IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ロッキード マーティン コーポレーションの特許一覧

特許7614206封入型線形リングカスプ内の磁気再結合を介したプラズマ生成及び加熱
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-06
(45)【発行日】2025-01-15
(54)【発明の名称】封入型線形リングカスプ内の磁気再結合を介したプラズマ生成及び加熱
(51)【国際特許分類】
   G21B 1/11 20060101AFI20250107BHJP
   H05H 1/08 20060101ALI20250107BHJP
【FI】
G21B1/11 B
H05H1/08
【請求項の数】 20
(21)【出願番号】P 2022538211
(86)(22)【出願日】2020-12-02
(65)【公表番号】
(43)【公表日】2023-03-02
(86)【国際出願番号】 US2020062784
(87)【国際公開番号】W WO2021133521
(87)【国際公開日】2021-07-01
【審査請求日】2023-11-09
(31)【優先権主張番号】16/725,535
(32)【優先日】2019-12-23
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】504242618
【氏名又は名称】ロッキード マーティン コーポレーション
【氏名又は名称原語表記】LOCKHEED MARTIN CORPORATION
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【弁理士】
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100168871
【弁理士】
【氏名又は名称】岩上 健
(72)【発明者】
【氏名】マグワイア トーマス ジョン
【審査官】藤本 加代子
(56)【参考文献】
【文献】特表2016-540184(JP,A)
【文献】国際公開第2019/081895(WO,A1)
【文献】特表2016-521358(JP,A)
【文献】特表2004-522158(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G21B 1/05
G21B 1/11
H05H 1/00-1/54
(57)【特許請求の範囲】
【請求項1】
エンクロージャと、
前記エンクロージャの内部内に懸架され前記エンクロージャの中心軸線と同軸の1又は2以上の内部磁気コイルと、
前記エンクロージャの前記中心軸線と同軸であり、前記内部磁気コイルよりも大きい直径を有する1又は2以上の封入磁気コイルと、
前記エンクロージャの前記中心軸線と同軸の1又は2以上のミラー磁気コイルと、
前記エンクロージャの前記中心軸線と同軸であり、電源によってパルス駆動されたときに前記エンクロージャ内の1又は2以上の磁場を再構成するように配置される1の磁気再結合コイルと、
を備えるシステム。
【請求項2】
前記1又は2以上の磁場は、前記1の磁気再結合コイルのパルスの立ち上がり時間中にベースライン位置から再構成され、
前記1又は2以上の磁場の前記再構成は、前記1又は2以上の磁場内のエネルギを増大して電場を誘導するように配置される、
請求項1に記載のシステム。
【請求項3】
前記1又は2以上の磁場の前記再構成は、前記1又は2以上の磁場に少なくとも1つの磁場ヌルを発生させる、請求項2に記載のシステム。
【請求項4】
核融合ガスが前記エンクロージャの内側に導入される場合に、前記電場は、前記核融合ガスを分解してプラズマの発生を引き起こし、前記プラズマは、前記少なくとも1つの磁場ヌルに集まるように配置される、請求項3に記載のシステム。
【請求項5】
プラズマは、前記エンクロージャの内側に導入された場合に、前記少なくとも1つの磁場ヌルに集まるように配置される、請求項3に記載のシステム。
【請求項6】
前記1の磁気再結合コイルの前記パルスの立ち下がり時間中に、前記1又は2以上の磁場内の前記エネルギは減少する、請求項5に記載のシステム。
【請求項7】
前記1又は2以上の磁場内の前記エネルギの前記減少は、前記少なくとも1つの磁場ヌルを前記ベースライン位置に至るまで加速させる、請求項6に記載のシステム。
【請求項8】
前記1又は2以上の磁場内の前記エネルギは、前記プラズマの中に放出される、請求項7に記載のシステム。
【請求項9】
前記プラズマは熱を放出する、請求項8に記載のシステム。
【請求項10】
エンクロージャの内部内に懸架され前記エンクロージャの中心軸線と同軸の1又は2以上の内部磁気コイルを励磁する段階と、
前記エンクロージャの前記中心軸線と同軸であり、前記内部磁気コイルよりも大きい直径を有する1又は2以上の封入磁気コイルを励磁する段階と、
前記エンクロージャの前記中心軸線と同軸の1又は2以上のミラー磁気コイルを励磁する段階と、
前記エンクロージャの前記中心軸線と同軸の1の磁気再結合コイルをパルス駆動する段階であって、前記1の磁気再結合コイルのパルスが、1又は2以上の磁場を前記エンクロージャ内のベースライン位置から再構成するように作動可能であり、それによって前記1又は2以上の磁場内のエネルギを増大して前記1又は2以上の磁場に少なくとも1つの磁場ヌルを発生させる、前記パルス駆動する段階と、
前記エンクロージャの中に核融合ガスを導入する段階と、
前記少なくとも1つの磁場ヌルにおいてプラズマを発生させる段階と、
を含む方法。
【請求項11】
前記1又は2以上の磁場の前記再構成は、前記1又は2以上の磁場を磁気的に再結合する段階を含む、請求項10に記載の方法。
【請求項12】
前記1又は2以上の磁場の前記再構成は、前記1の磁気再結合コイルの前記パルスの立ち上がり時間に発生する、請求項10に記載の方法。
【請求項13】
前記1又は2以上の磁場の前記再構成は、電場を誘導する、請求項10に記載の方法。
【請求項14】
前記電場は、前記核融合ガスを分解して前記プラズマの前記発生を引き起こし、前記プラズマは、前記少なくとも1つの磁場ヌルに集まるように配置される、請求項13に記載の方法。
【請求項15】
エンクロージャの内部内に懸架され前記エンクロージャの中心軸線と同軸の内部磁気コイルであって、前記2つの内部磁気コイルの各々がトロイダル形状を有する前記内部磁気コイルを励磁する段階と、
前記エンクロージャの前記中心軸線と同軸であり、前記内部磁気コイルよりも大きい直径を有する複数の封入磁気コイルを励磁する段階と、
前記エンクロージャの前記中心軸線と同軸の2つのミラー磁気コイルを励磁する段階と、
前記エンクロージャの前記中心軸線と同軸の1の磁気再結合コイルをパルス駆動する段階であって、前記1の磁気再結合コイルのパルスが、1又は2以上の磁場を前記エンクロージャ内のベースライン位置から再構成するように作動可能であり、それによって前記1又は2以上の磁場内のエネルギを増大して前記1又は2以上の磁場に少なくとも1つの磁場ヌルを発生させる、前記パルス駆動する段階と、
前記少なくとも1つの磁場ヌルに集まるように配置されるプラズマを前記エンクロージャの中に導入する段階と、
前記1又は2以上の磁場内の前記エネルギを低減して前記エネルギを前記プラズマの中に放出するために、前記1又は2以上の磁場を崩壊させる段階と、
を含む方法。
【請求項16】
前記1又は2以上の磁場の前記再構成は、前記1又は2以上の磁場を磁気的に再結合する段階を含む、請求項15に記載の方法。
【請求項17】
前記1又は2以上の磁場の前記再構成は、前記1の磁気再結合コイルの前記パルスの立ち上がり時間に発生する、請求項15に記載の方法。
【請求項18】
前記崩壊させる段階は、前記1の磁気再結合コイルの前記パルスの立ち下がり時間に発生する、請求項15に記載の方法。
【請求項19】
前記崩壊させる段階は、
前記少なくとも1つの磁場ヌルを前記ベースライン位置まで加速する段階、
を更に含む、請求項15に記載の方法。
【請求項20】
前記崩壊させる段階は、前記プラズマを加熱する、請求項15に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般的に核融合炉に関し、より具体的には封入型線形リングカスプ内の磁気再結合を介したプラズマ生成及び加熱に関する。
【背景技術】
【0002】
核融合動力は、2又は3以上の原子核が超高速で衝突して接合し、新しいタイプの原子核を形成する核融合プロセスによって発生される動力である。核融合炉は、プラズマを閉じ込めて制御することによって核融合動力を生成するデバイスである。典型的な核融合炉設計は、大型で複合的であり、かつ乗物上に装着することができない。
【発明の概要】
【課題を解決するための手段】
【0003】
実施形態によれば、核融合炉は、エンクロージャと、エンクロージャの内部内に懸架されエンクロージャの中心軸線と同軸の1又は2以上の内部磁気コイルと、エンクロージャの中心軸線と同軸であり、内部磁気コイルよりも大きい直径を有する1又は2以上の封入磁気コイルと、エンクロージャの中心軸線と同軸の1又は2以上のミラー磁気コイルと、エンクロージャの中心軸線と同軸であり、電源によってパルス駆動されたときにエンクロージャ内の1又は2以上の磁場を再構成するように配置される1又は2以上の磁気再結合コイルとを含むことができる。1又は2以上の磁場の再構成又は磁気再結合は、プラズマを生成する及び/又はプラズマを核融合条件まで励起するのに使用することができる。
【0004】
別の実施形態によれば、プラズマを発生させる方法は、エンクロージャの内部内に懸架されエンクロージャの中心軸線と同軸の1又は2以上の内部磁気コイルを励磁する段階と、エンクロージャの中心軸線と同軸であり、内部磁気コイルよりも大きい直径を有する1又は2以上の封入磁気コイルを励磁する段階と、エンクロージャの中心軸線と同軸の1又は2以上のミラー磁気コイルを励磁する段階と、エンクロージャの中心軸線と同軸の1又は2以上の磁気再結合コイルをパルス駆動する段階であって、1又は2以上の磁気再結合コイルのパルスが、エンクロージャ内のベースライン位置からの1又は2以上の磁場を再構成するように作動可能であり、それによって1又は2以上の磁場内のエネルギを増大して1又は2以上の磁場に少なくとも1つの磁場ヌルを発生する上記パルス駆動する段階と、エンクロージャの中に核融合ガスを導入する段階と、少なくとも1つの磁場ヌルにおいてプラズマを発生させる段階とを含むことができる。
【0005】
更に別の実施形態によれば、プラズマ核融合エネルギを発生させる方法は、エンクロージャの内部内に懸架されエンクロージャの中心軸線と同軸の内部磁気コイルを励磁する段階であって、2つの内部磁気コイルの各々がトロイダル形状を有する上記励磁する段階と、エンクロージャの中心軸線と同軸であり、内部磁気コイルよりも大きい直径を有する複数の封入磁気コイルを励磁する段階と、エンクロージャの中心軸線と同軸の2つのミラー磁気コイルを励磁する段階と、エンクロージャの中心軸線と同軸の1又は2以上の磁気再結合コイルをパルス駆動する段階であって、1又は2以上の磁気再結合コイルのパルスが、エンクロージャ内のベースライン位置からの1又は2以上の磁場を再構成するように作動可能であり、それによって1又は2以上の磁場内のエネルギを増大して1又は2以上の磁場に少なくとも1つの磁場ヌルを発生する上記パルス駆動する段階と、少なくとも1つの磁場ヌルに集まるように配置されるプラズマをエンクロージャの中に導入する段階と、1又は2以上の磁場を崩壊させて1又は2以上の磁場内のエネルギを低減し、エネルギをプラズマの中に放出する段階とを含むことができる。
【0006】
ある一定の実施形態の技術的利点は、典型的な核融合炉設計ほど複合的ではなく、構築するのに高価でない小型核融合炉を提供することを含むことができる。一部の実施形態は、トラック、航空機、船舶、列車、宇宙機、又は潜水艦のような乗物上又は内に装着されるように十分に小型である核融合炉を提供することができる。一部の実施形態は、淡水化プラント又は電力プラントに利用される場合がある核融合炉を提供することができる。他の技術的利点は、以下の図面、説明、及び特許請求の範囲から当業者に直ちに明らかであろう。更に、特定の利点を上記に列挙したが、様々な実施形態は、列挙した利点の全て、一部を含むか又はそのいずれも含まない場合がある。
【図面の簡単な説明】
【0007】
図1A】ある一定の実施形態による核融合炉に関する例示的用途を示す図である。
図1B】ある一定の実施形態による核融合炉に関する別の例示的用途を示す図である。
図1C】ある一定の実施形態による核融合炉に関する別の例示的用途を示す図である。
図1D】ある一定の実施形態による核融合炉に関する別の例示的用途を示す図である。
図2】ある一定の実施形態による核融合炉を利用する例示的航空機システムを示す図である。
図3A】ある一定の実施形態による磁気再結合コイルを利用する例示的核融合炉の外部図である。
図3B】ある一定の実施形態による磁気再結合コイルを利用する例示的核融合炉の内部図である。
図3C】ある一定の実施形態による核融合炉と併用するための磁気再結合コイルを示す図である。
図3D】ある一定の実施形態による磁気再結合コイルと併用するためのアクセスポートを示す図である。
図3E】ある一定の実施形態による磁気再結合コイルと併用するための接続ブロックを示す図である。
図4】ある一定の実施形態による磁気再結合コイルを利用する核融合炉の磁力線像を示す図である。
図5】ある一定の実施形態による磁気再結合コイルを使用する核融合炉内で発生されるエネルギの例示的計算を示す図である。
図6】ある一定の実施形態によるコンピュータシステムを示す図である。
【発明を実施するための形態】
【0008】
核融合炉は、核融合プロセスに使用されるプラズマを閉じ込めて制御することによって動力を発生する。典型的な核融合炉設計は、極端に大型かつ複合的なデバイスに向けられている。それらの法外に大きいサイズのために、それらを乗物上に装着することは実行可能ではないであろう。その結果、典型的核融合炉の有用性は制限される。
【0009】
本開示の教示は、トラック、列車、航空機、船舶、潜水艦、及び宇宙機などのような乗物上又は内に装着するのに十分に小さい小型核融合炉を提供することが望ましいことを認識している。例えば、分散動力システムを提供することができるトラック装着型小型核融合炉を提供することが望ましい場合がある。別の例として、航空機の航続距離及び運用時間を大きく拡張する航空機のための小型核融合炉を提供することが望ましい場合がある。これに加えて、電力プラント及び淡水化プラントに利用することができる核融合炉を提供することが望ましい場合がある。以下は、小型核融合炉に関連付けられたこれら及び他の望ましい利益を提供するための封入型線形リングカスプ核融合炉を説明するものである。
【0010】
図1A図1Dは、ある一定の実施形態による核融合炉110の用途を示している。一例として、図1Aでは、核融合炉110の1又は2以上の実施形態は、航空機101の1又は2以上のエンジン(例えば、タービン)に熱を供給するのに航空機101によって利用することができる。航空機内で1又は2以上の核融合炉110を利用する特定の例は、図2を参照して下記でより詳細に議論する。別の例では、図1Cにおいて、核融合炉110の1又は2以上の実施形態は、船舶102が電気及び推進動力を供給するのに利用することができる。図1Cには船舶102に関して航空母艦を示すが、あらゆるタイプの船舶(例えば、貨物船、クルーズ船など)が、核融合炉110の1又は2以上の実施形態を利用することができる。別の例として図1Bでは、分散電力を提供するために又は電気を必要とする遠隔地に電力を供給するために、核融合炉110の1又は2以上の実施形態は、平床トラック103に装着することができる。別の例として、図1Dでは、送電網に電気を供給するために、核融合炉110の1又は2以上の実施形態は、発電所104によって利用することができる。図1A図1Dには核融合炉110の特定の用途を示すが、本開示は、図示の用途に限定されない。例えば、核融合炉110は、列車、淡水化プラント、宇宙機、及び潜水艦などのような他の用途に利用することができる。
【0011】
一般的に、核融合炉110は、核融合プロセスに使用されるプラズマを閉じ込めて制御することによって動力を発生するデバイスである。核融合炉110は、様々な形態の動力に変換することができる大量の熱を核融合プロセスから発生する。例えば、核融合炉110によって発生された熱は、タービン及び発電機を駆動し、それによって電気を生成するための蒸気を生成するのに利用することができる。別の例として下記で図2を参照して更に詳しく議論するように、核融合炉110によって発生された熱は、燃焼器の代わりに航空機のターボファン又はファンジェットエンジンのタービンによって直接に利用することができる。
【0012】
核融合炉110は、任意の望ましい用途のための任意の望ましい出力を有するようにスケーリングすることができる。例えば、核融合炉110の一実施形態は、約10m×7mとすることができ、かつ約100MWの総熱出力を有することができる。他の実施形態では、核融合炉110は、用途に依存して大きく又は小さくすることができ、高いか又は低い熱出力を有することができる。例えば、核融合炉110は、200MWを過える総熱出力を有するようにサイズをスケーリングすることができる。
【0013】
図2は、ある一定の実施形態により1又は2以上の核融合炉110を利用する例示的航空機システム200を例示している。航空機システム200は、1又は2以上の核融合炉110と、燃料プロセッサ210と、1又は2以上の補助動力ユニット(APU)220と、1又は2以上のターボファン230とを含む。核融合炉110は、1又は2以上の熱伝達ラインを用いてターボファン230に高温クーラント240を供給する(例えば、直接又は燃料プロセッサ210を介して)。一部の実施形態では、高温クーラント240は、FLiBe(すなわち、フッ化リチウム(LiF)とフッ化ベリリウム(BeF2)の混合物)又はLiPbである。一部の実施形態では、高温クーラント240は、更にAPU220に供給される。ターボファン240によって使用された後に、リターンクーラント250は、核融合炉110に戻されて加熱され、再度使用される。一部の実施形態では、リターンクーラント250は、核融合炉110に直接に給送される。一部の実施形態では、リターンクーラント250は、更にAPU220から核融合炉110に供給される場合がある。
【0014】
一般的に、航空機システム200は、高温クーラント240を介してターボファン230に熱を供給するために1又は2以上の核融合炉110を利用する。典型的に、ターボファンは、吸入空気を加熱し、それによって推力を生成するためにジェット燃料を燃焼させる燃焼器を利用する。しかし、航空機システム200では、ターボファン230の燃焼器は、吸入空気を加熱するために1又は2以上の核融合炉110によって供給される高温クーラント240を利用する熱交換器によって置換されている。これは、典型的なターボファンに優る多くの利点を提供することができる。例えば、ジェット燃料を燃やす燃焼器なしにターボファン230を作動させることにより、航空機101の航続距離を大きく延長させることができる。更に、ジェット燃料の必要性を大きく低減する又は排除することにより、航空機101の運用コストを有意に低減することができる。
【0015】
図3A及び図3Bは、ある一定の実施形態による、図1及び図2の例示的用途に利用することができる核融合炉300を示している。一般的に、核融合炉300は、内部カスプ磁気コイルを用いて発生されたプラズマが膨張することを防止するために封入磁気コイルが使用される封入型線形リングカスプ核融合炉を備えることができる。一部の実施形態では、核融合炉300は、エンクロージャ320を含むことができ、図示のようにエンクロージャ320の中心の長さを下って中心軸線310が延びる。一部の実施形態では、エンクロージャ320は真空チャンバを含むことができる。核融合炉300は、内部コイル340(例えば、図3Bに示す内部コイル340は、「カスプ」コイルとしても公知である)と、封入コイル350と、ミラーコイル360とを更に含むことができる。内部コイル340は、エンクロージャ320内で任意の適した手段によって懸架することができ、かつその中心を中心軸線310上に定めることができる。封入コイル350も、その中心を中心軸線310上に定めることができ、かつエンクロージャ320の内部又は外部のいずれかとすることができる。例えば、一部の実施形態では、封入コイル350は、エンクロージャ320の中に懸架することができる。他の実施形態では、封入コイル350は、図3A及び図3Bに示すように、エンクロージャ320の外部とすることができる。
【0016】
一般的に、核融合炉300は、核融合プロセスに対してプラズマ310を制御してエンクロージャ320の中に閉じ込めることによって動力を供給することができる。内部コイル340、封入コイル350、及びミラーコイル360は励磁され、プラズマ370を図3Bに示す形状のような形状の中に閉じ込める磁場を形成する。次に、重水素ガス及び三重水素ガスのようなある一定のガスを反応させて、プラズマ370及びエンクロージャ320の壁を加熱するエネルギ粒子を生成することができる。発生した熱は、次に、例えば、乗物に動力を与えるのに使用することができる。例えば、FLiBe又はLiPbのような液体金属クーラントは、核融合炉300の壁から航空機のエンジンに熱を運び出すことができる。一部の実施形態では、ガスタービンエンジン内の燃焼器は、核融合炉300からの発生熱を利用する熱交換器で置換することができる。一部の実施形態では、核融合炉300から磁気流体力学(MHD)プロセスを通して電力を抽出することができる。
【0017】
核融合炉300は、封入型線形リングカスプ核融合デバイスを備えることができる。主プラズマ閉じ込めは、一部の実施形態では、軸線方向両側に位置付けられた2つのスピンドルカスプ(例えば、内部コイル340)を有する2つの中心線形リングカスプ(例えば、中心コイル330)によって達成することができる。次に、これらの閉じ込め領域は、ミラーコイル360によって提供される同軸ミラー磁場内に封入することができる(例えば、封入コイル350を用いて)。
【0018】
核融合炉300の磁場は、様々なサイズ及び電流の同軸に位置付けられた磁場コイルによって与えられる。中心領域のリングカスプ損失は、スピンドルカスプの中への再循環によって軽減される。この再循環流れは、封入コイル350によって与えられる封入磁場によって安定で小型のものにすることができる。主閉じ込め領域からの外方拡散損失及び軸線方向損失は、封入コイル350によって与えられる封入磁場の強いミラー磁場によって軽減される。核融合エネルギ生成デバイスとして機能するために、閉じ込めプラズマ370は、核融合反応を受けて熱を生成することができる。次に、この熱は、採取されて有用な熱、仕事、及び/又は電力を生成することができる。
【0019】
核融合炉300は、広域MHD安定性を保持することができ、かつ連続する閉じ込めゾーンを介した損失が、ヌルラインに沿って移動する粒子の散乱に起因してかなり分断されるので、部分的には既存システムに対する改善である。この特徴は、中心軸線に沿って移動する粒子が、システムの外に即座に出て行く可能性が低く、システムを離れるのに多くの散乱事象を要することになることを意味する。これは、デバイス内のこれらの粒子の生存時間が延び、有利な核融合動力を生成する核融合炉の機能が高まる。
【0020】
核融合炉300は、広域MHD安定性を示し、開放磁力線を介した粒子損失が最小限であり、利用可能な磁場エネルギの全てを用い、かつ有意に簡素化された工学設計を有する新しい磁場構成を有する。磁場の効率的な使用は、本開示の実施形態を典型的なシステムよりも一桁小さくすることができ、それによって電力プラントに対する資本コストが有意に低減されることを意味する。更に、この低いコストにより、各設計サイクルを典型的なシステムよりもかなり高速に完了することができるので、本概念を迅速に開発することができる。一般的に、本開示の実施形態は、既存システムよりも遥かに低い物理リスクしか伴わずにより簡単で安定した設計を有する。
【0021】
エンクロージャ320は、核融合反応を閉じ込めるための任意の適したチャンバ又はデバイスを含むことができる。一部の実施形態では、エンクロージャ320は、一般的に、形状が円筒形の真空チャンバとすることができる。他の実施形態では、エンクロージャ320は、円筒形以外の形状とすることができる。一部の実施形態では、エンクロージャ320は、図示のようにそれ自体の中心の長さ方向に延びる中心軸線310を有することができる。一部の実施形態では、エンクロージャ320は、第1の端部322と、その反対にある第2の端部324とを含むことができる。一部の実施形態では、エンクロージャ320は、第1の端部322と第2の端部324の間で実質的に等距離にある軸線方向中点326を含むことができる。軸線方向中点326という用語は、エンクロージャ上の単一点に限定する必要はなく、エンクロージャ320の第1の端部322と第2の端部324の間で実質的に等距離にあるエンクロージャ320の外面上、内面上、又は内側にあるいずれかの点を指すことができる。
【0022】
核融合炉300の一部の実施形態は、2つの中心コイル330を含むことができる。中心コイル330は、エンクロージャ320の中点326の両側のほぼ等距離に位置付けることができる。一部の実施形態では、中心コイル330は、互いに中心軸線310上に中心を定めることができ、内部コイル340と同軸とすることができる。中心コイル330は、エンクロージャ320の内部又は外部とすることができ、中点326に関する任意の適した軸線方向位置に位置付けることができ、任意の適した半径を有することができ、任意の適した電流を流すことができ、任意の適したアンペア回数を有することができる。
【0023】
内部コイル340は、エンクロージャ320の中に懸架された又は他に配置された任意の適した磁気コイルとすることができる。一部の実施形態では、内部コイル340は、超電導磁気コイルである。一部の実施形態では、内部コイル340は、図3Bに示すように形状がトロイダルである。一部の実施形態では、内部コイル340は、中心軸線310上に中心が定められる。一部の実施形態では、内部コイル340は、エンクロージャ320の中点326と第1の端部322の間に位置付けられた第1の内部コイル、及びエンクロージャ320の中点326と第2の端部324の間に位置付けられた第2の内部コイルという2つのコイルを含むことができる。内部コイル340は、中点326に関する任意の適した軸線方向位置に位置付けることができ、任意の適した半径を有することができ、任意の適した電流を流すことができ、任意の適したアンペア回数を有することができる。
【0024】
封入コイル350は、任意の適した磁気コイルであり、一般的に内部コイル340よりも大きい直径を有する。一部の実施形態では、封入コイル350は、中心軸線310上に中心が定められ、内部コイル340と同軸である。一般的に、封入コイル350は、内部コイル340を封入することができ、内部コイル340の元来の磁力線を磁気圏の内側に閉鎖するように作動することができる。これらの線を閉鎖することにより、開放磁力線の範囲を縮小し、再循環による損失を低減することができる。封入コイル350は、プラズマ370が膨張することを防止する磁壁を維持することによってMHD安定性を保持することができる。封入コイル350は、正方形又は丸形のような任意の適した断面を有する。一部の実施形態では、封入コイル350は、エンクロージャ320の中に懸架される。他の実施形態では、封入コイル350は、図3A及び図3Bに示すようにエンクロージャ320の外部とすることができる。封入コイル350は、中点326に関する任意の適した軸線方向位置に位置付けることができ、任意の適した半径を有することができ、任意の適した電流を流すことができ、任意の適したアンペア回数を有することができる。
【0025】
核融合炉300は、任意の個数及び配置の封入コイル350を含むことができる。一部の実施形態では、封入コイル350は、エンクロージャ320の中点326の各側に配置された少なくとも1つの封入コイル350を含むことができる。例えば、核融合炉300は、エンクロージャ320の中点326と第1の端部322の間に位置付けられた第1の封入コイル、及びエンクロージャ320の中点326と第2の端部324の間に位置付けられた第2の封入コイルという2つの封入コイル350を含むことができる。一部の実施形態では、核融合炉300は、2、4、6、8、又は任意の他の偶数個の封入コイル350を含むことができる。ある一定の実施形態では、核融合炉300は、内部コイル340とエンクロージャ320の第1の端部322の間に位置付けられた2つの封入コイル350の第1のセットと、内部コイル340とエンクロージャ320の第2の端部324の間に位置付けられた2つの封入コイル350の第2のセットとを含むことができる。特定の個数及び配置の封入コイル350を開示したが、核融合炉300は、任意の適した個数及び配置の封入コイル350を利用することができる。
【0026】
ミラーコイル360は、一般的にエンクロージャ320の端部(すなわち、第1の端部322及び第2の端部324)の近くに位置付けられた磁気コイルである。一部の実施形態では、ミラーコイル360は、その中心を中心軸線310上に定めることができ、内部コイル340と同軸である。一般的に、ミラーコイル360は、軸線方向カスプ損失を低減し、他の既存再循環概念に基づいて満たされない条件下である全ての再循環磁力線に平均最小βを満足させるように機能することができる。一部の実施形態では、ミラーコイル360は、エンクロージャ220の第1の端部322の近くに位置付けられた第1のミラーコイルと、エンクロージャ220の第2の端部324の近くに位置付けられた第2のミラーコイルとを含むことができる。ミラーコイル360は,エンクロージャ320の内部又は外部のいずれかとすることができ、中点326に関する任意の適した軸線方向位置に位置付けることができ、任意の適した半径を有することができ、任意の適した電流を流すことができ、任意の適したアンペア回数を有することができる。
【0027】
一部の実施形態では、コイル330、340、350、及び360は、ある一定の制約条件に従って設計又は選択される。例えば、コイル330、340、350、及び360は、高い所要電流(一部の実施形態では約10メガアンペア回数の最大値)、定常状態連続作動、真空設計(プラズマ衝突からの保護)、トロイダル形状、アウトガスの制限、150Cベークアウトに適合する材料、熱の蓄積、及びショット間の冷却を含む制約条件に従って設計することができる。
【0028】
図3Bと併せて図3Aの参照を続けると、核融合炉300は、1又は2以上の磁気再結合コイル380を更に含むことができる。図3A及び図3Bの磁気再結合コイル380は、高電圧(HV)絶縁ワイヤの1又は2以上の低インダクタンス磁気コイルを備えることができる。磁気再結合コイル380は、エンクロージャ320の実質的に軸線方向中点326で又はそれに近接してエンクロージャ320の外周の周りに巻き付けることができ、エンクロージャの中心軸線と同軸とすることができる。磁気再結合コイル380は、エンクロージャ320の外面の軸線方向中点326に近接しかつエンクロージャの中心軸線と同軸であるように説明及び描写されているが、本開示をそのように限定すべきではないことは理解されるものとする。例えば、実施形態(図示せず)では、磁気再結合コイル380は、エンクロージャ320の内側でエンクロージャの軸線方向中点326に近接しかつ内部コイル340のものよりも大きい半径方向距離に位置決めすることができる。同様に、磁気再結合コイル380は、エンクロージャの外面上の1又は2以上の他の場所又はエンクロージャ内の1又は2以上の他の場所に位置決めすることができる。更に他の実施形態では、磁気再結合コイル380は、核融合炉300の1又は2以上の他の磁気コイル330、340、350、360と統合することができる。これに代えて、磁気再結合コイル380は、核融合炉300の1又は2以上の他の磁気コイル330、340、350、360とは別個とすることができる。一部の実施形態では、磁気再結合コイル380の位置決めは、核融合炉300内の他のコイルによって引き起こされる相互インダクタンスの効果に基づく場合があり、すなわち、例えば、相互インダクタンスの効果を最小にして磁気再結合のプロセスを容易にするように位置決めすることができる。この点に関して磁気再結合コイル380と他の磁気コイル330、340、350、360との間の距離は、相互インダクタンス効果を低減するように調節することができる。他の実施形態では、相互インダクタンス効果を低減するために、磁気再結合コイル380の周りに磁気シールドを位置決めすることができる。
【0029】
ここで本開示による磁気再結合コイル380の実施形態を示す図3C図3D、及び図3Eを参照する。図3C及び図3Dに示すように、磁気再結合コイル380は、1又は2以上のアクセスポート382の周りに経路指定されたHV絶縁ワイヤの2つの磁気コイルを備えることができる。図3Dは、磁気再結合コイル380と共に使用するためのアクセスポート382の実施形態を描いている。アクセスポート382は、磁気再結合コイル380を鋭い又は研磨性の面から保護するための並びに磁気再結合コイル380をエンクロージャ320の面の軸線方向中点326に維持するためのアダプタとして機能することができる。各アクセスポート382は、磁気再結合コイル380がエンクロージャ320の周りに巻き付けられたときに、エンクロージャ320内の円形窓に対応し、それによってエンクロージャ320の内側にあるプラズマを観察することを可能にするような中心開口部384を含むことができる。図3Cは、2つの磁気コイルを備える磁気再結合コイル380を示すが、この構成は、低インダクタンスを可能にし、更に磁気再結合コイル380が迅速にパルス作動し、それによって本開示で説明する結果をもたらすことを可能にするあらゆる個数のコイルを含むことができることは理解されるものとする。更に、一部の実施形態では、この構成は、いずれの個数のアクセスポート382も含むことができ、又はアクセスポート382を含まないことができ、他の手段によってエンクロージャ320に又はその中に取り付けることができる。
【0030】
図3Eと共に図3Cの参照を続けると、磁気再結合コイル380は、そのコイルを有意なオーバーラップ又はアンダーラップなしに2巻回に維持することができる接続ブロック386に結合することができる。磁気再結合コイル380は、それをパルス駆動するように電力を供給することができるソレノイド磁石パルサーのようなコンデンサーベースの電源(図示せず)に更に結合することができる。一部の実施形態では、ソレノイド磁石パルサーは、1kV、35kAでパルス作動させることができる。当業者によって理解されるように、これらの値は、核融合炉に基づいてスケーリングすることができ、それに従ってより高い又は低い次数とすることができる。磁気再結合コイル380の各パルスは、立ち上がり時間(パルスの前縁(電圧又は電流)が、その最小値から立ち上がるのに要する時間)と、立ち下がり時間(パルスが、その最大値から最小値に戻るのに要する時間)とを含むことができる。一部の実施形態では、磁気再結合コイル380のパルスの立ち上がり時間は、約0.5msとすることができる。パルスの立ち上がり時間は、プラズマ応答を改善し、プラズマに伝達されるエネルギを増大させるように修正及び/又は最適化することができる。パルス駆動されるときに、磁気再結合コイル380の電流の方向は、内部コイル340の磁場の方向と同じとすることができる。
【0031】
磁気再結合コイル380は、磁気再結合の原理を利用して核融合炉300内で磁気エネルギをプラズマの核融合エネルギに変換することができる。言い換えれば、磁気再結合プロセスを印加する磁気再結合コイル380は、それ自体で核融合炉300を核融合条件に駆動するエネルギ及び熱をこれらのエネルギ及び熱の外部ソースを追加することなしに供給することができる。
【0032】
一般的に、磁気再結合は、プラズマ内の反対方向の磁力線の切断及び再結合を意味し、それにより磁場エネルギが運動エネルギ及び熱エネルギに変換される。具体的には、プラズマ内の磁場は、磁力線から構成される。電子及びイオンは、これらの見えない磁力線の周りの円形軌道に閉じ込められる。反対方向に向く磁場を有する2つの磁力線セットが過度に近づいたときに、磁力線セットは衝突する。対向する磁力線が交差して「X」を形成すると、これらの磁力線セットは切れ、反対方向から来る他方の磁力線セットに再結合し、互いに押しのけるU字形を形成する。磁気再結合と呼ばれるこのプロセスは、磁場の再配置をもたらし、磁気エネルギを粒子エネルギに変換する。
【0033】
本開示により、図4に関して下記で説明するように、磁気再結合コイル380は、核融合炉300内で1)磁場を励起してプラズマを生成する機能、及び2)プラズマの磁場を崩壊させて核融合エネルギを導出する機能という少なくとも2つの機能を提供することができる。
【0034】
ここで本開示による磁気再結合コイル380を利用する核融合炉300での磁力線の時系列移動を描く磁力線像のフレーム1~4を示す図4を参照する。図4では、これらのフレーム内の白色の矩形ブロックは、励磁された外部磁気コイル(中心コイル330、外側コイル350、及びミラーコイル360)に対応し、白色の円は、励磁された内部磁気コイル340に対応する。磁力線は、励磁されたこれらのコイルの各々を取り囲む。更に、フレーム1~4は、磁力線の断面図を示すことに注意されたい。言い換えれば、これらの磁力線は、各フレームの下側エッジの周りに回転対称である。更に、図4は、中心コイル330、内部コイル340、封入コイル350、及びミラーコイル360が全て磁気再結合コイル380のパルス駆動の前に励磁されることを示すが、磁気再結合コイル380に関して本明細書に説明する機能を実施するのにこれらのコイル330、340、350、360のうちの1又は2以上を励磁する必要はない場合があることは理解されるものとする。
【0035】
磁気再結合コイルの第1の機能は、磁場を励磁してプラズマを生成することである。一般的に、プラズマは、中性ガスが加熱され又は強電磁場に曝され、その結果ガスが漸進的に導電性を有するようになり、イオンと自由電子とに分解するときに生成される。得られる物質は、プラズマ、つまりイオンと電子の両方が共存することを可能にするほど十分なエネルギを有するイオン化されたガスである。磁気再結合コイル380は、これらの状態を発生させてプラズマを生成することができる。図4のフレーム1は、磁気再結合コイル380をパルス駆動する前、すなわち、ゼロパルスコイル電流での磁場のベースラインを例示している。図示のように、ベースラインでは、単一磁場ヌル430を間に挟む2つの隣接磁場410と420を内部磁気コイル340によって発生させることができる。磁場ヌル点は、磁場強度がゼロに等しい場所である。
【0036】
図4のフレーム2を参照して、磁気再結合コイル380は、1回に1msを要さない速度で高速に励磁する(パルス駆動する)ことができる。一部の実施形態では、磁気再結合コイル380のパルスの立ち上がり時間は、約0.5msとすることができる。立ち上がり時間は、核融合炉300の仕様及び/又はパラメータに基づいて調節することができる。磁気再結合コイル380のパルスによって供給される電力(電圧又は電流)は、パルスの立ち上がり時間中に、急激に変化して磁場410及び420を再構成することができる。磁場410、410を励磁することができ、これらの磁場の磁力線を長手軸線460に沿って引っ張り上げることができる。次に、磁場410の磁力線と磁場420の磁力線とは対向方向にあるので、互いに押し合うことができる。その結果、単一磁場ヌル430を強制的に分離し、2つの明確に異なる磁場ヌル440a、440b又は「X点」を生成することができる。磁場ヌル430の移動及びX点440a、440bの生成は磁気再結合をもたらす。
【0037】
実施形態では(図示せず)、単一磁場ヌル又はX点を生成することができる。具体的には、磁気再結合コイル380を高速に励磁する(又はパルス駆動する)と、磁気再結合コイル380のパルスによって供給される電力(電圧又は電流)は、パルスの立ち上がり時間中に、急激に変化して磁場410及び420を再構成することができる。磁力線は、長手軸線460に沿って押し上げることができ、磁場410及び420の対向する磁力線は、互いに押し合って単一X点(2つのX点ではなく)を生成することができる。本開示は、いずれも特定の個数のX点の生成に限定すべきではないことは理解されるものとする。本開示は単一X点及び/又は二重X点の生成を説明するが、磁気再結合の原理に基づくと、あらゆる個数のX点を発生させることができる。
【0038】
実施形態では、磁気再結合コイル380のパルスの立ち上がり時又はその前に核融合炉300に核融合ガスを充填することができる。立ち上がり時間中にパルスによって引き起こされる磁場の急激な変化は、高誘導方位電場をもたらし、核融合ガスをその構成物であるイオンと自由電子とに強制的に分解し、それによってプラズマを実質的に発生させる。得られるプラズマは、磁場ヌル(X点)440a、44bに2つの「プラズマリング」として集まることができる(1つのX点しか発生させなかった場合に、単一「プラズマリング」として集まることができる)。1又は2以上のX点は最も低い磁気圧力の領域を備えるので、プラズマはこれらの点に引き寄せられる。言い換えれば、電場の力及び他の微小乱流がプラズマに作用すると、プラズマは再編成し、自然にX点に引っ張られる。
【0039】
別の実施形態では、磁気再結合コイル380のパルスは、内部コイル340の1又は2以上の面上に1又は2以上の磁場ヌルの形成をもたらすことができる。言い換えれば、核融合炉300に核融合ガスが充填される場合に、磁気再結合コイル380のパルスは、立ち上がり時間中に磁場を急激に変化させて内部コイル340の面上にヌルを形成することができる。磁場の変化は強電場を誘導し、あたかもドーナツのグレージングのように、内部コイル340の面上にプラズマの形成をもたらすことができる。
【0040】
磁気再結合コイル380のパルス駆動によってプラズマを生成するという上述したプロセスの様々な態様は、本開示の精神又は範囲から逸脱することなく改造又は修正することができることは理解されるものとする。例えば、本開示では2つのコイルを有する磁気再結合コイル380を説明するが、任意の巻回を有するいずれの個数のコイルも使用することができる。同様に、磁気再結合コイル380は、任意の速度及び/又は周波数でパルス駆動することができ、対応する任意の立ち上がり時間及び/又は立ち下がり時間を有することができる。更に、プラズマは、本開示で説明する一方又は両方の場所(すなわち、1又は2以上のX点に及び/又は内部コイル340の1又は2以上の面上に)、並びにエンクロージャ320内の他の場所に又は面上に形成することができる。
【0041】
次に、磁気再結合の原理を用いて核融合エネルギを導出するために磁気再結合コイル380を使用することができる。一部の実施形態により、核融合エネルギを導出するプロセスは、プラズマを生成する上述のプロセスの後に続けることができる(すなわち、磁気再結合コイル380をパルス駆動することによって発生されたプラズマを引き続き用いてエネルギを導出することができる)。この場合に、このプロセスは、下記でフレーム3に示し、それに関して説明するように続くと考えられる。これに代えて、磁気再結合コイル380をパルス駆動する前に、プラズマを核融合炉300の中に別個に導入することができる。
【0042】
プラズマが核融合炉300の中に別個に導入される場合に、このプロセスは、核融合炉300内で磁気コイル330、340、350、360を励磁することによって始まる。次に、プラズマが核融合炉300の中に導入され、プラズマの荷電粒子は、図4のフレーム1に示す磁場410、420の方向の磁力線の周りに渦巻くことができる。プラズマの磁場410、420の間に単一磁場ヌル430が存在することができる。次に、フレーム2に示すように、磁気再結合コイル380は、1ms未満の速さで高速に励磁(パルス駆動)することができる。磁気再結合コイル380のパルス駆動は、ほぼ1msの時間スケールで、磁場を高速に再配置又は再構成することができる。具体的には、パルスの立ち上がり時間中に、磁場410、420は励磁状態になることができ、磁力線を長手軸線460に沿って引っ張り上げることができる。磁場410の磁力線と420の磁力線は対向方向に延びるので、これらの磁力線は互いに押し合って収束する。磁場410、420の収束により、単一磁場ヌル430を強制的に分離させ、それによって2つの磁場ヌル(又はX点)440a、440bを発生させることができる。別の実施形態(図示せず)では、磁気再結合プロセス中に単一X点を発生させることができる。1又は2以上のX点の発生は、磁場410、420を弱め始め、励起されたプラズマが磁力線の周りに渦巻き、長手軸線460に沿って引っ張り上げられて2つのX点440a、440bに2つのプラズマリングとして(又は単一X点に単一プラズマリングとして)集まることを可能にする。1又は2以上のX点を生成する磁場ヌル430の再構成は、磁気再結合をもたらす。この磁気再結合のプロセスは、磁場エネルギが減少するにつれて核融合炉内の全プラズマエネルギを急激に増大させる。
【0043】
次に、図4のフレーム3を参照すると、磁場が再配置されて励磁された直後に、プラズマが2つのX点に集中した状態で磁場を崩壊させることができる。特に、磁気再結合コイル380のパルス電流が立ち下がるとき(すなわち、パルスの立ち下がり時間中)に、磁場410、420を急激に崩壊させることができ、これらの磁場は、低いエネルギ状態に移行することができる。プラズマリングを有するフレーム2の磁場ヌル440a、440bは、磁場410、420の下方移行に追従し、互いに衝突して単一磁場ヌル450を形成することができる。単一磁場ヌル450は、核融合炉300の中心軸線310にあるベースライン位置まで下方に加速することができる。磁場が急激に変化すると、電場が誘導され、プラズマ内に大量の、潜在的には数十キロボルト(kV)から数百数十キロボルト(kV)程度のエネルギ及び熱を発生させることができる。
【0044】
プラズマが単一X点に又は1又は2以上の内部コイル340の面上に集中する場合に、磁場410、420を崩壊させることにより、実質的に類似の結果をもたらすことができる。具体的には、磁気再結合コイル380のパルス電流が立ち下がるとき(すなわち、パルスの立ち下がり時間中)に、磁場410、420を急激に崩壊させることができ、これらの磁場は、低エネルギ状態に移行することができる。プラズマリングは、単一X点に集まる場合に、核融合炉300の中心軸線310にあるベースライン位置まで下方に加速することができる。同様に、プラズマは、1又は2以上の内部コイル340上の面上に集まる場合にも中心軸線310にあるベースライン位置まで下方に加速することができる。磁場が急激に変化すると、電場が誘導され、プラズマ内に大量のエネルギ及び熱を発生させることができる。
【0045】
ここで図4のフレーム4を参照すると、磁力線がそのベースライン位置に戻るときに、磁場中の全エネルギが減少し(又は放出され)、システム内に自由エネルギがもたらされる。単一磁場ヌル430内のプラズマも中心軸線310に戻ることができ、磁場によって(フレーム2から)放出されたエネルギは、プラズマに伝達される。得られたプラズマは、核融合条件まで加熱するのに中性ビーム及び/又は外部加熱注入機構が必要とされなくなる程度まで、励起され加熱され得る。次に、プラズマ内のこの核融合エネルギを、当技術分野で知られている手段を用いて抽出することができる。
【0046】
ここで、本開示の磁気再結合コイル380によって引き起こされる磁気再結合の試験に基づく放出エネルギの計算例500を示す図5を参照する。チャート510に数値的に示し、グラフ520に図形的に示すように、磁気再結合コイル380内の電流(キロアンペアkAを単位とする)が増加するにつれて、全導出エネルギ(ジュールJを単位とする)も増大することができる。従って、磁気再結合コイル380内の電流を50kAでパルス駆動したときに、約5kJのエネルギが放出され、これは約5MWの加熱に対応する。上述の値は、試験条件下で取得したものであることは理解されるものとする。核融合炉内では、磁気再結合コイル380をより高い次数でパルス駆動し、数千メガワット以上の加熱に対応する数メガジュールのエネルギの伝達をもたらすことができると予想される。
【0047】
要するに、磁気再結合によってプラズマの磁場を急激に再構成し、次に、これらの磁場が崩壊することを可能にすることにより、本開示の磁気再結合コイル380は、エネルギを発生させるための効率的な手段を提供する。より具体的には、磁気再結合コイル380のパルスが核融合炉300内の磁場を短時間にわたって再構成するときに、磁場が励磁される。その磁場を崩壊させると、磁場エネルギは減少し、磁場から放出されたエネルギをプラズマに伝達することができる。
【0048】
本明細書に開示する磁気再結合コイルを使用することには様々な利点がある。第1に、磁気再結合コイルと共に使用されるプロセスは非常に効率的であり、一部の実験は、導出エネルギに関して90%の効率を計算した。更に、このプロセスは、プラズマイオンが電子よりも高温になることを可能にする。このことは、放射損失は電子温度に比例するが、核融合は加熱されたイオンによって発生するので、先進的な核融合燃料に対して理想的である。次に、このプロセスは、核融合点火条件まで核融合炉を駆動し続けることができ、消費するよりも多いエネルギの発生をもたらすことができる。同様に、このプロセスは、柔軟性を与え、第1世代重水素-三重水素燃料を用いた連続運転、又は先進燃料を用いたパルス駆動運転を可能にする。
【0049】
磁気再結合コイルの追加の利点は、プラズマが生成された後に切り離すことができる機能を含み、それによってプラズマからの電力損失を確実に低減することができる。同様に、磁気再結合コイルは、プラズマを生成及び加熱する機能を提供するが、多くの既存システムは、これらの機能の一方しか与えない。磁気再結合コイルに使用される技術は、エネルギを交換するために粒子間の衝突に依存しないので、広範囲のガス密度にわたって機能する。それによって、プラズマ構成物間でエネルギを伝達するために衝突に依存する中性ビーム加熱プラズマにおいて可能と考えられるものよりも高いプラズマ温度を、低密度プラズマにおいて達成することを可能にする。
【0050】
磁気再結合コイル380のパルス駆動によってエネルギを導出するという上述したプロセスは、本開示の精神又は範囲から逸脱することなく改造又は修正することができることは理解されるものとする。例えば、本開示では単一パルスを説明したが、熱を追加するために及び/又はプラズマの冷却を回避するために磁気再結合コイルを任意の回数パルス駆動することができ、及び/又はこのプロセスを任意の回数繰り返すことができることは理解されるものとする。更に、このプロセスの繰り返しは、磁気再結合コイル380のパルス時間に対応させることができる(すなわち、1msのパルス時間では、このプロセスを1kHzの頻度で繰り返すことができる)。
【0051】
次に、例示的コンピュータシステム500を示す図6を参照する。特定の実施形態では、コンピュータ処理制御を必要とする任意の態様に対して1又は2以上のコンピュータシステム600が核融合炉300によって利用される。特定の実施形態は、1又は2以上のコンピュータシステム600の1又は2以上の部分を含む。本明細書では、コンピュータシステムへの言及は、コンピュータデバイスを包含することができ、適する場合はその逆も同様である。更に、コンピュータシステムへの言及は、適する場合は1又は2以上のコンピュータシステムを包含することができる。
【0052】
この開示は、あらゆる適した個数のコンピュータシステム600を企図している。この開示は、あらゆる適した物理的形態を取るコンピュータシステム600を企図している。限定ではなく例として、コンピュータシステム600は、埋め込みコンピュータシステム、システム-オン-チップ(SOC)、シングル-ボードコンピュータシステム(SBC)(例えば、コンピュータ-オン-モジュール(COM)又はシステム-オン-モジュール(SOM)のような)、デスクトップコンピュータシステム、ラップトップコンピュータシステム又はノートブックコンピュータシステム、キオスク端末、メインフレーム、コンピュータシステムメッシュ、携帯電話、携帯情報端末(PDA)、サーバ、タブレットコンピュータシステム、拡張現実/仮想現実デバイス、又はこれらのうちの2又は3以上の組合せとすることができる。適する場合に、コンピュータシステム600は、単体又は分散型、又は複数の場所にわたる又は複数の機械にわたる、又は複数のデータセンターにわたる又は1又は2以上のネットワーク内に1又は2以上のクラウド構成要素を含むことができるクラウドに存在する1又は2以上のコンピュータシステム600を含むことができる。適する場合に、1又は2以上のコンピュータシステム600は、本明細書に説明又は例示する1又は2以上の方法の1又は2以上の段階を実質的な空間的又は時間的制限なしに実施することができる。限定ではなく一例として、1又は2以上のコンピュータシステム600は、本明細書に説明又は例示する1又は2以上の方法の1又は2以上の段階を実時間又はバッチモードを用いて実施することができる。1又は2以上のコンピュータシステム600は、本明細書に説明又は例示する1又は2以上の方法の1又は2以上の段階を異なる時間に又は異なる場所で実施することができる。
【0053】
特定の実施形態では、コンピュータシステム600は、コンピュータ602と、メモリ604と、ストレージ606と、入力/出力(I/O)インタフェース608と、通信インタフェース610と、バス612とを含む。本開示では、特定の個数の特定の構成要素を特定の配置で有する特定のコンピュータシステムを説明及び例示するが、本開示は、あらゆる適した個数のあらゆる適した構成要素をあらゆる適した配置で有するあらゆる適したコンピュータシステムを企図しいる。
【0054】
特定の実施形態では、プロセッサ602は、コンピュータプログラムを構成するもののような命令を実行するためのハードウエアを含む。限定ではなく例として、命令を実行するために、プロセッサ602は、内部レジスタ、内部キャッシュ、メモリ604、又はストレージ606から命令を取り出し(又はフェッチし)、それらを復号及び実行し、次に、1又は2以上の結果を内部レジスタ、内部キャッシュ、メモリ604、又はストレージ606に書き込むことができる。特定の実施形態では、プロセッサ602は、データ、命令、又はアドレスに対する1又は2以上の内部キャッシュを含むことができる。この開示は、適する場合に、あらゆる適した個数のあらゆる適した内部キャッシュを含むプロセッサ602を企図している。限定ではなく例として、プロセッサ602は、1又は2以上の命令キャッシュと、1又は2以上のデータキャッシュと、1又は2以上の変換ルックアサイドバッファ(TLB)とを含むことができる。命令キャッシュ内の命令は、メモリ604又はストレージ606内の命令のコピーとすることができ、命令キャッシュは、プロセッサ602によるこれらの命令の取り出しを高速化することができる。データキャッシュ内のデータは、プロセッサ602で実行されるその後の命令によるアクセスに向けて又はメモリ604又はストレージ606への書込みに向けて、プロセッサ602で実行された以前の命令の結果又は他の適したデータに対してプロセッサ602で実行される命令がそれに対して作動するためのメモリ604又はストレージ606内のデータのコピーとすることができる。データキャッシュは、プロセッサ602による読取又は書込作動を高速化することができる。TLBは、プロセッサ602のための仮想アドレス変換を高速化することができる。特定の実施形態では、プロセッサ602は、データ、命令、又はアドレスに対する1又は2以上の内部レジスタを含むことができる。この開示は、適する場合に、あらゆる適した個数のあらゆる適した内部レジスタを含むプロセッサ602を企図している。適する場合に、プロセッサ602は、1又は2以上の演算論理ユニット(ALU)を含む又はマルチコアプロセッサとする又は1又は2以上のプロセッサ602を含むことができる。この開示では、特定のプロセッサを説明及び例示するが、この開示は、あらゆる適したプロセッサを企図している。
【0055】
特定の実施形態では、メモリ604は、プロセッサ602を実行するための命令又はプロセッサ602がそれに対して作動するデータを格納するための主メモリを含む。限定ではなく例として、コンピュータシステム600は、ストレージ606又は別のソース(例えば、別のコンピュータシステム600のような)からメモリ604に命令をロードすることができる。次に、プロセッサ602は、メモリ604から内部レジスタ又は内部キャッシュに命令をロードすることができる。命令を実行するために、プロセッサ602は、内部レジスタ又は内部キャッシュから命令を取り出してそれらを復号することができる。命令の実行中又は後に、プロセッサ602は、内部レジスタ又は内部キャッシュに1又は2以上の結果(中間又は最終の結果とすることができる)を書き込むことができる。プロセッサ602は、これらの結果のうちの1又は2以上をメモリ604に書き込むことができる。特定の実施形態では、プロセッサ602は、1又は2以上の内部レジスタ又は内部キャッシュ又はメモリ604内(ストレージ606又は任意の他の場所ではなく)の命令のみを実行し、1又は2以上の内部レジスタ又は内部キャッシュ又はメモリ604内(ストレージ606又は任意の他の場所ではなく)のデータに対してのみ作動する。1又は2以上のバス(各々がアドレスバスとデータバスとを含むことができる)は、プロセッサ602をメモリ604に結合することができる。バス612は、以下に説明するように1又は2以上のメモリバスを含むことができる。特定の実施形態では、プロセッサ602とメモリ604の間に1又は2以上のメモリ管理ユニット(MMU)が存在し、プロセッサ602によって要求されたメモリ604へのアクセスを容易にする。特定の実施形態では、メモリ604は、ランダムアクセスメモリ(RAM)を含む。このRAMは、適する場合は揮発性メモリとすることができる。適する場合に、このRAMは、動的RAM(DRAM)又は静的RAM(SRAM)とすることができる。更に、適する場合に、このRAMは、シングルポート又はマルチポートのRAMとすることができる。この開示は、あらゆる適したRAMを企図している。メモリ604は、適する場合に1又は2以上のメモリ604を含むことができる。この開示では、特定のメモリを説明及び例示するが、この開示は、あらゆる適したメモリを企図している。
【0056】
特定の実施形態では、ストレージ606は、データ又は命令に対する大容量ストレージを含む。限定ではなく例として、ストレージ606は、ハードディスクドライブ(HDD)、フロッピーディスクドライブ、フラッシュメモリ、光ディスク、光磁気ディスク、磁気テープ、又はユニバーサルシリアルバス(USB)ドライブ、又はこれらのうちの2又は3以上のものの組合せを含むことができる。ストレージ606は、適する場合は着脱可能又は着脱不能(又は固定)の媒体を含むことができる。ストレージ606は、適する場合はコンピュータシステム600の内部又は外部とすることができる。特定の実施形態では、ストレージ606は、不揮発性の半導体メモリである。特定の実施形態では、ストレージ606は、読取専用メモリ(ROM)を含む。適する場合に、このROMは、マスクプログラミングされたROM、プログラム可能ROM(PROM)、消去可能PROM(EPROM)、電気的消去可能PROM(EEPROM)、消去再書込可能ROM(EAROM)、又はフラッシュメモリ、又はこれらのうちの2又は3以上のものの組合せとすることができる。この開示は、あらゆる適した物理的形態を取る大容量ストレージ606を企図している。ストレージ606は、適する場合に、プロセッサ602とストレージ606の間の通信を容易にする1又は2以上のストレージ制御ユニットを含むことができる。適する場合に、ストレージ606は、1又は2以上のストレージ606を含むことができる。この開示では、特定のストレージを説明及び例示するが、この開示は、あらゆる適したストレージを企図している。
【0057】
特定の実施形態では、I/Oインタフェース608は、コンピュータシステム600と1又は2以上のI/Oデバイスの間の通信のための1又は2以上のインタフェースを提供するハードウエア、ソフトウエア、又はこれらの両方を含む。コンピュータシステム600は、適する場合はこれらのI/Oデバイスのうちの1又は2以上を含むことができる。これらのI/Oデバイスののうちの1又は2以上は、人とコンピュータシステム600の間の通信を可能にすることができる。限定ではなく例として、I/Oデバイスは、キーボード、キーパッド、マイクロフォン、モニタ、マウス、プリンタ、スキャナ、スピーカ、スチールカメラ、スタイラス、タブレット、タッチ画面、トラックボール、ビデオカメラ、別の適したI/Oデバイス、又はこれらのうちの2又は3以上のものの組合せを含むことができる。I/Oデバイスは、1又は2以上のセンサを含むことができる。この開示は、あらゆる適したI/Oデバイスと、それらに対するあらゆる適したI/Oインタフェース608とを企図している。適する場合に、I/Oインタフェース608は、プロセッサ602がこれらのI/Oデバイスのうちの1又は2以上を駆動することを可能にする1又は2以上のデバイス又はソフトウエアドライブを含むことができる。I/Oインタフェース608は、適する場合は1又は2以上のI/Oインタフェース608を含むことができる。この開示では、特定のI/Oインタフェースを説明及び例示するが、この開示は、あらゆる適したI/Oインタフェースを企図している。
【0058】
特定の実施形態では、通信インタフェース610は、コンピュータシステム600と1又は2以上の他のコンピュータシステム600又は1又は2以上のネットワークとの間の通信(例えば、パケットベースの通信のような)のための1又は2以上のインタフェースを提供するハードウエア、ソフトウエア、又はこれらの両方を含む。限定ではなく例として、通信インタフェース610は、イーサネット又は他のワイヤベースのネットワークと通信するためのネットワークインタフェースコントローラ(NIC)又はネットワークアダプタ、又はWI-FIネットワークのような無線ネットワークと通信するための無線NIC(WNIC)又は無線アダプタを含むことができる。この開示は、あらゆる適したネットワークと、それに対するあらゆる適した通信インタフェース610とを企図している。限定ではなく例として、コンピュータシステム600は、アドホックネットワーク、パーソナルエリアネットワーク(PAN)、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、メトロポリタンエリアネットワーク(MAN)、又はこれらのうちの2又は3以上のものの組合せと通信することができる。これらのネットワークのうちの1又は2以上の1又は2以上の部分は、有線又は無線とすることができる。一例として、コンピュータシステム600は、無線PAN(WPAN)(例えば、BluetoothWPANのような)、WI-FIネットワーク、WI-MAXネットワーク、セルラー電話ネットワーク(例えば、モバイル通信用世界システム(GSM)ネットワーク、長期的進化(LTE)ネットワーク、又は5Gネットワークのような)、又は他の適した無線ネットワーク、又はこれらのうちの2又は3以上のものの組合せと通信することができる。コンピュータシステム600は、適する場合はこれらのネットワークのうちのいずれかのためのあらゆる適した通信インタフェース610を含むことができる。通信インタフェース610は、適する場合は1又は2以上の通信インタフェース610を含むことができる。この開示では、特定の通信インタフェースを説明及び例示するが、この開示は、あらゆる適した通信インタフェースを企図している。
【0059】
特定の実施形態では、バス612は、コンピュータシステム600の構成要素を互いに結合するハードウエア、ソフトウエア、又はこれらの両方を含む。限定ではなく例として、バス612は、アクセラレイティッドグラフィックポート(AGP)又は他のグラフィックバス、拡張業界標準アーキテクチャ(EISA)バス、フロントサイドバス(FSB)、ハイパートランスポート(HT)相互接続、業界標準アーキテクチャ(ISA)バス、インフィニバンド相互接続、低ピン数(LPC)バス、メモリバス、マイクロチャネルアーキテクチャ(MCA)バス、周囲構成要素相互接続(PCI)バス、PCIエクスプレス(PCIe)バス、シリアルアドバンスドテクノロジーアタッチメント(SATA)バス、ビデオエレクトロニクス規格協会ローカル(VLB)バス、又は別の適したバス、又はこれらのうちの2又は3以上のものの組合せを含むことができる。バス612は、適する場合は1又は2以上のバス612を含むことができる。本発明では、特定のバスを説明及び例示するが、この開示は、あらゆる適したバス又は相互接続を企図している。
【0060】
本明細書では、コンピュータ可読非一時的ストレージ媒体は、適する場合に、1又は2以上の半導体ベース又は他の集積回路(IC)(例えば、フィールドプログラマブルゲートアレイ(FPGA)又は特定用途向けIC(ASIC))、ハードディスクドライブ(HDD)、ハイブリッドハードドライブ(HHD)、光ディスク、光ディスクドライブ(ODD)、光磁気ディスク、光磁気ドライブ、フロッピーディスケット、フロッピーディスクドライブ(FDD)、磁気テープ、固体ドライブ(SSD)、RAMドライブ、セキュアデジタルカード又はセキュアデジタルドライブ、任意の他のコンピュータ可読非一時的ストレージ媒体、又はこれらのうちの2又は3以上のもののあらゆる適した組合せを含むことができる。コンピュータ可読非一時的ストレージ媒体は、適する場合に、揮発性のもの、不揮発性のもの、又は揮発性と不揮発性の組合せとすることができる。
【0061】
本明細書では、「又は」は、他に明示的に示さない限り又は状況が他に示さない限り、限定的ではない。従って、本明細書では、他に明示的に示さない限り又は状況が他に示さない限り、「A又はB」は、「A、B、又はこれらの両方」を意味する。更に、「及び」は、他に明示的に示さない限り又は状況が他に示さない限り、共同的と個別的の両方である。従って、本明細書では、「A及びB」は、他に明示的に示さない限り又は状況が他に示さない限り、「共同的又は個別的にA及びB」を意味する。
【0062】
この開示の範囲は、当業者が理解すると考えられる本明細書に説明又は例示する例示的実施形態に対する全ての交換、置換、変形、変更、及び修正を包含する。この開示の範囲は、本明細書に説明又は例示する例示的実施形態に限定されない。更に、この開示では、本明細書のそれぞれの実施形態を特定の構成要素、要素、特徴、機能、作動、又は段階を含むものとして説明及び例示するが、これらの実施形態のいずれも、当業者が理解すると考えられる本明細書の任意の箇所で説明又は例示する構成要素、要素、特徴、機能、作動、又は段階のうちのいずれかのもののあらゆる組合せ又は組み替えを含むことができる。更に、装置又はシステム、又は装置又はシステムの構成要素が、特定の機能を実施するように適応される、配置される、その機能を有する、そのように構成される、可能にされる、作動可能である、又は作動的であるという特許請求の範囲内での言及は、そのような装置、システム、構成要素が、そのように適応される、配置される、そのような機能を有する、そのように構成される、可能にされる、作動可能である、又は作動的である限り、これらの装置、システム、又は構成要素、又はこのような特定の機能が起動される、オンにされる、又はアンロックされるか否かに関わらず、これらの装置、システム、構成要素を包含する。これに加えて、この開示では、特定の実施形態を特定の利点を提供するものとして説明又は例示するが、特定の実施形態は、これらの利点のうちのいずれも提供しない、一部を提供する、又は全てを提供する場合がある。
【0063】
本明細書に開示する実施形態は、例に過ぎず、この開示の範囲は、これらの実施形態に限定されない。特定の実施形態は、本明細書に開示する実施形態の構成要素、要素、特徴、機能、作動、又は段階の全てを含む、一部を含む、又はいずれも含まない場合がある。この開示による実施形態は、特に、方法、ストレージ媒体、システム、及びコンピュータプログラム製品に関する特許請求の範囲内で開示して1つの特許請求カテゴリで説明するいずれの特徴も、別の特許請求カテゴリ、例えば、システムでも主張することができる。特許請求の範囲内での従属性又は遡及性は、形式的な理由から選択したものに過ぎない。しかし、複数の請求項とその複数の特徴とのあらゆる組合せを開示し、特許請求の範囲内で選択する従属性に関わらず主張することができるように、いずれかの複数の先行請求項への意図的な遡及(特に多重従属性)からもたらされるいずれの主題も主張することができる。主張することができる主題は、特許請求の範囲内に提供する特徴の組合せだけではなく、特許請求の範囲内にある特徴の任意の他の組合せも備え、特許請求の範囲内に説明する各特徴は、特許請求の範囲内にある任意の他の特徴と組み合わせるか又は他の複数の特徴の組合せと組み合わせることができる。更に、本明細書に説明又は図示した実施形態及び特徴のうちのいずれも、個々の請求項で及び/又は本明細書に説明又は図示した任意の実施形態又は特徴との又は特許請求の範囲内の特徴のうちのいずれかとのあらゆる組合せで主張することができる。
図1A
図1B
図1C
図1D
図2
図3A
図3B
図3C
図3D
図3E
図4
図5
図6