公開番号】W WO2021110899
(87)【国際公開日】2021-06-10
【審査請求日】2023-05-10
(32)【優先日】2019-12-06
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】521001582
【氏名又は名称】シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト
【氏名又は名称原語表記】SIEMENS ENERGY GLOBAL GMBH & CO. KG
(74)【代理人】
【識別番号】110003317
【氏名又は名称】弁理士法人山口・竹本知的財産事務所
(74)【代理人】
【識別番号】100075166
【氏名又は名称】山口 巖
(74)【代理人】
【識別番号】100133167
【氏名又は名称】山本 浩
(74)【代理人】
【識別番号】100169627
【氏名又は名称】竹本 美奈
(72)【発明者】
【氏名】キャバディーニ,フィリップ
【審査官】家喜 健太
(56)【参考文献】
【文献】米国特許出願公開第2002/0051706(US,A1)
【文献】米国特許出願公開第2019/0093487(US,A1)
【文献】米国特許出願公開第2005/0084370(US,A1)
【文献】特表平09-507895(JP,A)
【文献】米国特許出願公開第2017/0292386(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 1/00 - 11/24
F02C 1/00 - 9/58
F23R 3/00 - 7/00
(57)【特許請求の範囲】
【請求項1】
ガスタービンのためのタービン翼(10)であって、このタービン翼が翼根元部(12)、および、正圧側壁(14)と負圧側壁(16)とを含む翼形部(18)を備え、これら側壁(14,16)(以下、「2つの側壁(14,16)」という。)が翼スパン方向(R)に沿って根元側端部(20)から翼先端部(22)まで延び、かつ、翼スパン方向(R)に対して横方向に配向された翼弦方向(S)に沿って前縁(24)から後縁(26)まで延びており、
前記翼形部(18)の内部に第1の冷却媒体流(M1)用の第1の冷却通路(30)、および、前記第1の冷却媒体流(M1)用の前記第1の冷却通路(30)から実質的には分離された第2の冷却媒体流(M2)用の第2の冷却通路(50)が形成されており、
前記第1の冷却通路(30)が、前記前縁(24)のサイクロン冷却のために設けられた第1の冷却媒体流路(32)、および、前記第1の冷却媒体流路(32)に接続し前記翼先端部(22)の下側で前記前縁(24)から前記後縁(26)の方向に延びる第2の冷却媒体流路(34)を備えており、
前記第2の冷却通路(50)が、前記翼形部(18)の前縁部領域(39)の翼弦方向後方に位置する中央領域(48)を冷却するための蛇行冷却媒体流路(52)、および、前記翼形部(18)の前記中央領域(48)の翼弦方向後方で前記後縁まで達する後縁部領域(59)を少なくとも部分的に冷却するための第1の後縁部冷却媒体流路(54)を備えており、
前記第1の後縁部冷却媒体流路(54)が、前記後縁(26)に配設された複数の第1の流出孔(
46)と流体的に接続されている、
タービン翼において、
前記第1の冷却媒体流路(32)および/または前記蛇行冷却媒体流路(52)には流出孔がなく、
前記第1の冷却通路(30)が、前記第2の冷却媒体流路(34)に接続して主に半径方向内側を向いて延びる第3の冷却媒体流路(38)と、前記第3の冷却媒体流路(38)に接続する第2の後縁部冷却媒体流路(44)と、を備えており、前記第2の後縁部冷却媒体流路(44)は前記後縁部領域(59)の翼先端側領域を冷却するために形成されていて、前記後縁(26)に配設された複数の第2の流出孔(
46)と流体的に接続されており、
前記第1の冷却通路(30)が前記第1の冷却媒体流路(32)用の供給流路(31)を含み、前記供給流路が、
前記第1の冷却媒体流路(32)のすぐ隣に配置され、
前記翼形部(18)の少なくとも大部分のスパン長にわたって延在し、
複数の貫通開口(33)を介して前記第1の冷却媒体流路(32)と流体的に接続されており、前記複数の貫通開口(33)は前記第1の冷却媒体流路(32)内を流れる冷却媒体流(M1)に捻れを付与するための手段を有し、
翼スパン方向(R)において定めることができる複数の貫通開口(33)の密度が前記根元側端部(20)で最も大きい、
ことを特徴とするタービン翼。
【請求項2】
請求項1に記載のタービン翼(10)であって、1つまたは複数の冷却媒体流出孔(67)が前記翼先端部(22)に配置され、これらが前記第2の冷却媒体流路(34)と流体的に接続されている、ことを特徴とするタービン翼(10)。
【請求項3】
請求項1または2に記載のタービン翼(10)であって、翼スパン方向(R)において定めることができる
前記複数の貫通開口(33)の密度が、前記翼先端部(22)に向かって段階的または連続的に減少する、ことを特徴とするタービン翼(10)。
【請求項4】
請求項1から3のいずれか1項に記載のタービン翼(10)であって、それぞれの前記後縁部冷却媒体流路(44,54)内にパターン化されて複数列に配列された多数の台座が設けられている、ことを特徴とするタービン翼(10)。
【請求項5】
請求項1から4のいずれか1項に記載のタービン翼(10)であって、前記第2の冷却媒体流路(34)を拡張する2つの冷却分岐チャネル(36a、36b)が設けられ、前記2つの冷却分岐チャネル(36a、36b)は翼弦方向に延びるにつれて半径方向内側に向かって広がり、前記第3の冷却媒体流路(38)に接続する、ことを特徴とするタービン翼(10)。
【請求項6】
請求項5に記載のタービン翼(10)であって、前記第2の冷却媒体流路(34)と前記蛇行冷却媒体流路(52)との間に隔壁(60)が配置され、この隔壁は前記2つの側壁(14、16)を互いに接続して翼弦方向(S)に延びており、該隔壁(60)は前記後縁(26)に近づくにつれて、先の尖った、抑止楔(62)を形成し、この抑止楔が前記2つの側壁(14、16)の内面と接続して前記2つの冷却分岐チャネル(36a、36b)を横方向に区画している、ことを特徴とするタービン翼(10)。
【請求項7】
請求項1から6のいずれか1項に記載のタービン翼(10)であって、前記第3の冷却媒体流路(38)と前記第2の後縁部冷却媒体流路(44)との間に翼スパン方向(S)に延びる後部分離リブ(49h)が設けられている、ことを特徴とするタービン翼(10)。
【請求項8】
請求項1から7のいずれか1項に記載のタービン翼であって、前記後縁(26)が、その根元側端部(20)において0%で始まり前記翼先端部(22)において100%で終わる、100%の正規化された高さを有し、前記第1および第2の後縁部冷却媒体流路(44、54)が主に翼弦方向に延びる分離リブ(64)によって互いに少なくとも実質的に分離されており、前記分離リブは正規化された高さの45%から75%の間の高さに位置している、ことを特徴とするタービン翼。
【請求項9】
ガスタービンのためのタービン翼(10)であって、このタービン翼が翼根元部(12)、および、正圧側壁(14)と負圧側壁(16)とを含む翼形部(18)を備え、これら側壁(14,16)(以下、「2つの側壁(14,16)」という。)が翼スパン方向(R)に沿って根元側端部(20)から翼先端部(22)まで延び、かつ、翼スパン方向(R)に対して横方向に配向された翼弦方向(S)に沿って前縁(24)から後縁(26)まで延びており、
前記翼形部(18)の内部に第1の冷却媒体流(M1)用の第1の冷却通路(30)、および、前記第1の冷却媒体流(M1)用の前記第1の冷却通路(30)から実質的には分離された第2の冷却媒体流(M2)用の第2の冷却通路(50)が形成されており、
前記第1の冷却通路(30)が、前記前縁(24)のサイクロン冷却のために設けられた第1の冷却媒体流路(32)、および、前記第1の冷却媒体流路(32)に接続し前記翼先端部(22)の下側で前記前縁(24)から前記後縁(26)の方向に延びる第2の冷却媒体流路(34)を備えており、
前記第2の冷却通路(50)が、前記翼形部(18)の前縁部領域(39)の翼弦方向後方に位置する中央領域(48)を冷却するための蛇行冷却媒体流路(52)、および、前記翼形部(18)の前記中央領域(48)の翼弦方向後方で前記後縁まで達する後縁部領域(59)を少なくとも部分的に冷却するための第1の後縁部冷却媒体流路(54)を備えており、
前記第1の後縁部冷却媒体流路(54)が、前記後縁(26)に配設された複数の第1の流出孔(56)と流体的に接続されている、
タービン翼において、
前記第1の冷却媒体流路(32)および/または前記蛇行冷却媒体流路(52)には流出孔がなく、
前記第1の冷却通路(30)が、前記第2の冷却媒体流路(34)に接続して主に半径方向内側を向いて延びる第3の冷却媒体流路(38)と、前記第3の冷却媒体流路(38)に接続する第2の後縁部冷却媒体流路(44)と、を備えており、前記第2の後縁部冷却媒体流路(44)は前記後縁部領域(59)の翼先端側領域を冷却するために形成されていて、前記後縁(26)に配設された複数の第2の流出孔(
46)と流体的に接続されており、
前記蛇行冷却媒体流路(52)が、翼スパン方向に延びる少なくとも2つのチャネル区間(55a、55b)、および、少なくとも2つの方向転換部(57a、57b)を備えており、冷却媒体流においてより下流側に位置する方向転換部(57b)が前記第1の後縁部冷却媒体流路(54)と流体的に直接接続されており、
前記2つのチャネル区間(55a、55b)が、抑止体(70)により、および、前記2つの側壁(14、16)により、前記翼形部(18)の断面においてそれぞれが実質的にC字形に、負圧側分岐チャネル(55as,55bs)、正圧側分岐チャネル(55ad,55bd)および前記負圧側分岐チャネル(55as,55bs)と前記正圧側分岐チャネル(55ad,55bd)を連結する連結チャネル(55av,55bv)により形成されていて、これらチャネル区間が前記抑止体(70)をほぼ完全に取り囲むように互いに配設されている、
ことを特徴とするタービン翼。
【請求項10】
請求項9に記載のタービン翼であって、前記抑止体(70)が横断面においてキャビティ(72)を包含し、ブリッジ(71)を介して前記2つの側壁(14、16)上で支持される、ことを特徴とするタービン翼。
【請求項11】
請求項9または10に記載のタービン翼(10)であって、前記蛇行冷却媒体流路(52)が、前記根元側端部から前記翼先端部まで延びており前記正圧側壁(14)を前記負圧側壁(16)と連結する支持リブ(66h、66v)の少なくとも1つ、両方によって区切られており、かつ、前記支持リブ(66h、66v)上に、または、前記連結チャネル(55av、55bv)を区切っている前記抑止体(70)の内面に、複数のコンポーネントが設けられていて、前記複数のコンポーネントが前記負圧側分岐チャネル(55as、55bs)から前記連結チャネル(55av、55bv)を通って前記正圧側分岐チャネル(55ad、55bd)への冷却媒体の横方向流を低減する、ことを特徴とするタービン翼(10)。
【請求項12】
請求項10または請求項10を引用する請求項11に記載のタービン翼(10)であって、前記キャビティ(72)は前記冷却媒体流(M)が流れることができず、冷却媒体流(M)のための出口開口部を有していない(死水空洞)、ことを特徴とするタービン翼(10)。
【請求項13】
請求項10、請求項10を引用する請求項11、および、請求項12のいずれか1項に記載のタービン翼(10)であって、このタービン翼が鋳造され、かつ、タービン翼が鋳造された後に前記翼根元部(12)に存在し、前記キャビティ(72)と直接連通する開口部(74a)が、別に製造されたカバープレート(76a)によって閉鎖されている、ことを特徴とする、タービン翼(10)。
【請求項14】
請求項1から12のいずれか1項に記載のタービン翼であって、鋳造されていることを特徴とするタービン翼(10)。
【請求項15】
請求項13または14に記載のタービン翼(10)であって、このタービン翼が鋳造された後に前記翼根元部(12)に存在し、前記第1の後縁部冷却媒体流路(54)と直接連通する開口部(74b)が、別に製造されたカバープレート(76b)によって閉鎖されている、ことを特徴とするタービン翼(10)。
【請求項16】
請求項1から8のいずれか1項、または、請求項1を直接的又は間接的に引用する請求項14または15に記載のタービン翼(10)であって、各冷却通路(30、50)に対して1つまたは複数の流入口(80)が設けられており、前記流入口が、前記第1の冷却媒体流路(32)もしくは前記供給流路(31)、または、前記蛇行冷却媒体流路(52)もしくはそのチャネル区間の1つ(55a)と流体的に直接接続されている、ことを特徴とするタービン翼(10)。
【請求項17】
請求項1から16のいずれか1項に記載のタービン翼(10)であって、前記根元側端部で測定される翼弦長(SL)に対する後縁部翼スパン長(HSP)のアスペクト比HSP/SLが3.0以下であるタービン翼(10)。
【請求項18】
ISO準拠の通常運転中に少なくとも1300℃のタービン入口温度を有し、および/または、ISO準拠の通常運転中に19:1以上の圧縮比を有する定置形ガスタービンの第1または第2のタービン段における、請求項1から17のいずれか1項に記載のタービン翼(10)の使用。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は請求項1の前文によるタービン翼に関する。
【0002】
ガスタービンのタービン翼は運転中に最大の熱的および機械的負荷を受けるので、今日では、複雑で中空の内部形状によって、冷却可能で特に堅牢であるように形成されている。
【0003】
例えば、請求項1の前文に相当するガスタービン翼が特許文献1で知られており、この場合には、前縁部冷却チャネル内に接線方向に導入された冷却空気により、前縁の冷却のためにその内部にさらなる複数のフィルム冷却孔、これは英語ではしばしばシャワーヘッドホール(Showerhead-Holes)と呼ばれる、を必要とせずに、前縁を冷却することが可能となる。しかし、前縁部冷却チャネル内を流れる冷却空気のかなりの部分は、負圧側で前縁近傍に配置された複数のフィルム冷却孔、これは英語ではギルホール(Gill-Holes)とも呼ばれる、を介してタービン翼から排出され、一方、この冷却空気の残りの部分は翼先端部の下部で後縁に導かれる。他方、翼形部の残りの部分は蛇行状の冷却チャネルを介して後縁部噴出により冷却される。
【0004】
さらに、特許文献2からいわゆる多層タービン翼が知られており、これは英語では「多重壁タービン(Multiwall-Turbine Blade)」とも呼ばれる。その内部には、2つの抑止体(Verdraengungskoerper)が設けられており、これらによってタービン翼の内部を流れる冷却空気は外壁内面のすぐ近くへ押付けられることになる。更に特許文献3は多重壁タービン翼の代替構成を示している。さらに、特許文献4は、翼スパン方向を基準にして、2つの隣接する蛇行冷却チャネルを有するタービン翼を示しており、これらの蛇行冷却チャネルは前縁を冷却するチャネルを介して直列に接続されている。
【0005】
タービンのさらなる高効率化を追求する上で、冷却空気を節約する必要が絶えずある。というのは、節約された冷却空気は化石燃料や合成燃料を酸化するための一次空気として利用し、効率を高めることができるからである。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第1996/15358A1号パンフレット
【文献】国際公開第2017/039571A1号パンフレット
【文献】欧州特許出願公開第1783327A2号明細書
【文献】米国特許出願公開第2010/0239431A1号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
したがって、本発明の課題は、冷却媒体の消費量を更に減らした長寿命のタービン翼を提供することにある。
【課題を解決するための手段】
【0008】
この課題は、本発明により請求項1に記載のタービン翼によって解決される。本発明は、特に軸流式の定置形ガスタービン用の、特に高圧タービン段の一つのためのタービン翼であって、内部に冷却システムが配設されたタービン翼を提案するものであり、この冷却システムは第1の冷却媒体流のための第1の冷却通路、および、この第1の冷却通路から実質的に、そして好ましくは完全に、分離された、第2の冷却媒体流のための第2の冷却通路を備えており、この冷却システムでは、前記第1の冷却通路は、前縁をサイクロン冷却するために設けられた第1の冷却媒体流路、および、この第1の冷却媒体流路に接続されて翼先端部の下部で前縁から後縁の方向に延びる第2の冷却媒体流路を備えており、前記第2の冷却通路は、翼形部の前縁領域の翼弦方向後方に配置された中央領域を冷却するための蛇行状の冷却媒体流路、および、翼形部の中央領域の翼弦方向後方に配置され後縁まで到達する後縁部領域を少なくとも部分的に冷却するための第1の後縁部冷却媒体流路を備えており、この第1の後縁部冷却媒体流路は後縁に配設された複数の第1の流出孔と流体的に接続されており、前述の第1の冷却媒体流路は流出孔のない、すなわち、局所的に閉じられた冷却のために設けられており、前記第1の冷却通路はさらに、前記第2の冷却媒体流路に接続され主に半径方向内側へ向かって延びる第3の冷却媒体流路、および、この第3の冷却媒体流路に接続される第2の後縁部冷却媒体流路を備え、この第2の後縁部冷却媒体流路は後縁部領域の翼先端側領域を冷却するために形成され、後縁に配設された複数の第2の流出孔と流体的に接続されている。
【0009】
本発明は、タービン翼を冷却するための冷却媒体の大幅な節約は、翼形部の前縁および/または正圧側壁および/または負圧側壁に、そこを通って冷却媒体が流出することができ、タービン翼の周囲を流れる高温ガスが流入することができる開口部がない場合にのみ達成することができる、という知見に基づいている。このタービン翼の簡単な構造を可能にするために、冷却媒体は少なくとも後縁から、場合によっては、外側を向いている翼先端部からも流出する。この点において、局所的に閉じた冷却を行うためには、翼形部の前縁ならびに正圧側および負圧側の大部分を冷却することができる流路およびチャネルのみを設けるべきである。言い換えれば、第1の冷却媒体流路および/または蛇行冷却媒体流路からは、シャワーヘッドホールもギルホールも、他のフィルム冷却孔も分岐しない、これらの流路には流出孔がない。流出孔は後縁のみに、場合によっては翼先端部にも、設けられている。局所的に閉じた冷却とは、冷却媒体が翼形部から高温ガス中に全く流出しないことを意味するのではない。
【0010】
それにもかかわらず、特に極めて高い熱負荷を受けるタービン翼の前縁の十分な冷却を達成するために、局所的に閉じた、すなわち流出孔のない前縁部冷却の場合には実際には冷却媒体の需要が増大する。しかしながら、本発明により、前縁を冷却するために使用された第1の冷却媒体流が翼形部の後縁部領域の半径方向外側部分を冷却するためにも使用することが、初めて提案される。従来技術のように、冷却媒体をギルホールを介して、および、後縁から直接排出する代わりに、本発明によれば、このシステムに後部の分離リブが導入され、この分離リブがこのシステムから流れてくる冷却媒体を再度内側に向けて方向転換させ、次に、別の後縁部冷却媒体流路に導く。その結果、第1の冷却媒体流は、翼先端部の直下で翼形部の後方端部まで延びる第2の冷却媒体流路を介して、さらに、これに続く第3の冷却媒体流路を介して、好ましくは後縁の高さの約半分の高さに案内され、次に、半径方向外側に配置された後縁部冷却媒体流路において有効に使用される。この解決策により、第2流体通路のための冷却空気の需要を大幅に低減することができる。従って、ここで提案したアプローチは、新方式の配分により、および、冷却コンセプトすなわちサイクロン冷却を使用することにより、使用可能な冷却媒体の最大限の有効活用を提供する。このサイクロン冷却は、圧縮機の圧力比が大きくタービン流入温度が高いガスタービンの第1および/または第2タービン段のタービン翼に対しては、これまでは、全く不適切であると考えられ、従って、これらのタービン翼に対しては考慮されていなかった。
【0011】
サイクロン冷却とは、冷却チャネル内または冷却媒体流路内を流れる冷却媒体の主な部分が、冷却媒体の主入口から主出口まで捻れた形で流れる冷却を意味する。捻れは、冷却媒体の実質的な部分が当該のチャンネルまたは流路に沿って螺旋状すなわちヘリックス状に流れることを意味する。この捻れた流れは乱流とは区別されるべきである。後者はいわゆるタービュレータによって規則的に引き起こされ、その結果、空間的に非常に限定された領域に発生する。というのは、冷却媒体の非常に少ない割合しかタービュレータの影響を受けず、操作されないからである。当該の領域を離れた後、その乱流は再び崩れる。したがって、捻れた主流が局所的に非常に小さな領域で二次乱流成分を有することもあるが、その逆はない。
【0012】
本発明によれば、冷却媒体の消費量を事前に予期されなかった程度に低減することができると同時に、翼形部全体を十分に冷却することができる。詳細なシミュレーションによれば、このことは、ISO準拠の通常運転でタービン入口温度が1300℃以上であるか、または圧縮機圧力比が19:1以上である定置形ガスタービンの2つの前部タービン段のうちの1つにおけるタービン翼にさえも当てはまる。このようなタービン翼においてさえ、前縁に複数の冷却孔を配置した従来方式と比較して、冷却媒体の量を約30%削減することができ、同時に同等の耐用年数を達成することができた。
【0013】
本発明の特に好ましい別の実施形態によれば、翼先端部に冷却媒体のための1つまたは複数の流出孔が配置され、これらが第2の冷却媒体流路と流体的に接続されている。この対策により、翼先端部に突き出ている、例えば、かすめ縁(Anstreifkante)の疲労強度が改善される。
【0014】
別の好ましい実施形態では、前記第1の冷却通路は、前記第1の冷却媒体流路のための供給流路を含み、該供給流路は前記第1の冷却媒体流路のすぐ隣に配置され、前記翼形部の翼スパンの少なくとも大部分にわたって延在し、複数の貫通開口を介して前記第1の冷却媒体流路と流体的に接続されており、これら貫通開口は前記第1の冷却媒体流路内を流れる冷却媒体に捻れを与えるか、またはそれを増強するための手段を有する。この手段として、これらの貫通開口は特別な配向を有する。例えば、これらの貫通開口が第1の冷却媒体流路内で接線方向に、すなわち偏心して、特に負圧側または正圧側壁の内面と一直線に並んでいる場合、および/または、半径方向に配設されている場合、第1の冷却媒体流路内を流れる冷却媒体に簡単な手段でサイクロン冷却に必要な捻れを与える、ないしこれを増強することができる。このようにして、前縁の効率的なサイクロン冷却を比較的容易に行うことができる。
【0015】
別の実施形態によれば、翼スパン方向において定めることができる貫通開口の密度を根元側端部で最大とし、好ましくは、翼先端部に向かって段階的にまたは連続的に減少することにより、翼形部の高さにわたって前縁のサイクロン冷却を調整し均一化することができる。このようにして、第1の冷却媒体流路内の流速を翼形部の翼スパンにわたってほぼ一定に保つことができ、これは、翼先端に対しても断面が先細りする第1の冷却媒体流路によって実現可能である。
【0016】
別の有利な実施形態によれば、第1の、および/または、第2の冷却媒体への熱伝達を局所的にさらに増大させるために、および/または、捻れを支えるために、1つまたは複数の冷却媒体流路の1つまたは複数の内面に好ましくはリブ形状の、特に、傾斜したタービュレータが複数配置されている。
【0017】
本発明の更なる展開によれば、それぞれの後縁部冷却媒体流路内に、パターン化されて複数列に配列された多数の台座が設けられている。このようにして、翼形部の中央領域に続き翼形部の後縁まで延びる、翼形部の負圧側および正圧側の後縁部領域を、簡単で効率的な方法により、流出孔なしで、すなわち、局所的に閉じて、冷却することができる。更に、これにより、2つの冷却通路に対する冷却媒体の配分も、および、その中で生じる圧力損失も効率的に調整することができる。
【0018】
別の好ましい実施形態では、第2の冷却媒体流路を拡張する2つの冷却分岐チャネルが設けられ、これらの分岐は翼弦方向に延びるにつれて半径方向内側に向かって広がり、第3の冷却媒体流路に接続する。この対策は第2の冷却媒体流路の流れ断面の減少、これは後縁に向かって先細りする翼プロファイルの液滴形状により生じる、を低減するか、または補償する。これにより、第2の冷却媒体流路の全長にわたってほぼ一定の断面積を得ることができ、これにより、第1の冷却媒体流が第2の冷却媒体流路を一定速度で流れることができる。こうして、翼先端部と両側壁のこの局所領域の均一な冷却を維持しながら、流れの剥離を回避することができる。
【0019】
さらに、上記実施形態のさらなる展開によれば、第2の冷却媒体流路と蛇行冷却媒体流路との間に隔壁が配置され、この隔壁は2つの側壁を互いに接続し、翼弦方向に延びており、この場合、該隔壁は後縁に近づくにつれて、好ましくは先の尖った抑止楔を形成し、この抑止楔は2つの側壁の内面と連携して2つの冷却分岐チャネルを横方向に区画している。
【0020】
本発明の特に好ましい別の実施形態によれば、第3の冷却媒体流路と第2の後縁部冷却媒体流路との間に、翼スパン方向に延びる後部の分離リブが設けられている。第2の後縁部冷却媒体流路内の局所的死水領域を防止するために、必要に応じて、この後部分離リブに1つまたは複数の孔を設けることができる。
【0021】
本発明の有利な提案によれば、後縁は、その根元側端部において0%で始まり翼先端部において100%で終わる、100%の正規化された高さを有している。2つの後縁部冷却媒体流路は、主に翼弦方向に延びる分離リブによって互いに少なくとも実質的に分離されており、この分離リブは正規化された高さの45%から75%の間の高さに位置している。このようにして、特に、利用可能な冷却媒体の総量の特に効率的な配分を達成することができ、これにより、一方では、翼形部の均一な冷却が達成され、他方では、冷却媒体の消費自体のさらなる低減を達成することができる。タービン翼を鋳造するために必要な鋳造コア、これは後に2つの後縁部冷却媒体流路の後部に残される、をより良好に取り付けることができるようにするために、そして、コアの破損を避けるために、これらの鋳造コアがいくつかの少数の支持体を介して互いに直接に接続されていれば有効である。これらの支持体は完成したタービン翼内で分離リブ内に複数の開口部を残し、これにより2つの後縁部冷却媒体流路は完全には分離されなくなるものの、これら2つの後縁部冷却媒体流路は依然として互いに実質的に分離されている。
【0022】
本発明のさらなる展開において、蛇行冷却媒体流路が、翼スパン方向に延びる少なくとも2つのチャネル区間、および、互いに交替し合う少なくとも2つの方向転換部を備えていると好適であり、この場合、冷却媒体流においてより下流側に位置する方向転換部は第1の後縁部冷却媒体流路と流体的に直接接続されている。
【0023】
特に好ましく好都合なのは上述の実施例の展開形態であり、この場合、上記2つのチャネル区間は翼形部の断面において、抑止体および2つの側壁により、それぞれが実質的にC字形に、負圧側分岐チャネル、正圧側分岐チャネルおよびこれら2つの分岐チャネルを連結する連結チャネルにより形成され、これらチャネル区間は抑止体をほぼ完全に取り囲むように互いに配設されている。その結果、多壁構造として設計されたタービン翼を提供できる。多壁構造により、一方では、材料の使用量が少なくても前縁での曲率が比較的小さい翼形部を製造することが可能となる。もちろん、この小さい曲率は第1の冷却媒体流路における捻れの発生を大きく促進する。他方、多壁構成により、冷却区間は比較的小さな流れ断面を保持することができる。こうして、運転中に、第2の冷却媒体流は、十分に高速でこれらのチャネル区間ないし蛇行冷却媒体流路を通って流れ、したがって、十分に高い熱伝達を形成する。これは、翼形部の前縁部領域と後縁部領域との間の中央領域を効率的に冷却するのに必要な冷却媒体の量を特に減少させる。この対策により、消費量をさらに約40%削減することができ、その結果、このタービン翼の熱効率を理論上の最大値にかなり近づけることができる。
【0024】
この場合、抑止体が横断面においてキャビティを包含しブリッジを介して2つの側壁上で支持されていれば、有効であることが判っている。
【0025】
有利な展開によれば、タービン動翼において運転中に第2の冷却媒体に生じるコリオリ力を補償するために、正圧側壁と負圧側壁を連結する支持リブ、これらは翼根元側から翼先端部へ向かって延びている、の少なくとも1つ、好ましくは両方において、支持リブ上に、または、連結チャネルを区切る抑止体内面に、複数のコンポーネント、好ましくはタービュレータを設けることができる。これにより、負圧側分岐チャネルから連結チャネルを通って正圧側分岐チャネルへの冷却媒体の横方向流れを低減することができる。
【0026】
別の好ましい実施形態によれば、キャビティは冷却媒体の出口開口部を有さないので、冷却媒体はキャビティを通って流れることができない。これは、第2の冷却媒体流の望ましくない擾乱を防止し、特に簡単な鋳造装置の使用を可能にする。この鋳造装置では、使用される鋳造コアを鋳造装置の他の構成要素に特に簡単で安定した方法で取り付けることができる。従って、本発明によるタービン翼は好適に鋳造することができ、この場合、タービン翼が鋳造された後に翼根元部に存在し、キャビティと直接に、すなわち、直に接続されている開口部は、別に製造されたカバープレートによって閉鎖されている。同じことは、タービン翼が鋳造された後に翼ルートに存在し、第1の後縁部冷却媒体流路と直接に、すなわち、直に接続されている開口部にも当てはまる。好ましくは、このような開口部は、別に製造されたカバープレートが当該の開口部を完全に覆うように翼の根元に固定されることによって、閉鎖されている。
【0027】
各冷却通路に対して1つまたは複数の流入口が設けられ、これらの流入口が、第1の冷却媒体流路もしくは供給流路、または、蛇行冷却媒体流路もしくはそのチャネル区間のうちの1つと流体的に直接接続されていると、好適である。
【0028】
好ましくは、根元側端部で測定される後縁部翼弦長に対する後縁部翼スパン長のアスペクト比は3.0以下である。というのは、利用可能な冷却媒体の好ましくは分離された2つの冷却媒体流への分割と、同時に、特にこの種のタービン翼に対して提案された後縁部領域の冷却の分割が、冷却媒体量のかなりの節約を可能にすることが分かっているからである。
【0029】
実質的には、上述のタービン翼はロータに取り付けられた動翼としても静的支持体に取り付けられた静翼としても使用することができる。
【0030】
驚いたことに、上述のタービン翼は、ISO準拠の通常運転中に少なくとも1300℃のタービン入口温度を有し、および/または、ISO準拠の通常運転中に19:1以上の圧縮比を有する定置形ガスタービンの第1または第2のタービン段においても使用することができる。本出願においては、いわゆる航空機用タービンは定置形ガスタービンの定義に該当しない。したがって、本発明は、タービン入口の高温ガス温度が現在の基準では比較的低いと考えられる定置形ガスタービンのみに適しているのではない。
【0031】
本発明の有利な構成の前述の説明は多数の特徴を含み、それらは個々の従属請求項において部分的に1つのユニットの形で纏められている。しかしながら、これらの特徴は個々に考慮することもでき、さらなる組み合わせを形成するために組み合わせることも可能である。特に、これらの特徴は、本発明による方法および本発明による装置と、それぞれ個別に、および任意の適切な組み合わせで組み合わせることができる。例えば、具体的に記載された方法に関する特徴も、対応する装置ユニットの特性として見ることができ、またその逆も可である。
【0032】
明細書および特許請求範囲において幾つかの用語は単数でまたは数詞と組み合わせて使用されているが、本発明の範囲はこれらの用語について、単数またはそれぞれの数詞に限定されるものではない。さらに、語「ein」および「eine」は数字としてではなく、不定冠詞として理解されるべきである。同様に、数詞「第1の」、「第2の」、「第3の」等は、実質的に類似の性質を有する特徴を区別するだけの役割を果たす。
【0033】
本発明の上述の特性、特徴および利点、ならびに、それらが達成される方法を、以降の図に基づき以下の実施例の説明と共により詳細に説明する。
【図面の簡単な説明】
【0034】
【
図4】
図3によるタービン動翼のA-A線に沿った横断面図
【
図5】
図3によるタービン動翼のB-B線に沿った縦断面図
【
図6】
図3によるタービン動翼のC-C線に沿った縦断面図
【
図7】
図3によるタービン動翼のD-D線に沿った縦断面図
【
図8】
図1によるタービン動翼のE-E線に沿った横断面図
【0035】
これらの図面において、同一の参照記号が付されているすべての技術的特徴は、同一の技術的効果を有する。
【発明を実施するための形態】
【0036】
以下に本発明を、タービン動翼として形成されたタービン翼10に基づき説明する。それにもかかわらず、本発明はタービン静翼を対象とすることもできる。
【0037】
図1は、本発明の第1の実施例としてタービン翼10を側面図で示す。好ましくは精密鋳造プロセスで製造されたこのタービン翼10は、端部しか示されていない翼根元部12を備えている。この翼根元部12は公知の方法で、ダブテール形状またはクリスマスツリー形状に形成することができる。これに続いてプラットホーム13があり、そこから翼形部18が翼スパン方向Rに根元側端部20から翼先端部22まで延びている。タービン動翼10が軸流ガスタービンに組み込まれた場合には、翼スパン方向とガスタービンの半径方向は一致する。翼形部18は、翼スパン方向Rに対して横向きの翼弦方向Sにおいて、前縁24から後縁26まで延びている。後縁26に複数の流出孔46、56が翼スパン方向に沿って分布している。根元側端部で測定される翼弦長SLに対する後縁部翼スパン長HSPのアスペクト比HSP/SLはこの実施例では1.9であり、好ましくは1.5~3の範囲である。
【0038】
プラットホーム13の側面に、同様に複数の流出孔28が開口している。これらの流出孔46、56および流出孔28は、タービン翼10の内部冷却システムと流体的に接続している。
【0039】
タービン動翼10、特に翼形部18の冷却システムを
図2に冷却スキームとして模式的に示す。タービン動翼10には第1の冷却媒体流M1と第2の冷却媒体流M2を別々に供給することができる。第1の冷却媒体流M1は第1の冷却通路30を通って流れ、この冷却通路は複数の冷却媒体流路31、32、33、34、36a、36b、38、40、44で構成されている。第1の冷却媒体流M1の
図2には示されていない入口の下流に供給流路31が続き、この供給流路は多数の貫通開口33を介して第1の冷却媒体流路32と流体的に接続している。この第1の冷却媒体流路32は、翼形部18の前縁24およびそれに直接隣接している前縁部領域39のサイクロン冷却のために使用される。翼先端部22の領域で、この第1の冷却媒体流路32は第2の冷却媒体流路34に移行し、この第2の冷却媒体流路34は翼先端部22を冷却するために前縁24から翼先端部22の比較的長い翼弦長にわたって後縁26の方向に延びている。翼先端部には後述するかすめ縁(Anstreifkante)を冷却するための複数の第3流出孔67を配置することができる。さらに、この第2の冷却媒体流路34は、その第2の冷却媒体流路34の後半部から始まる2つの冷却分岐チャネル36a、36
bを備え、これらの冷却分岐チャネルは第2の冷却媒体流路34の下流側端部と同様に第3の冷却媒体流路38に接続されている。後者は方向転換部40を経由して第2の後縁部冷却媒体流路44と流体的に接続されている。第1の冷却通路30を通って流れる冷却媒体流M1は、その後、多数の第2の流出孔46を介してタービン動翼10の後縁26から出ることができる。第1の冷却通路30と平行に、好適には流体的にこれから完全に分離して、第2の冷却通路50が配置されており、この第2の冷却通路50は、
図2には詳細には示されていない流入口の下流に蛇行冷却媒体流路(Serpentinen-Kuehlmittel-Passage)52を有する。この蛇行冷却媒体流路52は、この実施例では中央領域48(
図1)を冷却するために翼スパン方向に延びる2つのチャネル区間55a、55bを備え、これらはその間に配置された方向転換部57aを介して互いに接続されている。第2のチャネル区間55bの下流側端部には第2の方向転換部57bがあり、これが第2のチャネル区間55bを第1の後縁部冷却媒体流路54と流体的に接続している。第2の冷却通路50を通って流れる冷却媒体流M2は、その後、複数の第1の流出孔46を介してタービン動翼10の後縁26から出ることができる。両方の後縁部冷却媒体流路44、54は後縁部領域59を冷却する役割を果たす(
図1)。
【0040】
図3は
図1によるタービン動翼10の内部構造を縦断面として示しており、これは
図2による冷却スキームに対応するように構成されている。この目的のために、タービン動翼10は様々に配置された一連の壁およびリブを備え、これらが個々の冷却通路および冷却媒体流路を互いに分離している。2つの冷却媒体流M1およびM2のための、すなわち、2つの冷却通路30、50のための2つの流入口80が翼根元部12に設けられている。2つの流入口80の間に2つの側壁14、16を互いに結合する前部支持リブ66vが配置されており、これが第1の区間について第1の冷却通路30を第2の冷却通路50から分離している。さらに、前部の分離リブ49vが第1の冷却媒体流路32から供給流路31を分離し、この前部分離リブ49vには多数の貫通開口33(
図4に詳細)が配設されている。しかし、
図3では、これらの貫通開口の複数の接続部のみが示されている。
図3から分かるように、プラットホームに近い領域では先端に近い領域よりも貫通開口33の密度が大きい。前部分離リブ49vにおける貫通開口33の位置および配向は、第1の冷却媒体流路32内でより強く捻れた冷却媒体流が生じるように選定されている。捻れた冷却媒体流とは、根元側端部20から翼先端部22に向けてサイクロンのように、または、螺旋線のように、すなわち、ヘリックス状に発生する流れを意味する。したがって、これらは前部分離リブ49v内で偏心して、特に負圧側壁16(または正圧側壁)の内壁と一直線に並ぶように配置されている。それどころか、第1の冷却媒体流路32を通って流れるときの捻じれの弱まりを少なくとも部分的に補うために、必要に応じて、翼先端部22に向かって傾きを持たせてもよい。
【0041】
翼先端部22の底部37を冷却するために、第1の冷却媒体流路32の外側端部に第2の冷却媒体流路34が接続され、この第2の冷却媒体流路34は隔壁60によって蛇行冷却媒体流路52から分離されている。第2の冷却媒体流路34の後縁部付近の端部に第3の冷却媒体流路38が接続しており、これは翼先端部22から根元側端部20に向かって延びているが、翼形部18の高さの約半分までしか延びていない。ここで、翼形部18の高さは後縁26で測定されたものである。これに更なる方向転換部40が接続されており、これによって第1の冷却媒体流M1を第2の後縁部冷却媒体流路44に供給することができる。この第3の冷却媒体流路38は、適切に構成された後部の分離リブ49hによって第2の後縁部冷却媒体流路44から大部分が分離されている。
【0042】
第2の後縁部冷却媒体流路44には、第1の冷却媒体M1が迂回することができる複数の台座53が複数列に相前後して配設されている。図示された実施例では、これらの台座は、可能な限り高い圧力損失をもたらすべく、比較的狭い通路を有するレーストラックの形状に形成されている。第1の冷却通路30は後縁26に設けられた複数の第2の流出孔46で終わり、これらを通して、付設された入口80を通って供給される第1の冷却媒体流M1の少なくとも大部分をタービン動翼10から排出することができる。
【0043】
第2の冷却媒体流M2を案内するための第2の冷却通路50は実質的に、蛇行冷却媒体流路52および第1の後縁部冷却媒体流路44を備える。前者は、4つの連続する区間に分割することができ、そのうちの第1の区間を第1のチャネル区間55aと呼ぶ。これに、第1の方向転換部57a、第2のチャネル区間55bおよび第2の方向転換部57bが続く。後者は、蛇行冷却媒体流路52を第2の後縁部冷却媒体流路54と結合し、この第1の後縁部冷却媒体流路54は第2の後縁部冷却媒体流路44と同様に、レーストラック形状の複数列の台座53として構成されている。
【0044】
蛇行冷却媒体流路52の2つのチャネル区間55a、55bは、翼形部18の大部分にわたって翼スパン方向Rに沿って延びている。この第1のチャネル区間55aも第2のチャネル区間55bも、
図4に補助的に示すように、実質的にU字形であり、それぞれ、負圧側に配置された分岐チャネル55as、55bs、および、正圧側に配置された分岐チャネル55ad、55bd、ならびに、これらの分岐チャネルを連結する連結チャネル55av、55bvを有している。その結果、第1のチャネル区間55aは、正圧側壁14、前部支持リブ66v、負圧側壁16、および、
図4による断面に示された、内部に配置された抑止体(Verdraengungskoerper)70によって囲まれている。第2のチャネル区間55bは、正圧側壁14、後部支持リブ66h、負圧側壁16、および、内部に配置された抑止体70によって囲まれている。抑止体70自体はキャビティ72を包含し、複数のブリッジ71により正圧側壁14および負圧側壁16に支持されている。これらのブリッジ71は翼形部18のほぼ全ての高さにわたって延びており、一方ではタービン動翼10における抑止体70のモノリシックな固定のための機能を有し、他方では2つのチャネル区間55、57を分離する機能を有する。
図2を参照すると、抑止体
70の半径方向外側端部は後縁部側で切り詰められていることが分かる。この対策により、タービン動翼10の機械的完全性および特にその耐振動強度が改善される。
図2を参照すると、抑止体72の半径方向外側端部は後縁部側で切り詰められていることが分かる。この対策により、タービン動翼10の機械的完全性および特にその耐振動強度が改善される。
【0045】
2つの後縁部冷却媒体流路44、54は、主に翼弦方向Sに延びる分離リブ64によって、完全ではないとしても、少なくとも大部分について、互いに分離されている。この実施例によれば、分離リブ64は、後縁24の正規化された翼形部高さの55%の高さで終わっている。好ましくは、分離リブ64は正規化された高さの45%から75%の間の高さに配置される。
【0046】
図5~
図7は、
図3の3つの断面線B-B、C-CおよびD-Dによるタービン動翼10の先端部を通る断面を示す78が翼先端部
22の外側端部に、負圧側および正圧側の両方に設けられている。さらに、抑止体70がその半径方向外側端部では閉じられず第1の方向転換部57aに向かって開いている、ことが分かる。この点において、第2の冷却媒体流M2の流入が可能であろう。しかしながら、翼根元部12上にキャビティ72ないし抑止体70を設置するために必要な開口74aが、鋳造後そこに取り付けられたカバープレート76a(
図1)によって閉塞されているので、キャビティ72には出口開口部がない。その結果、このキャビティを通って流れることはできず、これは死水空間として形成されている。すなわち、その内部形状を、モーダル調整が必要な場合にはすでに設計段階でリブ、ブレース等の更なる構造物を設けることにより、変化させることを提案している。その特別な利点は、タービン翼の固有振動数のみが、空気力学または熱交換のような他の特性に影響を及ぼすことなく、適正化されることにあろう。
【0047】
また、
図5~
図7は、隔壁60が後縁24に近づくにつれて尖った抑止楔(Verdraengungskeil)62を形成する様子を示しており、これは2つの側壁14、16の内側面と結合して、2つの冷却分岐チャネル36aおよび36bをそれぞれ横方向に区画している。抑止体70の切り詰めは、先細りになっている抑止楔62の助けを借りて補償することができるので、切り詰められた領域内の側壁近傍で冷却媒体流M2を引き続き案内し、その結果それを十分に効率的に冷却することが可能である。抑止体を切り詰める必要がない場合は、抑止楔のサイズを小さくすることができる。それどころか、場合によっては、これを完全に省略することもできる。
【0048】
図8は、
図3の断面線E-Eによる翼先端部22の下流側半分の断面を、翼先端部22を向いた、すなわち、外側を向いた図で示す。
【0049】
図示されていない第2の実施例によれば、供給流路31の代わりに、または、これに加えて、翼根元側のチャネル区間を設けることができ、これは、第1の冷却媒体流路32の翼根元部12の下側への延長とすることができる。これに対応して複数の適切な捻れ発生器、例えば螺旋状リブを翼根元側のこのチャネル区間に設けることができ、これらは、第1の冷却媒体流M1が翼根元側のチャネル区間を通って流れるときに第1の冷却媒体流M1をサイクロン状に捻じる。この場合、第1の冷却媒体流路32は前部支持リブ66vによって連結チャンネル55avから分離されることになり、その結果、前部支持リブ66vに配設された貫通開口33は捻れパルスの更新または強化を促進することができよう。この点において、2つの冷却媒体流M1およびM2を互いに完全に分離してタービン翼10を通って案内するのではなく、非常に少ない箇所で好ましくは小さな直径を有する個々の孔が、さもなければ流体的に分離している2つの別々の冷却通路を互いに結合することによって、非常に小さな範囲で通流を可能にすることが有意義かもしれない。
【0050】
図9は、圧縮機110、燃焼室120およびタービンユニット130を備えたガスタービン100を単に模式的に示したものである。この実施例によれば、電気を発生させるための発電機150がガスタービンのロータ140に連結されている。圧縮機110は、ISO準拠の通常運転中に、吸引される周囲空気Lに対する圧縮された周囲空気VLの圧力比が19:1以上で発生できるように設計されている。次いで、燃焼室120では、圧縮空気VLを燃料Fと混合して燃焼させ、高温ガスHGを発生する。燃焼室120およびタービンユニット130は、燃焼室120の出口またはタービンユニット130の入口で流れる高温ガスHGがISO準拠の通常運転で少なくとも1300℃の温度を有するように設計され、この場合、第1のタービン段または第2のタービン段の動翼および静翼は、これまで説明したように構成されている。タービンユニット130内で膨張した高温ガスHGは排煙RGとして排出される。
【0051】
総括すると、本発明により、翼根元部12および翼形部18を備えたタービン翼10が提案され、この翼形部は翼スパン方向Rに沿って根元側端部20から翼先端部22まで、および、翼スパン方向Rに対して横方向の翼弦方向Sに沿って前縁24から後縁26まで延びており、翼形部18の内側には第1の冷却媒体流M1のための第1の冷却通路30および第2の冷却媒体流M2のための第2の冷却通路50が形成されており、第1の冷却通路30は前縁24のサイクロン冷却のために設けられた第1の冷却媒体流路32、および、翼先端部22の下部で前縁24から後縁26へ向かって延びていて第1の冷却媒体流路32に続く第2の冷却媒体流路34を含み、第2の冷却通路50は、翼形部18の前縁部領域39の翼弦方向後方に位置する中央領域48を冷却するための蛇行冷却媒体流路52、および、翼形部18の中央領域48の翼弦方向後方で後縁に至る後縁部領域59を少なくとも部分的に冷却するための第1の後縁部冷却媒体流路54を含み、この第1の後縁部冷却媒体流路54は後縁26に配置された複数の流出孔56と流体的に接続されている。冷却媒体消費量を更に低減させるタービン翼を提供するために、局所的に閉鎖冷却するための第1の冷却媒体流路32および/または蛇行冷却媒体流路52を設置することが提案され、第1の冷却通路30は、第2の冷却媒体流路34に接続され主に半径方向内側に向かって延びている第3の冷却媒体流路38、ならびに、この第3の冷却媒体流路38に接続される第2の後縁部冷却媒体流路44を含み、この第2の後縁部冷却媒体流路44は後縁部領域59の翼先端側領域を冷却するように設計されており、後縁26に配設された複数の第2の流出孔46と流体的に接続されている。