IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱電機株式会社の特許一覧

特許7612122点群識別装置、学習装置、点群識別方法、および、学習方法
<>
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図1
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図2
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図3
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図4
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図5
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図6
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図7
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図8
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図9
  • 特許-点群識別装置、学習装置、点群識別方法、および、学習方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-26
(45)【発行日】2025-01-10
(54)【発明の名称】点群識別装置、学習装置、点群識別方法、および、学習方法
(51)【国際特許分類】
   G01S 17/89 20200101AFI20241227BHJP
   G06T 7/00 20170101ALI20241227BHJP
   G06T 7/521 20170101ALI20241227BHJP
【FI】
G01S17/89
G06T7/00 350
G06T7/521
【請求項の数】 8
(21)【出願番号】P 2024549125
(86)(22)【出願日】2022-11-02
(86)【国際出願番号】 JP2022040937
(87)【国際公開番号】W WO2024095380
(87)【国際公開日】2024-05-10
【審査請求日】2024-08-20
【早期審査対象出願】
(73)【特許権者】
【識別番号】000006013
【氏名又は名称】三菱電機株式会社
(74)【代理人】
【識別番号】110003166
【氏名又は名称】弁理士法人山王内外特許事務所
(72)【発明者】
【氏名】谷▲高▼ 竜馬
【審査官】渡辺 慶人
(56)【参考文献】
【文献】米国特許出願公開第2015/0003723(US,A1)
【文献】特表2022-524262(JP,A)
【文献】特表2021-536068(JP,A)
【文献】国際公開第2021/033249(WO,A1)
【文献】特開2021-056904(JP,A)
【文献】特表2019-536035(JP,A)
【文献】特開2010-055325(JP,A)
【文献】中国特許出願公開第112434637(CN,A)
【文献】HUANG, Jing et al.,Vehicle detection in urban point clouds with orthogonal-view convolutional neural network,2016 IEEE International Conference on Image Processing (ICIP),米国,IEEE,2016年08月19日,Pages: 2593-2597,インターネット: <URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532828><DOI: 10.1109/ICIP.2016.7532828>
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - 7/64
13/00 - 17/95
G01B 11/00 - 11/30
G01C 3/00 - 3/32
G06T 7/00 - 7/90
G06V 10/00 - 20/90
30/418
40/16
40/20
(57)【特許請求の範囲】
【請求項1】
N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得部と、
学習パラメータを持つモデルを取得するモデル取得部と、
前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する回転不変変換部と、
前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論部と、
前記推論部の識別による分類結果を出力する結果出力部と、
を備えた点群識別装置。
【請求項2】
前記回転不変変換部は、
前記点群情報に含まれる点を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して正規直交基底行列を生成する直交化層部と、
前記正規直交基底行列を用いて、前記回転不変特徴を示す射影行列を算出する射影層部と、
を有し、
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて前記点群情報に示される点群を識別する、
ことを特徴とする請求項1に記載の点群識別装置。
【請求項3】
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて、
N次元空間における前記正規直交基底行列が張る部分空間へ前記学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する、
ことを特徴とする請求項2に記載の点群識別装置。
【請求項4】
N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得部と、
学習パラメータを持つモデルを取得するモデル取得部と、
前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する回転不変変換部と、
前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論部と、
前記推論部の識別による分類結果を出力する結果出力部と、
前記分類結果を用いて前記モデルを評価する評価部と、
前記評価部による評価結果を用いて前記モデルを更新するモデル更新部と、
を備えた学習装置。
【請求項5】
前記回転不変変換部は、
前記点群情報に含まれる点を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して正規直交基底行列を生成する直交化層部と、
前記正規直交基底行列を用いて、前記回転不変特徴を示す射影行列を算出する射影層部と、
を有し、
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて前記点群情報に示される点群を識別する、
ことを特徴とする請求項4に記載の学習装置。
【請求項6】
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて、
N次元空間における前記正規直交基底行列が張る部分空間へ前記学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する、
ことを特徴とする請求項5に記載の学習装置。
【請求項7】
点群識別装置により実行される点群識別方法であって、
前記点群識別装置の点群取得部が、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得ステップと、
前記点群識別装置のモデル取得部が、学習パラメータを持つモデルを取得するモデル取得ステップと、
前記点群識別装置の回転不変変換部が、前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後の情報を用いて回転不変特徴を算出する回転不変変換ステップと、
前記点群識別装置の推論部が、前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論ステップと、
前記点群識別装置の結果出力部が、前記推論部の識別による分類結果を出力する結果出力ステップと、
を備えた点群識別方法。
【請求項8】
学習装置による学習方法であって、
前記学習装置の点群取得部が、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得ステップと、
前記学習装置のモデル取得部が、学習パラメータを持つモデルを取得するモデル取得ステップと、
前記学習装置の回転不変変換部が、前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後の情報を用いて回転不変特徴を算出する回転不変変換ステップと、
前記学習装置の推論部が、前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論ステップと、
前記学習装置の結果出力部が、前記推論部の識別による分類結果を出力する結果出力ステップと、
前記学習装置の評価部が、前記分類結果を用いて前記モデルを評価する評価ステップと、
前記学習装置のモデル更新部が、前記評価部による評価結果を用いて前記モデルを更新するモデル更新ステップと、
を備えた学習方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示技術は、点群情報に示される点群を識別するための点群識別技術に関する。
【背景技術】
【0002】
例えばLiDARまたはレーダといったセンサによる検知結果は、多数の点を含む点群情報の形式で示される場合がある。このような点群情報に示される点群の特徴を抽出する技術がある。特許文献1には、点群の特徴を表現する特徴表現装置が開示されている。具体的には、特許文献1の特徴表現装置は、3次元点群データ(点群情報)を特徴表現する特徴表現装置であって、点の集合を、その周辺に設定された空間サンプル点sの座標s、s、s及び空間サンプル点sから最近傍点までの最近傍距離φ(s)を示す距離場に変換する距離場変換部と、空間サンプル点sの座標s、s、sと最近傍距離φ(s)からなる行列Mの特異値分解をして標準座標系への変換を取得する正準投影部と、標準座標系に変換された空間サンプル点sの座標Linを入力とし、最近傍距離φ(s)を出力とするエクストリームラーニングマシーンを訓練して、その重みβを3次元点群データの特徴ベクトルとして出力するパラメータ化部とを備えている。
特許文献1の特徴表現装置は、例えば点群とこれを回転させた点群とを、その周辺に設定した空間サンプル点との最近傍距離を用いて位置合わせさせるように構成されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2019-133545号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1の特徴表現装置は、点群によっては点群と空間サンプル点との最近傍距離を用いた位置合わせの際に誤差が発生し、同じ形状の点群を異なる形状の点群に識別してしまう場合があり、点群を識別する精度が低い傾向がある、といった課題があった。
【0005】
本開示は、上記課題を解決するもので、点群を識別する精度を向上させる、ことを目的とする。
【課題を解決するための手段】
【0006】
本開示の点群識別装置は、
N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得部と、
学習パラメータを持つモデルを取得するモデル取得部と、
前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する回転不変変換部と、
前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論部と、
前記推論部の識別による分類結果を出力する結果出力部と、
を備えた。
【発明の効果】
【0007】
本開示によれば、点群を識別する精度を向上させる、ことができる、という効果を奏する。
【図面の簡単な説明】
【0008】
図1図1は、実施の形態1に係る点群識別装置を含む点群識別システムの構成の一例を示す図である。
図2図2は、点群識別装置における回転不変変換部の構成の一例を示す図である。
図3図3は、点群識別装置の処理の一例を示すフローチャートである。
図4図4は、点群識別装置の処理における回転不変変換処理の具体的一例を示すフローチャートである。
図5図5は、点群の回転を説明する図である。
図6図6Aは、同一形状を示す点群の回転と部分空間との関係を説明する図である。図6Bは、互いに異なる形状を示す点群と部分空間との関係を説明する図である。
図7図7は、実施の形態2に係る点群学習装置を含む点群学習システム2の構成の一例を示す図である。
図8図8は、点群学習装置の処理の一例を示すフローチャートである。
図9図9は、本開示における点群識別装置または点群学習装置の機能を実現するためのハードウェア構成の第1の例を示す図である。
図10図10は、本開示における点群識別装置または点群学習装置の機能を実現するためのハードウェア構成の第2の例を示す図である。
【発明を実施するための形態】
【0009】
以下、本開示をより詳細に説明するために、本開示の実施の形態について、添付の図面に従って説明する。
【0010】
実施の形態1.
実施の形態1においては、点群識別装置の形態を説明する。
【0011】
図1は、実施の形態1に係る点群識別装置300を含む点群識別システム1の構成の一例を示す図である。
図2は、点群識別装置300における回転不変変換部330の構成の一例を示す図である。
図3は、点群識別装置300の処理の一例を示すフローチャートである。
図4は、点群識別装置300の処理における回転不変変換処理の具体的一例を示すフローチャートである。
図5は、点群1100,1200の回転を説明する図である。
図6Aは、同一形状を示す点群の回転と部分空間2100,2200との関係を説明する図である。図6Bは、互いに異なる形状を示す点群と部分空間3100,3200との関係を説明する図である。
【0012】
点群識別装置300を含む点群識別システム1の構成の一例を説明する。
点群識別システム1は、点群を識別する点群識別装置300を有するシステムである。
図1に示す点群識別システム1は、点群入力装置100、記憶装置200、点群識別装置、および、結果出力装置900、を含み構成されている。
【0013】
点群入力装置100は、例えば図示しないセンサから点群情報(点群データ)を取り込み、点群情報を点群識別装置300へ出力する。
図示しないセンサは、例えばLiDAR(Light Detection and Ranging)またはレーダである。
点群情報は、図示しないセンサにより検出された位置座標または特徴を表す複数(N≧2)の点を示す。
点群情報は、点群に含まれる各点を、例えばk(k≧2)次元における座標値の形式で表す。
【0014】
記憶装置200は、記憶部210を含み構成されている。
記憶部210は、点群を識別する識別処理に用いられる情報を持つ。具体的には、記憶部210は、例えば、識別用のモデルとしての学習パラメータを持つ。
【0015】
点群識別装置300は、k次元点群識別において、学習済みモデルを用いて点群を識別する。学習済みモデルは、例えば実施の形態2のように適宜学習されるモデルを含む。
k次元点群識別とは、k次元に表現される点群を示す点群データを、例えば点群の形状などの特徴に基づいてクラス識別することである。
点群識別装置300の構成例を説明する。
点群識別装置300は、モデル取得部310、点群取得部320、回転不変変換部330、推論部340、および、結果出力部350、を含み構成されている。
【0016】
モデル取得部310は、学習パラメータを持つモデルを取得する。
学習パラメータは、学習装置により学習済みのパラメータであり、点群を識別する際に用いられるパラメータである。
【0017】
点群取得部320は、N点のk次元点群情報を取得する。
具体的には、点群取得部320は、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する。
【0018】
回転不変変換部330は、点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する。
回転不変特徴とは、点群を回転させたとしても影響を受けないような点群の形状に固有の特徴である。
【0019】
推論部340は、回転不変特徴およびモデルを用いて点群情報に示される点群を識別する。
具体的には、推論部340は、例えば、回転不変特徴およびモデルを用いて点群の特徴を示す点群特徴を算出し、点群特徴を用いて点群を識別する。点群特徴は、点群の各カテゴリに固有の特徴であって、点群をクラス分類するために有効な特徴を示す。点群特徴は、例えば動物の種類で識別される場合、馬の点群で1つのカテゴリ、鳥の点群で1つのカテゴリといったように識別できるような特徴である。
また、推論部340は、点群の形状を抽出し、点群の形状の中から物体固有の情報を抽出するためのフィルタを用いる方法で点群を識別するように構成してもよい。この場合、推論部340は、例えば、馬と鳥とを識別する場合、頭の形状、足の数、羽の有無、嘴の有無等を特徴として抽出するようにフィルタを設計しておき、当該フィルタを用いて点群特徴を抽出し、当該点群特徴を用いて点群を識別する。
【0020】
結果出力部350は、推論部340の識別による分類結果を出力する。
具体的には、結果出力部350は、分類結果を結果出力装置900へ出力する。
【0021】
回転不変変換部330の内部構成の一例を説明する。
図2に示す回転不変変換部330は、直交化層部331、および、射影層部332、を含み構成されている。
【0022】
直交化層部331は、点群情報に含まれる点(N個の点それぞれ)を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して(N×k)正規直交基底行列を生成する。
【0023】
直交化層部331は、例えば以下の方法で直交化処理を行う。
N(N≧2)個の点N点をk(k≧2)次元で示す点群データ(k次元点群データ)に示される点群Pは、例えば式(1)に示すように、N×kの行列で表されるものとする。この場合、点群Pにおける各点はそれぞれ、式(1)に示すように、PN1、・・・、PNkといったk個の座標値を用いて表現される。


点群Pは、重心が座標の原点に並進移動されているとする。
直交化層部331は、k個の座標毎に基底ベクトルを計算する。
直交化層部331は、k本の前記基底ベクトルがそれぞれ直交するように変換するために、点群Pに対して式(2)に示すように直交化orthを施す。
直交化層部331は、直交化orthにより、正規直交基底行列Xを得る。
直交化orthは、具体的には、グラムシュミットの直交化法X=GramSchmit(P)を用いてもよいし、QR分解(X,r=QR(P))を用いても良いし、特異値分解(X,σ,V=SVD(P))を用いても良いし、固有値分解(X,Λ=EIG(P))を用いても良い。

orth(P)=X, s.t.XX=I_k ・・・(2)

式(2)において、「Ik」は、k×kの単位行列を表す。
【0024】
射影層部332は、正規直交基底行列およびモデルを用いて回転不変特徴を示す射影行列を算出する。
射影層部332は、直交化層部331により得た正規直交基底行列からk次元回転不変な特徴(回転不変特徴)である射影行列Mを抽出する。
射影行列Mは、以下の式(3)を用いて算出される。

M=XX ・・・(3)

ここで、正規直交基底行列Xをk次元回転(回転R)させた行列XRを用いて射影行列を計算すると、以下の式(4)が成り立つ。

XR(XR)=XX=M ・・・(4)

このことから、射影行列Mは回転Rに不変(回転不変)である。
射影層部332は、以下の式(5)のように射影行列Mに対してモデルに含まれる学習パラメータWを乗じた行列「Y」を算出して出力する。式(5)に示す学習パラメータWは、本開示において、幾何学的に意味がある第1の重みを示し、学習によって最終的に定数になるようなパラメータである。

Y=MW ・・・(5)

射影行列Mは、幾何学的には射影行列Mが張る空間への射影行列である。
式(5)に示す「Y」は、射影行列Mに右から「W」を掛けることにより、「M」が張る空間へ「W」を射影した場合の点群(形状)を示す。これにより、「Y」は、幾何学的に回転に依らない形状情報になり、回転不変特徴を示すことになる。
そして、これを用いることで、射影層部332は、後述する図6Aおよび図6Bの説明のように、回転前の点群P(正規直交基底行列X)と回転後の点群PR(正規直交基底行列XR)からは、同一の「Y」を得ることができる。
一方で、射影層部332は、異なる形状の点群P1(正規直交基底行列X1)と点群P2(正規直交基底行列X2)からはそれぞれ異なる「Y」、「Y_hat」(これは式(5)により得られる「Y」が異なるということを示している。)を得ることができる。
【0025】
図2に示す回転不変変換部330は、例えば上記のようにして、点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータおよびモデル(第1の重みを示す学習パラメータW)を用いて回転不変特徴を算出する。
【0026】
回転不変変換部330が上記のように構成されている場合、推論部340は、回転不変特徴を示す射影行列およびモデルを用いて点群情報に示される点群を識別する。
【0027】
推論部340の内部構成の一例を説明する。
推論部340は、回転不変特徴を示す射影行列およびモデルを用いて、N次元空間における正規直交基底行列が張る部分空間へ学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する。具体的には、点群のクラス識別を行う。
【0028】
推論部340により構築される点群特徴を図5および図6を用いて説明する。
まず、点群の回転について説明する。
図5における〇(白丸)点群1100は回転前の2次元点群X、●(黒丸)点群1200は回転後の2次元点群XR(π)を表す。
図5における2次元点群Xは、x11が-0.5、x12が-1.625、x21が0.5、x22が-0.625、x31が-1.5、x32が3.375、x41が1.5、x42が-1.125、である行列Xで表されるものを示している。
図5における2次元点群XR(π)は、xr11が0.5、xr12が1.625、xr21が-0.5、xr22が0.625、xr31が1.5、xr32が-3.375、xr41が-1.5、xr42が1.125、である行列XR(π)で表されるものを示している。
図5に示すように、点群データに対して回転を施した場合、位置座標が変化するため、回転前と回転後では数値データとして異なる情報となる。
回転したことで〇(白丸点)群と●(黒丸点)群は異なる座標値で表現されているが、点群に示される物体は回転前と回転後で、座標が変化したとしても物体としては同じであるため、回転させた点群であっても、本質的な情報を変化させないようにして、同じ精度(同一カテゴリの物体)で識別できるようにした。
【0029】
これに関し、推論部340による射影行列Mに基づく特徴構築は、幾何学的に図6で説明することが出来る。
正規直交基底行列Xは、以下の式(6)のように、N点それぞれのk本の基底ベクトルを並べた行列である。


この正規直交基底行列XはN次元空間内のk次元部分空間spanXを張る。すなわち、部分空間spanXは、正規直交基底行列Xにより生成される空間である。
図6Aにおいて、部分空間2100(spanX)は、点群Pから得られた正規直交基底行列Xの列空間を表す。図6Aにおける正規直交基底行列Xは、x11が-0.5、x12が-1.625、x21が0.5、x22が-0.625、x31が-1.5、x32が3.375、x41が1.5、x42が-1.125、であるものを示している。
図6Aにおいて、部分空間2200(spanXR)は、点群PRから得られた正規直交基底行列XRの列空間を表す。図6Aにおける正規直交基底行列XR(π)は、xr11が0.5、xr12が1.625、xr21が-0.5、xr22が0.625、xr31が1.5、xr32が-3.375、xr41が-1.5、xr42が1.125、であるものを示している。
正規直交基底行列Xと正規直交基底行列XRとは、同一形状の点群から生成された正規直交基底行列である。この場合、部分空間2100(spanX)と部分空間2200(spanXR)とは一致している。
図6Bにおいて、部分空間3100(spanX1)は、点群P1から得られた正規直交基底行列X1の列空間を表す。図6Bにおける正規直交基底行列X1は、x111が-0.5、x112が-1.625、x121が0.5、x122が-0.625、x131が-1.5、x132が3.375、x141が1.5、x142が-1.125、であるものを示している。
図6Bにおいて、部分空間3200(spanX2)は、点群P2から得られた正規直交基底行列X2の列空間を表す。図6Bにおける正規直交基底行列X2は、x211が-4.676、x212が3.1419615、x221が3.892、x222が5.1419615、x231が1.892、x232が-7.4258845、x241が-1.108、x242が-0.8580385、であるものを示している。
正規直交基底行列X1と正規直交基底行列X2とは、互いに異なる形状を示す点群から生成された正規直交基底行列である。この場合、部分空間3100(spanX1)と部分空間3200(spanX2)とは一致していない。
このことを利用して、推論部340においては、点群ごとの正規直交基底行列を用いて点群の識別に有効な特徴である点群特徴を抽出する。
【0030】
推論部340は、例えば、以下の式(7)を用いて点群特徴Zを抽出する。

Z=Φ(X)=σ(WY)+B ・・・(7)

式(7)において、「Y」は、式(5)に示したように、射影行列Mに第1の重みを示すパラメータWを乗じたものである。
式(7)においては、学習パラメータWは、重み(第2の重み)を示し、学習パラメータB(第2の学習パラメータ)は、バイアスを示す。
式(7)は、特徴抽出器としての特徴抽出関数Φが学習パラメータ(第1の重みを示すパラメータW、第2の重みを示すパラメータW、および、バイアスを示すパラメータB)および非線形変換のための非線形変換関数σを持ち、この特徴抽出関数Φに正規直交基底行列Xを入力することで点群特徴Zを抽出することを示している。
式(7)においてΦ(X)により点群特徴Zを抽出することは、正規直交基底行列Xが張る部分空間spanX(部分空間2100)へ直交射影を行うことに相当する。
部分空間spanX(部分空間2100)および部分空間spanXR(部分空間2200)への直交射影は、これら部分空間が一致することからパラメータWを同一の座標へ射影することになる。これは、点群形状固有の回転不変な特徴を抽出することに相当する。
一方、部分空間spanX1(部分空間3100)および部分空間spanX2(部分空間3200)への直交射影は、これら部分空間が一致しないことからパラメータWを異なる座標へ射影することになる。
このように、点群の座標に依存しない点群形状固有の特徴を用いて点群情報を識別することができる。
なお、説明において、推論部340は、射影層部332が射影行列(射影行列M)に対してモデルに含まれる学習パラメータ(第1の重みを示すパラメータW)を乗じた「Y」を算出して出力したものを受け取る構成であるが、推論部340において射影行列(射影行列M)に対してモデルに含まれる学習パラメータ(第1の重みを示すパラメータW)を乗じるように構成しても同様である。このように構成されている場合、射影層部332は、射影行列Mのまま出力する。
【0031】
結果出力装置900は、点群識別装置300から出力された点群の分類結果を受けて出力する。結果出力装置900は、点群の分類結果を用いる装置であればよく、例えば単に結果を表示する表示装置であってもよいし、車両の自動運転に係る制御装置であってもよい。
【0032】
点群識別装置300の処理を、図3および図4を用いて説明する。
点群識別装置300は、処理を開始すると、モデル取得処理(ステップST110)を実行する。
具体的には、点群識別装置300におけるモデル取得部310は、記憶装置200の記憶部210から、学習パラメータを持つモデルを取得する。モデル取得部310は、学習パラメータを持つモデルを出力する。
【0033】
点群識別装置300は、点群取得処理(ステップST120)を実行する。
具体的には、点群識別装置300における点群取得部320は、点群入力装置100から、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する。点群取得部320は、取得した点群情報を出力する。
【0034】
点群識別装置300は、回転不変変換処理(ステップST130)を実行する。
具体的には、点群識別装置300における回転不変変換部330は、点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する。
【0035】
回転不変変換処理の具体的一例を説明する。
回転不変変換部330は、回転不変変換処理を開始すると、図4に示すように、直交化処理(ステップST131)を実行する。
具体的には、回転不変変換部330における直交化層部331は、点群情報に含まれる点(N個の点それぞれ)を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して(N×k)正規直交基底行列を生成する。
直交化層部331は、例えばグラムシュミットの直交化法、QR分解、特異値分解、または、固有値分解、を用いて、基底ベクトルがそれぞれ直交するように変換して(N×k)正規直交基底行列を生成する。直交化層部331は、正規直交基底行列を出力する。
【0036】
回転不変変換部330は、射影処理(ステップST132)を実行する。
具体的には、回転不変変換部330における射影層部332は、直交化層部331から、正規直交基底行列を取得する。射影層部332は、正規直交基底行列を用いて回転不変特徴を示す射影行列を算出する。射影層部332は、モデル取得部310からモデルを取得し、当該モデルに含まれる学習パラメータ(第1の重みを示す学習パラメータW)を射影行列(射影行列M)に乗じて出力する。
【0037】
点群識別装置300は、推論処理(ステップST140)を実行する。
具体的には、点群識別装置300における推論部340は、まず、射影層部332から射影行列を取得し、モデル取得部310からモデル(第2の重みを示す学習パラメータW、および、バイアスを示す学習パラメータB)を取得する。推論部340は、次いで、回転不変特徴およびモデルを用いて点群情報に示される点群を識別する。さらに具体的には、推論部340は、上述したように、回転不変特徴を示す射影行列およびモデルを用いて、N次元空間における正規直交基底行列が張る部分空間へ学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する。
なお、回転不変変換部330における射影層部332が射影行列に学習パラメータ(パラメータW)を乗じないで出力するように構成されている場合、推論部340において射影行列に学習パラメータ(パラメータW)を乗じる。
【0038】
点群識別装置300は、結果出力処理(ステップST150)を実行する。
具体的には、点群識別装置300における結果出力部350は、推論部340の識別による分類結果を結果出力装置900へ出力する。
【0039】
点群識別装置300は、一連の処理を終了するかを判定する(ステップST160)。
点群識別装置300は、処理を終了しないと判定した場合(ステップST160“NO”)、ステップST110の処理に移行し、ステップST110からの処理を繰り返す。
点群識別装置300は、処理を終了すると判定した場合(ステップST160“YES”)、処理を終了する。
【0040】
本開示の点群識別装置の効果の一例について説明する。
例えば自動運転技術においては、車両の周辺環境を把握するために、点群データを用いて周辺の他車両および障害物を識別する。この場合、点群データをリアルタイムに処理し、点群を識別することにより、自動運転装置において、前方車両との衝突を避けるための存在確認、あるいは、前方に放置された障害物、瓦礫等を把握できるようにする。この際に、点群を様々な視点から見た場合の状態を認識するために点群を回転させる場合があり、従来、回転によるデータ拡張や姿勢合わせ等の処理が別途必要であった。
これに対し、本開示においては、上述したように、点群データを正規直交基底ベクトルで表現し、さらに1つの部分空間として扱い、その射影行列をデータとして扱うことで回転不変性を獲得する構成を示した。本開示においては、点群が回転不変なデータとして表現されるので、単一の姿勢のみを学習させればあらゆる姿勢に対して学習させたことと等価となり、あらゆる回転にロバストな識別モデルを獲得することが可能になるため、学習が効率化できるだけでなく、回転前と回転後で同じ識別精度を得ることが出来る。
【0041】
本開示の点群識別装置は、以下のように構成した。
N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得部と、
学習パラメータを持つモデルを取得するモデル取得部と、
前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する回転不変変換部と、
前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論部と、
前記推論部の識別による分類結果を出力する結果出力部と、
を備えた点群識別装置。
これにより、本開示は、点群を識別する精度を向上させる、点群識別装置を提供することができる、という効果を奏する。
【0042】
本開示の点群識別方法は、以下のように構成した。
点群取得部が、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得ステップと、
モデル取得部が、学習パラメータを持つモデルを取得するモデル取得ステップと、
回転不変変換部が、前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後の情報を用いて回転不変特徴を算出する回転不変変換ステップと、
推論部が、前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論ステップと、
結果出力部が、前記推論部の識別による分類結果を出力する結果出力ステップと、
を備えた点群識別方法。
これにより、本開示は、点群を識別する精度を向上させる、点群識別方法を提供することができる、という効果を奏する。
【0043】
本開示の点群識別装置は、さらに、以下のように構成した。
前記回転不変変換部は、
前記点群情報に含まれる点を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して正規直交基底行列を生成する直交化層部と、
前記正規直交基底行列を用いて、前記回転不変特徴を示す射影行列を算出する射影層部と、
を有し、
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて前記点群情報に示される点群を識別する、
ことを特徴とする点群識別装置。
これにより、本開示は、点群の回転不変特徴を効率よく算出できる、点群識別装置を提供することができる、という効果を奏する。
さらに、本開示は、上記構成を上記点群識別方法に適用することにより、上記効果と同様の効果を奏する。
【0044】
本開示の点群識別装置は、さらに、以下のように構成した。
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて、
N次元空間における前記正規直交基底行列が張る部分空間へ前記学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する、
ことを特徴とする点群識別装置。
これにより、本開示は、点群の座標に依存しない点群形状固有の特徴を用いて点群情報を識別する、点群識別装置を提供することができる、という効果を奏する。
さらに、本開示は、上記構成を上記点群識別方法に適用することにより、上記効果と同様の効果を奏する。
【0045】
実施の形態2.
実施の形態2は、学習装置の形態を説明する。
実施の形態2においては、既に説明した内容と同一の内容について詳細な説明を適宜省略する。
【0046】
図7は、実施の形態2に係る点群学習装置400を含む点群学習システム2の構成の一例を示す図である。
点群学習システム2は、点群入力装置100、記憶装置200A、および、点群学習装置400、を含み構成されている。
点群入力装置100は、既に説明した点群入力装置100と同様であるため、ここでの詳細な説明は省略する。
【0047】
記憶装置200Aは、記憶部210Aを含み構成されている。
記憶部210Aは、点群を識別する識別処理に用いられる情報を持つ。具体的には、記憶部210Aは、例えば、識別用のモデルとして学習パラメータを持つ。モデルは、点群学習装置400により適宜学習されて更新される。
【0048】
点群学習装置400は、k次元点群識別において、回転に不変なモデルを学習し、学習済みモデルを用いて点群を識別する。
k次元点群識別とは、k次元に表現される点群を示す点群データを、例えば点群の形状などの特徴に基づいてクラス識別することである。
【0049】
点群学習装置400の構成例を説明する。
点群学習装置400は、モデル取得部410、点群取得部420、回転不変変換部430、推論部440、結果出力部450、評価部460、および、モデル更新部470、を含み構成されている。
【0050】
モデル取得部410は、学習パラメータを持つモデルを取得する。
学習パラメータは、当該点群学習装置400により学習済みのパラメータであり、点群を識別する際に用いられるパラメータである。
【0051】
点群取得部420は、N点のk次元点群情報を取得する。
点群取得部420は、既に説明した点群取得部320と同様に、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する。
【0052】
回転不変変換部430は、既に説明した回転不変変換部330と同様に、点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する。
【0053】
推論部440は、既に説明した推論部340と同様に、回転不変特徴およびモデルを用いて点群情報に示される点群を識別する。具体的には、点群のクラス識別を行う。
【0054】
結果出力部450は、推論部の識別による分類結果を出力する。
具体的には、結果出力部450は、分類結果を評価部460へ出力する。
また、結果出力部450は、分類結果をさらに外部装置へ出力するように構成してもよい。この場合、外部装置は、例えば実施の形態1に説明した結果出力装置900であってもよい。
【0055】
評価部460は、分類結果を用いてモデルを評価する。
評価部460における評価方法は、出力ラベルと正解ラベルの誤差を測る指標であれば様々なものが考えられる。基本的な評価方法としては、例えば、クロスエントロピー誤差関数、または、2乗誤差関数、を使用した評価方法がある。
評価部460は、評価結果をモデル更新部470へ出力する。
【0056】
モデル更新部470は、評価部460による評価結果を用いてモデルを更新する。
具体的には、モデル更新部470は、記憶装置200Aの記憶部210Aに記憶されたモデルとしての学習パラメータを書き換えることにより更新する。
モデル更新部470は、例えば、クロスエントロピー誤差関数による評価結果を用いる場合、当該誤差関数の値が最小になる方向へパラメータWを更新する。関数値が最小になる方向は、当該誤差関数をモデルのパラメータWで微分した際に関数が減少する勾配の方向である。なお、モデル更新部470は、このとき、誤差関数の値が収束するまで更新する、または、予め定められた条件を満たした場合に途中で更新を止めるようにしてもよい。
また、モデル更新部470は、確率的勾配降下法、ニュートン法などの一般的な最適化の手法を用いて更新を行う。なお、勾配計算の際には、例えばバックプロパゲーションと呼ばれる方法を用いてモデル内の全てのパラメータの勾配を順次計算する。
【0057】
回転不変変換部430の内部構成の一例を説明する。
ここで、回転不変変換部430の内部構成は、図2に既に説明した回転不変変換部330における直交化層部331および射影層部332を、直交化層部431および射影層部432に置き換えたものであり、図示を省略する。
【0058】
回転不変変換部430は、直交化層部431、および、射影層部432、を含み構成されている。
【0059】
直交化層部431は、既に説明した直交化層部331と同様に、点群情報に含まれる点(N個の点それぞれ)を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して(N×k)正規直交基底行列を生成する。
射影層部432は、既に説明した射影層部332と同様に、正規直交基底行列を用いて回転不変特徴を示す射影行列を算出する。
【0060】
直交化層部431による直交化処理は、既に説明した直交化層部331による直交化処理と同様であり、ここでのさらに詳細な説明を省略する。
【0061】
このように回転不変変換部430が構成されている場合、推論部440は、回転不変特徴を示す射影行列およびモデルを用いて点群情報に示される点群を識別する。
【0062】
推論部440の内部構成の一例を説明する。
推論部440は、回転不変特徴を示す射影行列およびモデルを用いて、N次元空間における正規直交基底行列が張る部分空間へ学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する。具体的には、点群のクラス識別を行う。
【0063】
推論部440により構築される点群特徴は、既に説明した推論部340により構築される点群特徴と同様であり、ここでのさらに詳細な説明を省略する。
【0064】
これにより、本開示は、点群の座標に依存しない点群形状固有の特徴を用いて点群情報を識別することができる。
【0065】
点群識別装置の処理を、図8を用いて説明する。
図8は、点群学習装置400の処理の一例を示すフローチャートである。
【0066】
点群学習装置400は、処理を開始すると、まず学習を行うかを判定する(ステップST100)。
具体的には、点群学習装置400は、最初から学習パラメータを学習するかどうかを選択する。点群学習装置400は、例えば予め設定された設定情報を確認して、最初から学習するか、前回記憶されたモデルの学習パラメータを用いるかを判定する。
【0067】
点群学習装置400は、学習を行うと判定した場合(ステップST100“YES”)、ステップST120の処理へ移行する。
点群学習装置400は、最初から学習する場合、学習パラメータをランダムに初期化しても良いし、一般的に用いられている任意の初期化手法を用いて初期化しても良い。
【0068】
点群学習装置400は、学習を行わないと判定した場合(ステップST100“NO”)、点群学習装置400は、モデル取得処理(ステップST110)を実行する。
【0069】
点群学習装置400は、学習を行うと判定した後(ステップST100“YES”)またはモデル取得処理(ステップST110)を実行した後、点群取得処理(ステップST120)を実行する。
具体的には、点群学習装置400における点群取得部420は、点群入力装置100から、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する。点群取得部420は、取得した点群情報を出力する。
【0070】
点群学習装置400は、回転不変変換処理(ステップST130)を実行する。
具体的には、点群学習装置400における回転不変変換部430は、点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する。
【0071】
回転不変変換処理の具体的一例を説明する。なお、点群学習装置400による回転不変変換処理は、図4の回転不変変換処理と同様であり、ここでの新たな図示を省略する。
回転不変変換部430は、回転不変変換処理を開始すると、図4に示すように、直交化処理(ステップST131)を実行する。
具体的には、回転不変変換部430における直交化層部431は、点群情報に含まれる点(N個の点それぞれ)を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して(N×k)正規直交基底行列を生成する。直交化層部431は、正規直交基底行列を出力する。
【0072】
回転不変変換部430は、射影処理(ステップST132)を実行する。
具体的には、回転不変変換部430における射影層部432は、直交化層部431から、正規直交基底行列を取得する。射影層部432は、正規直交基底行列を用いて回転不変特徴を示す射影行列を算出する。
【0073】
点群学習装置400は、推論処理(ステップST140)を実行する。
具体的には、点群学習装置400における推論部440は、まず、射影層部432から射影行列を取得し、モデル取得部410からモデルを取得する。推論部440は、次いで、回転不変特徴およびモデルを用いて点群情報に示される点群を識別する。
さらに具体的には、推論部440は、回転不変特徴を示す射影行列およびモデルを用いて、N次元空間における正規直交基底行列が張る部分空間へ学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する。
【0074】
点群学習装置400は、結果出力処理(ステップST150)を実行する。
具体的には、点群学習装置400における結果出力部450は、推論部440の識別による分類結果を結果出力装置900へ出力する。
【0075】
点群学習装置400は、一連の処理を終了するかを判定する(ステップST160)。
点群学習装置400は、処理を終了すると判定した場合(ステップST160“YES”)、処理を終了する。
【0076】
点群学習装置400は、処理を終了しないと判定した場合(ステップST160“NO”)、モデル評価処理(ステップST170)を実行する。
具体的には、点群学習装置400における評価部460は、分類結果を用いてモデルを評価する。評価部460は、評価結果をモデル更新部470へ出力する。
【0077】
点群学習装置400は、モデル更新処理(ステップST180)を実行する。
モデル更新部470は、評価部460による評価結果を用いてモデルを更新する。
具体的には、モデル更新部470は、記憶装置200Aの記憶部210Aに記憶されたモデルとしての学習パラメータを書き換えることにより更新する。
【0078】
点群学習装置400は、モデル更新処理(ステップST180)を実行した後、ステップST110の処理に移行し、ステップST110からの処理を繰り返す。
【0079】
本開示の学習装置(点群学習装置)は、以下のように構成した。
N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得部と、
学習パラメータを持つモデルを取得するモデル取得部と、
前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後のデータを用いて回転不変特徴を算出する回転不変変換部と、
前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論部と、
前記推論部の識別による分類結果を出力する結果出力部と、
前記分類結果を用いて前記モデルを評価する評価部と、
前記評価部による評価結果を用いて前記モデルを更新するモデル更新部と、
を備えた学習装置。
これにより、本開示は、点群を識別する精度を向上させる、学習装置を提供することができる、という効果を奏する。
【0080】
本開示の学習方法(点群学習方法)は、以下のように構成した。
点群取得部が、N(N≧2)個の点をk(k≧2)次元で示す点群情報を取得する点群取得ステップと、
モデル取得部が、学習パラメータを持つモデルを取得するモデル取得ステップと、
回転不変変換部が、前記点群情報に示される点ごとの基底ベクトルをそれぞれ直交化し、当該直交化後の情報を用いて回転不変特徴を算出する回転不変変換ステップと、
推論部が、前記回転不変特徴および前記モデルを用いて前記点群情報に示される点群を識別する推論ステップと、
結果出力部が、前記推論部の識別による分類結果を出力する結果出力ステップと、
評価部が、前記分類結果を用いて前記モデルを評価する評価ステップと、
モデル更新部が、前記評価部による評価結果を用いて前記モデルを更新するモデル更新ステップと、
を備えた学習方法。
これにより、本開示は、点群を識別する精度を向上させる、学習方法を提供することができる、という効果を奏する。
【0081】
本開示の学習装置(点群学習装置)は、さらに、以下のように構成した。
前記回転不変変換部は、
前記点群情報に含まれる点を示すk個の座標ごとに基底ベクトルを算出し、k本の基底ベクトルがそれぞれ直交するように変換して正規直交基底行列を生成する直交化層部と、
前記正規直交基底行列を用いて、前記回転不変特徴を示す射影行列を算出する射影層部と、
を有し、
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて前記点群情報に示される点群を識別する、
ことを特徴とする学習装置。
これにより、本開示は、点群の回転不変特徴を効率よく算出できる、学習装置を提供することができる、という効果を奏する。
さらに、本開示は、上記構成を上記学習方法に適用することにより、上記効果と同様の効果を奏する。
【0082】
本開示の学習装置(点群学習装置)は、さらに、以下のように構成した。
前記推論部は、
前記回転不変特徴を示す射影行列および前記モデルを用いて、
N次元空間における前記正規直交基底行列が張る部分空間へ前記学習パラメータに示される成分を直交射影した結果に基づき点群特徴を抽出し、当該点群特徴を用いて点群を識別する、
ことを特徴とする学習装置。
これにより、本開示は、点群の座標に依存しない点群形状固有の特徴を用いて点群情報を識別する、学習装置を提供することができる、という効果を奏する。
さらに、本開示は、上記構成を上記学習方法に適用することにより、上記効果と同様の効果を奏する。
【0083】
ここで、本開示の点群識別装置300および点群学習装置400の機能を実現するハードウェア構成を説明する。
図9は、本開示における点群識別装置300および点群学習装置400の機能を実現するためのハードウェア構成の第1の例を示す図である。
図10は、本開示における点群識別装置300および点群学習装置400の機能を実現するためのハードウェア構成の第2の例を示す図である。
本開示の点群識別装置300および点群学習装置400は、図9または図10に示されるようなハードウェアにより実現される。
【0084】
点群識別装置300および点群学習装置400は、図9に示すように、例えばプロセッサ10001、メモリ10002、入出力インタフェース10003、および、通信回路10004により構成される。
プロセッサ10001、メモリ10002は、例えば、コンピュータに搭載されているものである。
メモリ10002には、当該コンピュータを、モデル取得部310、点群取得部320、回転不変変換部330、推論部340、結果出力部350、モデル取得部410、点群取得部420、回転不変変換部430、推論部440、結果出力部450、評価部460、モデル更新部470、および、図示しない制御部として機能させるためのプログラムが記憶されている。メモリ10002に記憶されたプログラムをプロセッサ10001が読み出して実行することにより、モデル取得部310、点群取得部320、回転不変変換部330、推論部340、結果出力部350、モデル取得部410、点群取得部420、回転不変変換部430、推論部440、結果出力部450、評価部460、モデル更新部470、および、図示しない制御部の機能が実現される。
また、メモリ10002または図示しない他のメモリにより、図示しない記憶部が実現される。
プロセッサ10001は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラまたはDSP(Digital Signal Processor)などを用いたものである。
メモリ10002は、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable Read Only Memory)またはフラッシュメモリ等の不揮発性もしくは揮発性の半導体メモリであってもよいし、ハードディスクまたはフレキシブルディスク等の磁気ディスクであってもよいし、CD(Compact Disc)またはDVD(Digital VersatileDisc)等の光ディスクであってもよいし、光磁気ディスクであってもよい。
プロセッサ10001とメモリ10002とは、相互にデータを伝送することが可能な状態に接続されている。また、プロセッサ10001とメモリ10002とは、入出力インタフェース10003を介して他のハードウェアと相互にデータを伝送することが可能な状態に接続されている。
また、通信回路10004により、図示しない通信部が実現される。
【0085】
または、モデル取得部310、点群取得部320、回転不変変換部330、推論部340、結果出力部350、モデル取得部410、点群取得部420、回転不変変換部430、推論部440、結果出力部450、評価部460、モデル更新部470、および、図示しない制御部の機能は、図10に示すように、専用の処理回路20001により実現されるものであっても良い。
処理回路20001は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)またはシステムLSI(Large-Scale Integration)等を用いたものである。
また、メモリ20002または図示しない他のメモリにより、図示しない記憶部が実現される。
メモリ20002は、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable Read Only Memory)またはフラッシュメモリ等の不揮発性もしくは揮発性の半導体メモリであってもよいし、ハードディスクまたはフレキシブルディスク等の磁気ディスクであってもよいし、CD(Compact Disc)またはDVD(Digital VersatileDisc)等の光ディスクであってもよいし、光磁気ディスクであってもよい。
処理回路20001とメモリ20002とは、相互にデータを伝送することが可能な状態に接続されている。また、処理回路20001とメモリ20002とは、入出力インタフェース20003を介して他のハードウェアと相互にデータを伝送することが可能な状態に接続されている。
また、通信回路20004により、図示しない通信部が実現される。
なお、モデル取得部310、点群取得部320、回転不変変換部330、推論部340、結果出力部350、モデル取得部410、点群取得部420、回転不変変換部430、推論部440、結果出力部450、評価部460、モデル更新部470、および、図示しない制御部の機能をそれぞれ別の処理回路で実現しても良いし、まとめて処理回路で実現しても良い。
【0086】
または、モデル取得部310、点群取得部320、回転不変変換部330、推論部340、結果出力部350、モデル取得部410、点群取得部420、回転不変変換部430、推論部440、結果出力部450、評価部460、モデル更新部470、および、図示しない制御部のうちの一部の機能がプロセッサ10001およびメモリ10002により実現され、かつ、残りの機能が処理回路20001により実現されるものであっても良い。
【0087】
なお、本開示は、その発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。例えば、実施の形態1と実施の形態2とを組み合わせて、点群の識別結果を結果出力部が結果出力装置へ出力するとともに、評価部を介してモデル更新部へ出力するように構成してもよい。これにより実施の形態1の効果と実施の形態2の効果との両方の効果を奏するようにできる。
【産業上の利用可能性】
【0088】
本開示の点群識別装置および学習装置はそれぞれ、点群を識別する精度を向上させることができるので、例えば、車両制御および運転支援といった技術において点群を識別するために用いるのに適している。
【符号の説明】
【0089】
1 点群識別システム、2 点群学習システム、100 点群入力装置、200,200A 記憶装置、210,210A 記憶部、300 点群識別装置、310 モデル取得部、320 点群取得部、330 回転不変変換部、331 直交化層部、332 射影層部、340 推論部、350 結果出力部、400 点群学習装置、410 モデル取得部、420 点群取得部、430 回転不変変換部、431 直交化層部、432 射影層部、440 推論部、450 結果出力部、460 評価部、470 モデル更新部、900 結果出力装置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10