(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-23
(45)【発行日】2025-01-07
(54)【発明の名称】ネットワークによって開始されるオンデマンドのゼロエネルギーページング方法および装置
(51)【国際特許分類】
H04W 52/02 20090101AFI20241224BHJP
H04W 76/28 20180101ALI20241224BHJP
H04W 68/02 20090101ALI20241224BHJP
【FI】
H04W52/02
H04W76/28
H04W68/02
(21)【出願番号】P 2023024022
(22)【出願日】2023-02-20
(62)【分割の表示】P 2020529481の分割
【原出願日】2018-11-30
【審査請求日】2023-03-22
(32)【優先日】2017-12-01
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】510030995
【氏名又は名称】インターデイジタル パテント ホールディングス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】ハク、タンビル
(72)【発明者】
【氏名】プラガダ、ラヴィクマール ヴィ.
(72)【発明者】
【氏名】バラスブラマニアン、アナンタラマン
(72)【発明者】
【氏名】デミル、アルファスラン
【審査官】吉村 真治▲郎▼
(56)【参考文献】
【文献】特開平08-223230(JP,A)
【文献】特表2013-519300(JP,A)
【文献】欧州特許出願公開第02833680(EP,A1)
【文献】特開平04-302525(JP,A)
【文献】特開2012-175537(JP,A)
【文献】石田 繁巳 Shigemi ISHIDA,B-7-202 サービス発見のためのゼロ受信待機電力無線システムの設計,電子情報通信学会2007年総合大会講演論文集 通信2 PROCEEDINGS OF THE 2007 IEICE GENERAL CONFEREN,2007年,第292頁
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24- 7/26
H04W 4/00-99/00
(57)【特許請求の範囲】
【請求項1】
無線送受信ユニット(WTRU)であって、
プロセッサと、
少なくとも1つのアンテナと、
前記少なくとも1つのアンテナに動作可能に結合されている第1のトランシーバと、
前記少なくとも1つのアンテナに動作可能に結合されている第2のトランシーバと
、
を備え、
前記プロセッサ、前記少なくとも1つのアンテナおよび前記第1のトランシーバは、ネットワークから第1の信号を受信するように構成され、前記受信された第1の信号は、
複数のセクションを備え、前記第1の信号のセクションは、前記第1の信号の別のセクションとは異なる持続時間および
振幅を備え、
前記第1の信号の前記複数のセクション
のそれぞれは、同じエネルギーを有し、
前記プロセッサおよび前記第1のトランシーバは、前記受信された第1の信号からエネルギーを抽出
し、前記抽出されたエネルギーを一時ストレージ要素に格納するようにさらに構成され、
前記プロセッサは、前記一時ストレージ要素の格納されたエネルギーを監視するようにさらに構成され、
前記プロセッサは、前記格納されたエネルギーを前記一時ストレージ要素から永続ストレージ要素に転送し、前記一時ストレージ要素の前記格納されたエネルギーが所定の閾値を超えるという条件で、受信された前記第1の信号のエネルギー署名に基づいてパルスを生成するようにさらに構成され、
前記プロセッサおよび前記第1のトランシーバは、
パルスのシーケンスが構成されているパターンにマッチするという条件で、前記第2のトランシーバをアクティブ化するようにさらに構成され、
前記少なくとも1つのアンテナおよび前記第2のトランシーバは、前記ネットワークから第2の信号を受信するように構成される
、
WTRU。
【請求項2】
前記プロセッサおよび前記第1のトランシーバは、エネルギー閾値イベント間の時間の分離を比較することによって、受信された前記第1の信号の前記エネルギー署名をデコードするようにさらに構成される、請求項1のWTRU。
【請求項3】
前記エネルギー閾値イベントは、
前記エネルギーの転送に基づいてデジタル信号に変換される、請求項
2のWTRU。
【請求項4】
前記エネルギーの転送は、
前記一時ストレージ要素から
前記永続ストレージ要素への転送である、請求項
3のWTRU。
【請求項5】
前記第1のトランシーバは、前記受信された第1の信号によってのみ電力供給されるパッシブ受信機を備える、請求項1のWTRU。
【請求項6】
前記第2のトランシーバは、バッテリーによって電力供給される、請求項1のWTRU。
【請求項7】
前記第2のトランシーバは、プライマリートランシーバを備える、請求項1のWTRU。
【請求項8】
前記第1のトランシーバは、前記少なくとも1つのアンテナのうちの第1のアンテナに動作可能に結合されており、前記第2のトランシーバは、前記少なくとも1つのアンテナのうちの第2のアンテナに動作可能に結合されている、請求項1のWTRU。
【請求項9】
前記WTRUは、前記受信された第1の信号からエネルギーを抽出し、同時にエネルギー閾値イベント間の時間の分離を比較するように構成される、請求項1のWTRU。
【請求項10】
前記構成されているエネルギー署名は、前記第2のトランシーバのアクティブ化を開始するために必要な開始シーケンスを含む、請求項1のWTRU。
【請求項11】
前記構成されているエネルギー署名は、ネットワークから受信される、請求項1のWTRU。
【請求項12】
無線送受信ユニット(WTRU)によって使用される方法であって、
第1のトランシーバを使用してネットワークから第1の信号を受信することであって、前記受信された第1の信号は、
複数のセクションを備え、前記第1の信号のセクションは、前記第1の信号の別のセクションとは異なる持続時間および
振幅を備え、
前記第1の信号の前記複数のセクション
のそれぞれは、同じエネルギーを有する、ことと、
前記受信された第1の信号からエネルギーを抽出することと、
前記抽出されたエネルギーを一時ストレージ要素に格納することと、
前記一時ストレージ要素の格納されたエネルギーを監視することと、
前記格納されたエネルギーを前記一時ストレージ要素から永続ストレージ要素に転送し、前記一時ストレージ要素の前記格納されたエネルギーが所定の閾値を超えるという条件で、受信された前記第1の信号のエネルギー署名に基づいてパルスを生成することと、
パルスのシーケンスが構成されているパターンにマッチするという条件で、第2のトランシーバをアクティブ化することと、
前記第2のトランシーバを使用して前記ネットワークから第2の信号を受信することと
、
を備える方法。
【請求項13】
エネルギー閾値イベント間の時間の分離を比較することによって、前記受信された第1の信号のエネルギー署名をデコードすることをさらに備える、請求項12の方法。
【請求項14】
前記エネルギーの転送に基づいて前記エネルギー閾値イベントをデジタル信号に変換することをさらに備える、請求項
13の方法。
【請求項15】
前記エネルギーの転送は、
前記一時ストレージ要素から
前記永続ストレージ要素への転送である、請求項
14の方法。
【請求項16】
前記第1のトランシーバは、前記受信された第1の信号によってのみ電力供給されるパッシブ受信機を備える、請求項
12の方法。
【請求項17】
前記第2のトランシーバは、バッテリーによって電力供給される、請求項
12の方法。
【請求項18】
前記第2のトランシーバは、プライマリートランシーバを備える、請求項
12の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、その内容が参照により本明細書に組み込まれている、2017年12月1日に出願された米国特許仮出願第62/593,631号の利益を主張するものである。
【背景技術】
【0002】
デバイス(例えば、モバイルデバイス、アプライアンス、消費材、ウェアラブル、オートメーションデバイス、サーバ、ノート、送信機、受信機など)に関する技術および接続性における進歩は、これらのデバイスを、ネットワーク接続から恩恵を享受するように導いている。この必要性を駆り立てる新興の用途領域は、スマートシティー、スマートホーム、スマートエネルギーグリッド、モバイルヘルスデバイス、車両テレマティクス、自動化された農業、アセットトラッキング、環境モニタリング、産業モニタリングおよびインフラストラクチャモニタリングを含む。多くの新興の用途において、エネルギー効率は、接続されているネットワークデバイスのバッテリー寿命を最大化することが望ましいため、重要な要件である。
【発明の概要】
【0003】
無線送受信ユニット(WTRU)が、1つまたは複数のアンテナと、その1つまたは複数のアンテナに動作可能に結合されている第1のトランシーバとを含み得る。1つまたは複数のアンテナおよび第1のトランシーバは、WTRUからのゼロエネルギーを使用してネットワークから第1の信号を受信するように構成されてよい。1つまたは複数のアンテナおよび第1のトランシーバは、第1の信号からエネルギーを抽出するようにさらに構成されてよい。第1のトランシーバは、エネルギー閾値イベント間の時間の分離を検査して第1の信号のエネルギー署名をデコードするようにさらに構成されてよい。第1のトランシーバは、デコードされたエネルギー署名が、格納されているエネルギー署名にマッチする場合には、1つまたは複数のアンテナに動作可能に結合されている第2のトランシーバをアクティブ化するようにさらに構成されてよく、第2のトランシーバは、WTRUによって電力供給される。1つまたは複数のアンテナおよび第2のトランシーバは、ネットワークから第2の信号を受信するように構成されてよい。
【0004】
無線送受信ユニット(WTRU)が、1つまたは複数のアンテナと、その1つまたは複数のアンテナに動作可能に結合されている第1のトランシーバとを含み得る。1つまたは複数のアンテナおよび第1のトランシーバは、WTRUのゼロエネルギーを使用してネットワークから第1の信号を受信するように構成されてよい。1つまたは複数のアンテナおよび第1のトランシーバは、第1の信号からエネルギーを抽出するようにさらに構成されてよい。第1のトランシーバは、エネルギー閾値イベント間の時間の分離を検査して第1の信号のエネルギー署名をデコードするようにさらに構成されてよい。エネルギー閾値イベントは、一時ストレージ要素に格納されている抽出されたエネルギーの量が閾値を超えていると決定することによって生成されることが可能である。エネルギー閾値イベント間の時間の分離は、一時ストレージ要素の容量および閾値の構成されている値のうちの1つまたは複数に基づくことが可能である。第1のトランシーバは、抽出されたエネルギーを一時ストレージ要素から永続ストレージ要素へ転送することによってエネルギー閾値イベントをデジタル信号へ変換するようにさらに構成されてよい。第1のトランシーバは、デコードされたエネルギー署名が、格納されているエネルギー署名にマッチする場合には、1つまたは複数のアンテナに動作可能に結合されている第2のトランシーバをアクティブ化するようにさらに構成されてよい。第2のトランシーバは、WTRUによって電力供給されることが可能である。1つまたは複数のアンテナおよび第2のトランシーバは、ネットワークから第2の信号を受信するように構成されてよい。
【0005】
無線送受信ユニット(WTRU)における使用のための方法が、第1のトランシーバを使用してネットワークから第1の信号を受信するステップを含み得る。第1のトランシーバは、WTRUからのゼロエネルギーを使用することが可能である。第1の信号からエネルギーが抽出されることが可能である。エネルギー閾値イベント間の時間の分離が検査されて第1の信号のエネルギー署名をデコードすることが可能である。デコードされたエネルギー署名が、格納されているエネルギー署名にマッチする場合には、1つまたは複数のアンテナに動作可能に結合されている第2のトランシーバがアクティブ化され得る。第2のトランシーバは、WTRUによって電力供給されることが可能である。WTRUによって電力供給される第2のトランシーバを使用してネットワークから第2の信号が受信され得る。
【図面の簡単な説明】
【0006】
例として添付図面とともに与えられている下記の説明から、より詳細な理解を得ることができ、図における同様の参照番号は、同様の要素を示している。
【
図1A】1つまたは複数の開示されている実施形態が実施されることが可能である例示的な通信システムを示すシステム図である。
【
図1B】実施形態による、
図1Aにおいて示されている通信システム内で使用され得る例示的な無線送受信ユニット(WTRU)を示すシステム図である。
【
図1C】実施形態による、
図1Aにおいて示されている通信システム内で使用され得る例示的な無線アクセスネットワーク(RAN)および例示的なコアネットワーク(CN)を示すシステム図である。
【
図1D】実施形態による、
図1Aにおいて示されている通信システム内で使用され得るさらなる例示的なRANおよびさらなる例示的なCNを示すシステム図である。
【
図2】多数のデバイスをインターネットに接続するための様々なアプローチを示す図である。
【
図4】不連続受信(DRX)サイクルを示す図である。
【
図5】ステーションが電力を節約するのを手助けするために従来のIEEE802.11システムにおいて使用され得るPSMを示す図である。
【
図6】スケジュールされた自動節電配信(S-APSD)を示す図である。
【
図7】節電マルチポール(PSMP)配信を示す図である。
【
図8】LTE DRXにおけるデバイス電力プロフィールを示す図である。
【
図9A】8μWの漏れ電力および45時間のページングサイクルを伴って達成されるマシンタイプ通信(MTC)デバイスの30年間のバッテリー寿命を示す図である。
【
図9B】漏れ電力が8μWであると想定される場合に30年間のバッテリー寿命を達成するためには45時間のページングおよびトランザクションサイクルが必要とされ得るということをMTCデバイスのバッテリー寿命が示していることを示す図である。
【
図10A】ファシリテータおよびインテロゲータのトップレベルアーキテクチャの第1の図である。
【
図10B】ファシリテータおよびインテロゲータのトップレベルアーキテクチャの第2の図である。
【
図11】バッテリーによって作動されるデバイスのトップレベル無線アーキテクチャを示す図である。
【
図12】マルチモード/マルチバンドデバイスのトップレベル描写を示す図である。
【
図13A】シングルバンドパッシブトランシーバを伴うFDDデバイスを示す図である。
【
図13B】デュアルバンドパッシブトランシーバを伴うFDDデバイスを示す図である。
【
図14A】シングルバンドパッシブトランシーバを伴う半二重FDD(HD-FDD)デバイスを示す図である。
【
図14B】RFフロントエンド内に統合されているデュアルバンドパッシブトランシーバを伴うHD-FFデバイスを示す図である。
【
図16A】デュアルバンドFDDデバイスを示す図である。
【
図16B】シングルバンドFDDデバイスを示す図である。
【
図17】無線によってトリガーされるウェイクアップ受信機のアーキテクチャを示す図である。
【
図18A】パッシブフロントエンドのシングルエンドのアーキテクチャの簡略化された概要を示す図である。
【
図18B】パッシブフロントエンドの差異のあるまたはバランスのとれたアーキテクチャの簡略化された概要を示す図である。
【
図19A】継続的に存在し続ける正弦波入力r(t)に応答した出力波形V
FEを示す図である。
【
図19B】パルス正弦波に対するパッシブフロントエンドの応答を示す図である。
【
図20A】アナログ/情報(A/I)コンバータの実施態様を示す図である。
【
図20B】A/Iコンバータの入力波形および出力波形を示す図である。
【
図21】自動的な感度制御を伴うアナログ/情報コンバータを示す回路図である。
【
図22A】A/Iコンバータのシングルエンドの実施態様を示す図である。
【
図22B】A/Iコンバータの完全に差異のあるまたはバランスのとれた実施態様を示す図である。
【
図23】アナログ/情報コンバータの代替の具現化を示す回路図である。
【
図24】無線によってトリガーされるウェイクアップ受信機の完全な概要を示す回路図である。
【
図25】パッシブトランシーバアーキテクチャを示す回路図である。
【
図26A】単一入力に関する格納されているエネルギー閾値処理イベントカウンティングウェイクアップコマンドインタープリタ(ET-CI)を示す図である。
【
図26B】マルチ入力デバイスに関する格納されているET-CIを示す図である。
【
図27A】A/Iコンバータからの2つの閾値イベント用に構成されているET-CIを示す図である。
【
図27B】3つの閾値イベント用に構成されているET-CIを示す図である。
【
図28A】パルス分離デコーディング(PSD)データ検知器を示す図である。
【
図28B】単一入力の格納されているエネルギー閾値イベント分離デコーディングウェイクアップコマンドインタープリタ(ETESD-CI)を示す図である。
【
図28C】3つの入力の格納されているエネルギー閾値イベント分離デコーディングウェイクアップコマンドインタープリタ(ETESD-CI)を示す図である。
【
図29】オペレーションの単一入力のエネルギー閾値イベント分離デコーディングコマンドインタープリタ理論を示す図である。
【
図30】ウェイクアップワードを構築するために使用されるリソースキューブを示す図である。
【
図31】ウェイクアップコマンドを生成するために使用される送信機構造を示す図である。
【
図32A】3/9の強度のf
1ワードのシンボル表示を示す図である。
【
図32B】(1,f1)ウェイクアップワードを示す図である。
【
図32C】単一の周波数リソースと、最大でL個の時間リソースとを利用するウェイクアップワードを示す図である。
【
図32D】(1,f1)ウェイクアップワードを示す図である。
【
図33A】(3/9,f1)ウェイクアップワードの代替実施態様を示す図である。
【
図33B】(3/9,f1)ウェイクアップワードの別の代替実施態様を示す図である。
【
図34A】(3/9,f1)および(1,fk)の周波数/時間リソースの組合せを採用しているワードを示す図である。
【
図34B】{(3/9,f1),(4/9,f2),(1,fk)}ワードを示す図である。
【
図35A】2つの異なる角度リソースθ
1およびθ
2上で時間リソースおよび周波数リソースの同じ組合せ(3/9,f
1)および(1,f
2)を採用しているワードを示す図である。
【
図35B】[{θ
1,(3/5,f
1)},{θ
2,(4/9,f
1),(1,f
2)}]ワードを示す図である。
【
図36A】4ワード(N=4)、ワードあたり単一の角度(m=1)、単一の周波数(k=1)、および5つの時間リソース(L=5)を採用しているウェイクアップコマンドを示す図である。
【
図36B】N=3個のワード、ワードあたりm=1個の角度、k=2個の周波数、およびL=9個の時間リソースを採用している(3,1,2,9)の格納されているエネルギー閾値イベントスタッキングウェイクアップコマンドを示す図である。
【
図37A】単一の角度リソース、単一の周波数リソース、および8つの時間リソースを採用するワードの第1の量子化レベルを示す図である。
【
図37B】単一の角度リソース、単一の周波数リソース、および8つの時間リソースを採用するワードの第2の量子化レベルを示す図である。
【
図37C】単一の角度リソース、単一の周波数リソース、および8つの時間リソースを採用するワードの第3の量子化レベルを示す図である。
【
図37D】単一の角度リソース、単一の周波数リソース、および8つの時間リソースを採用するワードの第4の量子化レベルを示す図である。
【
図38】一定エネルギー振幅変調波形を示す図である。
【
図39】ページングシステムの要素を示す図である。
【
図40】オンデマンドのゼロエネルギーページング手順を示す図である。
【
図41A】eNodeB信号およびファシリテータ信号を示す図である。
【
図42】ページングサイクル期間適合手順を示す図である。
【
図43A】eNodeB電力プロフィールおよび信号を示す図である。
【
図43B】デバイス電力プロフィールおよび信号を示す図である。
【
図44】オンデマンドのゼロエネルギーウェイクアップ手順を示す図である。
【
図45】後方散乱されて変調されたキャリアを示す図である。
【
図47】周波数オフセットエスティメータを示す図である。
【
図48】TA境界を示すために個別の周波数上で無線ビーコンを送信するセルクラスタの展開を示す図である。
【
図49】WTRUによって開始されるウェイクアップコマンドエントリー署名割り振り手順を示す図である。
【
図50】ウェイクアッププロセスに関する適合電力送信を示す図である。
【
図51】主要な付加電力推定に関する総計eNBを共有するリソースブロック(RB)使用情報を示す図である。
【
図53】専用ウェイクアップ信号の送信を示す図である。
【
図54】ウェイクアップコマンドエネルギー署名構成、STAウェイクアップ、およびデータ転送に関するコールフローを示す図である。
【発明を実施するための形態】
【0007】
図1Aは、1つまたは複数の開示されている実施形態が実施可能な例示的な通信システム100を示す図である。通信システム100は、コンテンツ、例えば、音声、データ、ビデオ、メッセージング、放送などを複数の無線ユーザに提供するマルチプルアクセスシステムであってよい。通信システム100は、複数の無線ユーザが、無線バンド幅を含むシステムリソースの共有を通じてそのようなコンテンツにアクセスすることを可能にする。例えば、通信システム100は、1つまたは複数のチャネルアクセス方法、例えば、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交FDMA(OFDMA)、シングルキャリアFDMA(SC-FDMA)、ゼロテールユニークワードDFT-Spread OFDM(ZT UW DTS-s OFDM)、ユニークワードOFDM(UW-OFDM)、リソースブロックフィルタードOFDM、フィルタバンクマルチキャリア(FBMC)などを採用することができる。
【0008】
図1Aにおいて示されているように、通信システム100は、無線送受信ユニット(WTRU)102a、102b、102c、102d、RAN104/113、CN106/115、公衆交換電話ネットワーク(PSTN)108、インターネット110、およびその他のネットワーク112を含み得るが、開示されている実施形態は、任意の数のWTRU、基地局、ネットワーク、および/またはネットワーク要素を想定しているということが理解されるであろう。WTRU102a、102b、102c、102dのそれぞれは、無線環境において動作および/または通信するように構成されている任意のタイプのデバイスであってよい。例えば、WTRU102a、102b、102c、102d(これらのいずれも、「ステーション」および/または「STA」と呼ばれ得る)は、無線信号を送信および/または受信するように構成されてよく、ユーザ機器(UE)、移動局、固定式または移動式のサブスクライバーユニット、サブスクリプションベースのユニット、ページャー、セルラー電話、PDA、スマートフォン、ラップトップ、ネットブック、パーソナルコンピュータ、無線センサ、ホットスポットまたはMi-Fiデバイス、IoTデバイス、腕時計またはその他のウェアラブル、ヘッドマウントディスプレイ(HMD)、乗り物、ドローン、医療デバイスおよびアプリケーション(例えば、遠隔手術)、工業デバイスおよびアプリケーション(例えば、工業および/または自動化された処理チェーンのコンテキストにおいて動作するロボットおよび/またはその他の無線デバイス)、家庭用電子機器、商業および/または工業無線ネットワーク上で動作するデバイスなどを含み得る。WTRU102a、102b、102c、および102dのいずれも、UEと言い換え可能に呼ばれることが可能である。
【0009】
通信システム100は、基地局114aおよび/または基地局114bを含むことも可能である。基地局114a、114bのそれぞれは、1つまたは複数の通信ネットワーク、例えば、CN106/115、インターネット110、および/またはその他のネットワーク112へのアクセスを容易にするために、WTRU102a、102b、102c、102dのうちの少なくとも1つとワイヤレスにインターフェース接続するように構成されている任意のタイプのデバイスであることが可能である。例えば、基地局114a、114bは、ベーストランシーバステーション(BTS)、Node-B、eNode B、ホームNode B、ホームeNode B、gNB、NR NodeB、サイトコントローラ、アクセスポイント(AP)、無線ルータなどであることが可能である。基地局114a、114bは、それぞれ単一の要素として示されているが、基地局114a、114bは、任意の数の相互接続された基地局および/またはネットワーク要素を含み得るということが理解されるであろう。
【0010】
基地局114aは、RAN104/113の一部であることが可能であり、RAN104/113は、その他の基地局および/またはネットワーク要素(図示せず)、例えば、基地局コントローラ(BSC)、無線ネットワークコントローラ(RNC)、中継ノードなどを含むことも可能である。基地局114aおよび/または基地局114bは、1つまたは複数のキャリア周波数上で無線信号を送信および/または受信するように構成されてよく、それらのキャリア周波数は、セル(図示せず)と呼ばれることが可能である。これらの周波数は、ライセンス供与されているスペクトル、ライセンス供与されていないスペクトル、またはライセンス供与されているスペクトルと、ライセンス供与されていないスペクトルとの組合せであることが可能である。セルは、比較的固定されることが可能な、または時間とともに変わることが可能な特定の地理的エリアへの無線サービスのためのカバレッジを提供することが可能である。セルは、セルセクタへとさらに分割されることが可能である。例えば、基地局114aに関連付けられているセルは、3つのセクタへと分割され得る。従って一実施形態においては、基地局114aは、3つのトランシーバ、すなわち、セルのそれぞれのセクタごとに1つのトランシーバを含み得る。実施形態においては、基地局114aは、MIMO技術を採用することが可能であり、セルのそれぞれのセクタごとに複数のトランシーバを利用することが可能である。例えば、所望の空間方向において信号を送信および/または受信するためにビームフォーミングが使用され得る。
【0011】
基地局114a、114bは、エアインターフェース116を介してWTRU102a、102b、102c、102dのうちの1つまたは複数と通信することが可能であり、エアインターフェース116は、任意の適切な無線通信リンク(例えば、無線周波数(RF)、マイクロ波、センチメートル波、マイクロメートル波、赤外線(IR)、紫外線(UV)、可視光など)であることが可能である。エアインターフェース116は、任意の適切な無線アクセス技術(RAT)を使用して確立されることが可能である。
【0012】
より具体的には、上述されているように、通信システム100は、マルチプルアクセスシステムであることが可能であり、1つまたは複数のチャネルアクセス方式、例えば、CDMA、TDMA、FDMA、OFDMA、SC-FDMAなどを採用することが可能である。例えば、RAN104/113における基地局114a、およびWTRU102a、102b、102cは、ユニバーサルモバイルテレコミュニケーションズシステム(UMTS)テレストリアルラジオアクセス(UTRA)などの無線技術を実施することができ、この無線技術は、広帯域CDMA(WCDMA(登録商標))を使用してエアインターフェース115/116/117を確立することが可能である。WCDMAは、高速パケットアクセス(HSPA)および/またはエボルブドHSPA(HSPA+)などの通信プロトコルを含み得る。HSPAは、高速ダウンリンク(DL)パケットアクセス(HSDPA)および/または高速ULパケットアクセス(HSUPA)を含み得る。
【0013】
実施形態においては、基地局114aおよびWTRU102a、102b、102cは、ロングタームエボリューション(LTE)および/またはLTEアドバンスト(LTE-A)および/またはLTEアドバンストプロ(LTE-A Pro)を使用してエアインターフェース116を確立することが可能であるエボルブドUMTSテレストリアルラジオアクセス(E-UTRA)などの無線技術を実施することが可能である。
【0014】
実施形態においては、基地局114aおよびWTRU102a、102b、102cは、新無線(NR)を使用してエアインターフェース116を確立することが可能であるNR無線アクセスなどの無線技術を実施することが可能である。
【0015】
実施形態においては、基地局114aおよびWTRU102a、102b、102cは、複数の無線アクセス技術を実施することができる。例えば、基地局114aおよびWTRU102a、102b、102cは、例えばデュアル接続(DC)原理を使用して、LTE無線アクセスおよびNR無線アクセスをともに実施することができる。従って、WTRU102a、102b、102cによって利用されるエアインターフェースは、複数のタイプの無線アクセス技術、および/または複数のタイプの基地局(例えば、eNBおよびgNB)へ/から送られる送信によって特徴付けられ得る。
【0016】
他の実施形態においては、基地局114aおよびWTRU102a、102b、102cは、無線技術、例えば、IEEE802.11(すなわち、WiFi(Wireless Fidelity)、IEEE802.16(すなわち、WiMAX(Worldwide Interoperability for Microwave Access))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、暫定標準2000(IS-2000)、暫定標準95(IS-95)、暫定標準856(IS-856)、GSM(登録商標)、エンハンストデータレートフォーGSMエボリューション(EDGE)、GSM EDGE(GERAN)などを実施することができる。
【0017】
図1Aにおける基地局114bは、例えば、無線ルータ、ホームNode B、ホームeNode B、またはアクセスポイントであることが可能であり、局所的なエリア、例えば、事業所、家庭、乗り物、キャンパス、工業施設、空中回廊(例えば、ドローンによる使用のための)、車道などにおける無線接続を容易にするために、任意の適切なRATを利用することが可能である。一実施形態においては、基地局114bおよびWTRU102c、102dは、無線ローカルエリアネットワーク(WLAN)を確立するために、IEEE802.11などの無線技術を実施することができる。実施形態においては、基地局114bおよびWTRU102c、102dは、無線パーソナルエリアネットワーク(WPAN)を確立するために、IEEE802.15などの無線技術を実施することができる。さらに別の実施形態においては、基地局114bおよびWTRU102c、102dは、ピコセルまたはフェムトセルを確立するために、セルラーベースのRAT(例えば、WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NRなど)を利用することができる。
図1Aにおいて示されているように、基地局114bは、インターネット110への直接接続を有することが可能である。従って基地局114bは、CN106/115を介してインターネット110にアクセスすることを求められないことが可能である。
【0018】
RAN104/113は、CN106/115と通信状態にあることが可能であり、CN106/115は、音声、データ、アプリケーション、および/またはボイスオーバーインターネットプロトコル(VoIP)サービスをWTRU102a、102b、102c、102dのうちの1つまたは複数に提供するように構成されている任意のタイプのネットワークであってよい。データは、様々なサービス品質(QoS)要件、例えば、別々のスループット要件、待ち時間要件、エラー許容範囲要件、信頼性要件、データスループット要件、モビリティ要件などを有することが可能である。CN106/115は、呼制御、料金請求サービス、モバイル位置情報サービス、プリペイドコーリング、インターネット接続、ビデオ配信などを提供すること、および/またはハイレベルセキュリティ機能、例えばユーザ認証を実行することが可能である。
図1Aにおいては示されていないが、RAN104/113および/またはCN106/115は、RAN104/113と同じRATまたは異なるRATを採用しているその他のRANと直接または間接の通信状態にあることが可能であるということが理解されるであろう。例えば、CN106/115は、NR無線技術を利用することが可能なRAN104/113に接続されることに加えて、GSM、UMTS、CDMA2000、WiMAX、E-UTRA、またはWiFi無線技術を採用する別のRAN(図示せず)と通信状態にあることも可能である。
【0019】
CN106/115は、WTRU102a、102b、102c、102dがPSTN108、インターネット110、および/またはその他のネットワーク112にアクセスするためのゲートウェイとしての役割を果たすことも可能である。PSTN108は、単純旧式電話サービス(POTS)を提供する回線交換電話ネットワークを含み得る。インターネット110は、一般的な通信プロトコル、例えば、TCP/IPインターネットプロトコルスイートにおけるTCP、UDP、および/またはIPを使用する相互接続されたコンピュータネットワークおよびデバイスからなるグローバルシステムを含み得る。ネットワーク112は、その他のサービスプロバイダによって所有および/または運営されている有線通信ネットワークおよび/または無線通信ネットワークを含み得る。例えば、ネットワーク112は、RAN104/113と同じRATまたは異なるRATを採用することが可能な1つまたは複数のRANに接続されている別のCNを含み得る。
【0020】
通信システム100におけるWTRU102a、102b、102c、102dのうちのいくつかまたは全ては、マルチモード機能を含み得る(例えば、WTRU102a、102b、102c、102dは、別々の無線リンクを介して別々の無線ネットワークと通信するために複数のトランシーバを含み得る)。例えば、
図1Aにおいて示されているWTRU102cは、セルラーベースの無線技術を採用することが可能な基地局114aと、およびIEEE802無線技術を採用することが可能な基地局114bと通信するように構成されてよい。
【0021】
図1Bは、例示的なWTRU102を示すシステム図である。
図1Bにおいて示されているように、WTRU102は、数ある中でも、プロセッサ118、トランシーバ120、送受信要素122、スピーカー/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド128、取り外し不能メモリ130、取り外し可能メモリ132、電源134、GPSチップセット136、および/またはその他の周辺機器138を含み得る。WTRU102は、実施形態との整合性を保持しながら、上述の要素の任意の下位組合せを含み得るということが理解されるであろう。
【0022】
プロセッサ118は、汎用プロセッサ、専用プロセッサ、従来型プロセッサ、デジタルシグナルプロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアに関連付けられる1つもしくは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、ASIC、FPGA回路、その他の任意のタイプの集積回路(IC)、状態マシンなどであってよい。プロセッサ118は、信号符号化、データ処理、電力制御、入出力処理、および/または、WTRU102が無線環境において動作することを可能にするその他の任意の機能を実行することができる。プロセッサ118は、トランシーバ120に結合されることができ、トランシーバ120は、送受信要素122に結合されることができる。
図1Bは、プロセッサ118およびトランシーバ120を別々のコンポーネントとして示しているが、プロセッサ118およびトランシーバ120は、電子パッケージまたはチップにおいてともに統合されることが可能であるということが理解されるであろう。
【0023】
送受信要素122は、エアインターフェース116を介して、基地局(例えば、基地局114a)に信号を送信するように、または基地局(例えば、基地局114a)から信号を受信するように構成されてよい。例えば、一実施形態においては、送受信要素122は、RF信号を送信および/または受信するように構成されているアンテナであることが可能である。実施形態においては、送受信要素122は、例えば、IR信号、UV信号、または可視光信号を送信および/または受信するように構成されているエミッタ/検知器であってよい。さらに別の実施形態においては、送受信要素122は、RF信号および光信号の両方を送信および/または受信するように構成されてよい。送受信要素122は、無線信号の任意の組合せを送信および/または受信するように構成されてよいということが理解されるであろう。
【0024】
送受信要素122は、
図1Bにおいては単一の要素として示されているが、WTRU102は、任意の数の送受信要素122を含み得る。より具体的には、WTRU102は、MIMO技術を採用することが可能である。従って、一実施形態においては、WTRU102は、エアインターフェース116を介して無線信号を送信および受信するために、2つ以上の送受信要素122(例えば、複数のアンテナ)を含み得る。
【0025】
トランシーバ120は、送受信要素122によって送信されることになる信号を変調するように、および送受信要素122によって受信される信号を復調するように構成されてよい。上述したように、WTRU102は、マルチモード機能を有してよい。従ってトランシーバ120は、WTRU102が、例えばNRおよびIEEE802.11などの複数のRATを介して通信することを可能にするために複数のトランシーバを含み得る。
【0026】
WTRU102のプロセッサ118は、スピーカー/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128(例えば、液晶ディスプレイ(LCD)ディスプレイユニットもしくは有機発光ダイオード(OLED)ディスプレイユニット)に結合されることが可能であり、そこからユーザ入力データを受信することが可能である。プロセッサ118は、ユーザデータをスピーカー/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128へ出力することも可能である。プロセッサ118は、任意のタイプの適切なメモリ、例えば、取り外し不能メモリ130および/または取り外し可能メモリ132の情報にアクセスすること、およびそれらのメモリにデータを格納することが可能である。取り外し不能メモリ130は、RAM、ROM、ハードディスクまたは他の任意のタイプのメモリストレージデバイスを含み得る。取り外し可能メモリ132は、SIMカード、メモリスティック、SDメモリカードなどを含み得る。他の実施形態では、プロセッサ118は、WTRU102上に物理的に配置されていない、例えば、サーバまたはホームコンピュータ(図示せず)上のメモリの情報にアクセスすること、およびそのメモリにデータを格納することができる。
【0027】
プロセッサ118は、電源134から電力を受け取ることが可能であり、WTRU102における他のコンポーネントへの電力を分配および/または制御するように構成されてよい。電源134は、WTRU102に電力供給するための任意の適切なデバイスであってよい。例えば、電源134は、1つまたは複数の乾電池(例えば、ニッケルカドミウム(NiCd)、ニッケル亜鉛(NiZn)、ニッケル水素(NiMH)、リチウムイオン(Li-ion)など)、太陽電池、燃料電池などを含み得る。
【0028】
プロセッサ118は、GPSチップセット136に結合されることも可能であり、GPSチップセット136は、WTRU102の現在のロケーションに関するロケーション情報(例えば、経度および緯度)を提供するように構成されてよい。WTRU102は、GPSチップセット136の情報に加えて、またはその情報の代わりに、基地局(例えば、基地局114a、114b)からエアインターフェース116を介してロケーション情報を受信すること、および/または2つ以上の近隣の基地局から受信されている信号のタイミングに基づいてそのロケーションを決定することができる。WTRU102は、実施形態との整合性を保持しながら、任意の適切なロケーション決定方法を通じてロケーション情報を取得することが可能であるということが理解されるであろう。
【0029】
プロセッサ118は、他の周辺機器138にさらに結合されることが可能であり、他の周辺機器138は、さらなる特徴、機能性および/または有線接続もしくは無線接続を提供する1つまたは複数のソフトウェアモジュールおよび/またはハードウェアモジュールを含み得る。例えば、周辺機器138は、加速度計、eコンパス、衛星トランシーバ、デジタルカメラ(写真および/またはビデオ用)、USBポート、振動デバイス、テレビジョントランシーバ、ハンドフリーヘッドセット、Bluetooth(登録商標)モジュール、周波数変調(FM)ラジオユニット、デジタルミュージックプレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザ、仮想現実および/または拡張現実(VR/AR)デバイス、アクティビティトラッカーなどを含み得る。周辺機器138は、1つまたは複数のセンサを含むことが可能であり、それらのセンサは、ジャイロスコープ、加速度計、ホール効果センサ、磁力計、方位センサ、プロキシミティセンサ、温度センサ、時間センサ、ジオロケーションセンサ、高度計、光センサ、タッチセンサ、磁力計、バロメータ、ジェスチャーセンサ、バイオメトリックセンサ、および/または湿度センサのうちの1つまたは複数であることが可能である。
【0030】
WTRU102は、(例えば、UL(例えば、送信用)およびダウンリンク(例えば、受信用)の両方に関して特定のサブフレームに関連付けられている)信号のうちのいくつかまたは全ての送信および受信が並列および/または同時であることが可能な全二重無線を含み得る。全二重無線は、ハードウェア(例えば、チョーク)、またはプロセッサを介した(例えば、別個のプロセッサ(図示せず)もしくはプロセッサ118を介した)信号処理を介して自己干渉を減らすおよび/または実質的になくすための干渉管理ユニット139を含み得る。実施形態においては、WRTU102は、(例えば、UL(例えば、送信用)またはダウンリンク(例えば、受信用)のいずれかに関して特定のサブフレームに関連付けられている)信号のうちのいくつかまたは全ての送信および受信が、半二重無線を含み得る。
【0031】
図1Cは、実施形態によるRAN104およびCN106を示すシステム図である。上述したように、RAN104は、エアインターフェース116を介してWTRU102a、102b、102cと通信するためにE-UTRA無線技術を採用することが可能である。RAN104は、CN106と通信状態にあることも可能である。
【0032】
RAN104は、eNode-B160a、160b、160cを含み得るが、RAN104は、実施形態との整合性を保持しながら、任意の数のeNode-Bを含み得るということが理解されるであろう。eNode-B160a、160b、160cはそれぞれ、エアインターフェース116を介してWTRU102a、102b、102cと通信するために1つまたは複数のトランシーバを含み得る。一実施形態においては、eNode-B160a、160b、160cは、MIMO技術を実施することが可能である。従ってeNode-B160aは、例えば、WTRU102aに無線信号を送信するために、および/またはWTRU102aから無線信号を受信するために、複数のアンテナを使用することが可能である。
【0033】
eNode-B160a、160b、160cのそれぞれは、特定のセル(図示せず)に関連付けられることが可能であり、無線リソース管理の決定、ハンドオーバーの決定、ULおよび/またはDLにおけるユーザのスケジューリングなどを取り扱うように構成されてよい。
図1Cにおいて示されているように、eNode-B160a、160b、160cは、X2インターフェースを介して互いに通信することが可能である。
【0034】
図1Cにおいて示されているCN106は、モビリティ管理エンティティ(MME)162、サービングゲートウェイ(SGW)164、およびパケットデータネットワーク(PDN)ゲートウェイ(またはPGW)166を含み得る。上述の要素のうちのそれぞれは、CN106の一部として示されているが、これらの要素のうちのいずれかが、CNオペレータ以外のエンティティによって所有および/または運営されることが可能であるということが理解されるであろう。
【0035】
MME162は、S1インターフェースを介してRAN104におけるeNode-B162a、162b、162cのそれぞれに接続されることが可能であり、制御ノードとしての役割を果たすことができる。例えば、MME162は、WTRU102a、102b、102cのユーザを認証すること、ベアラのアクティブ化/非アクティブ化、WTRU102a、102b、102cの最初の接続中に特定のサービングゲートウェイを選択することなどを担当することができる。MME162は、RAN104と、GSMおよび/またはWCDMAなどのその他の無線技術を採用しているその他のRAN(図示せず)との間における切り替えを行うための制御プレーン機能を提供することができる。
【0036】
SGW164は、S1インターフェースを介してRAN104におけるeNode B160a、160b、160cのそれぞれに接続されることが可能である。SGW164は一般に、ユーザデータパケットをWTRU102a、102b、102cへ/WTRU102a、102b、102cからルーティングおよび転送することが可能である。SGW164は、その他の機能、例えば、eNode B間でのハンドオーバー中にユーザプレーンを固定すること、WTRU102a、102b、102cにとってDLデータが利用可能である場合にページングをトリガーすること、WTRU102a、102b、102cのコンテキストを管理および格納することなどを実行することが可能である。
【0037】
SGW164は、PGW166に接続されることが可能であり、PGW166は、WTRU102a、102b、102cと、IP対応デバイスとの間における通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cに提供することが可能である。
【0038】
CN106は、他のネットワークとの通信を容易にすることができる。例えば、CN106は、WTRU102a、102b、102cと、従来の地上通信線通信デバイスとの間における通信を容易にするために、PSTN108などの回線交換ネットワークへのアクセスをWTRU102a、102b、102cに提供することができる。例えば、CN106は、CN106とPSTN108との間におけるインターフェースとしての役割を果たすIPゲートウェイ(例えば、IPマルチメディアサブシステム(IMS)サーバ)を含むことができ、またはそうしたIPゲートウェイと通信することができる。CN106は、他のネットワーク112へのアクセスをWTRU102a、102b、102cに提供することができ、他のネットワーク112は、他のサービスプロバイダによって所有および/または運営されている他の有線ネットワークおよび/または無線ネットワークを含み得る。
【0039】
WTRUは、
図1A~
図1Dにおいては無線端末として記述されるが、特定の代表的な実施形態においては、そのような端末は、通信ネットワークとの有線通信インターフェースを(例えば、一時的にまたは永久に)使用することが可能であると想定される。
【0040】
代表的な実施形態においては、他のネットワーク112は、WLANであってよい。
【0041】
インフラストラクチャベーシックサービスセット(BSS)モードにおけるWLANは、BSS用のアクセスポイント(AP)と、APに関連付けられている1つまたは複数のステーション(STA)とを有することが可能である。APは、BSSとの間で出入りするトラフィックを搬送する配信システム(DS)または別のタイプの有線/無線ネットワークへのアクセスまたはインターフェースを有することが可能である。BSSの外部から生じるSTAへのトラフィックは、APを通じて着信することが可能であり、STAへ配信されることが可能である。STAからBSSの外部の宛先へ生じるトラフィックは、APへ送られて、それぞれの宛先へ配信されることが可能である。BSS内のSTA間におけるトラフィックは、例えば、ソースSTAがトラフィックをAPへ送ることが可能であり、APがそのトラフィックを宛先STAへ配信することが可能である場合には、APを通じて送られることが可能である。BSS内のSTA間におけるトラフィックは、ピアツーピアトラフィックとみなされること、および/または呼ばれることが可能である。ピアツーピアトラフィックは、ダイレクトリンクセットアップ(DLS)を用いてソースSTAと宛先STAとの間において(例えば、間において直接)送られることが可能である。特定の代表的な実施形態においては、DLSは、802.11e DLSまたは802.11zトンネルドDLS(TDLS)を使用することが可能である。独立BSS(IBSS)モードを使用するWLANは、APを有さないことが可能であり、IBSS内のまたはIBSSを使用するSTA(例えば、STAのうちの全て)は、互いに直接通信することが可能である。通信のIBSSモードは、本明細書においては、時には通信の「アドホック」モードと呼ばれることが可能である。
【0042】
オペレーションの802.11acインフラストラクチャモードまたはオペレーションの同様のモードを使用する場合には、APは、プライマリーチャネルなどの固定されたチャネル上でビーコンを送信することが可能である。プライマリーチャネルは、固定された幅(例えば、20MHzの幅のバンド幅)またはシグナリングを介した動的に設定される幅であることが可能である。プライマリーチャネルは、BSSの動作チャネルであることが可能であり、APとの接続を確立するためにSTAによって使用され得る。特定の代表的な実施形態においては、例えば802.11システムにおいて、搬送波感知多重アクセス/衝突回避方式(CSMA/CA)が実施されることが可能である。CSMA/CAに関しては、APを含むSTA(例えば、あらゆるSTA)は、プライマリーチャネルを感知することが可能である。特定のSTAによってプライマリーチャネルが感知/検知され、および/またはビジーであると決定された場合には、その特定のSTAは、引き下がることが可能である。1つのSTA(例えば、1つのステーションのみ)が、所与のBSSにおいて任意の所与の時点で送信を行うことが可能である。
【0043】
高スループット(HT)STAは、例えば、プライマリー20MHzチャネルと、隣り合っているまたは隣り合っていない20MHzのチャネルとを組み合わせて40MHzの幅のチャネルを形成することを介して、通信のために40MHzの幅のチャネルを使用することが可能である。
【0044】
超高スループット(VHT)STAは、20MHz、40MHz、80MHz、および/または160MHzの幅のチャネルをサポートすることが可能である。40MHzのチャネル、および/または80MHzのチャネルは、隣接している20MHzのチャネルを組み合わせることによって形成されることが可能である。160MHzのチャネルは、8つの隣接している20MHzのチャネルを組み合わせることによって、または2つの隣接していない80MHzのチャネルを組み合わせること(これは、80+80構成と呼ばれることが可能である)によって形成されることが可能である。80+80構成に関しては、データは、チャネルエンコーディングの後に、セグメントパーサに通されることが可能であり、セグメントパーサは、そのデータを2つのストリームへと分割することが可能である。逆高速フーリエ変換(IFFT)処理、および時間ドメイン処理が、それぞれのストリーム上で別々に行われることが可能である。それらのストリームは、2つの80MHzのチャネル上にマップされることが可能であり、データは、送信側STAによって送信されることが可能である。受信側STAの受信機においては、80+80構成に関する上述のオペレーションは、逆にされることが可能であり、組み合わされたデータは、媒体アクセス制御(MAC)へ送られることが可能である。
【0045】
オペレーションのサブ1GHzモードが、802.11afおよび802.11ahによってサポートされている。チャネル動作帯域幅、およびキャリアは、802.11afおよび802.11ahにおいては、802.11nおよび802.11acにおいて使用されるものに比べて低減される。802.11afは、TVホワイトスペース(TVWS)スペクトルにおける5MHz、10MHz、および20MHzのバンド幅をサポートし、802.11ahは、非TVWSスペクトルを使用する1MHz、2MHz、4MHz、8MHz、および16MHzのバンド幅をサポートする。代表的な実施形態によれば、802.11ahは、マクロカバレッジエリアにおけるMTCデバイスなど、メータタイプ制御/マシンタイプ通信をサポートすることが可能である。MTCデバイスは、特定の能力、例えば、特定のおよび/または限られたバンド幅に関するサポートを(例えば、それらに関するサポートのみを)含む限られた能力を有することが可能である。MTCデバイスは、(例えば、非常に長いバッテリー寿命を保持するために)閾値を上回るバッテリー寿命を有するバッテリーを含み得る。
【0046】
複数のチャネル、およびチャネルバンド幅、例えば、802.11n、802.11ac、802.11af、および802.11ahをサポートすることが可能であるWLANシステムは、プライマリーチャネルとして指定されることが可能であるチャネルを含む。プライマリーチャネルは、BSSにおける全てのSTAによってサポートされている最大の共通動作バンド幅に等しいバンド幅を有することが可能である。プライマリーチャネルのバンド幅は、BSSにおいて動作している全てのSTAのうちで、最小のバンド幅動作モードをサポートしているSTAによって設定および/または制限されることが可能である。802.11ahの例においては、たとえAP、およびBSSにおける他のSTAが、2MHz、4MHz、8MHz、16MHz、および/または他のチャネルバンド幅動作モードをサポートしても、1MHzモードをサポートする(例えば、サポートするだけである)STA(例えば、MTCタイプデバイス)に関しては、プライマリーチャネルは、1MHzの幅であることが可能である。キャリア感知および/またはネットワーク割り当てベクトル(NAV)設定は、プライマリーチャネルのステータスに依存する場合がある。例えば(1MHzの動作モードだけをサポートする)STAがAPへの送信を行っていることに起因して、プライマリーチャネルがビジーである場合には、利用可能な周波数バンドの全体は、たとえそれらの周波数バンドの大部分がアイドルのままであって利用可能である可能性があっても、ビジーとみなされる場合がある。
【0047】
米国においては、802.11ahによって使用され得る利用可能な周波数バンドは、902MHzから928MHzまでである。韓国においては、利用可能な周波数バンドは、917.5MHzから923.5MHzまでである。日本においては、利用可能な周波数バンドは、916.5MHzから927.5MHzまでである。802.11ahにとって利用可能な合計のバンド幅は、国コードに応じて6MHzから26MHzである。
【0048】
図1Dは、実施形態によるRAN113およびCN115を示すシステム図である。上述したように、RAN113は、エアインターフェース116を介してWTRU102a、102b、102cと通信するためにNR無線技術を採用することが可能である。RAN113は、CN115と通信状態にあることも可能である。
【0049】
RAN113は、gNB180a、180b、180cを含み得るが、RAN113は、実施形態との整合性を保持しながら、任意の数のgNBを含み得るということが理解されるであろう。gNB180a、180b、180cはそれぞれ、エアインターフェース116を介してWTRU102a、102b、102cと通信するために1つまたは複数のトランシーバを含み得る。一実施形態においては、gNB180a、180b、180cは、MIMO技術を実施することができる。例えば、gNB180a、180bは、gNB180a、180b、180cへ信号を送信するために、および/またはgNB180a、180b、180cから信号を受信するために、ビームフォーミングを利用することができる。従ってgNB180aは、例えば、WTRU102aへ無線信号を送信するために、および/またはWTRU102aから無線信号を受信するために、複数のアンテナを使用することができる。実施形態においては、gNB180a、180b、180cは、キャリアアグリゲーション技術を実施することが可能である。例えば、gNB180aは、複数のコンポーネントキャリアをWTRU102a(図示せず)へ送信することが可能である。これらのコンポーネントキャリアのサブセットが、ライセンス供与されていないスペクトル上にあることが可能であり、その一方で残りのコンポーネントキャリアが、ライセンス供与されているスペクトル上にあることが可能である。実施形態においては、gNB180a、180b、180cは、協調マルチポイント(CoMP)技術を実施することが可能である。例えば、WTRU102aは、gNB180aおよびgNB180b(および/またはgNB180c)から協調送信を受信することができる。
【0050】
WTRU102a、102b、102cは、スケーラブルなニューメロロジーに関連付けられる送信を使用して、gNB180a、180b、180cと通信することができる。例えば、OFDMシンボルスペーシングおよび/またはOFDMサブキャリアスペーシングは、別々の送信、別々のセル、および/または無線送信スペクトルの別々の部分ごとに異なってよい。WTRU102a、102b、102cは、様々なまたはスケーラブルな長さのサブフレームまたは送信タイムインターバル(TTI)(例えば、様々な数のOFDMシンボルおよび/または持続する様々な長さの絶対時間を含む)を使用して、gNB180a、180b、180cと通信することが可能である。
【0051】
gNB180a、180b、180cは、スタンドアロンの構成および/またはスタンドアロンではない構成でWTRU102a、102b、102cと通信するように構成されてよい。スタンドアロンの構成においては、WTRU102a、102b、102cは、その他のRAN(例えば、eNode-B160a、160b、160cなど)にアクセスすることも伴わずに、gNB180a、180b、180cと通信することができる。スタンドアロンの構成においては、WTRU102a、102b、102cは、gNB180a、180b、180cのうちの1つまたは複数をモビリティアンカーポイントとして利用することができる。スタンドアロンの構成においては、WTRU102a、102b、102cは、ライセンス供与されていない帯域における信号を使用してgNB180a、180b、180cと通信することができる。スタンドアロンではない構成においては、WTRU102a、102b、102cは、gNB180a、180b、180cと通信する/それらに接続する一方で、eNode-B160a、160b、160cなどの別のRANと通信すること/それらに接続することもできる。例えば、WTRU102a、102b、102cは、DC原理を実施して、1つまたは複数のgNB180a、180b、180cおよび1つまたは複数のeNode-B160a、160b、160cと実質的に同時に通信することができる。スタンドアロンではない構成においては、eNode-B160a、160b、160cは、WTRU102a、102b、102cのためのモビリティアンカーとしての役割を果たすことができ、gNB180a、180b、180cは、WTRU102a、102b、102cにサービス提供するためのさらなるカバレッジおよび/またはスループットを提供することができる。
【0052】
gNB180a、180b、180cのそれぞれは、特定のセル(図示せず)に関連付けられることができ、無線リソース管理の決定、ハンドオーバーの決定、ULおよび/またはDLにおけるユーザのスケジューリング、ネットワークスライシングのサポート、デュアル接続、NRとE-UTRAとの間におけるインターワーキング、ユーザプレーン機能(UPF)184a、184bへのユーザプレーンデータのルーティング、アクセスおよびモビリティ管理機能(AMF)182a、182bへの制御プレーン情報のルーティングなどを取り扱うように構成されてよい。
図1Dに示されるように、gNB180a、180b、180cは、Xnインターフェースを介して互いに通信することができる。
【0053】
図1Dに示されるCN115は、少なくとも1つのAMF182a、182b、少なくとも1つのUPF184a、184b、少なくとも1つのセッション管理機能(SMF)183a、183b、および場合によってはデータネットワーク(DN)185a、185bを含み得る。上述の要素のうちのそれぞれは、CN115の一部として示されるが、これらの要素のうちのいずれかが、CNオペレータ以外のエンティティによって所有および/または運営されることが可能であるということが理解されるであろう。
【0054】
AMF182a、182bは、N2インターフェースを介してRAN113におけるgNB180a、180b、180cのうちの1つまたは複数に接続されることが可能であり、制御ノードとしての役割を果たすことができる。例えば、AMF182a、182bは、WTRU102a、102b、102cのユーザを認証すること、ネットワークスライシングに関するサポート(例えば、別々の要件を伴う別々のPDUセッションを取り扱うこと)、特定のSMF183a、183bを選択すること、登録エリアの管理、NASシグナリングの終了、モビリティ管理などを担当することができる。ネットワークスライシングは、WTRU102a、102b、102cによって利用されているサービスのタイプに基づいてWTRU102a、102b、102cのためにCNサポートをカスタマイズするためにAMF182a、182bによって使用され得る。例えば、超高信頼低遅延(URLLC)アクセスに依存するサービス、拡張大容量モバイルブロードバンド(eMBB)アクセスに依存するサービス、マシンタイプ通信(MTC)アクセスに関するサービス等などの別々の使用事例に関して、別々のネットワークスライスが確立され得る。AMF162は、RAN113と、LTE、LTE-A、LTE-A Proなどのその他の無線技術、および/またはWiFiなどの非3GPPアクセス技術を採用しているその他のRAN(図示せず)との間において切り替えを行うための制御プレーン機能を提供することが可できる。
【0055】
SMF183a、183bは、N11インターフェースを介してCN115におけるAMF182a、182bに接続され得る。SMF183a、183bは、N4インターフェースを介してCN115におけるUPF184a、184bに接続されることも可能である。SMF183a、183bは、UPF184a、184bを選択および制御すること、並びにUPF184a、184bを通るトラフィックのルーティングを構成することが可能である。SMF183a、183bは、その他の機能、例えば、UE IPアドレスを管理することおよび割り当てること、PDUセッションを管理すること、ポリシー施行およびQoSを制御すること、ダウンリンクデータ通知を提供することなどを実行することが可能である。PDUセッションタイプは、IPベース、非IPベース、イーサネットベースなどであることが可能である。
【0056】
UPF184a、184bは、N3インターフェースを介してRAN113におけるgNB180a、180b、180cのうちの1つまたは複数に接続されることができ、N3インターフェースは、WTRU102a、102b、102cとIP対応デバイスとの間における通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cに提供することができる。UPF184、184bは、その他の機能、例えば、パケットをルーティングおよび転送すること、ユーザプレーンポリシーを施行すること、マルチホームPDUセッションをサポートすること、ユーザプレーンQoSを取り扱うこと、ダウンリンクパケットをバッファリングすること、モビリティアンカリングを提供することなどを実行することができる。
【0057】
CN115は、その他のネットワークとの通信を容易にすることができる。例えば、CN115は、CN115とPSTN108との間におけるインターフェースとしての役割を果たすIPゲートウェイ(例えば、IPマルチメディアサブシステム(IMS)サーバ)を含むことができ、またはそうしたIPゲートウェイと通信することができる。CN115は、他のネットワーク112へのアクセスをWTRU102a、102b、102cに提供することができ、他のネットワーク112は、他のサービスプロバイダによって所有および/または運営されている他の有線ネットワークおよび/または無線ネットワークを含み得る。一実施形態においては、WTRU102a、102b、102cは、UPF184a、184bへのN3インターフェース、およびUPF184a、184bとローカルデータネットワーク(DN)185a、185bとの間におけるN6インターフェースを介して、UPF184a、184bを通じてDN185a、185bに接続されることが可能である。
【0058】
図1A~
図1D、および
図1A~
図1Dの対応する説明を考慮すると、WTRU102a~d、基地局114a~b、eNode-B160a~c、MME162、SGW164、PGW166、gNB180a~c、AMF182a~ab、UPF184a~b、SMF183a~b、DN185a~b、および/または本明細書において記述されている他の任意のデバイスのうちの1つまたは複数に関連して本明細書において記述されている機能のうちの1つもしくは複数または全ては、1つまたは複数のエミュレーションデバイス(図示せず)によって実行されることが可能である。エミュレーションデバイスは、本明細書において記述されている機能のうちの1つもしくは複数または全てをエミュレートするように構成されている1つまたは複数のデバイスであることが可能である。例えば、エミュレーションデバイスは、その他のデバイスをテストするために、並びに/またはネットワークおよび/もしくはWTRU機能をシミュレートするために使用され得る。
【0059】
エミュレーションデバイスは、ラボ環境において、および/またはオペレータネットワーク環境において他のデバイスの1つまたは複数のテストを実施するように設計されることが可能である。例えば、1つまたは複数のエミュレーションデバイスは、有線および/または無線の通信ネットワーク内の他のデバイスをテストするためにその通信ネットワークの一部として全体的にまたは部分的に実装および/または展開されている間に、1つもしくは複数のまたは全ての機能を実行することが可能である。1つまたは複数のエミュレーションデバイスは、有線および/または無線の通信ネットワークの一部として一時的に実装/展開されている間に、1つもしくは複数のまたは全ての機能を実行することが可能である。エミュレーションデバイスは、テスティングの目的のために別のデバイスに直接結合されることが可能であり、および/またはオーバージエアー無線通信を使用してテスティングを実行することが可能である。
【0060】
1つまたは複数のエミュレーションデバイスは、有線および/または無線の通信ネットワークの一部として実装/展開されていない間に、全ての機能を含む1つまたは複数の機能を実行することができる。例えば、エミュレーションデバイスは、1つまたは複数のコンポーネントのテスティングを実施するために、テスティングラボラトリー並びに/または展開されていない(例えば、テスティングの)有線および/もしくは無線の通信ネットワークにおけるテスティングシナリオにおいて利用されることが可能である。1つまたは複数のエミュレーションデバイスは、テスト機器であってよい。直接RF結合、および/または、RF回路(例えば、1つもしくは複数のアンテナを含み得る)を介した無線通信が、エミュレーションデバイスによってデータを送信および/または受信するために使用され得る。
【0061】
図2を参照すると、多数のデバイスをインターネットに接続するための様々なアプローチを示す図が示される。示されているように、デバイスが、無線パーソナルエリアネットワーク/ローカルエリアネットワーク(PAN/LAN)、無線ワイドエリアネットワーク(WAN)、低電力WAN、またはその他の技術を含むがそれらには限定されない1つまたは複数のアクセス技術を通じてインターネットに接続されることが可能である。
【0062】
エネルギー効率が、これらのデバイスにとっての鍵となる要件である場合がある。例えば、IoTアプリケーションにおいては、デバイスのバッテリー寿命を最大化することが望ましい場合がある。表1は、デバイスのコストおよび複雑さを低減すること、並びにIoTアプリケーションにおけるデバイスの電力消費を低減することを行うための複数の従来のアプローチを示している。
【0063】
【0064】
LTEにおいて開発された2つのエネルギー効率のよい技術は、リリース12において導入された節電モード(PSM)、およびリリース13において導入された拡張DRX(eDRX)サイクルを含む。PSMはデバイスのバッテリー寿命を大幅に拡張することが可能であるが、PSM技術の不利な点は、PSMモードにある間にはそれぞれのデバイスが到達可能ではないということである。DRXモードにおいては、デバイスは、送信または受信されることになるパケットがない場合、それの回路(例えば、RFトランシーバ、モデム、アプリケーションプロセッサなど)のほとんどをパワーダウンする。遅い基準クロックおよび最小量の回路がアクティブに保たれ、それによってWTRUは、周期的にウェイクアップしてページを探してダウンリンクをリッスンすることができる。このタイプのスケジュールされたアプローチは、デューティサイクリングとして広く知られている。
【0065】
図3を参照すると、PSMを示す図が示されている。PSMで動作している場合には、WTRUは、ネットワークに登録されることが可能であるが、WTRUは、スイッチをオフにされているとみなされることが可能であり、電力消費は、最小であることが可能である。なぜなら、それは、この状態にある間には熟睡状態にあることが可能であるからである。PSMは、モバイルで開始される使用事例を対象とすることが可能であり、それらの使用事例では、WTRUは、送信するためのデータをそれが有している場合にPSMからウェイクアップすることが可能である。WTRUがPSMからウェイクアップした場合には、それは、トラッキングエリア更新(TAU)を実行することが可能であり、それがスリープに戻る前に(アイドル状態で)短い持続時間にわたってのみ到達可能のままでいることが可能である。このプロセスは、
図3において示されており、
図3ではWTRUは、非常に低い電力出力を伴う休眠期間にある。Txアクティビティが、電力スパイクをもたらす場合があり、その後にページング時間ウィンドウが続き、その後に休眠期間へ戻る。従って、PSMモードにおいては、ネットワークは、それの選択の時点でWTRUに到達することが可能ではない場合がある。なぜなら、WTRUは、短い期間にわたってのみ受信モードにあることが可能であるからである。PSMにあるWTRUがネットワークとネゴシエートする2つの期間がある場合がある。WTRUが「接続要求」または「TAU要求」を実行する場合には、WTRUは、ページングをモニタするためのT3324、および拡張された定期的なTAU更新のためのT3412(すなわち、休眠期間として示される非活動タイマー)という情報要素(IE)を含み得る。ネットワークがPSMをサポートする場合には、それは、「接続受諾」または「TAU受諾」におけるT3324およびT3412の結果として生じる値を提供することが可能である。T3412の満了後に、WTRUは、TAU手順を実行することが可能である。
【0066】
図4を参照すると、DRXサイクルを示す図が示されている。eDRXは、モバイルで終了されるシナリオにさらに適している場合がある。DRX/eDRXにおいては、WTRUは、PSMモードにおけるTAU手順などの不要なシグナリングを生成しないことが可能である。しかしながらWTRUは、制御チャネルをモニタするためにページング送信ウィンドウ(PTW)の持続時間中にウェイクアップする必要がある場合がある。PTWの持続時間の間にウェイクアップする頻度が、eDRXの効率を決定する場合がある。例えば、eDRXは、アイドルモードでは43.69分もの長さにわたって構成される場合があり、その一方で接続モードに関しては、それは10.24秒であることが可能である。DRXに関しては、最大のタイムピリオドは、2.56秒であることが可能である。eDRXとDRXとの間における差異は、デバイス回路がスイッチをオフにされている持続時間だけでなく、DRX/eDRXサイクル中に割り当てられる実際の電力にも起因して、大きくなる場合がある。
【0067】
レガシーのDRXにおいては、回路の電力は、Psleepに保持されることが可能であり、Psleepは、デバイスがeDRXにある場合に使用される電力Pdeep_sleepよりもはるかに高い場合がある。しかしながらeDRXからPTWへ(またはその逆へ)移行するためには、必要とされるTprepareというランプアップ/ランプダウンタイムがある場合がある。PTWとeDRXとの間において切り替えを行うことに含まれている待ち時間があるので、eDRXサイクルのさらに長い持続時間に対する必要性がある場合がある。熟睡状態における節電をフルに利用するためには、eDRXサイクルの持続時間は大きくてよく、その一方でPTWの持続時間は小さくてよい。しかしながら、これは、WTRUに到達する際の待ち時間を増大させる場合がある。従ってPTWおよびeDRXの持続時間の最適な値は、待ち時間と電力とのトレードオフに基づいて設計される必要がある場合がある。
【0068】
図5を参照すると、ステーションが電力を節約するのを手助けするために従来のIEEE802.11システムにおいて使用され得るPSMを示す図が示される。仮眠(またはスリープ)状態に入る際には、ステーション(STA)は、1に設定されている電力管理ビットを伴うNULLフレームを送ることが可能であり、その後に仮眠状態に入ることが可能である。APは、PSMにおいてSTAに宛てられたパケットをバッファリングすることが可能である。APは、トラフィック情報マップ(TIM)情報要素を通じて、それがパケットをバッファリングした、PSMにあるステーションに(例えば、それのビーコンメッセージにおいて)通知することが可能である。
【0069】
PSMにあるSTAは、この情報をビーコンから読み取ることが可能である。このステップを開始するためには、STAは、ビーコンインターバルごとにウェイクアップする必要がある場合があり、ビーコンインターバルは、およそ102マイクロ秒であることが可能である。あるいは、STAは、ビーコンタイムピリオドの倍数においてウェイクアップすることが可能である。これは、バッファリングされているブロードキャスト/マルチキャストパケットがSTA(PSMにある)に配信されることになる場合に生じることが可能であり、それを通じてAPは、デリバリーTIM(DTIM)を通じて、それがビーコンタイムピリオドの倍数において生じるとSTAに示す。DTIMは、ビーコンフレームの一部であることも可能である。しかしながら、DTIMは、複数のビーコンにわたって1回提供されることが可能であり、DTIMに続くフレームがブロードキャスト/マルチキャストデータを有するということを示すことも可能である。
【0070】
バッファリングされているパケットを取り出すために、STAは、バッファリングされているパケットを送るようにAPに要求する節電ポール(PS-POLL)をAPへ送ることが可能である。APは、バッファリングされているパケットを、1に設定されているモアデータビットとともにSTAへ送信することが可能であり、それによってSTAは、それが全てのバッファリングされているパケットを受信するまで、覚醒状態に留まることが可能である。モアデータビットが0に設定されている場合には、STAは、仮眠状態へ戻ることが可能である。
【0071】
上記で概説されているプロセスは、APによってバッファリングされるあらゆるフレームに関して、STAがそのフレームを入手するためにPS-POLLを送る必要があるということを必要とする場合がある。また、いくつかのSTAがある場合、かつAPがいくつかのステーションのために大量のデータをバッファリングする場合には、同じ瞬間にSTAによって要求される多くのPS-POLLがある可能性があり、これは、増大されたコリジョンをもたらすことがある。
【0072】
スケジュールされていない自動的な節電配信モード(U-APSD)においては、仮眠状態に入るための手順は、レガシーのIEEE802.11PSMと同様であることが可能である。しかしながら、STAからのUL送信(またはヌルデータフレーム)は、
図5において示されているように、STAが覚醒しており、それによってデータ転送プロセスをネゴシエートする旨のAPによるインジケータとして取られることが可能である。
【0073】
図6を参照すると、スケジュールされた自動節電配信(S-APSD)を示す図が示されている。S-APSDにおいては、STAは、スケジュールされたサービスインターバル(SSI)および連続したSSIの間における持続時間に関してAPとネゴシエートすることが可能である。S-APSDは、トラフィックパターンが決定論的であり、かつその決定論的なパターンをSTAが利用することが可能であって電力を節約することが可能であるパターンが順守されるケースに適している場合がある。
【0074】
図7を参照すると、節電マルチポール(PSMP)配信を示す図が示されている。PSMPは、別のスケジュールされた節電モードであり、このモードでは、スケジュールは、APによって複数のステーションとの間で実行される。S-APSDモードと同様に、トラフィックパターンは、電力を節約する目的でPSMPを活用するために決定論的である必要がある場合がある。無線ネットワーク管理(WNM)スリープモードにおいては、STAは、スリープモードに入るための許可を要求することが可能である。グループに宛てられたトラフィックを受信するために、STAは、WNMスリープモード要求フレーム内の「WNMスリープインターバル」フィールドにおいて実際のウェイクアップ時間を任意選択で示すことが可能である。
【0075】
空間多重化(SM)節電モードにおいては、STAは、電力を節約するためにセッション全体を通じて1つの受信チェーンとともに動作することが可能であり(静的なSM節電モードとも呼ばれる)、または受信用に意図されているデータを検知するためにアクティブな1つの受信チェーンを有することが可能である。そのようなデータが検知された場合には、1つまたは複数の受信チェーンがアクティブに切り替えられることが可能である(例えば、動的なSM節電モード)。
【0076】
図8を参照すると、LTE DRXモードにおけるデバイス電力プロフィールを示す図が示されている。
図8は、デューティサイクルされているデバイスの電力プロフィールおよびシグナリングアクティビティを示すことができる。デバイスは、アクティブまたはスリープという2つのモードのうちの1つにあることが可能である。アクティブである場合には、デバイスは、送信モードにおいてはP
TXを、および受信モードにおいてはP
RXを消費することが可能である。スリープモードにある場合には、デバイス電力は、それの様々なアクティブコンポーネントの漏れ電力P
LEAKによって大半を占められる可能性がある。デバイスのバッテリー寿命は、どれぐらい頻繁にユニットが送信を行うかと、バッテリーのサイズとに主に依存する場合がある。
【0077】
図9A~
図9Bを参照すると、別々のページングサイクルを伴うMTCデバイスのバッテリー寿命を示す図が示されている。
図9Aは、12μWの漏れ電力および30時間のページングサイクルを伴って達成される20年間のバッテリー寿命を示している。
図9Aは、8μWの漏れ電力および45時間のページングサイクルを伴って達成される30年間のバッテリー寿命を示している。
【0078】
WTRUのトランザクションサイクル(すなわち、WTRUがデータをネットワークへ送信する平均の頻度)に応じて、デューティサイクリングが、例えば、MTCデバイスのバッテリー寿命をおよそ4年間拡張することが示されている。
図9A~
図9Bにおいて要約されている結果は、セルエッジに配置されていて2つの(例えば、1.2Vおよび2.1Aの)リチウム単3電池によって電力供給されている例示的なデバイスに関するものであることが可能である。
図9Aにおいて示されているように、スリープモードにおけるデバイスの漏れ電力は、12μWであると想定されることが可能である。まれに(例えば、1時間以上のトランザクションサイクルで)データを送信するMTCデバイスのバッテリー寿命は、ページングサイクルによって限定される場合がある。2.56秒というページングサイクルに関する最大のバッテリー寿命は、約1年間であることが可能である。ページングサイクルが10.24秒に拡張された場合には、最大の達成可能なバッテリー寿命は、約4年間であることが可能である。
【0079】
図9Aはまた、スケジューリングに基づくネットワークページングを採用して20年間のバッテリー寿命を達成するためには非常に長いページングサイクルおよび約30時間のトランザクションサイクルが必要とされる場合があるということを示している。この例においては、デバイスのバッテリー寿命は、遅い基準クロックにおいて浪費される電力と、デバイスにおける様々なアクティブ電子コンポーネントの漏れ電流とによって限定される場合がある。従って、DRXモードにおけるLTE MTCデバイスは、20年間のバッテリー寿命を達成するためには、30時間ごとに最大でも1つのページを受信すること、および30時間ごとに最大でも1回データをネットワークへ送り返すことしかできない。
【0080】
図9Bは、漏れ電力が8μWであると想定される場合に30年間のバッテリー寿命を達成するためには45時間のページングおよびトランザクションサイクルが必要とされる可能性があるということを示している。これは、非常に長い待ち時間をもたらす場合があり、この非常に長い待ち時間は、多くの既存のおよび新興のアプリケーションに適していない場合がある。
【0081】
SigFox(商標)およびLoRa(商標)は、独自の低電力および長距離のIoTソリューションの例である。送信の回数が制限されている場合には、SigFox(商標)モジュールのバッテリー寿命は、非常に長くなることが可能である。非常にまれなアラームを送信するためにユニットが使用され、1日1回のキープアライブメッセージのみが送信され、1日あたり1つのコマンドメッセージが受信される場合には、バッテリー寿命は、3つの(例えば、1.2Vおよび2.1Aの)リチウム単3電池を使用して10年間よりも多いことが可能である。寿命は、3つの(例えば、1.2Vおよび2.1A)のリチウム単3電池を使用して1日あたり10回送信を行って6年間であることが可能である。LoRa(商標)デバイスは、上述されているSigFox(商標)の動作条件に関して同様のバッテリー寿命を達成することが可能である。
【0082】
デューティサイクリングは、WTRUのバッテリー寿命を拡張することが可能であるが、このタイプのアプローチに関連付けられている固有のエネルギー/待ち時間トレードオフがあり得る。WTRUのエネルギー消費を低減しながらページングサイクルをより長くすることは、より長い待ち時間(すなわち、ネットワークに接続されているエンティティがWTRUのためのパケットを生成するときから、WTRUがウェイクアップし、パケットを受信してデータに応答する用意ができるときまでの遅延)をもたらす場合がある。あるいは、待ち時間を低減するためにページングサイクルが短縮されるならば、これは、今度はWTRUのバッテリー寿命を短縮する可能性がある。
【0083】
バッテリーによって作動されるデバイスを20年以上にわたって展開することが望ましい多くのケースがあり得る。再充電を行うためにまたはバッテリーを取り替えるために頻繁にこれらのデバイスにサービス提供することは、実行不可能または不可能である場合がある。さらに、これらのデバイスの平均のトランザクションサイクルは非常に長い場合があるが、オンデマンドの(低い待ち時間の)ページングメカニズムが必要である場合がある。従って、デューティサイクリングに関連付けられているエネルギー/待ち時間トレードオフを解消することが可能である新たなページングアプローチが望ましい。
【0084】
無線電力配信のための電力が最適化された波形と、一意のエネルギー署名を採用するウェイクアップコマンドとを含むウェイクアップ信号シーケンスが開示される。一意のエネルギー署名を採用するブロードキャスト、マルチキャスト、またはユニキャストウェイクアップコマンドが提供され、この場合、一意のエネルギー署名は、格納されているエネルギー閾値イベントスタッキング、格納されているエネルギー量子化、および/または格納されているエネルギー閾値イベント分離エンコーディングの原理を採用して構築されることが可能である。
【0085】
開示されているページング手順によって採用されるエンドツーエンドシステムは、資産管理エンティティ、コアネットワークおよびインターネット、1つまたは複数のeNodeB(eNB)またはアクセスポイント、1つまたは複数のファシリテータ、1つまたは複数のデバイス、並びにゼロエネルギーRANインターフェースを含み得る。
【0086】
図10A~
図10Bを参照すると、ファシリテータおよびインテロゲータのトップレベルアーキテクチャの図が示されている。ファシリテータのトップレベルアーキテクチャは、プライマリートランシーバ(TRX)、プロセッサユニット、およびインテロゲータを含み得る。プライマリートランシーバは、基地局、その他のファシリテータ、およびデバイスとともに1つまたは複数の無線インターフェース(例えば、UuおよびPC5)を形成するために使用され得る。
【0087】
インテロゲータは、パッシブトランシーバを備えたデバイスとともにゼロエネルギーインターフェースを形成するために使用される。インテロゲータは、送信機、受信機、キャリア補償ユニット(CCU)、周波数/時間基準ユニット(FTRU)、およびプロセッサを含み得る。インテロゲータ内の送信機および受信機は、アンテナにアクセスするためにサーキュレータを使用することが可能である。インテロゲータは、正弦波パルスを送信すること、およびそれの受信機を用いてこのパルスの後方散乱されたバージョンを検査することが可能である。CCUは、自己干渉キャンセレーションのために使用され得る。CCUは、インテロゲータ内の送信機と受信機との間における有限の分離に起因して受信機へと漏れる送信された信号の部分をキャンセルすることが可能である。インテロゲータは、パッシブデバイス内のオシレータの周波数エラーを決定するために、パッシブデバイスから後方散乱された擬似ランダム変調されたまたはクリップされた(criped)正弦波を検査することが可能である。
【0088】
図11を参照すると、バッテリーによって作動されるデバイスのトップレベル無線アーキテクチャが示されている。バッテリーによって作動されるデバイスは、1つまたは複数のプライマリーアクティブトランシーバと、1つまたは複数のパッシブトランシーバと、マイクロコントローラユニットおよびメモリと、周波数基準ユニット(FRU)および時間基準ユニット(TRU)と、電力管理ユニットと、バッテリーとを含み得る。
【0089】
図12を参照すると、マルチモード/マルチバンドデバイスのトップレベル描写を示す図が示されている。マルチモード/マルチバンドデバイスは、マルチバンドの(n個の周波数バンドの)セルラートランシーバ、いくつかの(m個の)低電力の短距離の(例えば、IEEE802.11、Bluetooth(登録商標)、ZigBee(登録商標)などの)トランシーバ、および/またはマルチ入力のパッシブトランシーバを含み得る。パッシブトランシーバは、近距離無線通信(NFC)、無線周波数識別(RFID)のような既存の標準に準拠することが可能であり、またはそれは、独自のソリューションであることが可能である。スリープモードにおいては、このデバイスは、それのセルラーおよび低電力のトランシーバをシャットダウンすることが可能である。あるいは、低電力のトランシーバのうちのいくつかまたは全ては、アクティブなままにされることが可能であり、その一方でセルラートランシーバは、スリープモードにおいてシャットダウンされる。
【0090】
図13Aを参照すると、開示されているページング手順から恩恵を享受することが可能であるシングルバンドパッシブトランシーバを伴うFDDデバイスを示す図が示されている。FDDデバイスは、デュプレクサを含み得る。デュプレクサの受信出力は、スイッチによって2つに分割されることが可能である。スイッチ出力のうちの一方は、アクティブ受信機に接続されることが可能であり、その一方で他方のスイッチ出力は、パッシブトランシーバに接続されることが可能である。スリープモードにおいては、スイッチ出力は、位置bに残されることが可能であり、アクティブトランシーバは、シャットダウンされることが可能である。
【0091】
図13Bを参照すると、開示されているページング手順から恩恵を享受することが可能であるデュアルバンドパッシブトランシーバを伴うFDDデバイスを示す図が示されている。デュアルバンドパッシブトランシーバは、RFフロントエンドへと統合されることが可能である。FDDデバイスは、デュプレクサを含み得る。この例においては、デュプレクサ出力のうちの両方は、スイッチによって2つに分割されることが可能である。スリープモードにおいては、スイッチ1は、位置「a」に残されることが可能であり、スイッチ2は、位置「b」に残されることが可能であり、その一方でアクティブトランシーバは、シャットダウンされることが可能である。
【0092】
提案されているページング手順から恩恵を享受することが可能であるシングルバンド半二重FDD(HD-FDD)モードデバイスの同様の例が、
図14A~
図14Bにおいて示されている。
【0093】
図14Aを参照すると、シングルバンドパッシブトランシーバを伴うHD-FFデバイスが示されている。スリープモードにおいては、スイッチ1およびスイッチ2の出力の両方が、位置「b」に残されることが可能であり、その一方でアクティブトランシーバは、シャットダウンされることが可能である。
【0094】
図14Bを参照すると、RFフロントエンド内に統合されているデュアルバンドパッシブトランシーバを伴うHD-FFデバイスが示されている。スリープモードにおいては、スイッチ1の出力は、いずれかの位置に残されることが可能であり、スイッチ2の出力は、位置「a」にあることが可能であり、スイッチ3の出力は、位置「b」にあることが可能であり、一方でアクティブトランシーバは、シャットダウンされることが可能である。
【0095】
図15を参照すると、開示されているページング手順から恩恵を享受することが可能なシングルバンドTDDモードデバイスを示す図が示されている。スリープモードにおいては、スイッチ1およびスイッチ2の出力は、位置「b」に残されることが可能であり、その一方でアクティブトランシーバは、シャットダウンされることが可能である。
【0096】
図16Aを参照すると、開示されているページング手順から恩恵を享受することが可能なデュアルバンドFDDデバイスを示す図が示されている。
図16Aは、デュアルバンドパッシブトランシーバをFDD受信パスへと統合するデュアルバンドFDDデバイスを示している。上述の方法を採用して
図16Aにおいて示されているデバイスにクワッドバンドパッシブトランシーバが統合されることが可能であるということに留意されたい。
【0097】
図16Bを参照すると、開示されているページング手順から恩恵を享受することが可能なシングルバンドFDDデバイスを示す図が示されている。
図16Bは、デュアルバンドダウンリンクキャリアアグリゲーションを伴うシングルバンド送信機を示している。言い換えれば、
図16Bは、バンド間のダウンリンクキャリアアグリゲーションが可能なFDDデバイスを示している。
図16Bにおいてはデュアルバンドパッシブトランシーバが示されているが、上述の方法を採用して
図16Bにおいて示されているデバイスにトライバンドパッシブトランシーバが統合されることが可能であるということに留意されたい。
【0098】
上述のアプローチは、無線アクセス技術(RAT)に固有ではない。これらのアプローチは、セルラー、802.11、Bluetooth、ZigBee、または、アクティブトランシーバを採用するその他の任意のRATを採用するデバイスに適用され得る。
【0099】
図17を参照すると、パッシブ受信機(P-RX)のトップレベルアーキテクチャが示されている。P-RXは、単一入力のまたはマルチ入力のパッシブフロントエンド、単一入力のまたはマルチ入力のアナログ/情報(A/I)コンバータ、および単一入力のまたはマルチ入力のコマンドインタープリタを含み得る。パッシブフロントエンドは、設計パラメータのセット{n,ζ}を含み得る。パラメータnは、フロントエンドのパッシブゲインを設定するために使用され得る。パラメータζは、R-C時定数を設定するために使用され得る。格納されているエネルギー閾値処理に基づくA/Iコンバータは、複数の電圧/パルス(V/P)コンバータを含み得る。A/Iコンバータは、k個の入力およびk個のパラメータ{V
TH1...V
THk}を有することが可能である。A/Iコンバータの出力は、コマンドインタープリタによって使用され得る。コマンドインタープリタの「成功基準」は、パラメータのセット{N
1...N
k}によって定義されることが可能である。コマンドインタープリタへの入力信号セット{P
1...P
k}が、それのパラメータセットによって定義されている成功基準を満たしている場合には、コマンドインタープリタは次いで、割り込みYを生成することが可能である。
【0100】
図18A~
図18Bを参照すると、パッシブフロントエンドの実施態様を示す図が示されている。
図18Aは、シングルエンドのアーキテクチャの簡略化された概要を示している。
図18Bは、差異のあるまたはバランスのとれたアーキテクチャの簡略化された概要を示している。それぞれの実施態様は、1:nの巻数比を有する変圧器を採用することが可能である。変圧器の巻数比は、パッシブゲインと入力とのマッチングを提供するように最適化されることが可能である。入力信号r(t)を整流するために単一のダイオード(D1)またはダイオードのペア(D1,D2)が使用され得る。補助的なエネルギーストレージ要素としてコンデンサC
SUPPが使用され得る。変圧器T1の入力ポートにおいて適正なインピーダンスを確実にするために抵抗器R1、R2が使用され得る。抵抗器R1、R2は、コンデンサC
SUPPとともに、パッシブフロントエンドの時定数ζを定義する。パラメータセット{n,ζ}は、パッシブフロントエンドの効果的な感度レベルおよび反応時間の選択を可能にすることができる。
【0101】
図19A~
図19Bを参照すると、パッシブフロントエンドの入力波形および出力波形の可能なセットを示す図が示されている。出力波形V
FEは、パッシブフロントエンドによってC
SUPPに格納されているエネルギーの量を示すことが可能である。
図19Aは、継続的に存在し続ける正弦波入力r(t)に応答した出力波形V
FEを示している。出力V
FEが所与の入力信号r(t)に関して所望の閾値電圧レベルV
THに到達するために必要とされる時間(t
TH)は、C
SUPPの値を適切に選択することによって制御されることが可能である。より大きなC
SUPPは、所与の閾値電圧V
THに関して、より大きなt
THをもたらすことが可能である。
図19Bは、パルス正弦波に対するパッシブフロントエンドの応答を示している。コンデンサC
SUPP(および関連付けられている回路)が実質的な損失を示していない場合には、出力V
FEは、パルス正弦波に応答して所望の閾値電圧V
THに到達するように作成されることが可能である。入力r(t)が存在している場合には、出力電圧V
FEは、入力信号の振幅に比例して上昇することが可能である。入力が存在していない場合には、V
FEは、入力が再び現れるまで、一定値近くで保持されることが可能である。
【0102】
図20Aを参照すると、アナログ/情報(A/I)コンバータの実施態様を示す図が示されている。A/Iコンバータは、ストレージ要素C
SUPPと、ヒステリシス付きコンパレータと、コンパレータ出力ロジックレベルによって制御されるコンパレータの入力におけるシャントスイッチとを含み得る。
【0103】
図20Bを参照すると、A/Iコンバータの入力波形および出力波形を示す図が示されている。コンパレータの正端子上の入力電圧V
FEがコンパレータの負端子上の閾値電圧V
THをヒステリシス量だけ超えている場合、コンパレータの出力(P)は、ロジックローからロジックハイへ移行することが可能である。これは、コンパレータの正入力端子に接続されているシャントスイッチを閉じ、それによってストレージコンデンサC
SUPPを空にし、V
FEをV
THよりも下に低減することができる。入力電圧がV
THよりも下に低減される量は、コンパレータヒステリシスに設定されることも可能である。結果として、コンパレータは、それの入力における電圧がV
THを超えるたびに、それの出力においてパルスを生成することが可能である。生成されるパルスの幅は、コンパレータのヒステリシス電圧によって設定されることが可能である。
【0104】
図21を参照すると、自動的な感度制御メカニズムを伴うA/Iコンバータを示す図が示されている。コンパレータ閾値電圧V
THは、
VFEとV
REFとの重ね合わせであることが可能である。C
SUPPにわたる電圧V
FEが大きい場合には、V
REFに加えられるこの電圧の部分が、コンパレータのトリップポイントを増大させ、それによってA/Iコンバータの感度を低減させることが可能である。V
FEが小さい場合には、V
THは、基本的にV
REFへ低下され、それによってA/Iコンバータの感度を増大させることが可能である。
【0105】
図22A~
図22Bを参照すると、A/Iコンバータの代替例が示されている。
図22Aは、シングルエンドの実施態様を示している。コンパレータの出力(P)がロジックロー状態にあると最初に想定され、結果として、スイッチS1は閉じられることが可能であり、スイッチS2は開くことが可能である。入力電圧V
FEが閾値電圧V
THを超えると、出力Pは、ロジックローからロジックハイへ移行し、それによってスイッチS1を開き、スイッチS2を閉じることが可能である。上で示されている実施態様とは対照的に、補助ストレージ要素C
SUPPに格納されているエネルギーは、プライマリーストレージ要素C
PRIMへ転送されることが可能であり、C
PRIMは、C
SUPPよりもはるかに大きいことが可能である。C
PRIM上の電圧がV
THよりも小さい場合には、コンパレータの正端子における電圧がV
THよりも下に低減されることが可能であり、それによって出力Pをロジックローへ戻す。
図22Bは、このタイプのA/Iコンバータの完全に差異のあるまたはバランスのとれた実施態様を示している。
【0106】
図23を参照すると、A/Iコンバータの代替実施態様を示す図が示されている。電圧V
FEは、k個の異なる閾値電圧(V
TH1、V
TH2、...V
THk)とともにk個のコンパレータを使用してk個のレベルへと量子化されることが可能である。A/Iコンバータは、k個の出力(P
1、P
2、...P
k)を生成してV
FEを概算することが可能である。
【0107】
図24を参照すると、P-RXの別の概要を示す図が示されている。P-RXは、1つまたは複数の入力を含み得る(例えば、k個の入力のP-RX)。P-RXは、k個のパッシブフロントエンドおよびk個のA/Iコンバータを含み得る。k個のパッシブフロントエンドにおける1つまたは複数のダイオード整流器が、ともに単一のストレージコンデンサC
SUPPを駆動することが可能であり、その後にメッセージデコーダにおける単一のV/Pコンバータが続く。
【0108】
図25を参照すると、パッシブトランシーバ(P-TRX)の図が示されている。P-TRXは、単一のもしくは複数のアンテナ、マルチプレクサ、単一から複数のパッシブ受信機、単一のもしくは複数のロードバンク、コントローラおよびデジタル/アナログコンバータ(CU&D/A)ユニット、周波数/時間基準ユニット(FTRU)、並びに/または単一のもしくは複数の変調波形生成器を含み得る。
【0109】
m/Nマルチプレクサ(MUX)は、m個の入力(x1...xm)、N個の出力(y1...yN)、および制御ポートCを有することが可能である。制御ポートCは、MUXのm個の入力をMUXのN個の出力のうちのm個に接続するために使用され得る。P-TRXは、変調されていない正弦波を1つまたは複数のアンテナ上で受信することが可能である。それに応答して、パッシブ受信機は、RFフィールドが検知されているということを示すCU&D/Aユニットに対する割り込みを生成することが可能である。パッシブ受信機は、格納されているエネルギー閾値処理原理を採用して、割り込みを生成することが可能である。CU&D/Aは、それに応答して、FTRUをアクティブ化することが可能であり、FTRUは、クロック信号をアクティブ化すること、およびそのクロック信号を負荷変調波形生成器(LMWFG)へ送ることが可能である。パッシブ受信機は、負荷変調波形生成器(LMWFG)をアクティブ化するための第2の割り込みを生成することが可能である。LMWFGが、パッシブ受信機からのアクティブ化信号、およびFTRUユニットからのクロックを受信すると、LMWFGは、変調波形をMUXの制御ポートCに適用し、それによってアンテナをロードバンク内の別々の負荷に接続することが可能である。これは、P-TRXから後方散乱された正弦波を振幅変調することが可能である。LMWFGは、様々な後方散乱パターンを作成するために、正弦波、方形波、擬似ランダムシーケンス、またはチャープシーケンスを生成することが可能である。
【0110】
図26A~
図26Bを参照すると、パルスカウンティングウェイクアップコマンドインタープリタを示す図が示されている。
図26Aは、単一入力のRT-WURXに関する格納されているエネルギー閾値処理イベントカウンティングウェイクアップコマンドインタープリタ(ET-CI)を示している。
図26Bは、マルチ入力のRT-WURXに関する格納されているET-CIを示している。ET-CIは、カウンタおよび組合せロジックブロックを含み得る。組合せロジックブロックは、それの2つの入力C[m:0]とNとの間における比較を実行することが可能である。(m+1)ビットカウンタ出力C[m:0]が、Nに等しいカウントに到達した場合には、組合せロジックブロックは、それの出力Yをロジックハイに設定することが可能である。
【0111】
図27A~
図27Bを参照すると、単一入力のET-CIのオペレーションを示す図が示されている。
図27Aは、A/Iコンバータからの2つの閾値イベント用に構成されているET-CIを示している。A/Iの出力におけるN=2個の連続したパルスが検知されると、ET-CIは、それの出力Yをロジックローからロジックハイへ移行し、それによって割り込みを生成することが可能である。
図27Bは、3つの閾値イベント用に構成されているET-CIを示している。A/Iの出力におけるN=3個の連続したパルスが検知されると、ET-CIは、それの出力Yをロジックローからロジックハイへ移行し、それによって割り込みを生成することが可能である。
【0112】
RT-WURXの検知および誤アラーム確率を最適化するために、A/Iコンバータ閾値電圧(VTH)および閾値イベントカウンタのイベントのターゲット数(N)が使用され得る。例えば、VTHおよびNの両方を高い値に設定することは、RT-WURXをノイズに対して堅牢にし、それによって誤アラームを低減することになる。しかしながら、そのような構成を伴ってウェイクアップ割り込みをトリガーするためには、より多くのエネルギーが必要とされることになる。
【0113】
格納されているエネルギー量子化ウェイクアップコマンドインタープリタが、デジタルビットシーケンスを検査することが可能である。デジタルビットシーケンスは、パッシブ受信機フロントエンドにおけるアナログ/情報コンバータによって生成されることが可能である。格納されているエネルギー量子化コマンドインタープリタは、パッシブ受信機フロントエンドから受信されたビットシーケンスが所定のコードにマッチしている場合には、割り込みを生成することが可能である。
【0114】
図28A~
図28Cを参照すると、単一入力およびマルチ入力のRT-WURXに関する格納されているエネルギー閾値イベント分離デコーディングウェイクアップコマンドインタープリタ(ETESD-CI)の図が示されている。ETESD-CIは、パルス分離デコーディング(PSD)データ検知器および決定ロジックという2つの主要なブロックを含み得る。PSDデータ検知器は、
図28Aにおいて示されている。単一入力のETESD-CIは、
図28Bにおいて示されており、3つの入力のETESD-CIは、
図28Cにおいて示されている。
【0115】
図28Aにおいて示されているPSDデータ検知器は、カウンタおよびマルチビットラッチを含み得る。カウンタクロック(CLK)周波数は、アナログ/情報コンバータからの連続したパルスP間における予想される最小の分離よりも大幅に(例えば、10倍)高く設定されることが可能である。パルスPは、カウンタ値をラッチ内に保存し、次いでカウンタをリセットするために使用され得る。ラッチの連続した出力Wは、連続した到来パルスP間における時間分離のスケーリングされた数値尺度を提供する。この情報は、データ検知器によって使用され得る。
【0116】
データ検知器は、2つのプログラム可能なパラメータC0およびC1を含む。実施形態によれば、データ検知器の動作原理が、方程式1において記述されている。決定ロジックブロックは、1つのプログラム可能なパラメータNを有することが可能である。それの出力は、ロジックローに初期化されること、およびPSDデータ検知器の出力ビットパターンXがNにマッチする場合にはロジックハイへ移行することが可能である。
【0117】
【0118】
図29を参照すると、単一入力のETESD-CIのオペレーションを示す図が示されている。信号r(t)、V
th、およびPは、ウェイクアップ受信機のパッシブフロントエンドおよびA/Iコンバータに関連付けられている。信号XおよびYは、ETESDコマンドインタープリタに関連付けられている。
【0119】
ETESD-CIは、ウェイクアップコマンド解釈プロセスを開始するために開始シーケンス(例えば、111)を必要とする場合がある。開始シーケンスが検知されると、データをデコードするために、連続したパルスP間における測定された時間分離が使用され得る。連続したパルスP間における測定された分離がC1未満である場合には、これは、値1のバイナリービットとして解釈されることが可能である。連続したパルスP間における測定された分離がC0よりも大きい場合には、これは、値0のバイナリービットとして解釈されることが可能である。プログラムされたビットパターンN(例えば、01100)が決定ロジックブロックによって受信されると、それの出力は、ロジックローからロジックハイへ移行され、それによって割り込みを生成することが可能である。
【0120】
図30を参照すると、ウェイクアップワードを構築するために使用されるリソースキューブを示す図が示されている。ネットワークは、リソースキューブにおける要素(角度、周波数、時間)の全てまたはサブセットを採用して、ウェイクアップ信号シーケンスを構築することが可能である。ウェイクアップ信号シーケンスは、電力が最適化された波形と、一意のエネルギー署名を採用するウェイクアップコマンドとを含み得る。
【0121】
周波数リソースは、キャリアとサブキャリアとの混合を含み得る。キャリアは、単一の周波数バンドに、または複数の周波数バンドに含まれることが可能である。ネットワークは、ウェイクアップコマンドを送信するために、1つまたは複数の無変調キャリアまたは従来のキャリア変調技術、例えば、オン/オフキーイング(OOK)、バイナリー位相シフトキーイング(BPSK)、直交位相シフトキーイング(QPSK)、直交振幅変調(QAM)などを採用することが可能である。ウェイクアップコマンドを送信するために、格納されているエネルギー量子化(SEQ)、格納されているエネルギー閾値イベントスタッキング(SET)、または格納されているエネルギー閾値イベント分離エンコーディング(SETES)スキームなどの一意のエネルギー署名方法が使用されることも可能である。ウェイクアップコマンドを送信するためのハイブリッド方法を作成するために1つまたは複数の方法が組み合わされることが可能である。
【0122】
ネットワークは、カバレッジエリアにおける全てのデバイス、デバイスのグループまたは個々のデバイスをウェイクアップするために、ブロードキャスト、マルチキャストまたはユニキャストウェイクアップコマンドを生成することができる。複数の基地局が、ウェイクアップコマンドを送信する際に協力するように指示されることが可能である。
【0123】
ブロードキャストウェイクアップコマンドは、単一またはマルチ周波数のSEQ、SET、またはSETESコマンドを伴って構築されることが可能である。複数のSEQ、SET、およびSETESコマンドが組み合わされて、複合ウェイクアップコマンドを作成することが可能である。カバレッジエリアにおける全てのデバイスは、同じシンプルなまたは複合のウェイクアップコマンドに応答するようにプログラムされることが可能であり、ウェイクアップコマンドは、カバレッジエリアにおける全てのデバイスをウェイクアップするために全方向的な様式で送信されることが可能である。実施形態によれば、ネットワークが、いくつかの空間セクタへと区分されることが可能であり、同じブロードキャストコマンドが、ビームフォーミングを使用してそれぞれの角度方向に送信されることが可能である。
【0124】
マルチキャストウェイクアップコマンドは、単一またはマルチ周波数のSEQ、SET、またはSETESコマンドを伴って構築されることが可能である。複数のSEQ、SET、およびSETESコマンドが組み合わされて、複合ウェイクアップコマンドを作成することが可能である。ネットワークは、いくつかの空間セクタへと区分されることが可能であり、同じコマンドが、特定のセクタまたはセクタのサブセットにおいて送信されて、デバイスの別々のグループをウェイクアップすることが可能である。あるいは、マルチキャストウェイクアップコマンドは、プリアンブルおよび本文を含み得る。プリアンブルは、グループ識別子であることが可能であり、本文は、カバレッジエリアにおける全てのデバイスのためのウェイクアップコマンドであることが可能である。プリアンブルは、SEQまたはSETコマンドを使用して構築されることが可能であり、本文は、SETESコマンドを使用して構築されることが可能である。
【0125】
ユニキャストウェイクアップコマンドは、単一またはマルチ周波数のSEQ、SET、またはSETESコマンドを伴って構築されることが可能である。複数のSEQ、SET、およびSETESコマンドが組み合わされて、複合ウェイクアップコマンドを作成することが可能である。ネットワークは、いくつかの空間セクタへと区分されることが可能であり、それぞれのセクタは、1つのデバイスのみを含み得る。同じコマンドが、特定のセクタにおいて送信されて、特定のデバイスをウェイクアップすることが可能である。あるいは、ユニキャストウェイクアップコマンドは、プリアンブルおよび本文を含み得る。プリアンブルは、グループ識別子であることが可能であり、本文は、グループにおける特定のデバイスのためのウェイクアップコマンドであることが可能である。プリアンブルは、SEQまたはSETコマンドを使用して構築されることが可能であり、本文は、SETESコマンドを使用して構築されることが可能である。
【0126】
図31を参照すると、ウェイクアップコマンドを生成するために使用され得る送信機構造を示す図が示されている。ウェイクアップコマンドビットを、ウェイクアップコマンドによって使用するために指定されることが可能であるOFDMサブキャリア上にマップするために、変調生成器が使用され得る。変調生成器は、指定されたサブキャリアのスケーリングされた重ね合わせを採用して、所望の時間ドメインプロパティを伴うウェイクアップ信号を実現することが可能である。
【0127】
図32A~
図32Dを参照すると、単一の周波数リソース(f
1)および最大でL=9個の時間リソースを利用するウェイクアップワードを示す図が示されている。L個の時間リソースを採用するワードの強度は、1/Lから1にわたることが可能である。
図32Aは、3/9の強度のf
1ワードのシンボル表示を示している。これは、(3/9,f
1)ワードと呼ばれることが可能である。
図32Aにおいて示されている(3/9,f
1)ワードの基礎をなす時間ドメイン波形が、
図32Cにおいて示されている。
図32Bおよび
図32Dは、(1,f1)ウェイクアップワードを示している。
【0128】
図33A~
図33Bを参照すると、(3/9,f
1)ウェイクアップワードの実施態様を示す図が示されている。ウェイクアップワードにおける時間リソースは、隣接して配置される必要はない。
【0129】
図34A~
図34Bを参照すると、複数の周波数リソースおよび時間リソースを利用するウェイクアップワードを示す図が示されている。
図34Aは、(3/9,f1)および(1,fk)の周波数/時間リソースの組合せを採用しているワードを示している。これは、{(3/9,f1),(1,fk)}ワードと呼ばれることが可能である。
図34Bは、{(3/9,f1),(4/9,f2),(1,fk)}ワードを示している。
【0130】
図35A~
図35Bを参照すると、j個の角度リソース、k個の周波数リソース、および最大でL個の時間リソースを利用するウェイクアップワードを示す図が示されている。
図35Aは、2つの異なる角度リソースθ
1およびθ
2上で時間リソースおよび周波数リソースの同じ組合せ(3/9,f
1)および(1,f
2)を採用しているワードを示している。これは、[{θ
1,(3/9,f
1)},{θ
2,(1,f
2)}]ワードと呼ばれることが可能である。
図35Bは、[{θ
1,(3/5,f
1)},{θ
2,(4/9,f
1),(1,f
2)}]ワードを示している。
【0131】
図36A~
図36Bを参照すると、(L,m,k,N)ウェイクアップコマンド構造を示す図が示されている。格納されているエネルギー閾値イベントスタッキングウェイクアップコマンドが、リソースの(N,m,k,L)の組合せを採用することが可能である。このウェイクアップコマンドは、ワードあたりm個の角度リソース、k個の周波数リソース、およびL個の時間リソースを採用しているN個の同じワードを使用して構築されることが可能である。
図36Aは、4ワード(N=4)、ワードあたり単一の角度(m=1)、単一の周波数(k=1)、および5つの時間リソース(L=5)を採用しているウェイクアップコマンドを示している。これは、(4,1,1,5)ウェイクアップコマンドと呼ばれ得る。
図36Bは、N=3個のワード、ワードあたりm=1個の角度、k=2個の周波数、およびL=9個の時間リソースを採用している(3,1,2,9)の格納されているエネルギー閾値イベントスタッキングウェイクアップコマンドを示している。
【0132】
ウェイクアップメッセージにおけるワードの数Nは、ターゲットデバイスにおいて割り込みをトリガーするために必要とされる閾値イベントの数に対応することが可能である。ワードあたりの時間リソースの数Lは、基地局または基地局の組合せによって送信されることが可能であるエネルギーの範囲(1/Lから1)に対応することが可能である。ワード内のそれぞれの時間リソースの持続時間は、LTEシステムにおけるフルフレームまたはサブフレームであることが可能である。ウェイクアップコマンドは、例えば、LTE制御プレーンまたはデータプレーンにおけるリソースブロックを採用することが可能である。ウェイクアップコマンド内のワードは、例えば、LTEシステムにおけるページング機会の上にマップされることが可能である。
【0133】
格納されているエネルギー量子化に基づくウェイクアップコマンドが、リソースの(m,k,L)の組合せを採用することが可能である。このウェイクアップコマンドは、N個の量子化レベルのそれぞれに対応するN個の個別のワードを採用することが可能であり、この場合、ワードあたりm個の角度リソース、k個の周波数リソース、およびL個の時間リソースが使用される。
【0134】
図37A~
図37Dを参照すると、4つの量子化レベルが実施される、格納されているエネルギー量子化に基づくウェイクアップコマンドを示す図が示されている。4つのワードのそれぞれは、単一の角度リソース、単一の周波数リソース、および8つの時間リソースを採用することが可能である。最も低い量子化レベルは、8つのうちの1つの時間リソースを使用して実施されることが可能であり、1/8の強度を有することが可能である。時間リソースは、ワードにおける任意の場所に配置されることが可能である。最も高い量子化レベルは、8つ全ての時間リソースを使用して実施されることが可能であり、1の強度を有することが可能である。
【0135】
図38を参照すると、格納されているエネルギー閾値イベント分離デコーディングウェイクアップコマンドを生成するために使用される一定エネルギー振幅変調波形の時間ドメイン表示を示す図が示されている。一定エネルギー振幅変調波形は、単一のワードに、または複数の連続したワードにマップされることが可能である。この例示的な波形は、バイナリーシーケンス01をエンコードすることが可能である。この波形は、開始シーケンスで開始することが可能であり、その後に、値0のバイナリービットをエンコードするために使用される振幅A0および持続時間T0の正弦波、並びに値1のバイナリービットをエンコードするために使用される振幅A1および持続時間T1の正弦波が続く。
【0136】
バイナリー値0および1をエンコードするために振幅および持続時間のパラメータペア{Ai,Ti}を選択するための基準が、以降で方程式2において記述されている。バイナリー値0および1をエンコードする2つの正弦波は、同じエネルギーを有することが可能である。
【0137】
【0138】
例えば、バイナリービット値0をエンコードするためのパルス間における所望の時間分離は、バイナリービット値1のそれの3倍であることが可能である。バイナリービット値1を表す振幅および持続時間のペア{A1,T1}が選択されると、バイナリービット値0をエンコードするために必要とされる振幅A0が、T0=3T1を設定すること、および方程式2を使用することによって計算されることが可能である。
【0139】
電力が最適化された波形と、一意のエネルギー署名を伴うブロードキャスト、マルチキャスト、またはユニキャストウェイクアップコマンドとを含む信号シーケンスを送信するネットワークが、本明細書において記述されている。パッシブ受信機を用いてブロードキャスト、マルチキャスト、またはユニキャストウェイクアップコマンドを受信し、それの一時ストレージ要素からそれのバッテリーへ電荷を転送することによって、ウェイクアップコマンドに埋め込まれている一意のエネルギー署名に従って、格納されているエネルギー閾値イベントを生成することによってウェイクアップコマンドを解釈するためのデバイスおよび技術も、本明細書において記述されている。
【0140】
デバイスの状態(例えば、それの周波数オフセット)を決定するための問合せコマンドを送信するネットワークが、本明細書において記述されている。問合せコマンドは、例えば、無変調キャリアを含み得る。ネットワークは、デバイスのパッシブトランシーバからの、擬似ランダムシーケンスで変調された後方散乱を検査することによって、デバイスの状態(例えば、周波数オフセット)を決定することが可能である。ネットワークは、一意のエネルギー署名を伴う周波数補正コマンドを送信することが可能である。デバイスが、パッシブ受信機を用いて周波数補正コマンドを受信し、一意のエネルギー署名を解釈し、それの時間/周波数基準ユニットに対する調整を行うことが可能である。
【0141】
図39を参照すると、ネットワークによって開始されるオンデマンドのゼロエネルギーページングシステムの要素を示す図が示されている。このシステムは、資産管理エンティティ、コアネットワークおよびインターネット、1つまたは複数のeNBまたはアクセスポイント、1つまたは複数のファシリテータ、1つまたは複数のデバイス、並びにゼロエネルギーRANインターフェースのうちの1つまたは複数を含み得る。
【0142】
このシステムは、単一の無線アクセス技術(RAT)または複数のRATを利用することが可能である。これは、セルラー(LTE)、802.11、Bluetooth、ZigBee、NFC、RFIDなどを含む。ファシリテータは、eNB、アクセスポイント、リモート無線ヘッド、またはWTRUであることが可能である。接続されるアプライアンス、接続される消費者電子デバイス、または無線通信能力を有するその他の任意の接続されるデバイスが、ファシリテータとして機能することも可能である。ファシリテータは、静止していること、またはモビリティに対応できることが可能である。ゼロエネルギーRANインターフェースは、一方向(ダウンリンク)または双方向(アップリンクおよびダウンリンク)であることが可能である。ゼロエネルギーリンクは、一意のエネルギー署名を伴う無線信号をeNB、アクセスポイント、ファシリテータなどから送信することによって、およびデバイスを介して、格納されているエネルギー閾値処理方法を使用するパッシブ受信機を採用して、無線信号によって搬送されているコマンドを解釈することによって実現されることが可能である。
【0143】
図40を参照すると、オンデマンドのゼロエネルギーページング手順を示す図が示されている。いったん展開されると、デバイスは、スリープモードに入ることが可能である。ページング手順は、ネットワークイベントによってトリガーされることが可能である。例えば、資産管理エンティティが、データをデバイスに要求する場合がある。デバイスにおけるアクティブ受信機は、オンデマンドのゼロエネルギーページング手順中にはオンにされないことが可能である。ウェイクアップコマンドに加えて、同期信号およびUL構成情報が、デバイスによってそれのパッシブ受信機を使用して受信され得る。提案されているオンデマンドのページング手順の詳細が、以降で概説されている。リストとして提供されているが、これらの手順は、任意の適用可能な順序で実施されることが可能であり、概説されているステップのうちの1つまたは複数が省略されることが可能であり、1つまたは複数のステップが手順に付加されることが可能であるということを理解されたい。
【0144】
ステップ1において、ネットワークは、デバイスのスリープサイクルに割り込むように第1のeNB(eNB1)に指示することが可能である。ネットワークは、実施されることになる割り込みの優先度レベルを指定することが可能である。この例によれば、eNB1は、デバイスが現在登録されているeNodeBであることが可能である。eNB1は、指定された割り込みレベルに基づいてウェイクアップコマンドのパラメータ(例えば、波形タイプ、電力レベル、持続時間、周波数バンドなど)を算出する。eNB1は、それが、必要とされている割り込みタイプを実施するために、1つまたは複数のさらなるeNB(例えば、eNB2、eNB3など)またはファシリテータと協力する必要があるかどうかを決定することが可能である。
【0145】
ステップ2において、eNB1は、ファシリテータ(例えば、サイドリンク)を構成することが可能である。eNB1は、ファシリテータによって実施されることになるウェイクアップコマンドの部分のパラメータを送ることが可能である。eNB1は、ファシリテータから確認を受信することが可能である。
【0146】
ステップ3において、eNB1は、eNB2によって実施されることになるウェイクアップコマンドの部分のパラメータを送ることが可能であり、eNB2から確認を受信することが可能である。
【0147】
ステップ4において、eNB1は、eNB3によって実施されることになるウェイクアップコマンドの部分のパラメータを送ることが可能であり、eNB3から確認を受信することが可能である。
【0148】
ステップ5において、eNB1は、ウェイクアップコマンドのそれの部分を送信することが可能である。
【0149】
ステップ6において、ファシリテータは、ウェイクアップコマンドのそれの部分を連続してまたは同時に送信することが可能である。
【0150】
ステップ7において、eNB2は、ウェイクアップコマンドのそれの部分を連続してまたは同時に送信することが可能である。
【0151】
ステップ8において、eNB3は、ウェイクアップコマンドのそれの部分を連続してまたは同時に送信することが可能である。
【0152】
ステップ9において、ファシリテータは、所定の量の時間にわたって待つことが可能であり、ゼロエネルギー同期信号を送信することが可能である。ファシリテータは、デバイスのパッシブトランシーバから後方散乱された信号を検査することが可能であり、デバイスの周波数基準ユニットの周波数エラーを決定することが可能である。ファシリテータは、周波数補正命令とアップリンク構成情報とを含む信号を送信することが可能である。
【0153】
ステップ10において、デバイスは、それのパッシブトランシーバを使用して、eNodeBおよびファシリテータから受信された信号を解釈することが可能である。デバイスは、それのプライマリーアクティブ送信機をオンにすることが可能であり、データをネットワークへ送り返すことが可能である。
【0154】
図41A~
図41Bを参照すると、デバイスと、eNodeBおよびファシリテータとの間における信号のやり取りを示す図が示されている。
図41Aは、eNodeB信号およびファシリテータ信号を示している。
図41Bは、デバイス信号を示している。eNB、ファシリテータ、およびデバイスの電力プロフィールも、
図41において示されている。上述のステップに関連付けられている信号電力レベルが、
図41において同じ数字表示を用いて示されている。
【0155】
図42を参照すると、ハイブリッドページング手順を示す図が示されている。ネットワークは、高い優先度のページングの供給のために、デバイスの(例えば、DRXモードの)デューティサイクル期間の、無線の割り込みによって駆動されるオンデマンドの適合を実施することが可能である。デバイスは、ネットワークからDRXサイクル構成情報を受信することが可能である。電力を節約するために、デバイスは、ネットワークから受信されたDRXサイクル構成情報に基づいて、長いデューティサイクル期間を伴ってそれのスリープカウンタをプログラムすることが可能である。デバイスは次いで、スリープモードに入ることが可能である。通常のオペレーションにおいては、ネットワークは、ページングサイクルによって定義された合意されているページング機会にデバイスをページすることのみが可能である。デバイスのスリープカウンタは、ネットワークのカウンタと同期化されることが可能であり、デバイスは、プログラムされているページング機会中にページングメッセージをデコードするためにウェイクアップすることのみが可能である。
【0156】
ページングサイクル適合手順は、ネットワークイベントによってトリガーされることが可能である。例えば、資産管理エンティティが、データをデバイスに要求する場合がある。資産管理エンティティは、優先度レベルまたはサービス品質レベルを示すことが可能である。要求される優先度レベルが高く設定されている場合には、ネットワークは、次のページング機会までに残っている時間(遅延)を算出する。算出された遅延がサービスの要求されているレベルを満たしている場合には、ネットワークは、次のスケジュールされているページング機会まで、デバイスをページするのを待つことが可能である。算出された遅延がサービスの要求されているレベルを満たしていない場合には、ネットワークは、ページングサイクル適合手順を開始することが可能である。そのようなページングサイクル期間適合手順の詳細が、以降で概説されている。
【0157】
リストとして提供されているが、これらの手順は、任意の適用可能な順序で実施されることが可能であり、概説されているステップのうちの1つまたは複数が省略されることが可能であり、1つまたは複数のステップが手順に付加されることが可能であるということを理解されたい。
【0158】
ステップ1において、ネットワークは、デバイスのスリープサイクルに割り込むように第1のeNodeB(eNB1)に指示することが可能である。ネットワークは、実施されることになる割り込みの優先度レベルを指定することが可能である。eNB1は、デバイスが現在登録されているeNodeBであることが可能である。eNB1は、指定された割り込みレベルに基づいて、必要とされている無線の(OTA)割り込み信号のパラメータ(例えば、波形タイプ、電力レベル、持続時間、周波数バンドなど)を算出することが可能である。eNB1は、それが、必要とされている割り込みタイプを実施するために、1つまたは複数のeNodeB(例えば、eNB2およびeNB3)と協力する必要があるかどうかを決定することが可能である。
【0159】
ステップ2において、eNB1は、eNB2によって実施されることになるOTA割り込み信号の部分のパラメータを送ることが可能であり、eNB2から確認を受信することが可能である。
【0160】
ステップ3において、eNB1は、eNB3によって実施されることになるOTA割り込み信号の部分のパラメータを送ることが可能であり、eNB3から確認を受信することが可能である。
【0161】
ステップ4において、eNB1は、OTA割り込み信号のそれの部分を送信することが可能である。デバイスは、それのパッシブ受信機を用いてOTA割り込み信号を受信することが可能である。
【0162】
ステップ5において、eNB2は、OTA割り込み信号のそれの部分を連続してまたは同時に送信することが可能である。デバイスは、それのパッシブ受信機を用いてOTA割り込み信号を受信することが可能である。
【0163】
ステップ6において、eNB3は、OTA割り込み信号のそれの部分を連続してまたは同時に送信することが可能である。デバイスは、それのパッシブ受信機を用いてOTA割り込み信号を受信することが可能である。デバイスは、それのプライマリーアクティブ受信機をオンにすることが可能である。
【0164】
ステップ7において、eNB1は、所定の量の時間にわたって待つことが可能であり、同期信号を送信することが可能である。デバイスは、それのプライマリーアクティブ受信機を用いて同期信号を受信することが可能である。
【0165】
ステップ8において、eNB1は、アップリンク構成情報を送信することが可能である。デバイスは、それのプライマリーアクティブ受信機を用いて、アップリンク構成情報を含む信号を受信することが可能である。
【0166】
ステップ9において、デバイスは、それのプライマリーアクティブ送信機をオンにすることが可能であり、データをネットワークへ返信することが可能である。
【0167】
図43A~
図43Bを参照すると、デバイスとeNodeBとの間における信号のやり取りを示す図が示されている。
図43Aは、eNodeBの電力プロフィールおよび信号を示している。
図43Bは、デバイスの電力プロフィールおよび信号を示している。上述の番号を付けられたステップに関連付けられている信号電力レベルが、
図43において同じ数字表示を用いて示されている。
図43Aは、上で概説されているステップに関連付けられている、ネットワークコンポーネントeNB1、eNB2、eNB3によるTxおよびRxに基づく電力消費を示している。
図43Bは、上で概説されているステップに関連付けられているWTRUによるTxおよびRxに基づく電力消費を示している。
【0168】
OTA割り込みを実施する際に、PeNBおよびSeNBは、
図43A~
図43Bにおいて示されているのと同じ周波数上でさらなる量の電力をSeNBが送信する様式で協力することが可能である。SeNBは、OTA割り込み信号の部分を別々のキャリア周波数上で送信することも可能である。
【0169】
図44を参照すると、ゼロエネルギーウェイクアップ手順を示す図が示されている。デバイスが、1つまたは複数のプライマリーアクティブトランシーバ(TRX)と、1つまたは複数のパッシブ受信機と、電力管理ユニット(PMU)と、バッテリーとを含み得る。パッシブ受信機は、ダイオードD1および抵抗器R1によって示されている整流器と、コンデンサC1によって示されている一時ストレージ要素と、アナログ/情報A2Iコンバータ(コンパレータ)およびウェイクアップコマンドインタープリタとを含み得る。
【0170】
ネットワークは、電力が最適化された波形(POW)と、一意のエネルギー署名を伴うブロードキャスト、マルチキャスト、またはユニキャストウェイクアップコマンドとを含む信号シーケンスを送信することが可能である。POWは、例えば単一周波数のまたはマルチ周波数の正弦波パルスを含み得る。一意のエネルギー署名を伴うウェイクアップコマンドは、例えば、格納されているエネルギーイベントスタッキング、格納されているエネルギーイベント量子化、または格納されているエネルギーイベント分離エンコーディングの原理を使用して構築されることが可能である。
【0171】
デバイスは、送信された信号シーケンス内のPOWおよびウェイクアップコマンドからエネルギーを収穫することが可能である。収穫されたエネルギーは、一時ストレージ要素(コンデンサC1)に格納されることが可能である。この格納されたエネルギーは、デバイスのパッシブ受信機におけるA2Iおよびウェイクアップコマンドインタープリタに電力供給するために使用され得る。
【0172】
デバイスは、それのパッシブ受信機を用いてブロードキャスト、マルチキャスト、またはユニキャストウェイクアップコマンドを受信し、それの一時ストレージ要素からそれのバッテリーへ電荷を転送することによって、ウェイクアップコマンドに埋め込まれている一意のエネルギー署名に従って、格納されているエネルギー閾値イベントを生成することによってウェイクアップコマンドを解釈することが可能である。デバイスは、それのパッシブ受信機におけるそれのA2Iコンバータを用いて、それの一時ストレージ要素(コンデンサC1)における格納されているエネルギーの量をモニタすることが可能である。一時ストレージ要素(コンデンサC1)における電圧VFEによって示されている格納されているエネルギーまたは電荷の量が所定の閾値を超えている場合には、A2Iコンバータは、この格納されている電荷を一時ストレージ要素からバッテリーへ転送し、それによって一時ストレージ要素を空にし、電圧VFEを閾値よりも下に低減することができる。A2Iは、電荷の転送が生じるたびに、それの出力においてパルスPを生成することが可能である。
【0173】
ウェイクアップコマンドの構造に応じて、電荷転送のこのプロセスは、複数回にわたって繰り返されることが可能である。ウェイクアップコマンドインタープリタは、パルス列Pを検査することが可能であり、パルス列が、ネットワークによってデバイスに割り振られたパターンにマッチしている場合には、ウェイクアップコマンドインタープリタは、割り込みYを生成する。割り込みYを受信すると、電力管理ユニット(PMU)は、デバイスのプライマリートランシーバ(TRX)をアクティブ化するために使用されるウェイクアップ信号WUを生成することが可能である。A2Iコンバータの閾値電圧VTHおよびパルスパターンPは、デバイスがスリープモードに入る前に、ネットワークによって構成されてよい。
【0174】
遠く離れているかまたは障害物の後ろにあるデバイスなど、著しい信号品質の劣化を経験する可能性があるターゲットデバイスをウェイクアップするために、ネットワークによって範囲拡張手順が採用されることが可能である。範囲拡張は、ビームフォーミングを行うこと、並びに/またはウェイクアップコマンドにおける構成要素であるワードの電力および/もしくは持続時間を増大させることによって達成されることが可能である。デバイスに関する必要とされている電力および/または持続時間は、デバイスがスリープモードに入る前にそれによって報告されるパスロスの推定から得られることが可能である。あるいは、ネットワークは、電力および持続時間の設定のセットを経由して、エネルギーランピング手順を実施することが可能である。ネットワークは、盲目的なランピング手順を実施することが可能であり、この場合、それは、複数のまたは全ての電力および/または持続時間の設定を経由する。ネットワークは、フィードバックを伴うランピング手順を実施することも可能であり、それによってネットワークは、あらゆる電力および持続時間の設定の後に、事前に構成された量の時間にわたって待つ。デバイスが、この事前に構成されたウィンドウ中にウェイクアップ肯定応答で応答した場合には、ネットワークは、ランピング手順を終了することが可能である。
【0175】
開示されている主題の実施形態によれば、ウェイクアップコマンド誤アラーム抑制のための手順が実施されることが可能である。スリープモードにあるデバイスが、無関係の送信によってもたらされた環境内の周囲RFエネルギーに応答して偽ってウェイクアップする(誤アラームをもたらす)シナリオを防止するために、堅牢なウェイクアップコマンドが実施されることが可能である。ウェイクアップコマンドを構築する際にマルチ角度およびマルチ周波数のワードを採用することは、誤アラームを低減することができる。格納されているエネルギー閾値イベント分離エンコーディングウェイクアップコマンドと組み合わされた格納されているエネルギー閾値イベントスタッキングコマンドなどの複合ウェイクアップコマンドを採用することも、誤アラームを軽減することができる。デバイスは、例えば、パスロス測定値を作成して、ネットワークに知らせることができる。報告された測定値に基づいて、ネットワークは、必要とされる誤アラーム軽減のレベルを決定すること、およびデバイスがスリープモードに入る前にそれを適切に構成することができる。
【0176】
擬似ランダム後方散乱ゼロエネルギー同期化のための手順が実施されることが可能である。周波数およびタイミングの同期化は、2つのノードの間における周波数オフセットおよびタイミングオフセットを低減して、許容可能な通信リンクを可能にする手順である。ノードのうちの1つまたは別のノード(例えば、GPS信号)が、周波数オフセットおよびタイミングオフセットの両方を低減するための基準として使用され得る。
【0177】
後方散乱に基づくゼロエネルギーウェイクアップ確認および同期化手順を利用する手順、方法、および装置が、本明細書において記述されることが可能である。ウェイクアップコマンドを送信するノードが、意図されているまたはターゲットのデバイスの周波数オフセットを決定すること、およびタイミングの同期化をセットアップするのを支援することも可能である。送信側ノード(またはインテロゲータ)は、ターゲットデバイスのパッシブトランシーバ(TRX)からの擬似ランダムシーケンスで変調された後方散乱されたトーンを使用することによって周波数オフセットを決定することが可能である。変調された後方散乱されたトーンは、ターゲットデバイスにおける主要なVCOオフセットを反映することが可能である。送信側ノードは、ウェイクアップシーケンスのタイミングに関連してフレーム、スロット、および/またはシンボルのタイミングを決定することが可能であるタイムスタンプを送ることも可能である。
【0178】
ターゲットデバイスは、それらの特定のウェイクアップコードまたはシーケンスを最初のデバイスディスカバリープロセスの一部として得ることが可能である。代替として、または追加として、パッシブTRXに関するその他のパラメータを伴う一意のウェイクアップエネルギー署名など、ウェイクアップ手順のための必要な情報は、ネットワークによってシグナリングされて、スリープ手順のアクティブ化の前にアクティブTRXを介してターゲットデバイスによって受信され得る。擬似ランダムコードインデックスなどの必要なパラメータは、共通のウェイクアップエネルギーシーケンスの後に特定のデバイスIDへ送られることも可能である。そのデバイスIDは、事前に、または最初のネットワーク接続手順中に割り振られることが可能である。
【0179】
図45を参照すると、後方散乱されて変調されたキャリアを示す図が示されている。ウェイクアッププロセス中に、ウェイクアップコマンドを送信するノードは、ターゲットデバイスにおけるパッシブTRXの初期周波数オフセットを推定することができる。インテロゲータの受信機は、後方散乱技術を利用して、ターゲットデバイスにおけるパッシブTRXの初期周波数オフセットを決定することができ、この場合、一意のエネルギー署名を伴うウェイクアップコマンドの受信は、擬似ランダム(PN)コードの送信をトリガーすることができる。
【0180】
図46を参照すると、検知手順を示す図が示されている。デバイス固有のウェイクアップコマンドが検知された場合には、パッシブTRXは、後方散乱されたキャリアを変調するPNシーケンスを生成することを開始することが可能である。後方散乱されて変調されたキャリアは、ターゲットデバイスの周波数/時間基準ユニット(FTRU)の周波数オフセットを反映することが可能である。FTRUは、ターゲットデバイスにおけるパッシブTRXおよびアクティブTRXの両方による基準クロックソースとして使用され得る。基準クロックオフセットは、FTRUによって制御されることが可能である。
【0181】
インテロゲータがウェイクアップコマンドを送信すると、それは、PNコード検知を用いてデバイス固有のウェイクアップ確認を受信することを開始することが可能である。インテロゲータは、それぞれのデバイスに関する予想されるPNシーケンスについての事前の知識を有することが可能である。予想されるPNコードをインテロゲータが成功裏に検知した場合には、ウェイクアッププロセスは、成功であると確認されることが可能である。PNコードの受信中に、インテロゲータは、ターゲットデバイスにおけるパッシブTRXの初期周波数オフセットを推定することができる。推定されたオフセットは、FTRUの基準クロックオフセットを補正するためにパッシブTRXへシグナリングされて戻されることが可能である。周波数補正手順は、開または閉ループアプローチを利用することが可能であり、インテロゲータと、ターゲットデバイスにおけるパッシブTRXとの間において複数のメッセージをやり取りすることが可能である。インテロゲータは、推定された周波数オフセットとともにアクティブTRXに関する時間基準を送ることも可能である。
【0182】
PNシーケンス検知および周波数オフセット推定アルゴリズムは、検知および推定プロセスを促進するために並列処理ユニットを利用することが可能である。また、複雑さとのトレードオフを行う目的で初期周波数オフセットを決定するために反復を伴って複数のオフセット設定にわたって単一処理ユニットが利用されることが可能である。しかしながら、このトレードオフは、検知および推定の待ち時間を増大させる場合がある。
【0183】
図47を参照すると、周波数オフセットエスティメータを示す図が示されている。周波数オフセットを推定するための方法は、2つのPNシーケンス(すなわち、同じまたは別々の長さを有する同じまたは別々のシーケンス)を採用することが可能であり、この場合、パッシブTRXは、それらの2つのPNシーケンスを用いて、後方散乱されたキャリアを変調することが可能である。AWGNチャネルのみのケースにおいては、インテロゲータは、それぞれのPNシーケンスに関して2つの複素数を用いて2つのピークを決定することが可能である。
図47において示されているように、2つの複素数の間における位相差を取り、その結果を、正規化係数を乗じられたピークロケーションの時間差によって除することによって、周波数オフセットが推定されることが可能である。このプロセスは、不揮発性メモリにおいて保持されることが可能である最後に知ったオフセット値によって開始されることが可能である。
【0184】
マッチドフィルタ(MF)がPNシーケンス用に設計されることが可能である。MFの出力は、電力コンバータに通され、N回の反復を介して統合されることが可能であり、この場合、Nは、1から特定の数までであってよい。統合期間が終わると、最大の要素およびそれのロケーションが決定されて、閾値に比較されることが可能である。閾値が満たされている場合には、PNシーケンス検知は成功であることが可能である。検知プロセスは、大きな初期周波数オフセットを生じやすい場合があり、従って、検知を保証するためには、人為的にシフトされた入力サンプルが、位相回転のみ、または位相回転およびタイミングドリフトを伴って別々の周波数オフセットにおいて使用され得る。このプロセスは、複数のHWユニットを用いて並列に実行されて、検知プロセスを促進することが可能である。検知プロセスが完了された場合には、ピークロケーションは、「最大インデックス」として関連付けられることが可能である。サンプル抽出器は、
図47において示されているようにサンプルを取ることが可能である。
【0185】
著しい信号品質の劣化を伴って遠く離れているかまたは障害物の後ろにあるデバイスをウェイクアップするために、問合せ側ノードによって範囲拡張手順が使用され得る。ノードは、ウェイクアップコマンドの送信から開始して、ターゲットとされているデバイスからの予想される応答を待つためにタイマーをセットアップすることが可能である。予想される応答がインテロゲータによって受信されない場合には、それは、PNシーケンスの検知および周波数オフセットの推定のための拡張された範囲の手順を展開することを開始することが可能である。
【0186】
十分なエネルギーがデバイスによって収穫された場合で、デバイスウェイクアップコマンドが検知された場合には、受信されたトーンは、それの事前に定義されたまたはネットワークによって指示されたPNシーケンスを用いて継続的に変調されることが可能である。PNシーケンスに関連付けられているデバイスは、PNシーケンス検知プロセスを実行する前にインテロゲータノードによって知られることが可能である。インテロゲータノードは、T期間(この場合、Tは、PNシーケンスの長さである)にわたって、
図46において示されているように、電力変換ブロックの後にMF出力を蓄積すること、並びにピーク値およびそれのインデックスロケーション(例えばインデックスは、0からT-1まで変わることが可能である)を決定することが可能である。ピーク値は、誤アラーム率をターゲット値よりも下に保つために特定の閾値に比較されることが可能である。閾値は、統合期間のそれぞれの回ごとに異なって設定されることが可能である。統合バッファは、統合のある回数(N)の後にリセットされることが可能である。ピークが閾値を上回っていると決定されると、検知が生じることが可能である。
【0187】
N回の統合の後にのみ検知が生じるケースにおいては、インテロゲータは、N個の結果を平均することによって周波数オフセットの推定を使用することが可能であり、その後に、N回の統合と同等であるかまたはそれよりも良好であることが可能である増大された処理利得を伴って、それをターゲットデバイスへ送る。デバイスは、最初のデバイス接続の一部、工場でのデフォルト、および/またはスリープモードに入る前に提供されるパラメータとして、フォーマットに関して知らされることが可能である。インテロゲータは、事前に定義されたフィールドをエンコードすることによって範囲拡張フォーマットを示すことも可能である。デバイスは、通常モードフォーマットまたは範囲拡張モードフォーマットを探して、それらを並列にデコードすることが可能である。
【0188】
ネットワークは、電力が最適化された波形と、一意のエネルギー署名を伴うブロードキャスト、マルチキャスト、またはユニキャストウェイクアップコマンドとから構成されている信号シーケンスを送信することが可能である。
【0189】
デバイスが、パッシブ受信機を用いてブロードキャスト、マルチキャスト、またはユニキャストウェイクアップコマンドを受信することが可能であり、それの一時ストレージ要素からそれのバッテリーへ電荷を転送することによって、ウェイクアップコマンドに埋め込まれている一意のエネルギー署名に従って、格納されているエネルギー閾値イベントを生成することによってウェイクアップコマンドを解釈することが可能である。
【0190】
ネットワークは、デバイスの状態(例えば、それの周波数オフセット)を決定するための問合せコマンドを送信することが可能である。問合せコマンドは、無変調キャリアを含み得る。ネットワークは、デバイスのパッシブトランシーバからの、擬似ランダムシーケンスで変調された後方散乱を検査することによって、デバイスの状態(例えば、周波数オフセット)を決定することが可能である。ネットワークは、一意のエネルギー署名を伴う周波数補正コマンドを送信することが可能である。
【0191】
デバイスは、パッシブ受信機を用いて周波数補正コマンドを受信することが可能である。デバイスは、一意のエネルギー署名を解釈することが可能であり、それの時間/周波数基準ユニットに対する調整を行うことが可能である。
【0192】
システム情報を送信するための標準的な方法に加えて、またはその代替として、ネットワークは、一意のエネルギー署名を伴う専用の無線ビーコンを利用してトラッキングエリア更新(TAU)コマンドをブロードキャストすることが可能である。TAUコマンドは、プリアンブルと本文とを含むフレーム構造を採用することが可能である。TAUコマンドのフレームの本文は、例えば、トラッキングエリアコード(TAC)を含み得る。ネットワークは、TAUコマンドをブロードキャストする場合には、リソースキューブにおける要素(角度、周波数、時間)の全てまたはサブセットを採用することが可能である。周波数リソースは、キャリアとサブキャリアとの混合を含み得る。キャリアは、単一の周波数バンドに、または複数の周波数バンドに含まれ得る。無線ビーコンを構築するために、SEQ、SET、またはSETESの方法が使用され得る。ネットワークは、TAUコマンドをブロードキャストするために使用されるビーコンを構築する場合に、複数の方法を組み合わせてハイブリッド方法を作成することも可能である。ビーコンは、単一またはマルチ周波数のSEQ、SET、またはSETESの方法を用いて構築されることが可能である。ネットワークは、トラッキングエリア(TA)における1つの、数個の、または全てのeNBからTAUコマンドをブロードキャストすることが可能である。これは、定期的な様式で、またはランダムなインターバルで行われることが可能である。
【0193】
システム情報にアクセスするための標準的な方法に加えて、またはその代替として、デバイスが、パッシブ受信機を用いてTAUコマンドを受信し、一意のエネルギー署名を解釈して、システム情報(例えばTAC)にアクセスすることが可能である。デバイスは、格納されているエネルギー量子化、格納されているエネルギー閾値イベントカウンティング、または格納されているエネルギー閾値イベント分離デコーディングの方法を採用して、一意のエネルギー署名を解釈することが可能である。これらの方法は、スタンドアロンの様式で使用されること、または一意のエネルギー署名を解釈するためのハイブリッド方法を作成するために組み合わされることが可能である。デバイスが、ルックアップテーブル(LUT)に基づくアプローチを採用して、トラッキングエリア更新(TAU)手順をトリガーすることが可能である。デバイスは、それの現在の知られているロケーションを表すトラッキングエリアリスト(TAL)をLUTに格納することができる。TAL-LUTは、ローカルメモリに格納されることが可能であり、デバイスがスリープモードにある間にアクセス可能であることが可能である。デバイスは、アクティブである間に、またはスリープモードにある間にパッシブ受信機を使用してシステム情報にアクセスすることが可能である。システム情報(例えばTAC)が取り出されると、デバイスが現在存在しているカバレッジエリアを有するセルの取り出されたTACは、格納されているTAL-LUTにおけるTACに対して比較されることが可能である。マッチが見つからない場合、デバイスは、スリープモードにあるならばウェイクアップし、それのアクティブトランシーバを使用して、TAU手順を実行することが可能である。TAU手順が完了されると、デバイスは、それのTAL-LUTを更新し、スリープモードに入ることができる。
【0194】
図48を参照すると、セルクラスタを示す図が示されている。ネットワークは、トラッキングエリア(TA)境界を識別するために個別の周波数上でTAUコマンドをブロードキャストする複数のセルクラスタを展開することが可能である。TAUコマンドは、プリアンブルと本文とを含むフレーム構造を採用することが可能である。TAUコマンドのフレームのプリアンブルは、TA境界インジケータコードを含むことが可能であり、フレーム本文は、例えば、トラッキングエリアコード(TAC)を含み得る。セルクラスタは、1つまたは複数のセルを含むことが可能であり、TAの一部または全てを構成することが可能である。セルクラスタは、例えば、
図48において示されているように、TA境界の近くに集中される場合がある。
【0195】
デバイスが、連続して受信されたTAUコマンドのキャリア周波数における変化を検知することによって、TA境界の横断を識別することが可能である。デバイスは、個別のキャリア周波数上で動作するように事前に構成されているTAUコマンドインタープリタを伴う複数のパッシブ受信機を含み得る。それぞれのパッシブ受信機は、受信されたTAUコマンドのプリアンブルをデコードし、TA境界インジケータコードがデコードされた場合には割り込みを生成することが可能である。デバイスは、生成された割り込みの回数を数え続けることが可能であり、それはそれぞれ、キャリア周波数における変化の検知を表す。キャリア周波数が変化する回数は、TA境界横断閾値に比較されることが可能である。検知されたTA境界の横断の回数がこの閾値を超えている場合には、デバイスは、スリープモードにあるならばウェイクアップし、それのアクティブトランシーバを使用して、TAU手順を実行することが可能である。
【0196】
ネットワークは、デバイスが、スリープモードに留まっている間に(後方散乱としても知られている)間接的な変調を採用するそれのパッシブトランシーバを使用してゼロエネルギーTAU手順を実行することを可能にするためにファシリテータを展開することが可能である。ファシリテータは、eNB、アクセスポイント、リモート無線ヘッド、または別のデバイスであることが可能である。接続されるアプライアンス、接続される消費者電子デバイス、または無線通信能力を有するその他の任意の接続されるデバイスが、ファシリテータとして機能することも可能である。ファシリテータは、静止していること、またはモビリティに対応できることが可能である。ファシリテータおよびデバイスは、互いに非常に近接していること、および同じセルのカバレッジエリア内にあることが可能である。ファシリテータは、それが現在接続されているセルのTACを知るためにネットワークシステム情報にアクセスすることが可能である。ファシリテータは、無変調キャリアを送信することが可能であり、デバイスは、ファシリテータと通信するために(後方散乱としても知られている)間接的な変調を採用するパッシブトランシーバを含み得る。ファシリテータは、デバイスに格納されているTAL-LUTを読み取り、それが現在接続されているセルのTACをデバイスからの取り出されたTALにおけるTACに対して比較することが可能である。マッチが見つからない場合、ファシリテータは、デバイスのためにTAU手順を実行することが可能である。ゼロエネルギーTAU手順が完了されると、ファシリテータは、デバイスに格納されているTAL-LUTを更新することが可能である。
【0197】
ウェイクアップ構成およびシグナリングスキームが、本明細書において記述されているように実施されることが可能である。パッシブウェイクアップトランシーバを伴ういくつかのWTRUが、eNBによってサービス提供されることが可能である。eNBは、WTRUをウェイクアップするために、一意のエネルギー署名を伴うウェイクアップコマンドを採用することが可能である。以降の説明は、WTRUに関連付けられている一意のエネルギー署名をeNBが構成することができる可能なシグナリングスキームを含む。
【0198】
特定のクラスのWTRUをウェイクアップするためにグループ固有のエネルギー署名が使用され得る。グループ固有のエネルギー署名は、システム情報メッセージ(例えば、SIB-2/SIB-3など)の一部としてブロードキャストされることが可能である。SIB-2における例示的なシグナリングが、以降で表2において示されている。
【0199】
【0200】
値s1およびs2は、それぞれクラス1およびクラス2に属するWTRUをウェイクアップするために割り振られるマルチキャストエネルギー署名シーケンスであってよい。
【0201】
eNBは、WTRU固有のエネルギー信号をRRCメッセージの一部としてシグナリングすることが可能である。テーブル3においては、署名シーケンスは、PCCH論理チャネル上でシグナリングされることが可能である。
【0202】
【0203】
署名シーケンスe1は、WTRUに割り振られることが可能である。WTRUが、共通のブロードキャストメッセージ(例えば、システム情報メッセージ)およびWTRU固有のメッセージング(例えば、RRC)の両方から署名の割り振りを受信した場合には、WTRUは、WTRU固有のメッセージングによって受信された署名の割り振りを使用することが可能である。
【0204】
あるいは、EUTRANは、共通のブロードキャストメッセージおよびWTRU固有のメッセージングの両方を使用して署名の割り振りをシグナリングすることも可能である。上で示されている例においては、s1、s2は、共通のブロードキャスト(例えば、SIB)を通じて送信されるシーケンスのセット(例えば、s1={a1,a2,a3,a4}、s2={b1,b2,b3,b4}、この場合、ai、biは署名シーケンスである)を示すことが可能であり、e1は、シーケンスセットにおけるシーケンスの位置を表す整数を示すことが可能である。WTRUがSIBにおいてs1を、およびRRCにおいてe1=2を受信するケースに関しては、割り振られるシーケンスは、a2となるであろう。
【0205】
図49を参照すると、WTRUによって開始されるウェイクアップコマンドエネルギー署名割り振り手順を示す図が示されている。WTRUは、署名シーケンスを選び、それの選ばれたシーケンスに関してeNBにシグナリングすることが可能である。eNBは、その他のいずれのWTRUも同じ署名シーケンスを選択していないことを確認することが可能である。WTRUは、独立して、またはEUTRANからの支援を伴って署名シーケンスを選ぶことが可能である。後者の手順のステップが、本明細書において記述されている。以降で概説されている1つまたは複数のステップは、本明細書において提示されているのとは異なる順序で実行されることが可能であるということ、および1つまたは複数のステップが、以降で述べられているステップに付加されること、または以降で述べられているステップから除去されることが可能であるということが理解されるであろう。
【0206】
eNBは、SIBシグナリングを使用してシーケンスセット(例えば、s1)を提供することが可能である。WTRUは、RRC接続要求の一部としてシーケンスセットにおけるシーケンス(例えば、e1)をランダムに選ぶことが可能である。eNBは、選択されたシーケンスを、そのシーケンスがその他のWTRUによって既に選択されているかどうかに基づいて拒否または確認することが可能である。WTRU2が、WTRU1によって選択されたのと同じシーケンスを選択する場合がある。eNBは、選択されたシーケンスを拒否することが可能であり、WTRU2は、シーケンス選択ステップ(すなわち、RRC接続要求)を繰り返すことが可能である。
【0207】
図50を参照すると、ウェイクアッププロセスに関する適合電力送信を示す図が示されている。センサをウェイクアップするために割り当てられる電力の量は、動的であってよい。電力の量は、センサをウェイクアップすることを試みて生じた不成功の試みの数に依存する場合がある。この方法は、センサをウェイクアップすることと、干渉を回避することとにおける許容可能なトレードオフを提供する時間に適正な量の電力増大が実行されることを確実にすることが可能である。第1の時点に関しては、最小の必要とされている電力が使用され得る。あらゆるその後の不成功の試みに関しては、電力は、ウェイクアップ確認が受信されるまで、段階的に増大されることが可能である。より正確には、時間tにおける電力の割り当ては、下記のように書かれることが可能である。
P
t=P
t-1+δ(t-1)r. 方程式3
【0208】
変数rは、電力ステップサイズの増分を表すことが可能である。δ(x)は、あらゆる時点において提供される増大の割合を表すことが可能である。例えば、δ(x)=x2は、あらゆる不成功の試みにおける二次増大を表すことが可能である。その一方で、δ(x)=cは、あらゆる不成功の瞬間における一定の増大を表すことが可能である。前述のスキームは、あらゆる不成功の瞬間における送信電力の割り当てを適合できるように、ウェイクアップ確認に依存することが可能である。
【0209】
送信機がウェイクアップ確認を受信することを予期しない「盲目的な」スキームが生じることが可能である。このケースにおいては、δ(x)の電力増大を伴ってセンサをウェイクアップするための一定数の再送信があることが可能である。
【0210】
プライマリーeNBが、近隣セルのシステム情報2(SIB-2)ブロードキャストメッセージをモニタすることが可能である。プライマリーeNBは、関心のあるリソースブロックにおける近隣セルによって提供される電力の量と、それがセンサをウェイクアップするために提供する必要がある場合があるさらなる電力の量とを推測することが可能である。以降で概説されている1つまたは複数のステップは、本明細書において提示されているのとは異なる順序で実行されることが可能であるということ、および1つまたは複数のステップが、以降で述べられているステップに付加されること、または以降で述べられているステップから除去されることが可能であるということが理解されるであろう。
【0211】
ステップ1において、プライマリーeNBは、近隣セルの基準信号に関するリソース要素あたりのエネルギー(EPRE)を推測することが可能である。
【0212】
ステップ2において、プライマリーeNBは、ρB/ρAとして定義されているSIB-2からのp-bの値を読み取ることが可能であり、この場合、ρBは基準信号電力であり、ρAはPDSCH電力である。
【0213】
ステップ1および2から、プライマリーeNBは、近隣セルiによって提供されるEPREあたりのPDSCH電力を、
【0214】
【0215】
であるとして入手することが可能である。プライマリーeNBが、センサをウェイクアップするためにN個のリソースブロックを割り当てると想定すると、近隣セルiによって与えられるこれらのリソースブロック上の推定される電力は、
【0216】
【0217】
であるとして入手されることが可能であり、この場合、NRBは、リソースブロックあたりのリソース要素の数を示している。
【0218】
センサをウェイクアップするために必要とされるさらなる電力の量は、
【0219】
【0220】
として推定されることが可能であり、この場合、Pは、センサをウェイクアップするための必要とされる合計電力であり、量δは、近隣セルの電力の推定エラーと、セルのうちのそれぞれによって補償される必要があるパスロスとをひとまとめにする。
【0221】
図51を参照すると、連携するeNBのRB使用情報の共有に基づくTX電力適合を示す図が示されている。プライマリーeNBは、それの関心のあるリソースブロックにおける電力の割り当てを、X2インターフェースを通じて明示的に近隣セル(セカンダリーeNB)に要求することが可能である。近隣セルによる電力の割り当てに基づいて、プライマリーeNBは、必要とされている電力をきわめて正確に推定することができる。
【0222】
ステップ1において、プライマリーeNBは、次のT’(T’>(T2-T1))の間にそれの関心のあるリソースブロック(すなわち、ウェイクアップの目的のために使用されることを意図されているリソースブロック)上で近隣セルが電力の割り当てを提供するよう求める要求を送り出すことが可能である。T2は、WTRU/センサがページされる必要がある時点を示していると想定すると、T1は、ページングの瞬間の前に近隣セルからの情報の可用性を確実にするように、バックホール遅延に基づいて選ばれることが可能であり、そしてバックホール遅延は、プライマリーeNBと、要求されているセルとの間におけるサイト間距離に依存する。
【0223】
eNBが半永続的なスケジューリングを実行する場合、電力の割り当ては、非因果的な様式で近隣セルによって提供されることが可能である。さらに、特定のリソースブロック上でのプライマリーeNBによる電力の割り当てを明示的に要求する代わりに、近隣セルは、リソースブロックのさらに広いセット(それらが、関心のあるリソースブロックを含んでいるという条件で)の上での電力の割り当てを定期的に報告することが可能である。プライマリーeNBは、最新の受信された割り当て、または最後のいくつかのインスタンスにわたって受信された平均を、良好な推定として使用することができる。このスキームの利点は、正確さを犠牲にしてではあるが、プライマリーeNBが電力の割り当てを近隣に要求する必要があるページングの瞬間の前の黙示的な期限がないということである。
【0224】
ステップ2およびステップ3において、近い将来に関する電力使用情報が、近隣セルによって、それが準拠する所定の電力の割り当てに基づいて、または半永続的なスケジューリングメカニズムに基づいて提供されることが可能である。
【0225】
ステップ4において、ページングの瞬間での送信が、プライマリーeNBからWTRUまたはセンサへ送られることが可能である。
【0226】
ネットワークは、特定のクラスのデバイスをウェイクアップするために、システム情報メッセージ(例えばSIB-2、SIB-3)の一部としてグループ固有の一意のエネルギー署名をブロードキャストすることが可能である。ネットワークは、特定のデバイスをウェイクアップするために、(例えば、PCCH論理チャネル上でシグナリングされる)RRCメッセージの一部としてデバイス固有の一意のエネルギー署名をブロードキャストすることが可能である。ネットワークは、一意のエネルギー署名を伴うトラッキングエリア更新(TAU)コマンドを使用してシステム情報(例えばトラッキングエリアアイデンティティ、トラッキングエリアコードなど)をブロードキャストすることが可能である。デバイスが、パッシブ受信機を用いてTAUコマンドを受信し、一意のエネルギー署名を解釈して、システム情報にアクセスし、トラッキングエリア更新手順をトリガーすることが可能である。
【0227】
上述の説明は、IEEE802.11システムに適用されることが可能である。APが、専用ビーコンiを使用することが可能である。ビーコンフレームは、二重の目的であることが可能である。ビーコンフレームは、従来のビーコンフレームおよび/またはウェイクアップビーコンフレームであることが可能である。ウェイクアップビーコンフレームを構成するOFDMシンボルは、事前に構成されたサブキャリアのセットにおける一意のパイロットシーケンスを含み得る。ウェイクアップビーコンフレームは、一意のエネルギー署名を含み得る。
【0228】
STAが、パッシブ受信機を用いてウェイクアップビーコンフレームを受信し、そのビーコンフレームを構成するOFMDシンボルのサブキャリアの事前に構成されたセットにおける一意のパイロットシーケンスをデコードし、一意のエネルギー署名を解釈し、ウェイクアップ割り込みを生成することが可能である。
【0229】
以降の説明は、STAをウェイクアップするために専用ビーコンの送信を使用することを含む。専用ビーコンは、STAのために従来のビーコンフレームとしての役割を果たすことが可能であり、STAにおけるパッシブ受信機のために一意のエネルギー署名を伴うウェイクアップ信号としての役割を果たすことが可能である。
【0230】
図52を参照すると、専用ビーコンの送信を示す図が示されている。
図52は、STAが、APによって送信された専用ビーコンに気づかされることが可能であるメカニズムを示している。PHYによるビーコンフレームの送信中にOFDMシンボルのセット上で、
図52において示されているウェイクアップパイロットサブキャリアなどの事前に構成されたサブキャリアにおいて、一意のパイロットシーケンスが送信されることが可能である(例えば、長さ7のZadoff Chuシーケンス)。
【0231】
STAをウェイクアップするための署名シーケンスは、隣接していることまたは分散されていることが可能であるサブキャリアの事前に構成されたセット(例えば、ウェイクアップ署名サブキャリア)上で提供されることが可能である。
【0232】
ウェイクアップパイロットサブキャリア上での一意のウェイクアップパイロットシーケンスの存在は、現在のOFDMシンボルが、送信されている専用ビーコンフレームの一部であるということをSTAに気づかせることが可能である。従ってSTAは、ビーコンフレームをデコードするためのウェイクアップ署名サブキャリアを無視することができる。
【0233】
パッシブ受信機は、ウェイクアップサブキャリアからの信号をデコードすることが可能であり、デコードされた署名がそれ自体のウェイクアップ署名にマッチする場合には、STAにおけるアクティブTRXをウェイクアップすることが可能である。パッシブ受信機が従来の送信中にアクティブTRXをウェイクアップすることを防止するために(すなわち、誤アラームを防止するために)、セカンダリー受信機は、ウェイクアップキャリアにおける署名を、およびウェイクアップパイロットサブキャリアにおける一意のウェイクアップパイロットシーケンスの存在を探すことが可能である。
【0234】
図53を参照すると、専用ウェイクアップ信号の送信を示す図が示されている。専用ウェイクアップ信号は、時間におけるOFDMシンボルのグループを含み得る。この信号は、アクティブTRXをウェイクアップするためにSTAにおけるパッシブ受信機によって使用され得るウェイクアップコマンドに関連付けられている一意のエネルギー署名を送信するために使用され得る。この信号は、ビーコンの直前に送信されることが可能であり、またはメディアが空いているとAPが感知した場合はいつでも(例えば、
図53において示されている連続したビーコン送信間において)送信されることが可能である。上述されているように、ウェイクアップ受信機に対して、このOFDMフレームがそれら用に意図されているということを気づかせるために、および従来のSTAがこのフレームを破棄するために、一意の識別子(例えば、長さ7のZadoff Chuシーケンス)が存在することが可能である。
【0235】
個々のおよびグループでのウェイクアップ手順およびコリジョン回避が、本明細書において記述されている。従来のシステムにおいては、STAは、受信すべきデータをそれらが有しているかどうかを知るためにビーコン期間の少なくとも数倍でウェイクアップすることを必要とされる場合がある。以降の説明は、STAのサブセットのみを、それらのパッシブ受信機を使用してウェイクアップするための手順(すなわち、グループウェイクアップ手順)を含む。
【0236】
本明細書において記述されている方法は、必要とされる場合にのみSTAをウェイクアップすることに加えて、PS-POLLフェーズにおいて存在するであろう潜在的な問題である場合があるコリジョンを回避することが可能である。
【0237】
図54を参照すると、ウェイクアップコマンドエネルギー署名構成、STAウェイクアップ、およびデータ転送を示す図が示されている。以降で概説されている1つまたは複数のステップは、本明細書において提示されているのとは異なる順序で実行されることが可能であるということ、および1つまたは複数のステップが、以降で述べられているステップに付加されること、または以降で述べられているステップから除去されることが可能であるということを理解されたい。
【0238】
STAが仮眠状態に入る前に(すなわち、1に設定されている電力管理ビットを伴うnullフレームをSTAが送信した場合に)、APは、ウェイクアップコマンドエネルギー署名を動的に割り振ることが可能である。
【0239】
同じ署名が、仮眠状態に入りつつある複数のSTAに提供されることが可能である。このケースにおいては、署名は、複数のSTAをウェイクアップするためにAPによって使用され得る。あるいは、個々のSTAをウェイクアップするために、APによって、個々のSTAに対して一意の署名が構成されてよい。
【0240】
ビーコンがAPによって送信される前に、APは、それが、バッファリングされているデータを送ることを意図しているSTAをウェイクアップすることが可能である。STAは、以前に構成された一意の署名を伴うウェイクアップコマンドをAPが送信することによって、覚醒されることが可能である。
【0241】
その後、従来のPS-POLL手順が開始されることが可能である。従来のPS-POLL手順に対する1つの修正は、STAのサブセット(すなわち、STAのプライマリー受信機)のみがAPによって覚醒されておくことが可能であるということであり得る。
【0242】
APはSTAのサブセットをウェイクアップすることが可能であるが、STAにとって利用可能なデータを示すトラフィック情報マップ(TIM)は、従来のシステムから変更されない場合がある。これは、選択的なウェイクアップに起因してまだウェイクアップしていないその他のSTAに関する情報を有するデータまたはストレージアイテムをTIMが含んでいる結果であり得る。
【0243】
図54において示されている例示的なコールフローにおいては、両方のステーションSTA-1およびSTA-2がウェイクアップされることが可能である。しかしながらPS-POLLは、STA-1に関してのみ成功である場合がある。あるいは、STAは、配信される必要があるデータの優先度(例えば、AC_VI、AC_VOなど)に基づいて選択的にウェイクアップされることが可能であり、その優先度は、APによって知られることが可能である。
【0244】
従来のSTAは、スリープへ進む前に電力管理ビットを1に設定し得る。これは、STAがスリープモードに入ることになるということをAPが知ることを可能にし、それによってAPは、パケットをバッファリングすることができる。
【0245】
ウェイクアップサイクルごとに少量のデータを受信するSTAに関しては、デフォルトのオペレーションは、(いったんそれらがAPによってウェイクアップされると)指定された量の時間にわたって覚醒して、その後すぐに、「電力管理」メッセージを伴わずにスリープへ進むことであり得る。STAは、「M2Mモードオペレーション要求」というメッセージを送ることができ、それによってAPは、STAが一定量の時間にわたって覚醒した後にスリープへ進むことを要求しているということを知る。この構成は、STAがAPに要求することが可能な一度限りの構成であってよい。M2Mモードの変更を受け入れるために、APからSTAへの「M2Mモード確認」という確認メッセージが存在することが可能である。STAは、その後にそれがAPからのデータを有する場合には、ウェイクアップすることが可能である。STAが「M2Mモードオペレーション」をキャンセルしたい場合には、それは、データがAPによって配信されるまで、待たなければならない場合がある。あるいは、APは、STAをウェイクアップした後にT秒ごとに1回、M2Mモードのキャンセルを探して、それにポーリングを行うことが可能である。この場合、Tは、非常に大きな値であることが可能である。
【0246】
STAウェイクアップのための複数の署名シーケンスが、本明細書において記述されている。S={s0,s1,...sN}という署名シーケンスセットが、STAをウェイクアップするために割り振られることが可能であり、この場合、siは一意の署名シーケンスである。シーケンスsiのうちのいずれも、STAをウェイクアップするために使用され得るが、それぞれのシーケンスは、節電能力に別々のインパクトを及ぼすことになる。例えば、s0は、STAの1つのアクティブ受信チェーンを起動するために使用されることが可能であり、s1は、2つの受信チェーンを起動するために使用され得る、といった具合である。STAへ送られることになるトラフィックに応じて、APは、適切な署名シーケンスを呼び出すことが可能である。例えば、ビデオトラフィックがSTAへ配信されることになる場合には、APは、STAにおいて4つの受信チェーンをアクティブにすることになる署名シーケンスを呼び出すことが可能である。署名シーケンスセットが、プライマリー署名シーケンスとセカンダリー署名シーケンスとの連結として構築されることが可能である。ここでは、S=[Ap As]であり、この場合、Apは、(アクティブTRXをウェイクアップするための)基本署名シーケンスであり、Asは、STAの節電能力上の特定の機能を呼び出すために使用される
【0247】
【0248】
ビットの長さのセカンダリー署名シーケンスであることが可能である(この場合、Nは、署名セットにおけるシーケンスの数である)。
【0249】
本発明の特徴および要素は、実施形態において特定の組合せまたは順序で記述されているかもしれないが、それぞれの特徴または要素は、実施形態のその他の特徴および要素を伴わずに単独で、または本発明のその他の特徴および要素を伴って、もしくは伴わずに様々な組合せで使用され得る。
【0250】
本明細書において記述されているソリューションは、IEEE802.11、LTE、LTE-A、新無線(NR)、または5Gに固有のプロトコルを考慮しているが、本明細書において記述されているソリューションは、このシナリオに限定されず、その他の無線システムにも適用可能であるということが理解されることが可能である。
【0251】
特徴および要素が特定の組合せで上述されているが、それぞれの特徴または要素は、単独で、または他の特徴および要素との任意の組合せで使用され得るということを当技術分野における標準的な技術者なら理解するであろう。本明細書において記述されている方法は、コンピュータまたはプロセッサによって実行するためにコンピュータ可読媒体内に組み込まれているコンピュータプログラム、ソフトウェア、またはファームウェアで実施されることが可能である。コンピュータ可読媒体の例は、電子信号(有線接続または無線接続を介して送信される)およびコンピュータ可読ストレージ媒体を含む。コンピュータ可読ストレージ媒体の例は、ROM、RAM、レジスタ、キャッシュメモリ、半導体メモリデバイス、内蔵ハードディスクおよび取り外し可能ディスクなどの磁気メディア、光磁気メディア、並びにCD-ROMディスク、およびデジタル多用途ディスク(DVD)などの光メディアを含むが、それらには限定されない。WTRU、UE、端末、基地局、RNC、または任意のホストコンピュータにおいて使用するための無線周波数トランシーバを実施するために、ソフトウェアに関連付けられているプロセッサが使用され得る。