IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オーロラ フライト サイエンシズ コーポレーションの特許一覧

特許7611659航空機をナビゲートするための飛行経路を生成するためのシステムと方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-26
(45)【発行日】2025-01-10
(54)【発明の名称】航空機をナビゲートするための飛行経路を生成するためのシステムと方法
(51)【国際特許分類】
   G08G 5/80 20250101AFI20241227BHJP
   G01C 21/20 20060101ALI20241227BHJP
   B64D 45/00 20060101ALI20241227BHJP
【FI】
G08G5/04 A
G01C21/20
B64D45/00 A
【請求項の数】 15
【外国語出願】
(21)【出願番号】P 2020126893
(22)【出願日】2020-07-27
(65)【公開番号】P2021039744
(43)【公開日】2021-03-11
【審査請求日】2023-07-26
(31)【優先権主張番号】16/524,901
(32)【優先日】2019-07-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500461860
【氏名又は名称】オーロラ フライト サイエンシズ コーポレーション
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】ソーンダーズ, ジェフリー
(72)【発明者】
【氏名】ラングフォード, ジョン エフ.
(72)【発明者】
【氏名】ジュエル, ジェイソン ティー.
【審査官】西畑 智道
(56)【参考文献】
【文献】特開平11-271442(JP,A)
【文献】特開2010-095246(JP,A)
【文献】特開2011-037426(JP,A)
【文献】米国特許出願公開第2019/0011934(US,A1)
【文献】特開2000-272592(JP,A)
【文献】特開2019-015670(JP,A)
【文献】米国特許出願公開第2011/0213513(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/00-99/00
G01C 21/00-21/36
G01C 23/00-25/00
B64D 45/00
(57)【特許請求の範囲】
【請求項1】
航空機(100)をナビゲートするための飛行経路を生成する方法であって、
(702)前記航空機(100)を、前記航空機(100)の第1の軌道(410)の第1の離陸ウェイポイントに対応する所定のホバリング地点(408)で空中停止させること、
(704)前記航空機(100)に付属する一又は複数のセンサによって、前記第1の軌道(410)の第1の飛行経路の少なくとも一部分をスキャンすること、
(706)前記一又は複数のセンサにより得られるセンサデータを使用して、障害物(402)が、前記第1の離陸ウェイポイントで始まる前記第1の軌道(410)の前記第1の飛行経路を遮っていると決定すること、
(708)前記障害物(402)が前記第1の飛行経路を遮っていると決定することに応じて、
(i)前記センサデータを使用して、第2の離陸ウェイポイント(424)で始まるように前記第1の飛行経路を割り当てることを含む、前記第2の離陸ウェイポイント(424)を決定すること、及び
(ii)前記第2の離陸ウェイポイント(424)と整列するように前記飛行経路を並行移動させること及び前記障害物(402)が前記飛行経路を遮ることを回避するように前記飛行経路を回転させることによって、前記第2の離陸ウェイポイント(424)に従って前記第1の軌道(410)の前記第1の飛行経路を変更し、それにより第2の軌道(426)の第2の飛行経路を生成すること、並びに
(710)前記航空機(100)に、前記第2の離陸ウェイポイント(424)から前記第2の軌道(426)の前記第2の飛行経路を辿らせること
を含む方法。
【請求項2】
(708)前記第2の離陸ウェイポイント(424)を決定することが、
(712)前記センサデータを使用して、(i)候補となる第2の離陸ウェイポイント、(ii)前記候補となる第2の離陸ウェイポイントで始まる飛行経路、及び(iii)前記航空機(100)のサイズに関連付けられるクリアランスゾーンによって規定されるエリア(432)に含まれる障害物(402)の部分が実質的にないと決定すること、並びに
(714)前記エリア(432)内に含まれる前記障害物(402)の部分が実質的にないと決定することに基づいて、前記第2の離陸ウェイポイント(424)として前記候補となる第2の離陸ウェイポイントを選択すること
を含む、請求項1に記載の方法。
【請求項3】
前記第2の軌道(426)が、第1の飛行経路選択プロトコルに従って決定された離陸軌道であり、前記方法が、
(716)前記航空機(100)に、前記第2の離陸ウェイポイント(424)から前記第2の軌道(426)の前記第2の飛行経路を辿らせた後で、前記第2の軌道(426)の前記第2の飛行経路の終端で巡航ウェイポイントに到達させること、及び
(718)前記巡航ウェイポイントにおいて、前記第1の飛行経路選択プロトコルとは異なる第2の飛行経路選択プロトコルに従って巡航軌道のための飛行経路を選択すること
を更に含む、請求項1又は2に記載の方法。
【請求項4】
(724)降下ウェイポイントに到達するまで前記巡航軌道のための前記飛行経路を辿ること、及び
(726)前記降下ウェイポイントにおいて、前記第1の飛行経路選択プロトコル及び前記第2の飛行経路選択プロトコルとは異なる第3の飛行経路選択プロトコルに従って降下軌道のための飛行経路を選択すること
を更に含む、請求項3に記載の方法。
【請求項5】
前記第2の軌道が、一組の制約内で利用可能な一組の飛行経路から選択することを含む第1の飛行経路選択プロトコルに従って決定される離陸軌道(426)であり、前記方法が、
(730)前記航空機(100)に前記第2の離陸ウェイポイント(424)から前記第2の軌道(426)の前記第2の飛行経路を辿らせた後で、トリガイベントを検出すること、及び
(732)前記トリガイベントを検出することに応じて、RRT(Rapidly Expanding Random Tree)を使用して後続の飛行経路を生成及び選択することを含む第2の飛行経路選択プロトコルへと移行すること
を更に含む、請求項1又は2に記載の方法。
【請求項6】
(734)前記第1の軌道(410)を決定することを更に含み、(734)前記第1の軌道(410)を決定することが、
(736)複数の航空機の離陸の間に取られた複数の過去の軌道を示す情報を受け取ること、
(738)前記複数の過去の軌道に共通の特徴を決定すること、及び
(740)前記共通の特徴に基づいて前記第1の軌道(410)を生成すること
を含む、請求項1から5のいずれか一項に記載の方法。
【請求項7】
前記障害物(402)が前記第1の軌道(410)の前記第1の飛行経路を遮っていると決定することに応じて、
(742)前記航空機に、前記第2の離陸ウェイポイント(424)に対応する第2のホバリング地点で空中停止させること、
(744)前記航空機の環境を2回目にスキャンすること、及び
(746)前記第2の離陸ウェイポイント(424)からの前記第2の軌道(426)の前記第2の飛行経路を遮っている障害物がないと決定すること
を更に含み、
(710)前記航空機に、前記第2の離陸ウェイポイント(424)から前記第2の軌道(426)の前記第2の飛行経路を辿らせることが、(748)前記第2の離陸ウェイポイント(424)からの前記第2の軌道(426)の前記第2の飛行経路を遮っている障害物がないと決定することに応じて、前記航空機に、前記第2の離陸ウェイポイント(424)から前記第2の軌道(426)の前記第2の飛行経路を辿らせることを含む、
請求項1から6のいずれか一項に記載の方法。
【請求項8】
(708)前記第2の離陸ウェイポイント(424)を決定することが、(750)一組の所定の公称配向のうちのいずれかの所定の公称配向が前記障害物(402)を回避するかどうかを決定するために、前記所定のホバリング地点(408)で前記一組の所定の公称配向を通して前記第1の飛行経路を回転させることを含む、請求項1から7のいずれか一項に記載の方法。
【請求項9】
(708)前記第2の離陸ウェイポイント(424)を決定することが、
(752)前記障害物(402)を回避する所定の公称配向に到達するまで、前記所定のホバリング地点(408)で前記一組の所定の公称配向を通して前記第1の飛行経路を回転させること
を更に含む、請求項8に記載の方法。
【請求項10】
(708)前記第2の離陸ウェイポイント(424)を決定することが、
(754)前記一組の所定の公称配向の中に前記障害物(402)を回避する所定の公称配向がないと決定すること、
(756)前記第1の飛行経路を所定の公称ホバリング地点へと並行移動させること、及び
(758)前記障害物(402)を回避する所定の公称配向に到達するまで、前記所定の公称ホバリング地点で第2の組の所定の公称配向を通して前記第1の飛行経路を回転させること
を更に含む、請求項8に記載の方法。
【請求項11】
航空機(100)をナビゲートするための飛行経路を生成するためのシステムであって、
一又は複数のセンサと、
プロセッサ(104)及び前記プロセッサ(104)により実行可能な命令(108)を記憶するメモリ(106)を有するコンピューティング装置(102)と
を含む航空機(100)を含み、前記命令が、
前記航空機(100)を、前記航空機(100)の第1の軌道(410)の第1の離陸ウェイポイントに対応する所定のホバリング地点(408)で空中停止させ、
前記航空機(100)に付属する一又は複数のセンサによって、前記第1の軌道(410)の第1の飛行経路の少なくとも一部分をスキャンさせ、
前記一又は複数のセンサにより得られるセンサデータを使用して、障害物(402)が、前記第1の離陸ウェイポイントで始まる前記第1の軌道(410)の前記第1の飛行経路を遮っていると決定させ、
前記障害物(402)が前記第1の飛行経路を遮っていると決定することに応じて、
(i)前記センサデータを使用して、第2の離陸ウェイポイント(424)で始まるように前記第1の飛行経路を割り当てることを含む、前記第2の離陸ウェイポイント(424)を決定すること、並びに
(ii)前記第2の離陸ウェイポイント(424)と整列するように前記第1の飛行経路を並行移動させること及び前記障害物(402)が前記第1の飛行経路を遮ることを回避するように前記第1の飛行経路を回転させることによって、前記第2の離陸ウェイポイント(424)に従って前記第1の軌道(410)の前記第1の飛行経路を変更し、それにより第2の軌道(426)の第2の飛行経路を生成すること
を行わせ、且つ
前記航空機(100)に、前記第2の離陸ウェイポイント(424)から前記第2の軌道(426)の前記第2の飛行経路を辿らせる、
システム。
【請求項12】
前記一又は複数のセンサが光検知測距(LIDAR)装置(122)を含み、前記センサデータが、前記LIDAR装置(122)によって検出される三次元(3D)点群のデータを含む、請求項11に記載のシステム。
【請求項13】
ユーザインターフェース(110)を更に含み、前記第2の離陸ウェイポイント(424)を決定することが、
前記障害物(402)を回避する候補となる複数の第2の離陸ウェイポイントを決定すること、
前記ユーザインターフェース(110)によって、前記障害物(402)を回避する前記候補となる複数の第2の離陸ウェイポイントの各々において選択可能なオプションを提供すること、及び
前記ユーザインターフェース(110)によって、前記第2の離陸ウェイポイント(424)に対応する、選択された候補となる第2の離陸ウェイポイントの表示を受け取ること
を含む、請求項11又は12に記載のシステム。
【請求項14】
地上管制システムを更に含み、前記第2の離陸ウェイポイント(424)を決定することが、
前記地上管制システムから、前記航空機(100)の離陸のための許容可能な高さ及び配向の範囲を受け取ること、並びに
前記第2の離陸ウェイポイント(424)が前記許容可能な高さ及び配向の範囲内に含まれると決定すること
を含む、請求項11から13のいずれか一項に記載のシステム。
【請求項15】
命令を記憶する非一過性のコンピュータ可読媒体であって、前記命令は、コンピューティング装置(102)の一又は複数のプロセッサによって実行されると、前記コンピューティング装置(102)に、
航空機(100)を、前記航空機(100)の第1の軌道(410)の第1の離陸ウェイポイントに対応する所定のホバリング地点(408)で空中停止させること、
前記航空機(100)に付属する一又は複数のセンサによって、前記第1の軌道(410)の第1の飛行経路の少なくとも一部分をスキャンすること、
前記一又は複数のセンサにより得られるセンサデータを使用して、障害物(402)が、前記第1の離陸ウェイポイントで始まる前記第1の軌道(410)の前記第1の飛行経路を遮っていると決定すること、
前記障害物(402)が前記第1の飛行経路を遮っていると決定することに応じて、
(i)前記センサデータを使用して、第2の離陸ウェイポイント(424)で始まるように前記第1の飛行経路を割り当てることを含む、前記第2の離陸ウェイポイント(424)を決定すること、及び
(ii)前記第2の離陸ウェイポイント(424)と整列するように前記第1の飛行経路を並行移動させること及び前記障害物(402)が前記第1の飛行経路を遮ることを回避するように前記第1の飛行経路を回転させることによって、前記第2の離陸ウェイポイント(424)に従って前記第1の軌道(410)の前記第1の飛行経路を変更し、それにより第2の軌道(426)の第2の飛行経路を生成すること、並びに
前記航空機(100)に、前記第2の離陸ウェイポイント(424)から前記第2の軌道(426)の前記第2の飛行経路を辿らせること
を含む機能を実施させる、非一過性のコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
背景
本開示は、概して航空機の運航に関し、更に詳細には、航空機をナビゲートするための飛行経路を生成するためのシステムと方法に関する。
【背景技術】
【0002】
ヘリコプター又は垂直及び/又は短距離離着陸(V/STOL)航空機といった定位置でホバリングすることのできる航空機は、滑走路を使用する航空機とは異なる方式で離陸及び着陸にアプローチすることができる。特に、そのような航空機は、滑走路に関連付けられる経路に縛られず、離陸又は着陸の前にホバリング及び回転することができる。これにより、これら航空機は、複数の障害物を有する制限的環境において離陸及び/又は着陸することができる。
【0003】
定位置でホバリングすることのできる航空機を用いた有人飛行は、パイロットの経験及び直観に依存し、このような飛行の自動化は、特に離陸及び着陸の状況において、課題を提示する。例えば、システムは、航空機の安定性と滑らかな飛行経路とを維持して乗員の快適性を守りながら障害物を避け、また異なる飛行状況においてそれを行うことが期待される。自動化飛行経路計画のための既存のシステムと方法は、適合性、快適性、及び一貫性においてこれらのニーズを克服するために苦労すると思われる。
【0004】
求められているのは、特に離陸及び着陸の状況において、航空機をナビゲートするための飛行経路を自動的に生成するためのシステムである。
【発明の概要】
【0005】
一実施例において、航空機をナビゲートするための飛行経路を生成する方法が記載される。この方法は、航空機の第1の軌道の第1の離陸ウェイポイントに対応する所定のホバリング地点で航空機を空中停止させることを含む。方法は、航空機に付属する一又は複数のセンサにより、第1の軌道の第1の飛行経路の少なくとも一部分をスキャンすることを含む。方法は、一又は複数のセンサにより得られるセンサデータを使用して、障害物が、第1の軌道の第1の飛行経路を遮っていると決定することを含み、ここで第1の飛行経路は第1の離陸ウェイポイントで始まっている。方法は、障害物が第1の飛行経路を遮っていると決定することに応じて、センサデータを使用して、第2の離陸ウェイポイントで始まるように第1の飛行経路を割り当てることを含む第2の離陸ウェイポイントを決定することと、第2の離陸ウェイポイントと整列するように第1の飛行経路を並行移動させること及び障害物が第1の飛行経路を遮ることを回避するように第1の飛行経路を回転させることにより、第2の離陸ウェイポイントに従って第1の軌道の第1の飛行経路を変更し、それにより第2の軌道の第2の飛行経路を形成することとを含む。方法は、航空機に、第2の離陸ウェイポイントから第2の軌道の第2の飛行経路を辿らせることを含む。
【0006】
別の実施例では、航空機をナビゲートするための飛行経路を生成するためのシステムが記載される。このシステムは航空機を含む。航空機は、一又は複数のセンサと、プロセッサ、及び機能を実施するようにプロセッサにより実行可能な命令を記憶するメモリを有するコンピューティング装置とを含む。命令は、所定のホバリング地点で航空機を空中停止させるようにプロセッサにより実行可能であり、所定のホバリング地点は航空機の第1の軌道の第1の離陸ウェイポイントに対応する。命令は、航空機に付属する一又は複数のセンサにより第1の軌道の第1の飛行経路の少なくとも一部分をスキャンするように、プロセッサにより実行可能である。命令は、一又は複数のセンサにより得られるセンサデータを使用して、障害物が、第1の軌道の第1の飛行経路を遮っていると決定するようにプロセッサにより実行可能であり、ここで第1の飛行経路は第1の離陸ウェイポイントで始まっている。命令は、障害物が第1の飛行経路を遮っていると決定することに応じて、センサデータを使用して、第2の離陸ウェイポイントで始まるように第1の飛行経路を割り当てることを含む第2の離陸ウェイポイントを決定することと、第2の離陸ウェイポイントと整列するように第1の飛行経路を並行移動させること及び障害物が第1の飛行経路を遮ることを回避するように第1の飛行経路を回転させることにより、第2の離陸ウェイポイントに従って第1の軌道の第1の飛行経路を変更し、それにより第2の軌道の第2の経路を形成することとを行うように、プロセッサにより実行可能である。命令は、航空機に、第2の離陸ウェイポイントから第2の軌道の第2の飛行経路を辿らせるように、プロセッサにより実行可能である。
【0007】
別の実施例では、コンピューティング装置の一又は複数のプロセッサによって実行されるとコンピューティング装置に機能を実施させる命令を記憶する、非一過性のコンピュータ可読媒体が記載される。この機能は、航空機の第1の軌道の第1の離陸ウェイポイントに対応する所定のホバリング地点で航空機を空中停止させることを含む。機能は、航空機に付属する一又は複数のセンサにより、第1の軌道の第1の飛行経路の少なくとも一部分をスキャンすることを含む。機能は、一又は複数のセンサにより得られるセンサデータを使用して、障害物が、第1の軌道の第1の飛行経路を遮っていると決定することを含み、ここで第1の飛行経路は第1の離陸ウェイポイントで始まっている。機能は、障害物が第1の飛行経路を遮っていると決定することに応じて、(i)センサデータを使用して、第2の離陸ウェイポイントで始まるように第1の飛行経路を割り当てることとを含む第2の離陸ウェイポイントを決定することと、(ii)第2の離陸ウェイポイントと整列するように第1の飛行経路を並行移動させること及び障害物が第1の飛行経路を遮ることを回避するように第1の飛行経路を回転させることにより、第2の離陸ウェイポイントに従って第1の軌道の第1の飛行経路を変更し、それにより第2の軌道の第2の飛行経路を形成することとを含む。機能は、航空機に、第2の離陸ウェイポイントから第1の軌道の飛行経路を辿らせることを含む。
【0008】
上述の特徴、機能、及び利点は、様々な実施例において独立して実現可能であるか、又は他の実施例において組み合わせ可能である。実施例の更なる詳細は、下記の説明及び添付図面を参照することによって理解することができる。
【0009】
実施例の特性と考えられる新規の特徴は、特許請求の範囲に明記される。しかしながら、実施例、並びに好ましい使用モード、それらの更なる目的及び説明は、添付図面と併せて、本開示の実施例についての以下の詳細な説明を参照「することによって最もよく理解されるだろう。
【図面の簡単な説明】
【0010】
図1A】例示的一実装態様による航空機のブロック図である。
図1B】例示的一実装態様による、航空機の軌道生成モジュールのフロー図である。
図2】例示的一実装態様による、離陸状況にある航空機を示している。
図3】例示的一実装態様による、着陸状況にある航空機を示している。
図4A】例示的一実装態様による、別の離陸状況にある航空機の側面図である。
図4B】例示的一実装態様による、別の離陸状況にある航空機の上面図である。
図5】例示的一実装態様による、別の着陸状況にある航空機を示している。
図6】例示的一実装態様による、別の着陸状況にある航空機を示している。
図7】例示的一実装態様による、離陸航空機をナビゲートするための飛行経路を生成する方法のフロー図である。
図8】例示的一実装態様による、図7に示される方法に使用される別の方法のフロー図である。
図9】例示的一実装態様による、図7に示される方法に使用される別の方法のフロー図である。
図10】例示的一実装態様による、図5及び図9に示される方法に使用される別の方法のフロー図である。
図11】例示的一実装態様による、図7及び図9に示される方法に使用される別の方法のフロー図である。
図12】例示的一実装態様による、図7及び図9に示される方法に使用される別の方法のフロー図である。
図13】例示的一実装態様による、図7図9、及び図12に示される方法に使用される別の方法のフロー図である。
図14】例示的一実装態様による、図7に示される方法に使用される別の方法のフロー図である。
図15】例示的一実装態様による、図7に示される方法に使用される別の方法のフロー図である。
図16】例示的一実装態様による、図7に示される方法に使用される別の方法のフロー図である。
図17】例示的一実装態様による、図7に示される方法に使用される別の方法のフロー図である。
図18】例示的一実装態様による、図7及び17に示される方法に使用される別の方法のフロー図である。
図19】例示的一実装態様による、図7及び17に示される方法に使用される別の方法のフロー図である。
【発明を実施するための形態】
【0011】
これより、添付図面を参照して、開示される実施例についてより網羅的に説明する。添付図面に示されているのは、開示される実施例の一部であってすべてではない。実際に、複数の異なる実施例が記載されており、これらはここに明記される実施例に限定されると解釈すべきではない。むしろ、これら実施例は、本開示が包括的で完全であるように、且つ本開示の範囲が当業者に十分に理解されるように記載される。
【0012】
実施例には、航空機をナビゲートするための飛行経路を生成するためのシステムと方法が記載される。更に詳細には、それを自動的に行うための方法とシステムが記載される。以下の記載の目的のために、用語「自動的に」又は「自律的に」は、ユーザ入力及び/又は命令なしで、センサデータ、記憶された情報、機械学習技法等に基づき、プログラムコードによって機能を実行することを含み得る。このような状況では、機能は、ユーザアクションによりなんらかの地点で促された場合、依然として自動的または自律的と称される。
【0013】
実施例において、航空機は離陸のための所定の軌道を使用する。所定の軌道は、巡航高度に向かう航空機の上昇を、予測可能に、確実に、且つ快適に促進することができる。換言すれば、所定の軌道は、人間のパイロットの軌道と類似している。しかしながら、離陸時に、航空機、特に滑走路を使用しない航空機は、木、丘、構造物等といった種々の障害物に遭遇し得る。このような障害物を認識して回避することにより、航空機はこのような対象物に衝突することなく上昇することができる。しかしながら、これを自動的に行うことは、航空機に不安定又は不均一な経路を取らせることになり、それにより航空機内のアイテムが移動して乗員の快適性が低下する。更に、所定の軌道の飛行経路を変更することによりこれら障害物を回避することは、障害物によっては、飛行経路が未試験の又は予測可能性の低いものになり得る。したがって、実施例において、航空機は離陸に関連付けられるウェイポイントを変更し得るが、そうでない場合は所定の軌道の飛行経路を維持することができる。このように、快適性又は信頼性を犠牲にせずに航空機が離陸することを可能にする実施例が記載される。
【0014】
さらなる実施例では、飛行経路選択のプロトコルは、航空機の飛行状況に応じて変化し得る。例えば、航空機は、離陸のために第1のプロトコルを、巡航の間に第2のプロトコルを、着陸の間に第3のプロトコルを、それぞれ使用することができる。例えば、離陸の間に、航空機は、一組の制約(例えば、計算リソースを節約するための)内において一組の可能な飛行経路からの選択を行う飛行経路の生成及び選択への強行アプローチを使用することができ、巡航の間に、航空機は、飛行経路の生成及び選択のためのRRT(Rapidly Expanding Random Tree)を使用することができ、着陸の間に、航空機は、強行アプローチとRRTアプローチとの組み合わせを使用することができる。このように、それぞれの所与の状況に特に適したプロトコルを使用するロバストな飛行経路ソリューションを可能にする実施例が記載されている。
【0015】
ここで図面を参照すると、図1Aは、例示的な一実装態様による、航空機100のブロック図を示している。航空機100は、コンピューティング装置102、ナビゲーションシステム112、障害物検出システム120、軌道生成システム128、及びステアリング/ホバリング機構132を含む。他の装置、システム、装置、モジュール、ソフトウエア、データ記憶部等も含めることができる。更に、実施例では、図1Aを参照して記載される種々の構成要素は、単一のコンピューティング装置又はシステムに統合することができるか、更に別個の構成要素に分割することができるか、又はそうでない場合はここに記載されるものと同様の機能性を達成するように構成することができる。更に、種々のシステム、装置、及び機構は、ソフトウエア又はハードウエアに実装することができる。
【0016】
コンピューティング装置102は、一又は複数のプロセッサ104、メモリ106、命令108、及びユーザインターフェース110を含む。一又は複数のプロセッサ104は、汎用プロセッサ又は特殊用途向けプロセッサ(例えば、デジタル信号プロセッサ、特定用途向け集積回路等)であってよい。一又は複数のプロセッサ104は、メモリ106に記憶された、コンピューティング装置102と、ここに記載される関連のシステム及び方法との機能性を提供するように実行可能な命令108(例えば、コンピュータ可読プログラム命令)を実行するように構成することができる。
【0017】
メモリ106は、プロセッサ(複数可)104によって読み取り又はアクセス可能な一又は複数のコンピュータ可読記憶媒体の形態を含む又はとることができる。コンピュータ可読記憶媒体は、揮発性及び/又は不揮発性ストレージ構成要素、例えば光メモリ、磁気メモリ、有機メモリ若しくはその他のメモリ、又はディスク記憶装置を含むことができ、この構成要素の全部又は一部をプロセッサ(複数可)104に統合することができる。メモリ106は、非一過性のコンピュータ可読媒体と考えられる。いくつかの実施例では、メモリ106は、単一の物理的装置(例えば、一つの光メモリ、磁気メモリ、有機メモリ、若しくは他のメモリ又はディスク記憶ユニット)を用いて実現可能であり、他の実施例では、メモリ106は二つ以上の物理的装置を用いて実現することができる。このように、メモリ106は非一過性のコンピュータ可読記憶媒体であり、プロセッサ104によって実行可能な命令108はメモリ106に記憶される。命令108は、コンピュータ可読コードを含み、ここに記載される機能性を達成するためにプロセッサ104によって実行することができる。
【0018】
ユーザインターフェース110は、マウス、キーボード、タッチスクリーン、マイク、ジェスチャ認識システム、これらの組み合わせ、又はユーザ入力を受け取る他のいずれかの手段を含み得る。特に、ユーザインターフェース110は、例えば、航空機100のパイロット、又は航空機100の遠隔技術者から、入力を受け取るように構成することができる。
【0019】
図1Aに示されるように、コンピューティング装置102は、ナビゲーションシステム112、障害物検出システム120、軌道生成システム128、及びステアリング/ホバリング機構132と通信可能に連結される。図1Aには示されていないが、航空機100のこれら構成要素の各々は、上記の一又は複数のプロセッサ104、メモリ106、及び命令108と同様に構成されたプロセッサ(複数可)、メモリ、及び命令を含んでもよいが、各々が別個の機能性を達成するように実行可能な命令を含んでもよい。更に、これら構成要素は図では直接通信するように示されていないが(むしろ、コンピューティング装置102を介して通信するように示されている)、これら構成要素の各々は、互いに直接通信することができるか、又は互いから通信を受け取ることなく独立して動作することができる。
【0020】
ナビゲーションシステム112は、全地球測位システム(GPS)114、慣性ナビゲーションシステム(INS)116、及び慣性測定ユニット(IMU)118を含む。ナビゲーションシステム112及び/又はその構成要素のうちの一又は複数は、空機100の位置、配向、及び高度を決定するように構成される。更に詳細には、GPS114、INS116、及びIMU118のうちの一又は複数は、航空機100の位置、配向、及び高度を示すセンサデータを取得することができる(図示されていないが、例えば高度計も含まれてよい)。この情報は、未処理のセンサデータの形態で、又は航空機100の位置、配向、及び高度を表す標的情報として、コンピューティング装置102に送信され得る。例えば、ナビゲーションシステム112は、簡略化された表現のセンサデータを送信することができる。後述するように、航空機100のコンピューティング装置102及び/又は一又は複数の追加的構成要素は、航空機100の飛行経路を生成及び選択するうえでこの情報を使用することができる。
【0021】
障害物検出システム120は、光検知測距(LIDAR)装置122、画像取得装置124(例えば、カメラ、光センサアレイ、又は別のイメージング装置若しくはシステム)、及びレーダ装置126を含む。他の装置も含まれてよい。障害物検出システム120及び/又はその構成要素のうちの一又は複数は、航空機100の環境を示すセンサデータを取得するように構成される。例えば、LIDAR装置、画像取得装置、及びレーダ装置126のうちの一又は複数は、航空機100を取り囲むエリア、例えば計画された飛行経路に対応するエリアを周期的にスキャンし、その環境内のいずれかの対象物又はその不在を示すデータを取得することができる。センサデータは、三次元(3D)点群データ、画像データ、又は対象物(例えば、障害物)が存在するかどうかを示す他のデータを含むことができる。未処理のセンサデータの形態の、又は航空機100を取り囲む環境を示す標的情報としてのこの情報は、コンピューティング装置102に送信され得る。例えば、障害物検出システムは、簡略化された表現のセンサデータ、例えば検出された障害物の相対座標を送信することができる。後述するように、航空機100のコンピューティング装置102及び/又は一又は複数の追加的構成要素は、航空機100の飛行経路を生成及び選択するうえでこの情報を使用することができる。
【0022】
軌道生成システム128は、軌道決定モジュール130を含む。生成システムは、航空機が辿る飛行経路を含む軌道を決定するために、ナビゲーションシステム112から、及びコンピューティング装置102から、情報を受け取ることができる。軌道生成システム128は、独立型のコンピューティング装置とすることができるか、又は代替的にコンピューティング装置102、ナビゲーションシステム112、又は航空機100の他のいずれかの構成要素の一部として含まれ得る。軌道生成システム128及び軌道決定モジュール130に関する更なる詳細は、図1Bを参照して後述される。
【0023】
ステアリング/ホバリング機構132は、航空機100の一又は複数の回転翼、スラスタ、安定板、エルロン、エレベータ、又はその他の制御可能な操作装置を含み得る。コンピューティング装置102は、航空機100の決定された軌道及び/又は飛行経路の態様を有効にするために、ステアリング/ホバリング機構132に制御信号を送ることができる。
【0024】
図1Bは、例示的一実装態様による、航空機100の軌道決定モジュール130のフロー図である。特に、図1Bは、軌道決定モジュール130を使用して軌道を決定するための簡略化された方法を記載する論理図である。軌道決定モジュール130は、軌道生成システム128上のメモリに記憶されて、図1Bに示される機能性を実施するように実行可能な命令を有するソフトウエアプログラムとすることができる。この機能性の態様を表すフロー図は、ブロック134-150を含む。
【0025】
ブロック134において、機能は、ナビゲーションシステム112から受け取られた航空機100の位置、配向、及び高度のうちの一又は複数、又はコンピューティング装置102から受け取られた命令を示す情報を使用して、航空機100の飛行状況を決定することを含む。
【0026】
図1Bは、離陸状況、巡航状況、又は着陸状況を示しているが、他の種類の状況も可能である。例えば、軌道の生成及び選択の方法を決定するための別個の状況を有するというよりは、そのような決定はアナログでもよく、高度、速度、回転速度、ユーザ入力、及び/又は他の因子といった様々な因子に種々の重みを適用して、軌道の生成及び選択プロトコルの種類を決定することができる。実施例では、これには、所与の各軌道から生じる最小回転ジャーク及び/又は線形ジャークの所望の出力を有する様々な軌道ソリューションを互いに対して評価するコスト関数が含まれる。
【0027】
図1Bに戻ると、ブロック136において、機能は、離陸状況において、障害物が存在するかどうかを決定することを含む。これには、障害物検出システム120からセンサデータを受け取ること、又はコンピューティング装置102から命令を受け取ることが含まれる。障害物が検出されていない場合、ブロック144で所定の離陸軌道が維持され得る(即ち変更なし)。障害物が検出されている場合、強行アプローチ142を使用して離陸のための更新ウェイポイントを決定することができる。本開示の文脈では、所定の離陸軌道は、第1の飛行経路を有する第1の軌道とすることができ、更新ウェイポイントに従って飛行経路を変更することは、第2の軌道の第2の飛行経路を形成することと言うことができる。第2の飛行経路が形成されても、障害物を回避しながら離陸の間の安定性と快適性を維持するために、この飛行経路と第1の飛行経路との相違は一部の点のみとすることができる。例えば、第2の飛行経路は、以下に更に記載されるように、第1の飛行経路を回転及び/又は並行移動させたバージョンであり得る。本開示の文脈では、強行アプローチは、一組の制約内で利用可能な各飛行経路からの選択を指し得る。例えば、離陸状況における一組の制約には、離陸のための所定のホバリング地点、離陸のための所定の軌道の飛行経路、及び航空機100のサイズに関連付けられるクリアランスゾーンが含まれる。
【0028】
一部の状況下では、利用可能な各飛行経路からの選択は、計算上タキシングであり得る。しかしながら、適当な制約を伴う離陸状況では、これはある程度改善される。例えば、利用可能な飛行経路は、最初、下方への飛行経路を妨げる地表により制約を受ける。候補となる飛行経路を、例えば、航空機100の所定の軌道の飛行経路を取り囲むゾーンにおいて利用可能な飛行経路のサブセットに更に制限することにより、計算上の制約を低減し、飛行経路ソリューションを高速化することができる。
【0029】
ブロック138では、機能は、巡航状況において、障害物が存在するかどうかを決定することを含む。これは、障害物検出システム120からセンサデータを受け取ること、又はコンピューティング装置102から命令を受け取ることを含み得る。障害物が検出されていない場合、又は障害物が検出されている場合、軌道決定モジュール130は、RRTアプローチ146を使用して飛行経路を生成及び選択することができる。実施例では、これには、航空機100の前方の使用可能なスペースのランダム選択を使用することが含まれる。この文脈において、使用可能とは、航空機100の現在の飛行経路を取り囲む、障害物のないスペースを指し得る。実施例では、様々な種類のアプローチ、例えばRRT*アルゴリズム、Parti-game指向RRT(PDRRT)、閉ループ速探索ツリー(CL-RRT)、速探索ランダムグラフ(RRG)、ヴォロノイ図式、可視グラフ、Receding Horizon運動計画、又は経路生成及び/又は選択のための他のアルゴリズムを使用することができる。このようなアプローチは、飛行経路の多数(例えば数千)の使用可能なオプションが存在するオープンスペースを通して飛行経路を素早く選択するために適している。
【0030】
ブロック140では、機能は、着陸状況において、障害物が存在するかどうかを決定することを含む。これには、障害物検出システム120からセンサデータを受け取ること、又はコンピューティング装置102から命令を受け取ることが含まれる。障害物が検出されていない場合、ブロック150で所定の着陸軌道が維持される(即ち変更なし)。障害物が検出されている場合、ブロック148では、機能は、離陸のための更新ウェイポイントを決定することを含む。例えば、強行アプローチは、第1に又は最初に、軌道を生成及び選択するために使用することができ、ブロック148においては、強行アプローチを使用して継続する(ブロック152)か、又は特定の状況で強行アプローチを改良するか又は無効にするRRTアプローチに切り替える(ブロック154)という意思決定を行うことができる。
【0031】
このような状況と、軌道の生成及び選択のさらなる説明を以下に記載する。以下の開示の目的のために、軌道は、航空機100の速度と航空機100の経路とに関し、対応する飛行経路を規定するスプラインを形成するように接続される複数の地点を使用して規定され得る。飛行経路に沿った特定の地点には、飛行状況を変更する前に航空機100が到達する目標を表すウェイポイントが含まれ得る。例えば、航空機100のミッションには、航空機100が離陸を開始する離陸ウェイポイント、所定の離陸軌道の終端の巡航ウェイポイント、航空機が着陸への移行を開始する降下ウェイポイント、及び所定の着陸軌道の終端の着陸ウェイポイントが含まれる。これらについては図2、3、4A、4B、5、及び6に関連して以下で更に言及する。
【0032】
図2は、例示的一実装態様による、離陸状況200にある航空機100を示している。特に、図2は、航空機100が障害物に遭遇しない例示的シナリオを示す。離陸状況200では、航空機は、最初は地表202に位置し、所定の離陸軌道210が始まる所定のホバリング地点208へのアプローチを開始する。離陸地点204から、航空機100は、その位置が並行移動して所定のホバリング地点208に到達する並行移動経路206を辿る。所定のホバリング地点208は、航空機100の離陸ウェイポイントに対応する。所定のホバリング地点208において、又はその前で、航空機100は回転して所定の離陸軌道210の飛行経路の方向と整列することができる。所定のホバリング地点に到達すると、障害物検出システム120は、所定の離陸軌道210の方向(例えば、部分的には航空機100のサイズによって規定される航空機100の前方のエリア)か、又は更に一般的には、航空機100を取り囲む環境内をスキャンして、障害物の一部分が航空機100による所定の離陸軌道210の飛行経路の使用を遮るかどうかを決定することができる。
【0033】
本例示的シナリオでは、障害物は検出されず、航空機100は所定の離陸軌道210に沿って進み続ける。換言すれば、航空機100は所定の離陸軌道210を維持する。上述のように、軌道は、集合して所定の離陸軌道210を描くスプラインを形成するスペース内の複数地点における、一又は複数の地点(例えば、地点212及び214)により規定される。
【0034】
実施例では、所定の離陸軌道210を形成することは、航空機100及び/又は他の航空機の有人飛行を使用して訓練される機械学習アルゴリズムに従って決定することができる。他の実施例では、所定の離陸軌道210は、航空機100の複数の過去の飛行を合成することにより決定することができる。また別の実施例では、所定の離陸軌道210は、一又は複数の飛行パラメータ、例えば離陸の間の線形ジャークを最小化するためにシミュレートされた力データを使用して決定され得る(例えば、離陸の間に一定又はほぼ一定の加速度等を目指して)。更なる実施例では、所定の離陸軌道210は、ユーザインターフェース110を介してユーザにより設定され得る。所定の軌道を形成する他の方法も可能である。
【0035】
図3は、例示的一実装態様による、着陸状況300にある航空機100を示している。特に、図3は、航空機100が障害物に遭遇しない例示的シナリオを示す。着陸状況300では、航空機100は、ベクトル304及び306により規定され、着陸ウェイポイント306で終了する所定の着陸軌道302を辿る。着陸ウェイポイント308では、航空機100は、航空機100が地表202と接触する着陸地点312まで並行移動経路310を辿る。所定の着陸軌道302を辿る間に、障害物検出システム120は周期的に障害物をスキャンする。この例示的シナリオでは障害物は検出されていないので、航空機100は所定の着陸軌道302を維持する。
【0036】
実施例では、所定の着陸軌道302を形成することは、図2を参照して上述した所定の離陸軌道210の形成と同じようにして形成され得る。特に、所定の着陸軌道は、一定又はほぼ一定のレートで減速するように形成することができる。
【0037】
図4Aは、例示的一実装態様による、別の離陸状況400にある航空機100の側面図である。特に、図4Aは、航空機100が障害物402を検出する例示的シナリオを示している。本実施例では、航空機100は、離陸地点404から地表202を出発する。航空機100は所定のホバリング地点408まで並行移動経路406を辿る。本実施例では、航空機100は、所定のホバリング地点408における障害物をスキャンし、図では樹木として表されている障害物402を検出する。障害物402は地点412及び414によって規定される第1の軌道410と交差し、したがって、離陸ウェイポイントと対応するホバリング地点を変更するべきであることが決定される。
【0038】
離陸ウェイポイントを変更するために、航空機100は、一連の公称ホバリング地点及び配向を、そのようなホバリング地点及び/又は配向が障害物を回避するとみなされるまで反復し、それらのいずれかが障害物を回避するかどうかを決定することができる。例えば、これには、所定の増分(例えば、5度の増分)で、所定の範囲の配向(例えば第1の軌道410のいずれかの側へ15度)内で回転することが含まれる。この状況では、所定の離陸軌道(例えば、第1の軌道410)は、障害物を回避する公称配向と一致するように軌道を回転及び/又は並行移動させずに維持され得る。このようにして、いずれの飛行経路が考慮及び/又は選択されるかを制限する離陸軌道生成への強行アプローチ。実施例では、これには、航空機100を物理的に回転及び並行移動させること、及び航空機100を回転及び並行移動させながら、各公称地点において環境をスキャンすることが含まれる。他の実施例では、このような回転及び/又は並行移動は、障害物検出システム120によって得られたセンサデータを実際に使用して実施することができる。
【0039】
本実施例では、航空機100は、所定のホバリング地点408における一連の公称配向を通して回転するが、公称配向のいずれもが障害物402を回避しない。このプロセスは、地点420及び422によって規定される公称軌道418に従い第2のホバリング地点416において、更に地点428及び430によって規定される第2の軌道426に従い第3のホバリング地点424において、繰り返される。本実施例では、第3のホバリング地点424において、及び航空機100の公称配向で、障害物を回避する離陸ウェイポイントが決定される。したがって、航空機100は、ホバリング地点424から第2の軌道426を辿る。
【0040】
図4Bは、例示的一実装態様による、別の離陸状況400にある航空機100の上面図である。特に、図4Bは、障害物402の回避を可能にする離陸ウェイポイントを決定するために、航空機100がどのように公称配向を通して回転するかを表している。図4Bに示されるように、本実施例では、地点412及び414によって規定される第1の軌道410と、地点420及び422によって規定される公称軌道418とは、航空機100を障害物402と交差させる。しかしながら、地点428及び430によって規定される第2の軌道426に対応するホバリング地点424は交差せず、したがって離陸のための離陸ウェイポイントとして選択される。
【0041】
障害物が航空機100を遮らないと決定することには、航空機100の現在位置と障害物402の検出位置とを比較することと、候補となる離陸ウェイポイント(例えば、ホバリング地点424)、候補となる離陸ウェイポイントで始まる飛行経路(例えば、第2の軌道426に対応する飛行経路)、及び航空機のサイズに関連付けられるクリアランスゾーンによって規定されるエリア432内部に含まれる障害物の部分は実質的にないと決定することとを含む。例えば、航空機100の回転翼は25メートルであり、クリアランスゾーンは更なるクリアランス(例えば5メートル)を含む。このように、離陸ウェイポイントを選択することは、航空機100のクリアランスゾーンに従って決定することができる。
【0042】
図5は、例示的一実装態様による、別の着陸状況500にある航空機100を示している。特に、図5は、着陸への強行アプローチを使用する航空機100を示す。図5に示されるように、航空機100は、地点516、518、及び520によって規定される所定の軌道514上で開始し、着陸ウェイポイントに対応するホバリング地点510で終了する。しかしながら、降下の間に、航空機100は、所定の軌道514を遮る障害物402を検出する。着陸状況500において、航空機100は、飛行経路選択プロトコルを使用して、異なる軌道を生成及び選択することができる。特に、着陸状況500に対応するプロトコルは、最初に強行アプローチを使用すること、及び強行アプローチが満足のゆく軌道を提供できない場合に、次いでRRTアプローチを使用することを含む。このプロトコルの他の実施例では、強行アプローチ又はRRTを同時に使用してそれらを比較し、どちらがより望ましいかを決定することができる。例えば、航空機100を浮揚状態に保つことに関連付けられる更なる制約(例えば速度及びノーズ角)内で、各予測軌道に対応する地点を、低線形ジャークと低回転ジャークを優先するように重み付けされるコスト関数に入力することができる。他の実施例では、それぞれの軌道の各々は、訓練済みの機械学習モデルを使用して評価されてもよい。
【0043】
定性的に、障害物の上を通過する時には強行アプローチの方が通常RRTより性能が高く、障害物の周囲を通過する時にはRRTアプローチの方が強行アプローチより性能が高い。したがって、実施例の目的のために、着陸シナリオ500では、地点504、506、及び508によって規定される着陸軌道502が生成及び選択される。このように、実施例では、航空機100、及び更に詳細にはコンピューティング装置102は、障害物検出システム120を使用して、障害物が現状航空機100の底部より下にあると決定し、これに応じて新規の軌道を生成するために(例えば、軌道を一時的に平坦にするために)強行アプローチを選択することができる。反対に、コンピューティング装置102は、障害物検出システム120を使用して、障害物が現状航空機100の前部の正面にあると決定し、これに応じて新規の軌道を生成するために(例えば一次的に軌道を側方に移動させる)RRTアプローチを選択することができる。着陸状況用のプロトコルを操作する他の実施例が可能である。
【0044】
図6は、例示的一実装態様による、別の着陸状況600にある航空機100を示している。特に、図6は、障害物402を側方に回避する航空機100の上面図を示している。本実施例では、ホバリング地点616に続く地点620、622、624、626、628、及び630によって規定される所定の軌道618は、障害物402と交差する。本実施例では、障害物402は航空機100の真正面にあり(即ち、航空機100の底部の下でなく)、そのためRRTアプローチに従う側方への移動が適切であると決定される。特に、RRTアプローチは、地点604、606、60、610、612、及び614によって規定され、ホバリング地点616で終了する着陸軌道602を生成する。着陸軌道プロトコルに従って強行アプローチに優先してRRTアプローチを選択することは、図5を参照して上述したように実行することができる。
【0045】
図7は、例示的一実装態様による、航空機100をナビゲートするための離陸飛行経路を生成する方法700のフロー図である。図7に示される方法700は、図1Aに示される航空機100、又は図1Aを参照して記載されたコンピューティング装置102等の航空機100の構成要素に使用され得る方法の一実施例を提示している。更に、装置又はシステムは、図7に提示される論理的機能を実施するように使用又は構成され得る。場合によっては、装置及び/又はシステムの構成要素は機能を実施するように構成され、それらはそのような実施を可能にするように(ハードウエハ及び/又はソフトウエアを用いて)実際に構成及び構築される。他の実施例では、特定の方式で操作される時などには、装置及び/又はシステムの構成要素は、この機能の実施に適合するように、同実施が可能であるように、又は同実施に適するように、構成され得る。方法700は、ブロック702~204のうちの一又は複数により図解されているように、一又は複数の操作、機能、又は動作を含み得る。これらブロックは、順番に示されているが、平行して実行されてもよく、及び/又はここに記載されている順序とは異なる順序で実行されてもよい。更に、種々のブロックは、所望の実装態様に基づいて、組み合わせてブロックの数を減らしたり、分割してブロックを追加したり、省いたりすることができる。
【0046】
ここに開示されるこのプロセス及び方法、並びに他のプロセス及び方法について、フロー図は本実施例の可能な一実装態様の機能性及び操作を示していることを理解されたい。これに関して、各ブロック又は各ブロックの一部分は、プロセスにおいて特定の論理的機能又はステップを実装するためのプロセッサによって実行可能な一又は複数の命令を含む、プログラムコードのモジュール、セグメント、又は一部分を表し得る。プログラムコードは、例えば、ディスクドライブ又はハードドライブを含む記憶デバイスといった、任意のタイプのコンピュータ可読媒体又はデータ記憶装置に記憶されてよい。更に、プログラムコードは、機械可読形式でコンピュータ可読記憶媒体に、又は他の非一過性媒体若しくは製造品に符号化することができる。コンピュータ可読媒体は、例えば、レジスタメモリ、プロセッサキャッシュ、及びランダムアクセスメモリ(RAM)のようなデータを短期間記憶するコンピュータ可読媒体などの、非一過性のコンピュータ可読媒体又はメモリを含み得る。コンピュータ可読媒体は、例えば、読み出し専用メモリ(ROM)、光学又は磁気ディスク、コンパクトディスク読み出し専用メモリ(CD-ROM)のような二次的又は永続的な長期的記憶装置などの、非一過性媒体も更に含み得る。コンピュータ可読媒体は、任意の他の揮発性又は非揮発性のストレージシステムであってもよい。コンピュータ可読媒体は、例えば、有形のコンピュータ可読記憶媒体と考えることができる。
【0047】
加えて、図7の各ブロック又は各ブロックの一部分、及びここに開示される他のプロセス及び方法における各ブロック又は各ブロックの一部分は、プロセス内で特定の論理的機能を実施するために、有線の回路を表している。本開示の実施例の範囲内には代替的な実装態様が含まれ、これら実施例においては、当業者であれば理解するように、関連する機能性に応じて、図示又は説明される順序とは異なる順序(ほぼ同時または逆順を含む)で、機能が実行され得る。
【0048】
ブロック702では、この方法700は、航空機の第1の軌道410の第1の離陸ウェイポイントに対応する所定のホバリング地点408に航空機100を空中停止させることを含む。これは、図4A及び4Bの例示と、対応する記載に従って実施することができる。
【0049】
ブロック704では、方法700は、航空機100に付属する一又は複数のセンサにより、第1の軌道410の第1の飛行経路の少なくとも一部分をスキャンすることを含む。例えば、第1の飛行経路の一部分をスキャンすることは、例えば、図1Aを参照して上述したように、障害物検出システム120によって実施することができる。
【0050】
ブロック706では、方法700は、一又は複数のセンサにより得られるセンサデータを使用して、障害物402が、第1の軌道410の第1の飛行経路を遮っていると決定することを含み、ここで第1の飛行経路は第1の離陸ウェイポイントで始まっている。障害物402が第1の飛行経路を遮っていると決定することは、航空機100の現在位置と障害物402の検出位置とを比較すること、及び障害物402の少なくとも一部分が、航空機のサイズに関連付けられるクリアランスゾーン100に対応するエリア432内部に含まれると決定することを含み得る。
【0051】
ブロック708では、方法700は、障害物402が第1の飛行経路を遮っていると決定することに応じて、(i)センサデータを使用して、第2の離陸ウェイポイントで始まるように第1の飛行経路を割り当てることを含む、第1の軌道410の第2の離陸ウェイポイントを決定することと、(ii)第2の離陸ウェイポイントと整列するように第1の飛行経路を並行移動させること及び障害物402が第1の飛行経路を遮ることを回避するように第1の飛行経路を回転させることにより、第2の離陸ウェイポイントに従って第1の軌道の第1の飛行経路を変更し、それにより第2の軌道426の第2の飛行経路を形成することとを含む。これは、図4A及び4Bの例示と、対応する記載に従って実施することができる。例えば、第2の軌道426は、第2の離陸ウェイポイントから離陸するために第1の軌道410を回転及び/又は並行移動させることにより第1の軌道410の第1の飛行経路を変更することに対応し得る。上記のように、これには、それ以外の場合に、離陸の安定性及び快適性を守るために航空機100の離陸のための所定の軌道を維持することが含まれ得る。
【0052】
ブロック710では、方法700は、航空機100に、第2の離陸ウェイポイント426から第2の軌道426の第2の飛行経路を辿らせることを含む。これは、図4A及び4Bの例示と、対応する記載に従って実施することができる。
【0053】
図8は、例示的一実装態様による、図7に示される方法700に使用される別の方法のフロー図である。特に、図8は、ブロック708に従って実施されるブロック712及び714を示している。ブロック712では、方法700は、センサデータを使用して、(i)候補となる第2の離陸ウェイポイント(例えば、図4Bに示されるホバリング地点424に対応するウェイポイント)、(ii)候補となる第2の離陸ウェイポイントで始まる飛行経路(例えば、図4Bに示される第2の軌道426に対応する飛行経路)、及び(iii)航空機のサイズに関連付けられるクリアランスゾーン(例えば、図4Bを参照して上述したエリア432)によって規定されるエリア内部に含まれる障害物402の部分が実質的にないと決定することを含む。例えば、これは、図4Bを参照して例示及び記載されるように実施することができる。ブロック714では、方法700は、そのエリア内部に含まれる障害物402の部分が実質的にないと決定することに基づいて、第2の離陸ウェイポイントとして候補となる第2の離陸ウェイポイントを選択することを含む。例えば、これは、図4Bを参照して例示及び記載されるように実施することができる。
【0054】
図9は、例示的一実装態様による、図7に示される方法700に使用される別の方法のフロー図である。特に、図9は、第2の軌道426が第1の飛行経路選択プロトコルに従って決定される離陸軌道である一実施例を示している。この文脈において、ブロック716では、方法700は、航空機100に、第2の離陸ウェイポイントから第2の軌道の第2の飛行経路を辿らせた後で、第2の軌道426の第2の飛行経路の終端で巡航ウェイポイントに到達させることを含む。例えば、巡航ウェイポイントは、図1Bに示されるように、巡航飛行状況の開始の合図となり得る。ブロック718では、方法700は、巡航ウェイポイントにおいて、第1の飛行経路選択プロトコルとは異なる第2の飛行経路選択プロトコルに従って、巡航軌道のための飛行経路を選択することを更に含む。例えば、図1Bに示されるように、これには、巡航状況において軌道を生成及び選択するために強行アプローチからRRTアプローチに切り替えることが含まれる。
【0055】
図10は、例示的一実装態様による、図5及び図9に示される方法に使用される別の方法のフロー図である。特に、図10はブロック720を示す。ブロック720は、ブロック716に従って実施される。ブロック716では、方法700は、所定のホバリング地点408、飛行経路、及び航空機のサイズに関連付けられるクリアランスゾーンを含む一組の制約内で利用可能な一組の飛行経路から選択することを含む。例えば、これは、図4B及びそれに対応する記載に従って実施され得る。
【0056】
図11は、例示的一実装態様による、図7及び図9に示される方法に使用される別の方法のフロー図である。特に、図11はブロック722を示す。ブロック722は、ブロック718に従って実施される。ブロック718では、方法700は、RRT(Rapidly Expanding Random Tree)を使用して、巡航軌道のための飛行経路を生成及び選択することを含む。これは、例えば、図1B、5及び6を参照して上述したように実施することができる。
【0057】
図12は、例示的一実装態様による、図7及び図9に示される方法に使用される別の方法のフロー図である。特に、図12はブロック724及び726を示す。ブロック724では、方法700は、降下ウェイポイントに到達するまで、巡航軌道のための飛行経路を辿ることを含む。例えば、降下ウェイポイントは、着陸地点へのアプローチの合図となり得る。ブロック726では、方法700は、降下ウェイポイントにおいて、第1の飛行経路選択プロトコル及び第2の飛行経路選択プロトコルとは異なる第3の飛行経路選択プロトコに従って、降下軌道のための飛行経路を選択することを含む。例えば、第3の飛行経路選択プロトコルは、着陸状況内で強行アプローチ及びRRTアプローチの一方又は両方を使用することに対応し得る。これは、図5及び6と、それに対応する記載に従って実施することができる。
【0058】
図13は、例示的一実装態様による、図7図9、及び図12に示される方法に使用される別の方法のフロー図である。特に、図13はブロック728を示す。ブロック728は、ブロック726に従って実施される。ブロック728では、方法700は、一組の制約内で利用可能な一組の飛行経路から最初の降下経路を選択すること、及びRRT(Rapidly Expanding Random Tree)を使用して、障害物402が最初の降下経路内で検出される時に最初の降下経路を変更することを含む。例えば、強行アプローチは、図5に示されるように、障害物402が航空機100の下方にある場合に実施することができ、RRTアプローチは、図6に示されるように、障害物402が航空機100の真正面にあり、強行アプローチが障害物の周り又は上に経路を生成しない場合に実施することができる。実施例では、強行アプローチは降下中いつでも使用することができるが、強行アプローチが飛行経路を生成しない場合は、飛行経路生成はRRTに切り替えることができる。他の実施例では、RRTは降下中障害物に遭遇した時にいつでも使用することができ、強行アプローチはそれ以外の場合に使用される。
【0059】
図14は、例示的一実装態様による、図7に示される方法700に使用される別の方法のフロー図である。特に、図14はブロック730及び732を示す。ブロック730及び732は、第2の軌道426が、一組の制約内で利用可能な一組の飛行経路から選択することを含む第1の飛行経路選択プロトコルに従って決定された離陸軌道であるシナリオにおいて実施することができる。ブロック730では、方法700は、航空機100に、第2の離陸ウェイポイントから第2の軌道426の第2の飛行経路を辿らせた後で、トリガイベントを検出することを含む。例えば、トリガイベントは、他の可能性の中でも、閾値高度(例えば、地面からの高度(AGL)60メートル又は航空機の最大楕円体高(HAE))に到達すること、航空機100の軌道が水平になっていることを検出すること(例えば、航空機100と地表202との配向の角度差が5%未満であると決定すること)、又は巡航ウェイポイントに到達することであり得る。ブロック732では、方法700は、トリガイベントを検出することに応じて、RRT(Rapidly Expanding Random Tree)を使用して後続の飛行経路を生成及び選択することを含む第2の飛行経路選択プロトコルに移行することを更に含む。例えば、これは、図1Bを参照して上述したように、航空機100の巡航状況において実施され得る。
【0060】
図15は、例示的一実装態様による、図7に示される方法に使用される別の方法のフロー図である。特に、図15は、ブロック734、736、738、及び740を示す。ブロック734では、方法700は、第1の軌道410を決定することを含む。ブロック736、738、及び740は、ブロック734に従って実施される。ブロック736では、方法700は、複数の航空機の離陸の間に取られた複数の過去の軌道を示す情報を受け取ることを含む。例えば、この情報は、メモリ106、航空機100のデータベース、又は遠隔データ記憶部に記憶させることができる。ブロック738では、方法700は、複数の過去の軌道に共通の特徴を決定することを更に含む。例えば、これには、各軌道を正規化すること、軌道を規定するために使用される各地点の標準偏差を決定すること、及び低い標準偏差(例えば、2%未満)を有する地点の平均値を使用することが含まれ得る。低い標準偏差を有するこれら地点は、共通の特徴と考えることができる。これら特徴を抽出する他の方法が可能である。ブロック740では、方法700は、共通の特徴に基づいて第1の軌道410を生成することを含む。例えば、これには、低い標準偏差を有する地点の平均値を決定すること、及びこれらを使用して第1の軌道410を規定することが含まれる。
【0061】
図16は、例示的な一実装態様による、図7に示される方法に使用される別の方法のフロー図である。特に、図16はブロック742-748を示す。ブロック742-748は、障害物402が第1の軌道410の第1の飛行経路を遮っていると決定することに応じて実施される。ブロック742では、方法700は、航空機100に、第2の離陸ウェイポイントに対応する第2のホバリング地点(例えば図4A及び4Bに示される第3のホバリング地点424)で空中停止させることを含む。ブロック744では、方法700は、航空機100の環境を2回目にスキャンすることを含む。例えば、これは、障害物検出システム120によって実施され得る。ブロック746では、方法700は、第2の離陸ウェイポイントからの第2の軌道426の第2の飛行経路を遮る障害物がないと決定することを含む。ブロック748は、ブロック710に従って実施される。ブロック748では、方法700は、第2の離陸ウェイポイントからの第2の軌道426の第2の飛行経路を遮る障害物がないと決定することに応じて、航空機100に、第2の離陸ウェイポイントから第2の軌道426の第2の飛行経路を辿らせることを含む。例えば、これは、図4A及び4Bを参照して記載されたように実施することができる。
【0062】
図17は、例示的一実装態様による、図7に示される方法700に使用される別の方法のフロー図である。特に図17はブロック750を示す。ブロック750は、ブロック708に従って実施される。ブロック750では、方法700は、一組の公称配向のうちのいずれかの公称配向が障害物402を回避するかどうかを決定するために、所定のホバリング地点で一組の公称配向を通して第1の飛行経路を回転させることを含む。例えば、これは、図4A及び4Bを参照して上述されたように実施することができる。
【0063】
図18は、一実装態様による、図7及び17に示される方法に使用される別の方法のフロー図である。特に図18はブロック752を示す。ブロック750は、ブロック708に従って実施される。ブロック750では、方法700は、障害物402を回避する公称配向に到達するまで、所定のホバリング地点で一組の公称配向を通して第1の飛行経路を回転させることを含む。図4Bに示される所定のホバリング地点408はこのシナリオを示していないが、実施例では、航空機100は、所定のホバリング地点で回転し、公称配向のうちの一つが障害物402を回避すると決定することができる。
【0064】
図19は、例示的一実装態様による、図7及び17に示される方法に使用される別の方法のフロー図である。特に、図19は、ブロック754、756、及び758を示す。ブロック754、756、及び758は、ブロック708に従って実施される。ブロック754では、方法700は、一組の公称配向のなかで障害物402を回避する公称配向がないと決定することを含む。例えば、これは、図4Aの第1のホバリング地点408を参照して図示及び記載されるように実施することができる。ブロック756では、方法は、公称ホバリング地点への第1の飛行経路を並行移動させることを含む。例えば、これは、図4Aの第3のホバリング地点424を参照して図示及び記載されるように実施することができる。ブロック758では、方法700は、障害物402を回避する公称配向に到達するまで、公称ホバリング地点で第2の組の公称配向を通して第1の飛行経路を回転させることを含む。実施例では、所定のホバリング地点及び所定の配向の一方又は両方を変更することは、公称ホバリング地点と一致する所定のホバリング地点を変更することと、障害物402を回避する公称配向と一致する所定の配向を変更することとを含む。
【0065】
方法700の更なる実装態様において、ブロック708に従って、第2の離陸ウェイポイントを決定することは、障害物402を回避する、候補となる複数の第2の離陸ウェイポイントを決定することを含む。例えば、航空機100は、障害物402を回避する複数の公称配向及び公称ホバリング地点を決定することができる。これら実施例では、機能は、ユーザインターフェース110により、障害物402を回避する候補となる複数の第2の離陸ウェイポイントの各々に対応する選択可能なオプションを提供することを更に含み得る。機能は、ユーザインターフェース110により、選択された候補となる第2の離陸ウェイポイントの表示を受け取ることを更に含み、ここで第2の離陸ウェイポイントは、選択された候補となる第2の離陸ウェイポイントに対応する。このような実施例では、コンピューティング装置102は、選択された候補となる第2の離陸ウェイポイントを第2の離陸ウェイポイントとして割り当てることができる。このようにして、ユーザは、離陸又は着陸プロセスの特定の態様をトリガすることができる。コンピューティング装置102は、例えば、機械学習モデルを訓練する目的でこのようなユーザ入力を使用することができる。
【0066】
方法700の更なる実装形体では、システムは、航空機100及び地上管制システム(図示しない)を含む。このような実施例では、ブロック708に従って、第2の離陸ウェイポイントを決定することは、地上管制システムから、航空機100の離陸のために許容可能な高さ(例えば、10-25メートル)及び配向(例えば実質的に東又は実質的に南東)の範囲を受け取ることを含む。機能は、第2の離陸ウェイポイントが許容可能な高さ及び配向の範囲に含まれると決定することを含む。このような実施例では、第2の離陸ウェイポイントを選択することは、第2の離陸ウェイポイントが許容可能な高さ及び配向の範囲に含まれると決定することに応じて実施される。このようにして、航空機100及び関連方法は、着陸及び離陸を管理する様々な規制、基準、又は規則を有する様々な着陸位置で自律的に実施することができる。
【0067】
ここに記載されるシステムと方法は、航空機の自律的な離陸及び着陸を可能にする機能性を提供する。状況に応じて複数の利用可能なプロトコルから選択することにより、これら機能を確実に且つ快適に実施することが可能となる。更に、実施例では、軌道の生成及び選択のためにシステムに掛かる計算の制約を低減するプロトコルが使用される。更なる実施例では、所定の軌道は、一貫した離陸及び着陸手順を保証するために実行可能な範囲に維持される。このように、上記のシステムと方法は、航空機の乗員のために、ロバストで一貫性のある快適な経験を提供する。
【0068】
ここで使用される「実質的に」、「同様に」、及び「約」という用語は、言及される特徴、パラメータ、又は値が正確に実現される必要はないが、例えば、許容範囲、測定誤差、測定精度限界、及び当業者に既知の他の要因を含む偏差又は変動が、特徴によってもたらされる影響を排除しない大きさで起こりうることを意味する。
【0069】
ここに開示されるシステム、装置、及び方法の種々の実施例は、多様な構成要素、特徴及び機能を含む。ここに開示されるシステム、装置、及び方法の種々の実施例は、ここに開示されるシステム、装置、及び方法の他の実施例のうちのいずれかの構成要素、特徴及び機能のいずれかを、任意の組み合わせにおいて、又は任意の部分的組み合わせにおいて含むことができ、このような可能性のすべては本開示の範囲に含まれることが意図されていることを理解されたい。
【0070】
更に、本開示は、以下の条項による実施形態を含む。
【0071】
条項1.航空機(100)をナビゲートするための飛行経路を生成する方法であって、
(702)航空機(100)を、航空機(100)の第1の軌道(410)の第1の離陸ウェイポイントに対応する所定のホバリング地点(408)で空中停止させること、
(704)航空機(100)に付属する一又は複数のセンサによって、第1の軌道(410)の第1の飛行経路の少なくとも一部分をスキャンすること、
(706)一又は複数のセンサにより得られるセンサデータを使用して、障害物(402)が、第1の離陸ウェイポイントで始まる第1の軌道(410)の第1の飛行経路を遮っていると決定すること、
(708)障害物(402)が第1の飛行経路を遮っていると決定することに応じて、
(i)センサデータを使用して、第2の離陸ウェイポイント(424)で始まるように第1の飛行経路を割り当てることを含む、第2の離陸ウェイポイント(424)を決定すること、及び
(ii)第2の離陸ウェイポイント(424)と整列するように飛行経路を並行移動させること及び障害物(402)が飛行経路を遮ることを回避するように飛行経路を回転させることによって、第2の離陸ウェイポイント(424)に従って第1の軌道(410)の第1の飛行経路を変更し、それにより第2の軌道(426)の第2の飛行経路を生成すること、並びに
(710)航空機(100)に、第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせること
を含む方法。
【0072】
条項2.(708)第2の離陸ウェイポイント(424)を決定することが、
(712)センサデータを使用して、(i)候補となる第2の離陸ウェイポイント、(ii)候補となる第2の離陸ウェイポイントで始まる飛行経路、及び(iii)航空機(100)のサイズに関連付けられるクリアランスゾーンによって規定されるエリア(432)に含まれる障害物(402)の部分が実質的にないと決定すること、並びに
(714)エリア(432)内に含まれる障害物(402)の部分が実質的にないと決定することに基づいて、第2の離陸ウェイポイント(424)として候補となる第2の離陸ウェイポイントを選択すること
を含む、条項1の方法。
【0073】
条項3.第2の軌道(426)が、第1の飛行経路選択プロトコルに従って決定された離陸軌道であり、方法が、
(716)航空機(100)に、第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせた後で、第2の軌道(426)の第2の飛行経路の終端で巡航ウェイポイントに到達させること、及び
(718)巡航ウェイポイントにおいて、第1の飛行経路選択プロトコルとは異なる第2の飛行経路選択プロトコルに従って巡航軌道のための飛行経路を選択すること
を更に含む、条項1又は2の方法。
【0074】
条項4.第1の飛行経路選択プロトコルが、(720)所定のホバリング地点(408)、第1の飛行経路、及び航空機のサイズに関連付けられるクリアランスゾーンを含む一組の制約内で利用可能な一組の飛行経路から選択することを含む、条項3の方法。
【0075】
条項5.第2の飛行経路選択プロトコルが、(722)RRT(Rapidly Expanding Random Tree)を使用して巡航軌道のための飛行経路を生成及び選択することを含む、条項3又は4の方法。
【0076】
条項6.
(724)降下ウェイポイントに到達するまで巡航軌道のための飛行経路を辿ること、及び
(726)降下ウェイポイントにおいて、第1の飛行経路選択プロトコル及び第2の飛行経路選択プロトコルとは異なる第3の飛行経路選択プロトコルに従って降下軌道のための飛行経路を選択すること
を更に含む、条項3-5のいずれか一つの方法。
【0077】
条項7.第3の飛行経路選択プロトコルが、(728)一組の制約内で利用可能な一組の飛行経路から最初の降下経路を選択すること、及障害物(402)が最初の降下経路内に検出される時に、びRRT(Rapidly Expanding Random Tree)を使用して最初の降下経路を変更することを含む、条項6の方法。
【0078】
条項8.第2の軌道が、一組の制約内で利用可能な一組の飛行経路を選択することを含む第1の飛行経路選択プロトコルに従って決定される離陸軌道(426)であり、方法が、
(730)航空機(100)に第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせた後で、トリガイベントを検出すること、及び
(732)トリガイベントを検出することに応じて、RRT(Rapidly Expanding Random Tree)を使用して後続の飛行経路を生成及び選択することを含む第2の飛行経路選択プロトコルへと移行すること
を更に含む、条項1又は2の方法。
【0079】
条項9.(734)第1の軌道(410)を決定することを更に含み、(734)第1の軌道(410)を決定することが、
(736)複数の航空機の離陸の間に取られた複数の過去の軌道を示す情報を受け取ること、
(738)複数の過去の軌道に共通の特徴を決定すること、及び
(740)共通の特徴に基づいて第1の軌道(410)を生成すること
を含む、条項1-8のいずれか一つの方法。
【0080】
条項10.障害物(402)が第1の軌道(410)の第1の飛行経路を遮っていると決定することに応じて、
(742)航空機を、第2の離陸ウェイポイント(424)に対応する第2のホバリング地点で空中停止させること、
(744)航空機の環境を2回目にスキャンすること、及び
(746)第2の離陸ウェイポイント(424)からの第2の軌道(426)の第2の飛行経路を遮っている障害物がないと決定すること
を更に含み、
(710)航空機に、第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせることが、(748)第2の離陸ウェイポイント(424)からの第2の軌道(426)の第2の飛行経路を遮っている障害物がないと決定することに応じて、航空機に、第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせることを含む、
条項1-9のいずれか一つの方法。
【0081】
条項11.(708)第2の離陸ウェイポイント(424)を決定することが、(750)一組の公称配向のうちのいずれかの公称配向が障害物(402)を回避するかどうかを決定するために、所定のホバリング地点(408)で一組の公称配向を通して第1の飛行経路を回転させることを含む、条項1-10のいずれか一つの方法。
【0082】
条項12.(708)第2の離陸ウェイポイント(424)を決定することが、
(752)障害物(402)を回避する公称配向に到達するまで、所定のホバリング地点(408)で一組の公称配向を通して第1の飛行経路を回転させること
を更に含む、条項11の方法。
【0083】
条項13.(708)第2の離陸ウェイポイント(424)を決定することが、
(754)一組の公称配向の中に障害物(402)を回避する公称配向がないと決定すること、
(756)第1の飛行経路を公称ホバリング地点へと並行移動させること、及び
(758)障害物(402)を回避する公称配向に到達するまで、公称ホバリング地点で第2の組の公称配向を通して第1の飛行経路を回転させること
を更に含む、条項11の方法。
【0084】
条項14.航空機(100)をナビゲートするための飛行経路を生成するためのシステムであって、
一又は複数のセンサと、
プロセッサ(104)及びプロセッサ(104)により実行可能な命令(108)を記憶するメモリ(106)を有するコンピューティング装置(102)と
を含む航空機(100)を含み、前記命令が、
航空機(100)を、航空機(100)の第1の軌道(410)の第1の離陸ウェイポイントに対応する所定のホバリング地点(408)で空中停止させ、
航空機(100)に付属する一又は複数のセンサによって、第1の軌道(410)の第1の飛行経路の少なくとも一部分をスキャンさせ、
一又は複数のセンサにより得られるセンサデータを使用して、障害物(402)が、第1の離陸ウェイポイントで始まる第1の軌道(410)の第1の飛行経路を遮っていると決定させ、
障害物(402)が第1の飛行経路を遮っていると決定することに応じて、
(i)センサデータを使用して、第2の離陸ウェイポイント(424)で始まるように第1の飛行経路を割り当てることを含む、第2の離陸ウェイポイント(424)を決定すること、及び
(ii)第2の離陸ウェイポイント(424)と整列するように第1の飛行経路を並行移動させること及び障害物(402)が第1の飛行経路を遮ることを回避するように第1の飛行経路を回転させることによって、第2の離陸ウェイポイント(424)に従って第1の軌道(410)の第1の飛行経路を変更し、それにより第2の軌道(426)の第2の飛行経路を生成すること
を行わせ、且つ
航空機(100)に、第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせる、
システム。
【0085】
条項15.一又は複数のセンサが光検知測距(LIDAR)装置(122)を含み、センサデータが、LIDAR装置(122)によって検出される三次元(3D)点群のデータを含む、条項14のシステム。
【0086】
条項16.ユーザインターフェース(110)を更に含み、第2の離陸ウェイポイント(424)を決定することが、
障害物(402)を回避する候補となる複数の第2の離陸ウェイポイントを決定すること、
ユーザインターフェース(110)によって、障害物(402)を回避する候補となる複数の第2の離陸ウェイポイントの各々に対応する選択可能なオプションを提供すること、及び
ユーザインターフェース(110)によって、第2の離陸ウェイポイント(424)に対応する、選択された候補となる第2の離陸ウェイポイントの表示を受け取ること
を含む、条項14又は15のシステム。
【0087】
条項17.地上管制システムを更に含み、第2の離陸ウェイポイント(424)を決定することが、
地上管制システムから、航空機(100)の離陸のための許容可能な高さ及び配向の範囲を受け取ること、及び
第2の離陸ウェイポイント(424)が許容可能な高さ及び配向の範囲内に含まれると決定すること
を含む、条項14-16のいずれか一つのシステム。
【0088】
条項18.命令を記憶する非一過性のコンピュータ可読媒体であって、前記命令は、コンピューティング装置(102)の一又は複数のプロセッサによって実行されると、コンピューティング装置(102)に、
航空機(100)を、航空機(100)の第1の軌道(410)の第1の離陸ウェイポイントに対応する所定のホバリング地点(408)で空中停止させること、
航空機(100)に付属する一又は複数のセンサによって、第1の軌道(410)の第1の飛行経路の少なくとも一部分をスキャンすること、
一又は複数のセンサにより得られるセンサデータを使用して、障害物(402)が、第1の離陸ウェイポイントで始まる第1の軌道(410)の第1の飛行経路を遮っていると決定すること、
障害物(402)が第1の飛行経路を遮っていると決定することに応じて、
(i)センサデータを使用して、第2の離陸ウェイポイント(424)で始まるように第1の飛行経路を割り当てることを含む、第2の離陸ウェイポイント(424)を決定すること、及び
(ii)第2の離陸ウェイポイント(424)と整列するように第1の飛行経路を並行移動させること及び障害物(402)が第1の飛行経路を遮ることを回避するように第1の飛行経路を回転させることによって、第2の離陸ウェイポイント(424)に従って第1の軌道(410)の第1の飛行経路を変更し、それにより第2の軌道(426)の第2の飛行経路を生成すること、並びに
航空機(100)に、第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせること
を含む機能を実施させる、非一過性のコンピュータ可読媒体。
【0089】
条項19.第2の軌道(426)が、第1の飛行経路選択プロトコルに従って決定された離陸軌道であり、機能が、
航空機(100)に、第2の離陸ウェイポイント(424)から第2の軌道(426)の第2の飛行経路を辿らせた後で、第2の軌道(426)の第2の飛行経路の終端で巡航ウェイポイントに到達させること、及び
巡航ウェイポイントにおいて、第1の飛行経路選択プロトコルとは異なる第2の飛行経路選択プロトコルに従って巡航軌道のための飛行経路を選択すること
を更に含む、条項18の非一過性のコンピュータ可読媒体。
【0090】
条項20.機能が、
降下ウェイポイントに到達するまで巡航軌道のための飛行経路を辿ること、及び
降下ウェイポイントにおいて、第1の飛行経路選択プロトコル及び第2の飛行経路選択プロトコルとは異なる第3の飛行経路選択プロトコルに従って降下軌道のための飛行経路を選択すること
を更に含む、条項18又は19の非一過性のコンピュータ可読媒体。
【0091】
種々の有利な構成の記載は、例示及び説明を目的として提示されており、完全であることを意図しておらず、又は開示された形態の実施例に限定されない。当業者には、多くの修正例及び変形例が自明であろう。更に、種々の有利な実施例は、他の有利な実施例と比べて異なる利点を説明し得る。選択された一又は複数の実施例は、それら実施例の原理、実践的応用を最もよく説明するため、及び他の当業者が、想定される特定の用途に適した様々な修正例と共に、様々な実施例の開示内容を理解することを可能にするために、選ばれ、説明されている。
図1A
図1B
図2
図3
図4A
図4B
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19