(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-23
(45)【発行日】2025-01-07
(54)【発明の名称】車両の制御装置
(51)【国際特許分類】
B60W 20/13 20160101AFI20241224BHJP
B60K 6/48 20071001ALI20241224BHJP
B60W 10/06 20060101ALI20241224BHJP
B60W 10/26 20060101ALI20241224BHJP
F02D 29/06 20060101ALI20241224BHJP
B60L 50/16 20190101ALI20241224BHJP
B60L 50/60 20190101ALI20241224BHJP
B60L 58/10 20190101ALI20241224BHJP
【FI】
B60W20/13
B60K6/48 ZHV
B60W10/06 900
B60W10/26 900
F02D29/06 G
B60L50/16
B60L50/60
B60L58/10
(21)【出願番号】P 2022019109
(22)【出願日】2022-02-09
【審査請求日】2023-11-23
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100085361
【氏名又は名称】池田 治幸
(74)【代理人】
【識別番号】100147669
【氏名又は名称】池田 光治郎
(72)【発明者】
【氏名】伊藤 寿
(72)【発明者】
【氏名】南川 幸毅
(72)【発明者】
【氏名】早坂 昭人
(72)【発明者】
【氏名】山田 祥太郎
【審査官】福田 信成
(56)【参考文献】
【文献】特開2013-071662(JP,A)
【文献】特開2009-248913(JP,A)
【文献】特開2010-195312(JP,A)
【文献】米国特許出願公開第2008/0029320(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60W 20/13
B60K 6/48
B60W 10/06
B60W 10/26
F02D 29/06
B60L 50/16
B60L 50/60
B60L 58/10
(57)【特許請求の範囲】
【請求項1】
エンジン及び電動機を含む動力源と、前記動力源が動力伝達可能に連結された伝達軸を有し、前記伝達軸に入力された前記動力源のトルクを駆動輪へ伝達する動力伝達装置と、前記電動機に対して電力を授受する蓄電装置と、を備えた車両の、制御装置であって、
前記車両の駆動状態での走行中に、前記電動機の発電によって前記蓄電装置に充電する充電電力の要求値を実現するように、駆動要求量を実現する前記エンジンのトルクに対して前記エンジンのトルクを増加する充電制御を行う動力源制御部と、
前記伝達軸の回転速度が所定回転速度以下であり、且つ、前記動力源のトルクのうちの前記駆動輪へ伝達される前記伝達軸上におけるトルクである伝達軸トルクが所定トルク以下である場合には、前記充電制御における前記充電電力を制限する充電制限制御を行う一方で、前記伝達軸の回転速度が前記所定回転速度を超えているか、又は、前記伝達軸トルクが前記所定トルクを超えている場合には、前記充電制限制御を行わない充電制限制御部と、
を含む
ものであり、
前記充電制限制御部は、車速が所定車速以下である場合には、前記充電制限制御を行う一方で、前記車速が前記所定車速を超えている場合には、前記充電制限制御を行わないものであり、
前記充電制限制御部は、前記充電制限制御を行う場合には、前記車速が低い程、前記所定回転速度及び前記所定トルクのうちの少なくとも一方を高い値に設定することを特徴とする車両の制御装置。
【請求項2】
エンジン及び電動機を含む動力源と、前記動力源が動力伝達可能に連結された伝達軸を有し、前記伝達軸に入力された前記動力源のトルクを駆動輪へ伝達する動力伝達装置と、前記電動機に対して電力を授受する蓄電装置と、を備えた車両の、制御装置であって、
前記車両の駆動状態での走行中に、前記電動機の発電によって前記蓄電装置に充電する充電電力の要求値を実現するように、駆動要求量を実現する前記エンジンのトルクに対して前記エンジンのトルクを増加する充電制御を行う動力源制御部と、
前記伝達軸の回転速度が所定回転速度以下であり、且つ、前記動力源のトルクのうちの前記駆動輪へ伝達される前記伝達軸上におけるトルクである伝達軸トルクが所定トルク以下である場合には、前記充電制御における前記充電電力を制限する充電制限制御を行う一方で、前記伝達軸の回転速度が前記所定回転速度を超えているか、又は、前記伝達軸トルクが前記所定トルクを超えている場合には、前記充電制限制御を行わない充電制限制御部と、
を含むものであり、
前記充電制限制御部は、前記動力伝達装置に備えられた自動変速機の変速比が所定の低車速側変速比である場合には、前記充電制限制御を行う一方で、前記変速比が前記所定の低車速側変速比よりも高車速側である場合には、前記充電制限制御を行わないものであり、
前記充電制限制御部は、前記充電制限制御を行う場合には、前記変速比が低車速側である程、前記所定回転速度及び前記所定トルクのうちの少なくとも一方を高い値に設定することを特徴とする車両の制御装置。
【請求項3】
前記充電制限制御部は、車速が所定車速以下である場合には、前記充電制限制御を行う一方で、前記車速が前記所定車速を超えている場合には、前記充電制限制御を行わないことを特徴とする請求項
2に記載の車両の制御装置。
【請求項4】
前記充電制限制御部は、前記充電制限制御を行う場合には、前記車速が低い程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することを特徴とする請求項
1又は3に記載の車両の制御装置。
【請求項5】
前記充電制限制御部は、前記動力伝達装置に備えられた自動変速機の変速比が所定の低車速側変速比である場合には、前記充電制限制御を行う一方で、前記変速比が前記所定の低車速側変速比よりも高車速側である場合には、前記充電制限制御を行わないことを特徴とする請求項
1に記載の車両の制御装置。
【請求項6】
前記充電制限制御部は、前記充電制限制御を行う場合には、前記変速比が低車速側である程、前記所定回転速度及び前記所定トルクのうちの少なくとも一方を高い値に設定することを特徴とする請求項5に記載の車両の制御装置。
【請求項7】
前記充電制限制御部は、前記充電制限制御を行う場合には、前記変速比が低車速側である程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することを特徴とする請求項
2、3、5、及び6の何れか1項に記載の車両の制御装置。
【請求項8】
前記充電制限制御部は、前記充電制限制御を行う場合には、前記伝達軸の回転速度が低い程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することを特徴とする請求項1から7の何れか1項に記載の車両の制御装置。
【請求項9】
前記充電制限制御部は、前記充電制限制御を行う場合には、前記伝達軸トルクが低い程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することを特徴とする請求項1から8の何れか1項に記載の車両の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エンジン及び電動機を含む動力源のトルクを駆動輪へ伝達する動力伝達装置を備えた車両の制御装置に関するものである。
【背景技術】
【0002】
エンジン及び電動機を含む動力源と、前記動力源が動力伝達可能に連結された伝達軸を有し、前記伝達軸に入力された前記動力源のトルクを駆動輪へ伝達する動力伝達装置と、前記電動機に対して電力を授受する蓄電装置と、を備えた車両の制御装置が良く知られている。例えば、特許文献1に記載されたハイブリッド車両の制御装置がそれである。この特許文献1には、動力伝達装置は自動変速機を備えていること、又、蓄電装置に充電する充電電力の要求値に対して充電制限値の範囲内でエンジンの動力を用いて蓄電装置を充電すること、又、充電制限値は自動変速機の変速比が高車速側変速比であるときは低車速側変速比であるときに比べて小さい値に設定されること、又、これにより走行中に発生する振動や異音を抑制しつつ蓄電装置の充電残量を適切に維持できることが開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、車両の駆動状態での走行中に蓄電装置を充電する充電制御を行う場合には、駆動要求量を実現するエンジンのトルクに対して充電電力分だけエンジンのトルクを増加させる必要がある。一方で、エンジンのトルクが高い程、エンジンのトルクの推定精度が悪く、エンジンのトルクの実際値と推定値とのずれが大きくなり易い。その為、例えばエンジンのトルクの推定値に合わせて電動機のトルクを制御する際に、エンジンのトルクの実際値が狙いの値に制御し難くされ、ショックが発生し易くなるおそれがある。
【0005】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、走行中に充電制御を行う際に、ショックの発生を抑制しつつ蓄電装置の充電残量を適切に維持することができる車両の制御装置を提供することにある。
【課題を解決するための手段】
【0006】
第1の発明の要旨とするところは、(a)エンジン及び電動機を含む動力源と、前記動力源が動力伝達可能に連結された伝達軸を有し、前記伝達軸に入力された前記動力源のトルクを駆動輪へ伝達する動力伝達装置と、前記電動機に対して電力を授受する蓄電装置と、を備えた車両の、制御装置であって、(b)前記車両の駆動状態での走行中に、前記電動機の発電によって前記蓄電装置に充電する充電電力の要求値を実現するように、駆動要求量を実現する前記エンジンのトルクに対して前記エンジンのトルクを増加する充電制御を行う動力源制御部と、(c)前記伝達軸の回転速度が所定回転速度以下であり、且つ、前記動力源のトルクのうちの前記駆動輪へ伝達される前記伝達軸上におけるトルクである伝達軸トルクが所定トルク以下である場合には、前記充電制御における前記充電電力を制限する充電制限制御を行う一方で、前記伝達軸の回転速度が前記所定回転速度を超えているか、又は、前記伝達軸トルクが前記所定トルクを超えている場合には、前記充電制限制御を行わない充電制限制御部と、を含むものであり、(d)前記充電制限制御部は、車速が所定車速以下である場合には、前記充電制限制御を行う一方で、前記車速が前記所定車速を超えている場合には、前記充電制限制御を行わないものであり、(e)前記充電制限制御部は、前記充電制限制御を行う場合には、前記車速が低い程、前記所定回転速度及び前記所定トルクのうちの少なくとも一方を高い値に設定することにある。
また、第2の発明の要旨とするところは、(a)エンジン及び電動機を含む動力源と、前記動力源が動力伝達可能に連結された伝達軸を有し、前記伝達軸に入力された前記動力源のトルクを駆動輪へ伝達する動力伝達装置と、前記電動機に対して電力を授受する蓄電装置と、を備えた車両の、制御装置であって、(b)前記車両の駆動状態での走行中に、前記電動機の発電によって前記蓄電装置に充電する充電電力の要求値を実現するように、駆動要求量を実現する前記エンジンのトルクに対して前記エンジンのトルクを増加する充電制御を行う動力源制御部と、(c)前記伝達軸の回転速度が所定回転速度以下であり、且つ、前記動力源のトルクのうちの前記駆動輪へ伝達される前記伝達軸上におけるトルクである伝達軸トルクが所定トルク以下である場合には、前記充電制御における前記充電電力を制限する充電制限制御を行う一方で、前記伝達軸の回転速度が前記所定回転速度を超えているか、又は、前記伝達軸トルクが前記所定トルクを超えている場合には、前記充電制限制御を行わない充電制限制御部と、を含むものであり、(d)前記充電制限制御部は、前記動力伝達装置に備えられた自動変速機の変速比が所定の低車速側変速比である場合には、前記充電制限制御を行う一方で、前記変速比が前記所定の低車速側変速比よりも高車速側である場合には、前記充電制限制御を行わないものであり、(e)前記充電制限制御部は、前記充電制限制御を行う場合には、前記変速比が低車速側である程、前記所定回転速度及び前記所定トルクのうちの少なくとも一方を高い値に設定することにある。
【0007】
また、第3の発明は、前記第2の発明に記載の車両の制御装置において、前記充電制限制御部は、車速が所定車速以下である場合には、前記充電制限制御を行う一方で、前記車速が前記所定車速を超えている場合には、前記充電制限制御を行わないことにある。
【0009】
また、第4の発明は、前記第1の発明又は第3の発明に記載の車両の制御装置において、前記充電制限制御部は、前記充電制限制御を行う場合には、前記車速が低い程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することにある。
【0010】
また、第5の発明は、前記第1の発明に記載の車両の制御装置において、前記充電制限制御部は、前記動力伝達装置に備えられた自動変速機の変速比が所定の低車速側変速比である場合には、前記充電制限制御を行う一方で、前記変速比が前記所定の低車速側変速比よりも高車速側である場合には、前記充電制限制御を行わないことにある。
【0011】
また、第6の発明は、前記第5の発明に記載の車両の制御装置において、前記充電制限制御部は、前記充電制限制御を行う場合には、前記変速比が低車速側である程、前記所定回転速度及び前記所定トルクのうちの少なくとも一方を高い値に設定することにある。
【0012】
また、第7の発明は、前記第2の発明、第3の発明、第5の発明、及び第6の発明の何れか1つに記載の車両の制御装置において、前記充電制限制御部は、前記充電制限制御を行う場合には、前記変速比が低車速側である程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することにある。
【0013】
また、第8の発明は、前記第1の発明から第7の発明の何れか1つに記載の車両の制御装置において、前記充電制限制御部は、前記充電制限制御を行う場合には、前記伝達軸の回転速度が低い程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することにある。
【0014】
また、第9の発明は、前記第1の発明から第8の発明の何れか1つに記載の車両の制御装置において、前記充電制限制御部は、前記充電制限制御を行う場合には、前記伝達軸トルクが低い程、前記充電電力を制限するときの前記充電電力の上限値を小さな値に設定することにある。
【発明の効果】
【0015】
前記第1の発明又は第2の発明によれば、伝達軸の回転速度が所定回転速度以下であり、且つ、伝達軸トルクが所定トルク以下である場合には、電動機の発電によって蓄電装置に充電する充電電力の要求値を実現するように駆動要求量を実現するエンジンのトルクに対してエンジンのトルクを増加する充電制御における充電電力を制限する充電制限制御が行われる一方で、伝達軸の回転速度が所定回転速度を超えているか、又は、伝達軸トルクが所定トルクを超えている場合には、充電制限制御が行われないので、充電電力の要求値に対するエンジンのトルクの増加が抑制されると共に伝達軸トルクに対するエンジンのトルクのばらつきの影響が抑制される。よって、走行中に充電制御を行う際に、ショックの発生を抑制しつつ蓄電装置の充電残量を適切に維持することができる。
【0016】
また、前記第1の発明又は第3の発明によれば、車速が所定車速以下である場合には、充電制限制御が行われる一方で、車速が所定車速を超えている場合には、充電制限制御が行われないので、ショック感度が高い低車速域において充電制限制御が行われてショックの発生が抑制される。
【0017】
また、前記第1の発明によれば、充電制限制御が行われる場合には、車速が低い程、所定回転速度及び所定トルクのうちの少なくとも一方が高い値に設定されるので、ショック感度が高い低車速側程、充電制限制御が行われ易くされる。
【0018】
また、前記第4の発明によれば、充電制限制御が行われる場合には、車速が低い程、充電電力を制限するときの充電電力の上限値が小さな値に設定されるので、ショック感度が高い低車速側程、エンジンのトルクの増加がより抑制されると共にエンジンのトルクのばらつきの影響がより抑制される。
【0019】
また、前記第2の発明又は第5の発明によれば、自動変速機の変速比が所定の低車速側変速比である場合には、充電制限制御が行われる一方で、自動変速機の変速比が所定の低車速側変速比よりも高車速側である場合には、充電制限制御が行われないので、ショック感度が高い低車速側変速比において充電制限制御が行われてショックの発生が抑制される。
【0020】
また、前記第2の発明又は第6の発明によれば、充電制限制御が行われる場合には、変速比が低車速側である程、所定回転速度及び所定トルクのうちの少なくとも一方が高い値に設定されるので、ショック感度が高い低車速側変速比程、充電制限制御が行われ易くされる。
【0021】
また、前記第7の発明によれば、充電制限制御が行われる場合には、変速比が低車速側である程、充電電力を制限するときの充電電力の上限値が小さな値に設定されるので、ショック感度が高い低車速側変速比程、エンジンのトルクの増加がより抑制されると共にエンジンのトルクのばらつきの影響がより抑制される。
【0022】
また、前記第8の発明によれば、充電制限制御が行われる場合には、伝達軸の回転速度が低い程、充電電力を制限するときの充電電力の上限値が小さな値に設定されるので、エンジンのトルクが増加し易い低伝達軸の回転速度程、エンジンのトルクの増加がより抑制される。
【0023】
また、前記第9の発明によれば、充電制限制御が行われる場合には、伝達軸トルクが低い程、充電電力を制限するときの充電電力の上限値が小さな値に設定されるので、エンジンのトルクのばらつきが影響し易い低伝達軸トルク程、エンジンのトルクのばらつきの影響がより抑制される。
【図面の簡単な説明】
【0024】
【
図1】本発明が適用される車両の概略構成を説明する図であると共に、車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。
【
図2】上限充電電力の設定に用いられる上限値マップの一例を示す図であって、車速域毎に異なる上限値マップの一例を説明する図である。
【
図3】上限充電電力の設定に用いられる上限値マップの一例を示す図であって、自動変速機のギヤ段毎に異なる上限値マップの一例を説明する図である。
【
図4】電子制御装置の制御作動の要部を説明するフローチャートであり、走行中に充電制御を行う際にショックの発生を抑制しつつバッテリ充電残量を適切に維持する為の制御作動を説明するフローチャートである。
【
図5】本発明が適用される車両の概略構成を説明する図であって、
図1の車両とは別の車両の一例を示す図である。
【発明を実施するための形態】
【0025】
本発明の実施形態において、前記自動変速機における変速比は、「入力回転部材の回転速度/出力回転部材の回転速度」である。前記自動変速機のハイ側変速比は、変速比が小さくなる側である高車速側変速比である。前記自動変速機のロー側変速比は、変速比が大きくなる側である低車速側変速比である。例えば、最ロー側変速比は、最も低車速側となる最低車速側変速比であり、変速比が最も大きな値となる最大変速比である。
【0026】
以下、本発明の実施例を図面を参照して詳細に説明する。
【実施例】
【0027】
図1は、本発明が適用される車両10の概略構成を説明する図であると共に、車両10における各種制御の為の制御機能及び制御系統の要部を説明する図である。
図1において、車両10は、動力源SPとして機能する、エンジン12及び電動機MGを備えたハイブリッド車両である。又、車両10は、駆動輪14と、エンジン12と駆動輪14との間の動力伝達経路に設けられた動力伝達装置16と、を備えている。
【0028】
エンジン12は、ガソリンエンジンやディーゼルエンジン等の公知の内燃機関である。エンジン12は、後述する電子制御装置90によって、車両10に備えられたスロットルアクチュエータや燃料噴射装置や点火装置等を含むエンジン制御装置50が制御されることによりエンジン12のトルクであるエンジントルクTeが制御される。
【0029】
電動機MGは、電力から機械的な動力を発生させる発動機としての機能及び機械的な動力から電力を発生させる発電機としての機能を有する回転電気機械であって、所謂モータジェネレータである。電動機MGは、車両10に備えられたインバータ52を介して、車両10に備えられたバッテリ54に接続されている。バッテリ54は、電動機MGに対して電力を授受する蓄電装置である。電動機MGは、後述する電子制御装置90によってインバータ52が制御されることにより、電動機MGのトルクであるMGトルクTmが制御される。MGトルクTmは、例えば電動機MGの回転方向がエンジン12の運転時と同じ回転方向である正回転の場合、加速側となる正トルクでは力行トルクであり、減速側となる負トルクでは回生トルクである。前記電力は、特に区別しない場合には電気エネルギーも同意である。前記動力は、特に区別しない場合には駆動力、トルク、及び力も同意である。
【0030】
動力伝達装置16は、車体に取り付けられる非回転部材であるケース18内において、K0クラッチ20、トルクコンバータ22、自動変速機24等を備えている。K0クラッチ20は、エンジン12と駆動輪14との間の動力伝達経路におけるエンジン12と電動機MGとの間に設けられたクラッチである。トルクコンバータ22は、K0クラッチ20を介してエンジン12に連結されている。自動変速機24は、トルクコンバータ22に連結されており、トルクコンバータ22と駆動輪14との間の動力伝達経路に介在させられている。自動変速機24は、エンジン12と駆動輪14との間の動力伝達経路における電動機MGと駆動輪14との間に設けられた変速機である。又、動力伝達装置16は、自動変速機24の出力回転部材である変速機出力軸26に連結されたプロペラシャフト28、プロペラシャフト28に連結されたディファレンシャルギヤ30、ディファレンシャルギヤ30に連結された1対のドライブシャフト32等を備えている。又、動力伝達装置16は、エンジン12とK0クラッチ20とを連結するエンジン連結軸34、K0クラッチ20とトルクコンバータ22とを連結する電動機連結軸36等を備えている。K0クラッチ20は、エンジン12と電動機連結軸36との間の動力伝達経路に設けられたクラッチである。
【0031】
電動機MGは、ケース18内において、電動機連結軸36に動力伝達可能に連結されている。つまり、電動機MGは、エンジン12と駆動輪14との間の動力伝達経路、特にはK0クラッチ20とトルクコンバータ22との間の動力伝達経路に動力伝達可能に連結されている。見方を換えれば、電動機MGは、K0クラッチ20を介することなくトルクコンバータ22や自動変速機24と動力伝達可能に連結されている。
【0032】
トルクコンバータ22は、電動機連結軸36と連結されたポンプ翼車22a、及び自動変速機24の入力回転部材である変速機入力軸38と連結されたタービン翼車22bを備えている。トルクコンバータ22は、動力源SPからの動力を流体を介して電動機連結軸36から変速機入力軸38へ伝達する流体式伝動装置である。トルクコンバータ22は、ポンプ翼車22aとタービン翼車22bとを連結する、つまり電動機連結軸36と変速機入力軸38とを連結する直結クラッチとしてのLUクラッチ40を備えている。LUクラッチ40は、公知のロックアップクラッチである。
【0033】
電動機連結軸36は、電動機MGが動力伝達可能に連結されると共にエンジン12がK0クラッチ20を介して動力伝達可能に連結された伝達軸である。変速機入力軸38は、電動機MGがトルクコンバータ22を介して動力伝達可能に連結されると共にエンジン12がK0クラッチ20及びトルクコンバータ22を介して動力伝達可能に連結された伝達軸である。つまり、電動機連結軸36や変速機入力軸38は、各々、動力源SPが動力伝達可能に連結された伝達軸として機能する。
【0034】
自動変速機24は、例えば不図示の1組又は複数組の遊星歯車装置と、係合装置CBと、を備えている、公知の遊星歯車式の自動変速機である。係合装置CBは、例えば複数の油圧式の係合装置例えば公知の摩擦係合装置を含んでいる。係合装置CBは、各々、車両10に備えられた油圧制御回路56から供給される調圧された油圧であるCB油圧PRcbによりそれぞれのトルク容量であるCBトルクTcbが変化させられることで、係合状態、スリップ状態、解放状態などの作動状態つまり制御状態が切り替えられる。
【0035】
自動変速機24は、係合装置CBのうちの何れかの係合装置の係合によって、変速比(ギヤ比ともいう)γat(=AT入力回転速度Ni/AT出力回転速度No)が異なる複数の変速段(ギヤ段ともいう)のうちの何れかのギヤ段が形成される有段変速機である。自動変速機24は、後述する電子制御装置90によって、ドライバー(=運転者)のアクセル操作や車速V等に応じて、係合装置CBのうちの自動変速機24の変速に関与する係合装置の制御状態が切り替えられることで、形成されるギヤ段が切り替えられる。AT入力回転速度Niは、変速機入力軸38の回転速度であり、自動変速機24の入力回転速度である。AT入力回転速度Niは、トルクコンバータ22の出力回転速度であるタービン回転速度Ntと同値である。AT入力回転速度Niは、タービン回転速度Ntで表すことができる。AT出力回転速度Noは、変速機出力軸26の回転速度であり、自動変速機24の出力回転速度である。
【0036】
K0クラッチ20は、例えば多板式或いは単板式のクラッチにより構成される油圧式の摩擦係合装置であって、湿式タイプ又は乾式タイプのクラッチである。K0クラッチ20は、油圧制御回路56から供給される調圧された油圧であるK0油圧PRk0によりK0クラッチ20のトルク容量であるK0トルクTk0が変化させられることで、係合状態、スリップ状態、解放状態などの制御状態が切り替えられる。
【0037】
車両10において、K0クラッチ20の係合状態では、エンジン12とトルクコンバータ22とが動力伝達可能に連結される。一方で、K0クラッチ20の解放状態では、エンジン12とトルクコンバータ22との間の動力伝達が遮断される。電動機MGはトルクコンバータ22に連結されているので、K0クラッチ20は、エンジン12を電動機MGと断接するクラッチとして機能する。
【0038】
動力伝達装置16において、エンジン12から出力される動力は、K0クラッチ20が係合された場合に、エンジン連結軸34から、K0クラッチ20、電動機連結軸36、トルクコンバータ22、自動変速機24、プロペラシャフト28、ディファレンシャルギヤ30、及びドライブシャフト32等を順次介して駆動輪14へ伝達される。又、電動機MGから出力される動力は、K0クラッチ20の制御状態に拘わらず、電動機連結軸36から、トルクコンバータ22、自動変速機24、プロペラシャフト28、ディファレンシャルギヤ30、及びドライブシャフト32等を順次介して駆動輪14へ伝達される。自動変速機24は、電動機連結軸36に入力された動力源SPのトルクである動力源トルクTspを駆動輪14へ伝達する。動力源トルクTspは、エンジントルクTeとMGトルクTmとの合計のトルクである。このように、動力伝達装置16は、電動機連結軸36や変速機入力軸38に入力された動力源トルクTspを駆動輪14へ伝達する。
【0039】
車両10は、機械式のオイルポンプであるMOP58、電動式のオイルポンプであるEOP60、ポンプ用モータ62等を備えている。MOP58は、ポンプ翼車22aに連結されており、動力源SPにより回転駆動させられて動力伝達装置16にて用いられる作動油OILを吐出する。ポンプ用モータ62は、EOP60を回転駆動する為のEOP60専用のモータである。EOP60は、ポンプ用モータ62により回転駆動させられて作動油OILを吐出する。MOP58やEOP60が吐出した作動油OILは、油圧制御回路56へ供給される。油圧制御回路56は、MOP58及び/又はEOP60が吐出した作動油OILを元にして各々調圧した、CB油圧PRcb、K0油圧PRk0などを供給する。
【0040】
車両10は、更に、車両10の制御装置を含む電子制御装置90を備えている。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置90は、必要に応じてエンジン制御用、電動機制御用、クラッチ制御用、変速機制御用等の各コンピュータを含んで構成される。
【0041】
電子制御装置90には、車両10に備えられた各種センサ等(例えばエンジン回転速度センサ70、タービン回転速度センサ72、出力回転速度センサ74、MG回転速度センサ76、アクセル開度センサ78、スロットル弁開度センサ80、ブレーキスイッチ82、バッテリセンサ84、油温センサ86など)による検出値に基づく各種信号等(例えばエンジン12の回転速度であるエンジン回転速度Ne、AT入力回転速度Niと同値であるタービン回転速度Nt、車速Vに対応するAT出力回転速度No、電動機MGの回転速度であるMG回転速度Nm、運転者の加速操作の大きさを表す運転者のアクセル操作量であるアクセル開度θacc、電子スロットル弁の開度であるスロットル弁開度θth、ホイールブレーキを作動させる為のブレーキペダルが運転者によって操作されている状態を示す信号であるブレーキオン信号Bon、バッテリ54のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbat、油圧制御回路56内の作動油OILの温度である作動油温THoilなど)が、それぞれ供給される。
【0042】
電子制御装置90は、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいてバッテリ充電残量SOC[%]を算出する。バッテリ充電残量SOCは、バッテリ54の充電残量であって、バッテリ54の充電状態を示す値つまり充電状態値である。電子制御装置90は、例えばバッテリ温度THbat及びバッテリ充電残量SOCに基づいてバッテリ54の充電可能電力Win[W]や放電可能電力Wout[W]を算出する。バッテリ54の充電可能電力Winは、バッテリ54の耐久性等を考慮して規定されたバッテリ54の充電可能な最大電力、つまりバッテリ54への入力が許容される最大電力である。バッテリ54の放電可能電力Woutは、バッテリ54の耐久性等を考慮して規定されたバッテリ54の放電可能な最大電力、つまりバッテリ54からの出力が許容される最大電力である。
【0043】
電子制御装置90からは、車両10に備えられた各装置(例えばエンジン制御装置50、インバータ52、油圧制御回路56、ポンプ用モータ62など)に各種指令信号(例えばエンジン12を制御する為のエンジン制御指令信号Se、電動機MGを制御する為のMG制御指令信号Sm、係合装置CBを制御する為のCB油圧制御指令信号Scb、K0クラッチ20を制御する為のK0油圧制御指令信号Sk0、LUクラッチ40を制御する為のLU油圧制御指令信号Slu、EOP60を制御する為のEOP制御指令信号Seopなど)が、それぞれ出力される。
【0044】
電子制御装置90は、車両10における各種制御を実現する為に、動力源制御手段すなわち動力源制御部92、及び変速機制御手段すなわち変速機制御部94を備えている。
【0045】
動力源制御部92は、エンジン12の作動を制御するエンジン制御手段すなわちエンジン制御部92aとしての機能と、インバータ52を介して電動機MGの作動を制御する電動機制御手段すなわち電動機制御部92bとしての機能と、を含んでおり、それらの制御機能によりエンジン12及び電動機MGによるハイブリッド駆動制御等を実行するハイブリッド制御手段すなわちハイブリッド制御部である。
【0046】
動力源制御部92は、例えば駆動要求量マップにアクセル開度θacc及び車速Vを適用することで、運転者による車両10に対する駆動要求量を算出する。前記駆動要求量マップは、予め実験的に或いは設計的に求められて記憶された関係すなわち予め定められた関係である。前記駆動要求量は、例えば駆動輪14における要求駆動トルクTrdemである。要求駆動トルクTrdem[Nm]は、見方を換えればそのときの車速Vにおける要求駆動パワーPrdem[W]である。前記駆動要求量としては、駆動輪14における要求駆動力Frdem[N]、変速機出力軸26における要求AT出力トルク等を用いることもできる。前記駆動要求量の算出では、車速Vに替えてAT出力回転速度Noなどを用いても良い。
【0047】
動力源制御部92は、伝達損失、自動変速機24の変速比γat等を考慮して、要求駆動トルクTrdemを実現する為の要求システム軸トルクTsysdemを算出する。動力源制御部92は、要求システム軸トルクTsysdemを実現する動力源トルクTspが得られるように、エンジン12を制御する為のエンジン制御指令信号Seと、電動機MGを制御する為のMG制御指令信号Smと、を出力する。要求システム軸トルクTsysdemは、システム軸トルクTsysの要求値である。システム軸トルクTsysは、動力源トルクTspのうちの駆動輪14へ伝達される伝達軸上におけるトルクである伝達軸トルク、すなわち駆動トルクTrとして用いられるトルクである。本実施例では、システム軸トルクTsysとして、変速機入力軸38上におけるトルクを例示する。尚、変速機入力軸38上におけるトルクと電動機連結軸36上におけるトルクとの差は、トルクコンバータ22のトルク比(=タービントルク/ポンプトルク)分の差であり、電動機連結軸36上におけるトルクをシステム軸トルクTsysとしても良い。トルクコンバータ22のトルク比は、トルクコンバータ22の速度比(=タービン回転速度Nt/ポンプ回転速度)の関数であり、速度比とトルク比との予め定められた関係に実際の速度比を適用することで算出される。ポンプ回転速度は、MG回転速度Nmと同値である。
【0048】
動力源制御部92は、電動機MGの出力のみで要求システム軸トルクTsysdemを賄える場合には、車両10を駆動する駆動モードとしてモータ駆動モードつまりBEV駆動モードを成立させる。BEV駆動モードは、K0クラッチ20の解放状態において、エンジン12の運転が停止させられた状態で電動機MGのみを動力源SPに用いて走行するモータ走行つまり電動走行(=BEV走行)が可能な電動駆動モードである。一方で、動力源制御部92は、少なくともエンジン12の出力を用いないと要求システム軸トルクTsysdemを賄えない場合には、駆動モードとしてエンジン駆動モードつまりHEV駆動モードを成立させる。HEV駆動モードは、K0クラッチ20の係合状態において、少なくともエンジン12を動力源SPに用いて走行するエンジン走行つまりハイブリッド走行(=HEV走行)が可能なハイブリッド駆動モードである。他方で、動力源制御部92は、電動機MGの出力のみで要求システム軸トルクTsysdemを賄える場合であっても、バッテリ54の充電が必要な場合やエンジン12等の暖機が必要な場合などには、駆動モードとしてHEV駆動モードを成立させる。
【0049】
バッテリ54の充電が必要な場合とは、例えばバッテリ充電残量SOCを規定の値に維持する場合、又は、バッテリ充電残量SOCが規定の範囲よりも低下した場合、又は、バッテリ充電残量SOCは規定の範囲に入っているが、バッテリ54の充電を行った方がエネルギー効率が良くなる場合などである。
【0050】
動力源制御部92は、例えばバッテリ充電残量SOCの目標値と実際値との差に基づいて、電動機MGの発電によってバッテリ54に充電する充電電力Wchg[W]の要求値である要求充電電力Wchgdemを算出する。動力源制御部92は、例えば車両10の駆動状態での走行中に、バッテリ54の充電が必要となった場合には、要求充電電力Wchgdemを実現するように、要求駆動トルクTrdemに対応する要求システム軸トルクTsysdemを実現するエンジントルクTeに対してエンジントルクTeを増加する充電制御CTchgを行う。HEV走行中にバッテリ54の充電が必要となった場合には、充電分だけエンジントルクTeが増加させられる。BEV走行中にバッテリ54の充電が必要となった場合には、エンジン12が始動させられ、電動機MGに替えてエンジン12によってシステム軸トルクTsysが発生させられた上に、充電分だけエンジントルクTeが増加させられる。車両10の駆動状態は、動力源トルクTspによって駆動輪14が回転駆動させられている状態である。尚、車両10の被駆動状態は、駆動輪14から入力されるトルクによって動力源SPが回転駆動させられている状態である。
【0051】
変速機制御部94は、例えば予め定められた関係である変速マップを用いて自動変速機24の変速判断を行い、必要に応じてつまりその変速判断の結果に応じて自動変速機24の変速制御を実行する為のCB油圧制御指令信号Scbを油圧制御回路56へ出力する。変速機制御部94は、自動変速機24の変速制御では、例えば係合装置CBのうちの解放側係合装置の解放状態への切替えと、係合装置CBのうちの係合側係合装置の係合状態への切替えと、によって自動変速機24の変速を行う。前記変速マップは、例えば車速V及び要求駆動トルクTrdemを変数とする二次元座標上に、自動変速機24の変速が判断される為の変速線を有する所定の関係である。前記変速マップでは、車速Vに替えてAT出力回転速度Noなどを用いても良いし、又、要求駆動トルクTrdemに替えて要求駆動力Frdemやアクセル開度θaccやスロットル弁開度θthなどを用いても良い。
【0052】
ここで、車両10の駆動状態での走行中にアクセルオフ又はアクセルオフに近い状態とされた場合、減速感を生じさせるように、車両10は駆動状態から被駆動状態へ切り替えられる。車両10が駆動状態から被駆動状態へ切り替えられる際には、動力伝達装置16における回転部材間のガタ例えばギヤのバックラッシュが詰められる方向が反転することによる歯打ちが生じる。その為、この駆動状態から被駆動状態への切替え時つまりチップアウト時における歯打ちによりガタ詰めショックである所謂チップアウトショックが発生することがある。これに対して、動力源制御部92は、車両10のチップアウトに合わせて、チップアウトショックを抑制するように、システム軸トルクTsysの変化を緩やかにする。
【0053】
ところで、車両10の駆動状態での走行中に充電制御CTchgが行われていると、充電分だけエンジントルクTeが増加させられている。エンジントルクTeが高い領域では、エンジントルクTeの推定値である推定エンジントルクTeeの算出精度が悪くなり易い。つまり、エンジントルクTeが高い領域では、推定エンジントルクTeeと、エンジントルクTeの実際値である実エンジントルクTerと、のずれが大きくなり易い。一方で、車両10の駆動状態での走行中に充電制御CTchgが行われている状態でアクセルオフ等とされた場合、推定エンジントルクTeeの低下に合わせてMGトルクTmが制御されて、車両10が駆動状態から被駆動状態へ切り替えられる。チップアウトに合わせたMGトルクTmの制御によってシステム軸トルクTsysを緩やかに変化させているときに、推定エンジントルクTeeの算出精度が悪いと、システム軸トルクTsysのゼロ値を滑らかに通過させられない可能性がある。つまり、チップアウト時のガタ詰め用のMGトルクTmが実エンジントルクTerに対して適切に発生させられ得ない可能性がある。そうすると、MGトルクTmによるチップアウトショックの抑制効果が適切に得られないおそれがある。尚、推定エンジントルクTeeは、例えば予め定められたエンジントルクマップにエンジン回転速度Ne及びスロットル弁開度θthを適用することで算出される。
【0054】
車両10の駆動状態での走行中に充電制御CTchgが行われているときに、エンジン回転速度Neが低いと、要求充電電力Wchgdemを実現する為のエンジン12のパワーであるエンジンパワーPeを得るには、高いエンジントルクTeが必要になる。つまり、充電制御CTchgの実行時には、エンジン回転速度Neが低い領域では、エンジントルクTeが高くなり易い。その為、充電制御CTchgの実行時にエンジン回転速度Neが低い領域では、チップアウトショックが抑制し難くされる。HEV走行中はK0クラッチ20が係合状態とされているので、エンジン回転速度NeとMG回転速度Nmとは同値である。又、MG回転速度Nmとタービン回転速度Ntとの差はトルクコンバータ22の速度比分の差であり、MG回転速度Nmとタービン回転速度Ntとを共に伝達軸の回転速度つまりシステム軸回転速度Nsysとしても良い。以上のことから、充電制御CTchgの実行時にシステム軸回転速度Nsysが低い領域では、チップアウトショックが抑制し難くされる。
【0055】
又、要求駆動トルクTrdemつまり要求駆動トルクTrdemを実現する為のシステム軸トルクTsysが低い領域では、実エンジントルクTerが推定エンジントルクTeeに対してずれていることによる影響度合が大きくなり易い。その為、充電制御CTchgの実行時に要求駆動トルクTrdemつまりシステム軸トルクTsysが低い領域では、チップアウトショックが抑制し難くされる。又は、別の観点では、システム軸トルクTsysが低い領域では、チップアウト時にエンジントルクTeを低下させる際の時間が短くされる為、チップアウトショックが抑制し難くされる。
【0056】
そこで、電子制御装置90は、充電制限制御手段すなわち充電制限制御部96を更に備えている。
【0057】
充電制限制御部96は、システム軸回転速度Nsysが所定回転速度Nsysf以下であり、且つ、システム軸トルクTsysが所定トルクTsysf以下である場合には、充電制御CTchgにおける充電電力Wchgを制限する充電制限制御CTlimchgを行う。一方で、充電制限制御部96は、システム軸回転速度Nsysが所定回転速度Nsysfと超えているか、又は、システム軸トルクTsysが所定トルクTsysfを超えている場合には、充電制限制御CTlimchgを行わない。所定回転速度Nsysf及び所定回転速度Nsysfは、チップアウト時にチップアウトショックが抑制し難くされる、充電制御CTchgが行われているときの車両状態を判断する為の予め定められた閾値である。尚、充電制限制御CTlimchgを行うか否かを判断するときのシステム軸トルクTsysとしては、実際値を用いても良いし、要求システム軸トルクTsysdemを用いても良い。本実施例では、要求システム軸トルクTsysdemを用いる。
【0058】
具体的には、充電制限制御部96は、システム軸回転速度Nsysが所定回転速度Nsysf以下であるか否かを判定する。又、充電制限制御部96は、要求システム軸トルクTsysdemが所定トルクTsysf以下であるか否かを判定する。充電制限制御部96は、システム軸回転速度Nsysが所定回転速度Nsysf以下であると判定し、且つ、要求システム軸トルクTsysdemが所定トルクTsysf以下であると判定した場合には、充電制限制御CTlimchgを行う。充電制限制御部96は、システム軸回転速度Nsysが所定回転速度Nsysfを超えていると判定したか、又は、要求システム軸トルクTsysdemが所定トルクTsysfを超えていると判定した場合には、充電制限制御CTlimchgを行わない。
【0059】
車速Vが低い領域では、推定エンジントルクTeeの算出誤差に対してチップアウトショックの感度が高くされ易い。その為、充電制限制御部96は、車速Vが比較的低車速域にあるときに充電制限制御CTlimchgを行うようにしても良い。例えば、充電制限制御部96は、車速Vが所定車速Vf以下である場合には、充電制限制御CTlimchgを行う。一方で、充電制限制御部96は、車速Vが所定車速Vfを超えている場合には、充電制限制御CTlimchgを行わない。所定車速Vfは、例えばチップアウトショックの感度を考慮した充電制限制御CTlimchgの実行を判断する為の予め定められた閾値である。
【0060】
自動変速機24のギヤ段が低車速側ギヤ段(=ローギヤ段)であると、推定エンジントルクTeeの算出誤差に対してチップアウトショックの感度が高くされ易い。その為、充電制限制御部96は、自動変速機24のギヤ段がローギヤ段であるときに充電制限制御CTlimchgを行うようにしても良い。例えば、充電制限制御部96は、自動変速機24の変速比γatが所定の低車速側変速比つまり所定ロー側変速比γatfである場合には、充電制限制御CTlimchgを行う。一方で、充電制限制御部96は、変速比γatが所定ロー側変速比γatfよりも高車速側(=ハイ側)である場合には、充電制限制御CTlimchgを行わない。所定ロー側変速比γatfは、例えばチップアウトショックの感度を考慮した充電制限制御CTlimchgの実行を判断する為の予め定められた変速比γatである。例えば、自動変速機24が前進10段の変速機である場合には、所定ロー側変速比γatfは、第1速ギヤ段(1st)から第4速ギヤ段(4th)までのギヤ段に対応する変速比γatである。
【0061】
充電制限制御部96は、例えば充電電力Wchgを制限するときの充電電力Wchgの上限値である上限充電電力Wchgulを設定し、要求充電電力Wchgdemに対して上限充電電力Wchgulまでに充電電力Wchgを抑えることで、充電制限制御CTlimchgを行う。尚、上限充電電力Wchgulが要求充電電力Wchgdem以上である場合には、充電制限制御CTlimchgが行われたとしても要求充電電力Wchgdemが実現され得る。
【0062】
充電制限制御部96は、例えば予め定められた関係である上限値マップにシステム軸回転速度Nsys及び要求システム軸トルクTsysdemを適用することで、上限充電電力Wchgulを設定する。
【0063】
図2及び
図3は、各々、上限充電電力Wchgulの設定に用いられる上限値マップの一例を示す図である。
図2は、車速Vの領域つまり車速域毎に異なる上限値マップの一例を説明する図である。
図3は、自動変速機24のギヤ段毎に異なる上限値マップの一例を説明する図である。
図2の上限値マップ及び
図3の上限値マップは、各々、例えばシステム軸回転速度Nsys及び要求システム軸トルクTsysdemを変数とする二次元座標上に、異なる値の上限充電電力Wchgulを有する領域が予め定められた所定の関係である。
【0064】
図2において、「Nsysfa」及び「Nsysfb」は、各々、所定回転速度Nsysfを示している。「Tsysfa」及び「Tsysfb」は、各々、所定トルクTsysfを示している。「A1」、「A2」、「A3」、「B1」、「B2」、及び「B3」は、各々、上限充電電力Wchgulを示している。実線BLaに示す、所定回転速度Nsysfaと所定トルクTsysfaとは、車速Vが低車速域Aにある場合の閾値である。低車速域Aは、例えば車速Vが車速V1を超えており且つ車速V2以下の車速域である。破線BLbに示す、所定回転速度Nsysfbと所定トルクTsysfbとは、車速Vが低車速域Bにある場合の閾値である。低車速域Bは、例えば車速Vがゼロを超えており且つ車速V1以下の車速域である。上限充電電力A1、A2、A3は、車速Vが低車速域Aにある場合の上限充電電力Wchgulである。上限充電電力A1は、実線La1に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力A2は、実線La1に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、実線La2に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力A3は、実線La2に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、実線BLaに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力B1、B2、B3は、車速Vが低車速域Bにある場合の上限充電電力Wchgulである。上限充電電力B1は、破線Lb1に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力B2は、破線Lb1に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、破線Lb2に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力B3は、破線Lb2に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、破線BLbに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。
【0065】
低車速域A及び低車速域Bは、何れも車速Vが所定車速Vf以下の低車速域であるので、低車速域A及び低車速域Bでは、各々、上限充電電力Wchgulが設定され、充電制限制御CTlimchgが行われる。具体的には、低車速域Aでは、実線BLaに対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域においては、上限充電電力Wchgulが設定されず、充電制限制御CTlimchgは行われない。低車速域Aでは、実線BLaに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域においては、上限充電電力Wchgulが設定され、充電制限制御CTlimchgが行われる。低車速域Bでは、破線BLbに対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域においては、上限充電電力Wchgulが設定されず、充電制限制御CTlimchgは行われない。低車速域Bでは、破線BLbに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域においては、上限充電電力Wchgulが設定され、充電制限制御CTlimchgが行われる。一方で、車速Vが所定車速Vfを超える高車速域にあるときには、上限充電電力Wchgulが設定されず、充電制限制御CTlimchgは行われない。
【0066】
車速Vが低い程、チップアウトショックの感度が高くされ易い。その為、車速Vが低い程、システム軸回転速度Nsysがより高い領域まで、及び/又は、要求システム軸トルクTsysdemがより高い領域まで、充電制限制御CTlimchgを行うようにしても良い。低車速域Bは、低車速域Aよりも低車速側の車速域である。従って、所定回転速度Nsysfbは、所定回転速度Nsysfaよりも高い値に設定されている。所定トルクTsysfbは、所定トルクTsysfaよりも高い値に設定されている。このように、充電制限制御部96は、充電制限制御CTlimchgを行う場合には、車速Vが低い程、所定回転速度Nsysf及び所定トルクTsysfのうちの少なくとも一方を高い値に設定する。
【0067】
システム軸回転速度Nsysが低い程、及び/又は、要求システム軸トルクTsysdemが低い程、チップアウト時にチップアウトショックが抑制し難くされる。その為、システム軸回転速度Nsysが低い程、及び/又は、要求システム軸トルクTsysdemが低い程、上限充電電力Wchgulを小さな値に設定しても良い。従って、低車速域Aにおいて、上限充電電力A1は上限充電電力A2よりも小さな値に設定され、上限充電電力A2は上限充電電力A3よりも小さな値に設定されている。低車速域Bにおいて、上限充電電力B1は上限充電電力B2よりも小さな値に設定され、上限充電電力B2は上限充電電力B3よりも小さな値に設定されている。これにより、低車速域Aの場合に上限充電電力A2が設定される領域の一部において、低車速域Bの場合では上限充電電力B1が設定される。低車速域Aの場合に上限充電電力A3が設定される領域の一部において、低車速域Bの場合では上限充電電力B2が設定される。本実施例では、上限充電電力A1と上限充電電力B1とは同値とされ、上限充電電力A2と上限充電電力B2とは同値とされ、上限充電電力A3と上限充電電力B3とは同値とされている。従って、車速Vが低い程、上限充電電力Wchgulが小さな値に設定されている。このように、充電制限制御部96は、充電制限制御CTlimchgを行う場合には、車速Vが低い程、上限充電電力Wchgulを小さな値に設定する。
【0068】
図3において、「Nsysfc」及び「Nsysfd」は、各々、所定回転速度Nsysfを示している。「Tsysfc」及び「Tsysfd」は、各々、所定トルクTsysfを示している。「C1」、「C2」、「C3」、「D1」、「D2」、及び「D3」は、各々、上限充電電力Wchgulを示している。実線BLcに示す、所定回転速度Nsysfcと所定トルクTsysfcとは、自動変速機24のギヤ段が第C速ギヤ段にある場合の閾値である。第C速ギヤ段は、例えば第2速ギヤ段(2nd)である。破線BLdに示す、所定回転速度Nsysfdと所定トルクTsysfdとは、自動変速機24のギヤ段が第D速ギヤ段にある場合の閾値である。第D速ギヤ段は、例えば第1速ギヤ段(1st)である。上限充電電力C1、C2、C3は、自動変速機24のギヤ段が第C速ギヤ段にある場合の上限充電電力Wchgulである。上限充電電力C1は、実線Lc1に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力C2は、実線Lc1に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、実線Lc2に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力C3は、実線Lc2に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、実線BLcに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力D1、D2、D3は、自動変速機24のギヤ段が第D速ギヤ段にある場合の上限充電電力Wchgulである。上限充電電力D1は、破線Ld1に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力D2は、破線Ld1に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、破線Ld2に対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。上限充電電力D3は、破線Ld2に対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域であり、且つ、破線BLdに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域において設定される上限充電電力Wchgulである。
【0069】
第C速ギヤ段及び第D速ギヤ段は、何れも自動変速機24の変速比γatが所定ロー側変速比γatfとなるローギヤ段であるので、第C速ギヤ段及び第D速ギヤ段では、各々、上限充電電力Wchgulが設定され、充電制限制御CTlimchgが行われる。具体的には、第C速ギヤ段では、実線BLcに対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域においては、上限充電電力Wchgulが設定されず、充電制限制御CTlimchgは行われない。第C速ギヤ段では、実線BLcに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域においては、上限充電電力Wchgulが設定され、充電制限制御CTlimchgが行われる。第D速ギヤ段では、破線BLdに対して、システム軸回転速度Nsysが高い領域又は要求システム軸トルクTsysdemが高い領域においては、上限充電電力Wchgulが設定されず、充電制限制御CTlimchgは行われない。第D速ギヤ段では、破線BLdに対して、システム軸回転速度Nsysが低い領域且つ要求システム軸トルクTsysdemが低い領域においては、上限充電電力Wchgulが設定され、充電制限制御CTlimchgが行われる。一方で、自動変速機24の変速比γatが所定ロー側変速比γatfよりもハイ側となる高車速側ギヤ段(=ハイギヤ段)では、上限充電電力Wchgulが設定されず、充電制限制御CTlimchgは行われない。
【0070】
自動変速機24の変速比γatが低車速側(=ロー側)である程、チップアウトショックの感度が高くされ易い。その為、変速比γatがロー側である程、システム軸回転速度Nsysがより高い領域まで、及び/又は、要求システム軸トルクTsysdemがより高い領域まで、充電制限制御CTlimchgを行うようにしても良い。第D速ギヤ段は、第C速ギヤ段よりもローギヤ段である。従って、所定回転速度Nsysfdは、所定回転速度Nsysfcよりも高い値に設定されている。所定トルクTsysfdは、所定トルクTsysfcよりも高い値に設定されている。このように、充電制限制御部96は、充電制限制御CTlimchgを行う場合には、変速比γatがロー側である程、所定回転速度Nsysf及び所定トルクTsysfのうちの少なくとも一方を高い値に設定する。
【0071】
システム軸回転速度Nsysが低い程、及び/又は、要求システム軸トルクTsysdemが低い程、チップアウト時にチップアウトショックが抑制し難くされる。その為、システム軸回転速度Nsysが低い程、及び/又は、要求システム軸トルクTsysdemが低い程、上限充電電力Wchgulを小さな値に設定しても良い。従って、第C速ギヤ段において、上限充電電力C1は上限充電電力C2よりも小さな値に設定され、上限充電電力C2は上限充電電力C3よりも小さな値に設定されている。第D速ギヤ段において、上限充電電力D1は上限充電電力D2よりも小さな値に設定され、上限充電電力D2は上限充電電力D3よりも小さな値に設定されている。これにより、第C速ギヤ段の場合に上限充電電力C2が設定される領域の一部において、第D速ギヤ段の場合では上限充電電力D1が設定される。第C速ギヤ段の場合に上限充電電力C3が設定される領域の一部において、第D速ギヤ段の場合では上限充電電力D2が設定される。本実施例では、上限充電電力C1と上限充電電力D1とは同値とされ、上限充電電力C2と上限充電電力D2とは同値とされ、上限充電電力C3と上限充電電力D3とは同値とされている。従って、自動変速機24の変速比γatがロー側である程、上限充電電力Wchgulが小さな値に設定されている。このように、充電制限制御部96は、充電制限制御CTlimchgを行う場合には、自動変速機24の変速比γatがロー側である程、上限充電電力Wchgulを小さな値に設定する。
【0072】
図2や
図3を参照すれば、充電制限制御部96は、充電制限制御CTlimchgを行う場合には、システム軸回転速度Nsysが低い程、上限充電電力Wchgulを小さな値に設定する。充電制限制御部96は、充電制限制御CTlimchgを行う場合には、要求システム軸トルクTsysdemが低い程、上限充電電力Wchgulを小さな値に設定する。
【0073】
図4は、電子制御装置90の制御作動の要部を説明するフローチャートであって、走行中に充電制御CTchgを行う際にショックの発生を抑制しつつバッテリ充電残量SOCを適切に維持する為の制御作動を説明するフローチャートであり、例えば繰り返し実行される。
【0074】
図4において、フローチャートの各ステップは充電制限制御部96の機能に対応している。ステップ(以下、ステップを省略する)S10において、システム軸回転速度Nsysが所定回転速度Nsysf以下であるか否かが判定される。このS10の判断が肯定される場合はS20において、要求システム軸トルクTsysdemが所定トルクTsysf以下であるか否かが判定される。このS20の判断が肯定される場合はS30において、充電制限制御CTlimchgが行われる。例えば、上限充電電力Wchgulが設定され、要求充電電力Wchgdemに対して上限充電電力Wchgulまでに充電電力Wchgが制限される。一方で、上記S10の判断が否定される場合は、又は、上記S20の判断が否定される場合は、S40において、充電制限制御CTlimchgが行われない。例えば、要求充電電力Wchgdemに対して充電電力Wchgが制限されない。
【0075】
上述のように、本実施例によれば、システム軸回転速度Nsysが所定回転速度Nsysf以下であり、且つ、システム軸トルクTsysが所定トルクTsysf以下である場合には、充電制限制御CTlimchgが行われる一方で、システム軸回転速度Nsysが所定回転速度Nsysfと超えているか、又は、システム軸トルクTsysが所定トルクTsysfを超えている場合には、充電制限制御CTlimchgが行われないので、要求充電電力Wchgdemに対するエンジントルクTeの増加が抑制されると共にシステム軸トルクTsysに対するエンジントルクTeのばらつきの影響が抑制される。よって、走行中に充電制御CTchgを行う際に、ショックの発生を抑制しつつバッテリ充電残量SOCを適切に維持することができる。
【0076】
また、本実施例によれば、車速Vが所定車速Vf以下である場合には、充電制限制御CTlimchgが行われる一方で、車速Vが所定車速Vfを超えている場合には、充電制限制御CTlimchgが行われないので、ショック感度が高い低車速域において充電制限制御CTlimchgが行われてショックの発生が抑制される。
【0077】
また、本実施例によれば、充電制限制御CTlimchgが行われる場合には、車速Vが低い程、所定回転速度Nsysf及び所定トルクTsysfのうちの少なくとも一方が高い値に設定されるので、ショック感度が高い低車速側程、充電制限制御CTlimchgが行われ易くされる。
【0078】
また、本実施例によれば、充電制限制御CTlimchgが行われる場合には、車速Vが低い程、上限充電電力Wchgulが小さな値に設定されるので、ショック感度が高い低車速側程、エンジントルクTeの増加がより抑制されると共にエンジントルクTeのばらつきの影響がより抑制される。
【0079】
また、本実施例によれば、自動変速機24の変速比γatが所定ロー側変速比γatfである場合には、充電制限制御CTlimchgが行われる一方で、変速比γatが所定ロー側変速比γatfよりもハイ側である場合には、充電制限制御CTlimchgが行われないので、ショック感度が高いロー側変速比において充電制限制御CTlimchgが行われてショックの発生が抑制される。
【0080】
また、本実施例によれば、充電制限制御CTlimchgが行われる場合には、変速比γatがロー側である程、所定回転速度Nsysf及び所定トルクTsysfのうちの少なくとも一方が高い値に設定されるので、ショック感度が高いロー側変速比程、充電制限制御CTlimchgが行われ易くされる。
【0081】
また、本実施例によれば、充電制限制御CTlimchgが行われる場合には、自動変速機24の変速比γatがロー側である程、上限充電電力Wchgulが小さな値に設定されるので、ショック感度が高いロー側変速比程、エンジントルクTeの増加がより抑制されると共にエンジントルクTeのばらつきの影響がより抑制される。
【0082】
また、本実施例によれば、充電制限制御CTlimchgが行われる場合には、システム軸回転速度Nsysが低い程、上限充電電力Wchgulが小さな値に設定されるので、エンジントルクTeが増加し易い低システム軸回転速度Nsys程、エンジントルクTeの増加がより抑制される。
【0083】
また、本実施例によれば、充電制限制御CTlimchgが行われる場合には、システム軸トルクTsysが低い程、上限充電電力Wchgulが小さな値に設定されるので、エンジントルクTeのばらつきが影響し易い低システム軸トルクTsys程、エンジントルクTeのばらつきの影響がより抑制される。
【0084】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0085】
例えば、前述の実施例において、車両10に替えて、
図5に示すように、K0クラッチ20を備えていない車両100であっても、本発明を適用することができる。車両100が備える動力伝達装置102では、エンジン12がK0クラッチ20を介すことなく電動機連結軸36に動力伝達可能に連結されている。
【0086】
また、前述の実施例では、自動変速機24として遊星歯車式の自動変速機を例示したが、この態様に限らない。例えば、自動変速機24は、公知のDCT(Dual Clutch Transmission)を含む同期噛合型平行2軸式自動変速機、公知のベルト式無段変速機などであっても良い。又は、自動変速機24は、必ずしも備えられている必要はない。この場合、
図3に示すような、自動変速機24のギヤ段毎に異なる上限値マップは用いられない。
【0087】
また、前述の実施例では、流体式伝動装置としてトルクコンバータ22が用いられたが、この態様に限らない。例えば、流体式伝動装置として、トルクコンバータ22に替えて、トルク増幅作用のないフルードカップリングなどの他の流体式伝動装置が用いられても良い。又は、流体式伝動装置は、必ずしも備えられている必要はなく、例えば発進用のクラッチに置き換えられても良い。要は、エンジン及び電動機を含む動力源と、動力源が動力伝達可能に連結された伝達軸を有し、その伝達軸に入力された動力源のトルクを駆動輪へ伝達する動力伝達装置と、電動機に対して電力を授受する蓄電装置と、を備えた車両であれば、本発明を適用することができる。
【0088】
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【符号の説明】
【0089】
10、100:車両
12:エンジン
14:駆動輪
16、102:動力伝達装置
24:自動変速機
36:電動機連結軸(伝達軸)
38:変速機入力軸(伝達軸)
54:バッテリ(蓄電装置)
90:電子制御装置(制御装置)
92:動力源制御部
96:充電制限制御部
MG:電動機
SP:動力源