(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-08
(45)【発行日】2025-01-17
(54)【発明の名称】車外環境認識装置
(51)【国際特許分類】
G06T 7/00 20170101AFI20250109BHJP
G08G 1/16 20060101ALI20250109BHJP
【FI】
G06T7/00 650B
G08G1/16 C
(21)【出願番号】P 2020141452
(22)【出願日】2020-08-25
【審査請求日】2023-07-03
(73)【特許権者】
【識別番号】000005348
【氏名又は名称】株式会社SUBARU
(74)【代理人】
【識別番号】110000936
【氏名又は名称】弁理士法人青海国際特許事務所
(72)【発明者】
【氏名】大久保 淑実
【審査官】高野 美帆子
(56)【参考文献】
【文献】特開2020-038446(JP,A)
【文献】特開平10-283477(JP,A)
【文献】特開2006-072495(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00
G08G 1/16
(57)【特許請求の範囲】
【請求項1】
撮像された画像におけるブロック単位の三次元位置を導出する位置導出部と、
前記三次元位置の差分が所定範囲内にあるブロック同士をグルーピングして立体物候補を特定するグルーピング部と、
前記立体物候補を水平面に投影し、奥行き方向に対する角度に基づいて背面と側面とに区別し、前記背面と前記側面とをペアリングしてペアを特定するペアリング部と、
前記ペアの未来の位置を予測するペア予測部と、
を備え、
前記グルーピング部は、
前記ペア予測部に過去に予測された前記ペアの
背面の位置
を示す予測背面線からの距離が所定範囲内のブロックをグルーピングすることによって、背面に相当する前記立体物候補を特定
し、
前記ペア予測部に過去に予測された前記ペアの側面の位置を示す予測側面線からの距離が所定範囲内のブロックをグルーピングすることによって、側面に相当する前記立体物候補を特定する車外環境認識装置。
【請求項2】
前記ペアリング部は、
前記ペア予測部に過去に予測された前記ペアの背面の位置に基づいて前記ペアの背面の位置を補正し、
前記ペア予測部に過去に予測された前記ペアの側面の位置に基づいて前記ペアの側面の位置を補正し、
前記ペア予測部は、
前記ペアリング部に補正された前記ペアの背面の位置に基づいて未来の前記予測背面線を予測し、
前記ペアリング部に補正された前記ペアの側面の位置に基づいて未来の前記予測側面線を予測する、請求項1に記載の車外環境認識装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自車両の進行方向に存在する立体物を特定する車外環境認識装置に関する。
【背景技術】
【0002】
特許文献1には、自車両の前方に位置する先行車両を検出し、先行車両との衝突被害を軽減する技術や、先行車両との車間距離を安全な距離に保つように追従制御する技術が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
自車両と先行車両との衝突被害を軽減するため、また、先行車両への追従制御を実現するため、自車両は、まず、進行方向に存在する立体物を特定し、その立体物が先行車両等の特定物であるか否か判定する。自車両は、立体物を適切に特定するために、例えば、三次元位置が互いに隣接する距離画像のブロック同士を、立体物の背面や、立体物の側面としてそれぞれグルーピングする。そして、自車両は、グルーピングされた背面と側面とをペアリングし、同一の立体物を表すペアとして特定する。
【0005】
しかし、距離画像における相対距離のミスマッチングによってノイズが生じると、自車両は、立体物の背面や側面を適切にグルーピングできず、その結果、立体物として安定的に特定することが困難となる。
【0006】
本発明は、このような課題に鑑み、立体物の背面や側面を適切にグルーピングすることで、立体物の特定精度を向上することが可能な車外環境認識装置を提供することを目的としている。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の車外環境認識装置は、撮像された画像におけるブロック単位の三次元位置を導出する位置導出部と、三次元位置の差分が所定範囲内にあるブロック同士をグルーピングして立体物候補を特定するグルーピング部と、立体物候補を水平面に投影し、奥行き方向に対する角度に基づいて背面と側面とに区別し、背面と側面とをペアリングしてペアを特定するペアリング部と、ペアの未来の位置を予測するペア予測部と、を備え、グルーピング部は、ペア予測部に過去に予測されたペアの背面の位置を示す予測背面線からの距離が所定範囲内のブロックをグルーピングすることによって、背面に相当する立体物候補を特定し、ペア予測部に過去に予測されたペアの側面の位置を示す予測側面線からの距離が所定範囲内のブロックをグルーピングすることによって、側面に相当する立体物候補を特定する。
【0008】
ペアリング部は、ペア予測部に過去に予測されたペアの背面の位置に基づいてペアの背面の位置を補正し、ペア予測部に過去に予測されたペアの側面の位置に基づいてペアの側面の位置を補正し、ペア予測部は、ペアリング部に補正されたペアの背面の位置に基づいて未来の予測背面線を予測し、ペアリング部に補正されたペアの側面の位置に基づいて未来の予測側面線を予測してもよい。
【発明の効果】
【0009】
本発明によれば、立体物の背面と側面とを適切にペアリングすることで、立体物の特定精度を向上することが可能となる。
【図面の簡単な説明】
【0010】
【
図1】
図1は、車外環境認識システムの接続関係を示したブロック図である。
【
図2】
図2は、車外環境認識装置の概略的な機能を示した機能ブロック図である。
【
図3】
図3は、車外環境認識方法の流れを示すフローチャートである。
【
図4】
図4は、輝度画像と距離画像を説明するための説明図である。
【
図5】
図5は、グルーピング部の動作を説明するための説明図である。
【
図6】
図6は、ペアリング部の動作を説明するための説明図である。
【
図7】
図7は、ペアリング部によるペアリング可否の判断を説明するための説明図である。
【
図8】
図8は、背面および側面の補正を説明するための説明図である。
【
図9】
図9は、ペア予測部の動作を説明するための説明図である。
【
図10】
図10は、グルーピング部の動作を説明するための説明図である。
【
図11】
図11は、グルーピング部の動作を説明するための説明図である。
【発明を実施するための形態】
【0011】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
【0012】
(車外環境認識システム100)
図1は、車外環境認識システム100の接続関係を示したブロック図である。車外環境認識システム100は、自車両1に設けられ、撮像装置110と、車外環境認識装置120と、車両制御装置130とを含む。
【0013】
撮像装置110は、CCD(Charge-Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)等の撮像素子で構成される。撮像装置110は、自車両1の進行方向側において2つの撮像装置110それぞれの光軸が略平行になるように、略水平方向に離隔して配置される。撮像装置110は、自車両1の前方の車外環境を撮像し、少なくとも輝度の情報が含まれる輝度画像(カラー画像やモノクロ画像)を生成する。撮像装置110は、自車両1の前方の検出領域に存在する立体物を撮像した輝度画像を、例えば1/60秒のフレーム毎(60fps)に連続して生成する。ここで、車外環境認識装置120が認識する立体物は、自転車、歩行者、車両、信号機、道路標識、ガードレール、建物といった独立して存在する物のみならず、車両の背面や側面、自転車の車輪等、その一部として特定できる物も含む。ここで、車両の背面は、自車両1の前方において自車両1に対向する面を示し、車両自体の後方面を示すものではない。
【0014】
車外環境認識装置120は、2つの撮像装置110それぞれから輝度画像を取得し、所謂パターンマッチングを用いて距離画像を生成する。車外環境認識装置120は、輝度画像と距離画像に基づき、路面より上方に位置し、カラー値が等しく、三次元の位置情報が互いに隣接するブロック同士を立体物としてグルーピングする。そして、車外環境認識装置120は、立体物がいずれの特定物であるかを特定する。例えば、車外環境認識装置120は、立体物が先行車両であると特定する。また、車外環境認識装置120は、このように先行車両を特定すると、自車両1と先行車両との衝突被害の軽減制御を行い、また、自車両1を先行車両に追従させる追従制御を行う。車外環境認識装置120の具体的な動作については後程詳述する。
【0015】
車両制御装置130は、ECU(Electronic Control Unit)等で構成され、ステアリングホイール132、アクセルペダル134、ブレーキペダル136を通じて運転手の操作入力を受け付け、操舵機構142、駆動機構144、制動機構146に伝達することで自車両1を制御する。また、車両制御装置130は、車外環境認識装置120の指示に従い、操舵機構142、駆動機構144、制動機構146を制御する。
【0016】
(車外環境認識装置120)
図2は、車外環境認識装置120の概略的な機能を示した機能ブロック図である。
図2に示すように、車外環境認識装置120は、I/F部150と、データ保持部152と、中央制御部154とを含む。
【0017】
I/F部150は、撮像装置110、および、車両制御装置130との双方向の情報交換を行うためのインターフェースである。データ保持部152は、RAM、フラッシュメモリ、HDD等で構成され、以下に示す各機能部の処理に必要な様々な情報を保持する。
【0018】
中央制御部154は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、システムバス156を通じて、I/F部150、データ保持部152等を制御する。また、本実施形態において、中央制御部154は、位置導出部170、グルーピング部172、ペアリング部174、ペア予測部176、立体物特定部178としても機能する。以下、車外環境認識方法について、当該中央制御部154の各機能部の動作も踏まえて詳述する。
【0019】
(車外環境認識方法)
図3は、車外環境認識方法の流れを示すフローチャートである。車外環境認識装置120は、所定の割込時間毎に車外環境認識方法を実行する。車外環境認識方法において、位置導出部170は、撮像装置110から取得した輝度画像におけるブロック単位の三次元位置を導出する(位置導出処理S200)。グルーピング部172は、ブロック同士をグルーピングして立体物候補を特定する(グルーピング処理S202)。ペアリング部174は、立体物候補を水平面に投影し、奥行き方向に対する角度に基づいて背面と側面とに区別し、背面と側面とをペアリングしてペアを特定する(ペアリング処理S204)。ペア予測部176は、ペアの未来の位置を予測する(ペア予測処理S206)。立体物特定部178は、ペアを構成する立体物やその他の立体物がいずれの特定物に対応するか特定する(立体物特定処理S208)。
【0020】
(位置導出処理S200)
図4(
図4A~
図4C)は、輝度画像および距離画像を説明するための説明図である。位置導出部170は、撮像装置110で光軸を異として同タイミングで撮像された複数(ここでは2)の輝度画像をそれぞれ取得する。ここで、位置導出部170は、輝度画像212として、
図4Aに示す、自車両1の比較的右側に位置する撮像装置110で撮像された第1輝度画像212aと、
図4Bに示す、自車両1の比較的左側に位置する撮像装置110で撮像された第2輝度画像212bとを取得したとする。
【0021】
図4Aおよび
図4Bを参照すると、撮像装置110の撮像位置の違いから、第1輝度画像212aと第2輝度画像212bとで、画像に含まれる立体物の画像位置が水平方向に異なるのが理解できる。ここで、水平は、撮像した画像の画面横方向を示し、垂直は、撮像した画像の画面縦方向を示す。
【0022】
位置導出部170は、位置導出部170が取得した、
図4Aに示す第1輝度画像212aと、
図4Bに示す第2輝度画像212bとに基づいて、
図4Cのような、撮像対象の距離を特定可能な距離画像214を生成する。
【0023】
具体的に、位置導出部170は、所謂パターンマッチングを用いて、視差、および、任意のブロックの画像内の位置を示す画像位置を含む視差情報を導出する。そして、位置導出部170は、一方の輝度画像(ここでは第1輝度画像212a)から任意に抽出したブロックに対応するブロックを他方の輝度画像(ここでは第2輝度画像212b)から検索する。ここで、ブロックは、例えば、水平4画素×垂直4画素の配列で表される。また、パターンマッチングは、一方の輝度画像から任意に抽出したブロックに対応するブロックを他方の輝度画像から検索する手法である。
【0024】
例えば、パターンマッチングにおけるブロック間の一致度を評価する関数として、輝度の差分をとるSAD(Sum of Absolute Difference)、差分を2乗して用いるSSD(Sum of Squared intensity Difference)や、各画素の輝度から平均値を引いた分散値の類似度をとるNCC(Normalized Cross Correlation)等の手法がある。
【0025】
位置導出部170は、このようなブロック単位の視差導出処理を、例えば、600画素×200画素の検出領域に映し出されている全てのブロックについて行う。ここで、位置導出部170は、ブロックを4画素×4画素として処理しているが、任意の画素数で処理してもよい。
【0026】
位置導出部170は、距離画像214のブロック毎の視差情報を、所謂ステレオ法を用いて、水平距離x、高さyおよび相対距離zを含む実空間における三次元位置に変換する。ここで、ステレオ法は、三角測量法を用いることで、ブロックの距離画像214における視差からそのブロックの撮像装置110に対する相対距離zを導出する手法である。このとき、位置導出部170は、ブロックの相対距離zと、ブロックと同相対距離zにある道路表面上の点とブロックとの距離画像214上の検出距離とに基づいて、ブロックの道路表面からの高さyを導出する。そして、位置導出部170は、導出した三次元位置を改めて距離画像214に対応付ける。かかる相対距離zの導出処理や三次元位置の特定処理は、様々な公知技術を適用できるので、ここでは、その説明を省略する。
【0027】
(グルーピング処理S202)
グルーピング部172は、路面より上方に位置し、カラー値が等しく、距離画像214における三次元位置の差分が所定範囲内にあるブロック同士をグルーピングして立体物候補を特定する。具体的に、グルーピング部172は、距離画像214における、水平距離xの差分、高さyの差分および相対距離zの差分が予め定められた範囲(例えば0.1m)内にあるブロック同士を、同一の特定物に対応すると仮定してグルーピングする。こうして、仮想的なブロック群が生成される。
【0028】
図5(
図5A~
図5C)は、グルーピング部172の動作を説明するための説明図である。ここで、位置導出部170が、例えば、
図5Aのような距離画像214を生成したとする。グルーピング部172は、かかる距離画像214からブロック同士をグルーピングする。こうして、
図5Bのようにグルーピングされたブロック群が複数抽出される。グルーピング部172は、
図5Bにおいて、グルーピングしたブロックの全てが含まれる外形線、例えば、水平線および垂直線、または、奥行き方向に延びる線および垂直線からなる矩形状の枠(面)を、立体物候補220(220a、220b、220c、220d、220e)とする。
【0029】
図5Bにおける、距離画像214上の立体物候補220a、220b、220c、220d、220eは、水平距離xおよび相対距離zで示す2次元の水平面で表すと、
図5Cにおける、立体物候補220a、220b、220c、220d、220eとなる。
【0030】
(ペアリング処理S204)
図5Cにおいては、例えば、立体物候補220aと立体物候補220bとは異なる立体物候補となっている。しかし、立体物候補220aは先行車両の背面を構成し、立体物候補220bは先行車両の側面を構成している。したがって、立体物候補220aと立体物候補220bとは、本来、一体的な同一の立体物を構成するペアとして認識されるべきである。同様に、立体物候補220dと立体物候補220eも同一の立体物として認識されるべきである。そこで、ペアリング部174は、同一の立体物の背面と側面とすべき立体物候補220をペアリングする。
【0031】
図6は、ペアリング部174の動作を説明するための説明図である。
図6は、立体物候補220を水平面に投影したものであり、水平距離xおよび相対距離zのみで表されている。
【0032】
ペアリング部174は、立体物候補220を水平面に投影し、奥行き方向に対する角度に基づいて背面と側面とに区別し、背面と側面との関係が所定条件を満たせば、背面と側面とをペアリングしてペアを特定する。
【0033】
具体的に、ペアリング部174は、まず、奥行き方向に相当する相対距離の軸に対する、立体物候補220の近似直線の角度を導出する。ペアリング部174は、導出した角度の絶対値が45度以上135度未満であれば、その立体物候補220を背面とする。一方、ペアリング部174は、導出した角度の絶対値が0度以上45度未満または135度以上180度以下であれば、その立体物候補220を側面とする。
【0034】
ここで、例えば、グルーピング部172がグルーピングした結果、
図6Aのように、立体物候補220f、220gを導出したとする。かかる例では、
図6Bのように、立体物候補220fの近似直線の角度の絶対値は45度以上135度未満となるので、ペアリング部174は、当該立体物候補220fを背面であると判定する。一方、立体物候補220gの近似直線の角度の絶対値は0度以上45度未満となるので、ペアリング部174は、当該立体物候補220gを側面であると判定する。こうして、グルーピング部172は、背面と側面とを大凡区別することができる。
【0035】
ペアリング部174は、このように区別された背面と側面との全ての組み合わせについて総当たりでペアリング可能か否か判断する。したがって、ペアリング部174は、1の背面に対する全ての側面とのペアリング判断を背面の数だけ繰り返すこととなるので、その処理回数は、背面の数×側面の数となる。なお、このとき、ペアリング部174は、背面と側面との距離が車両の一部として適切な距離(例えば2m)以内であり、背面と側面との速度がいずれも安定し、背面および側面それぞれの長さが所定値(例えば1m)以上であり、かつ、その中央位置が検出領域内であれば、ペアリングを実行するとしてもよい。かかるペアリングの前提条件を追加することで、ペアリング部174は、ペアリングの対象を適切に制限することが可能となり、処理負荷の軽減を図ることが可能となる。
【0036】
図7(
図7A~
図7D)は、ペアリング部174によるペアリング可否の判断を説明するための説明図である。ペアリング部174は、背面222と側面224との関係が所定条件を満たすか否かによってペアリング可否を判定する。その結果、所定の条件を満たすと判定すると、ペアリング部174は、同一の立体物の背面222と側面224とをペアとして特定する。ここでは、立体物候補220fに対応する背面222と、立体物候補220gに対応する側面224とを挙げて、そのペアリングの可否を判断する。また、所定の条件として、「端点間距離」、「速度ベクトル距離」、「交点距離」、「成す角度」の4つの項目を説明する。なお、所定条件として、必ずしも4つ全ての項目を採用する必要はなく、適宜、1または複数の項目を採用するとしてもよい。
【0037】
まず、ペアリング部174は、
図7Aのように、水平面において、背面222と側面224との互いに近い方の端点を特定し、その特定した端点間の距離を導出する。そして、ペアリング部174は、その端点間距離が例えば1m未満であれば、「端点間距離」の条件を満たしていると判定する。
【0038】
次に、ペアリング部174は、
図7Bのように、水平面において、背面222の速度ベクトルと側面224の速度ベクトルをそれぞれ導出する。そして、ペアリング部174は、速度ベクトルの差分ベクトル、すなわち、2つの速度ベクトルの始点を合わせた状態における2つの速度ベクトルの距離を導出する。そして、ペアリング部174は、その速度ベクトル距離yが例えば10km/h未満であれば、「速度ベクトル距離」の条件を満たしていると判定する。
【0039】
続いて、ペアリング部174は、
図7Cのように、水平面において、背面222の近似直線と側面224の近似直線との交点と、背面222の交点側の端点との距離を導出する。そして、ペアリング部174は、その交点距離が例えば1m未満であれば、「交点距離」の条件を満たしていると判定する。
【0040】
次に、ペアリング部174は、
図7Dのように、水平面において、背面222の近似直線と側面224の近似直線との成す角度を導出する。そして、ペアリング部174は、その成す角度vが90度に近い、例えば70~110度の範囲であれば、「成す角度」の条件を満たしていると判定する。
【0041】
ペアリング部174は、「端点間距離」、「速度ベクトル距離」、「交点距離」、「成す角度」の4つの条件を満たすと、その背面222と側面224とをペアリングする。
【0042】
続いて、ペアリング部174は、前回フレームで生成した背面222と側面224とのペアを用いて、ペアリングした背面222と側面224とを補正する。
【0043】
図8(
図8A、
図8B)は、背面222および側面224の補正を説明するための説明図である。
図8には、
図7同様、背面222と側面224とが示されている。ペアリング部174は、当該フレームでペアリングした背面222と側面224とに対し、まず、交点と端点に関する実測値を特定する。
【0044】
具体的に、ペアリング部174は、
図8Aに示すように、背面222の近似直線と側面224の近似直線との交点の実測値を実測交点とし、背面222の交点側の端点の実測値を実測交点側端点とし、背面222の交点側と逆の端点の実測値を実測背面端点とし、側面224の交点側と逆の端点の実測値を実測側面端点とする。なお、ペアリング部174は、交点に相当する実測値の導出において、背面222と側面224との実際の交点をそのまま用いず、その交点と、背面222の交点側の端点、すなわち、実測交点側端点との中間点を用いる。これは、側面224に比べ背面222の特定精度が高く、背面222の端点の方が、信頼性が高いからである。
【0045】
ここで、中間点は各点の水平距離および相対距離をそれぞれ平均することで求められる。なお、中間点は、必ずしも平均とすることはなく、その信頼性から重みをつけてもよい。例えば、背面222の端点の信頼性が高い場合、実測交点より実測交点側端点に近い点を中間点として補正交点を求めてもよい。
【0046】
次に、ペアリング部174は、実測値を補正し、補正交点、補正背面端点、および、補正側面端点を導出する。具体的に、ペアリング部174は、予測交点と、実測交点および実測交点側端点の中間点との中間点を補正交点とし、予測背面端点と実測背面端点との中間点を補正背面端点とし、予測側面端点と実測側面端点との中間点を補正側面端点とする。ここで、予測交点、予測背面端点、および、予測側面端点は、ペア予測部176が、前回フレームにおいて、当該フレームにおける交点、背面端点、および側面端点を予測したものである。なお、前回フレームにおいて、予測交点、予測背面端点、および、予測側面端点が導出されていない場合、ペアリング部174は、実測交点、実測背面端点、実測側面端点を、そのまま予測交点、予測背面端点、および、予測側面端点として用いる。
【0047】
こうして、ペアリング部174は、
図8Bに示すような、補正交点、補正背面端点、補正側面端点を特定する。車外環境認識装置120は、補正交点と補正背面端点とを結ぶ線を補正後の背面222とし、補正交点と補正側面端点とを結ぶ線を補正後の側面224とする。車外環境認識装置120は、かかる補正交点、補正背面端点、予測側面端点、背面222、側面224を用いて、自車両1と先行車両との衝突被害の軽減制御を行い、また、自車両1を先行車両に追従させる追従制御を行う。
【0048】
(ペア予測処理S206)
ペア予測部176は、ペアリング部174がペアリングした背面222と側面224とのペアの未来の位置、ここでは、次フレームにおける位置を予測する。
【0049】
図9は、ペア予測部176の動作を説明するための説明図である。
図9は、水平距離xおよび相対距離zのみで表されている。ペア予測部176は、導出された補正交点、補正背面端点、補正側面端点と、過去に導出した複数回分の補正交点、補正背面端点、補正側面端点とを用い、例えば、カルマンフィルタ等を用いて、次回の予測交点、予測背面端点、予測側面端点とを導出する。このとき、ペア予測部176は、背面および側面の相対速度、Y軸回りの角速度、および、エゴモーションを考慮して、次回の予測交点、予測背面端点、予測側面端点を予測する。
【0050】
(立体物特定処理S208)
立体物特定部178は、ペアリング部174によってペアリングされた背面222と側面224とのペアによって構成される立体物やその他の立体物がいずれの特定物に対応するか特定する。例えば、立体物特定部178は、背面222と側面224とのペアによって構成される立体物が、車両らしい大きさ、形状、相対速度であり、かつ、後方の所定の位置にブレーキランプやハイマウントストップランプ等の発光源を有する場合、その立体物を先行車両と特定する。
【0051】
図9を用いて説明したように、ペア予測部176は、次フレームにおける背面222、側面224を予測する。そして、
図5を用いて説明したように、グルーピング部172が隣接するブロック同士をグルーピングし、
図6、7を用いて説明したように、ペアリング部174は、グルーピングされた立体物候補220同士をペアリングする。そして、
図8を用いて説明したように、ペアリング部174は、その予測された背面222、側面224を用いて、背面222、側面224の位置を補正する。このように、ペアリング部174は、ペア予測部176が予測した背面222、側面224を用いることで、背面222、側面224の位置を適切に補正することができる。
【0052】
ただし、ペアリング部174におけるペアリングが適切に行われても、その前段のグルーピング部172におけるグルーピングが適切に行われていなければ、立体物の特定精度は高まらない。
【0053】
図10は、グルーピング部172の動作を説明するための説明図である。
図10は、水平距離xおよび相対距離zのみで表されている。例えば、距離画像214において、
図10のようなブロックが抽出されたとする。グルーピング部172は、距離画像214における三次元位置の差分が所定範囲内にあるブロック同士をグルーピングする。しかし、距離画像214における相対距離のミスマッチングによってノイズが生じると、グルーピング部172は、背面222や側面224を適切にグルーピングできない場合が生じる。
【0054】
例えば、
図10の例では、グルーピング部172が、3つの立体物候補220h、220i、220jを特定したとする。ここで、立体物候補220hは背面222に相当し、立体物候補220iは側面224に相当する。一方、立体物候補220jはノイズであり、本来、立体物候補とすべきではない。また、ブロックの位置によっては、グルーピング部172が、このようなノイズを含めて立体物候補220jを特定するおそれもある。そうすると、ペアリング部174が背面222および側面224を適切にペアリングできず、車外環境認識装置120は、これらを立体物として安定的に特定することが困難となる。
【0055】
そこで、グルーピング部172は、ペア予測部176が前回フレームで予測した、次フレームにおける背面222、側面224を用いて、立体物候補220を特定する。
【0056】
図11(
図11A、
図11B)は、グルーピング部172の動作を説明するための説明図である。グルーピング部172は、ペア予測部176が予測した背面222および側面224それぞれに近いブロックを優先してグルーピングする。
【0057】
具体的に、
図11Aに示すように、グルーピング部172は、ペア予測部176が予測した予測交点と予測背面端点とを結ぶ、背面222に相当する予測背面線232を生成する。次に、グルーピング部172は、予測背面線232からの距離が、図中破線で示した所定範囲内にあるブロックであり、かつ、三次元位置の差分が所定範囲内にあるブロック同士をグルーピングする。こうして、グルーピング部172は、背面222に相当する立体物候補220hを特定できる。なお、ブロックから予測背面線232への距離は、ブロックから予測背面線232に垂線をおろし、その垂線と予測背面線232との交点とブロックとの距離を示す。
【0058】
同様に、
図11Bに示すように、グルーピング部172は、ペア予測部176が予測した予測交点と予測側面端点とを結ぶ、側面224に相当する予測側面線234を生成する。次に、グルーピング部172は、予測側面線234からの距離が、図中破線で示した所定範囲内にあるブロックであり、かつ、三次元位置の差分が所定範囲内にあるブロック同士をグルーピングする。こうして、グルーピング部172は、側面224に相当する立体物候補220iを特定できる。
【0059】
なお、ここでは、グルーピング部172が、予測側面線234からの距離が所定範囲内にあるブロックをグルーピングの対象としたが、かかる場合に限らず、様々な統計的手法を用いることができる。例えば、グルーピング部172は、最小二乗距離やM推定を用いて、分散が所定範囲内となるブロックのみをグルーピングの対象とすることができる。
【0060】
また、グルーピング部172は、背面222と側面224との交点に位置するブロックは、背面222および側面224のいずれにも属するブロックとして処理してもよいし、背面222および側面224のいずれか一方にのみ属するブロックとして処理してもよい。
【0061】
かかる構成により、距離画像214における相対距離のミスマッチングによってノイズが生じたとしても、グルーピング部172は、背面222に相当する立体物候補220hおよび側面224に相当する立体物候補220iを適切に特定できる。その結果、ペアリング部174は、グルーピングされた立体物候補220h、220iを適切にペアリングでき、立体物の特定精度を向上することが可能となる。
【0062】
また、ここでは、ペア予測部176は、背面222と側面224のペアで位置を予測しているが、グルーピング部172が、背面222のグルーピングと側面224のグルーピングとを独立して実行している。したがって、グルーピング部172は、背面222および側面224をそれぞれ独立して適切に特定することができる。
【0063】
また、コンピュータを車外環境認識装置120として機能させるプログラムや、当該プログラムを記録した、コンピュータで読み取り可能なフレキシブルディスク、光磁気ディスク、ROM、CD、DVD、BD等の記憶媒体も提供される。ここで、プログラムは、任意の言語や記述方法にて記述されたデータ処理手段をいう。
【0064】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0065】
例えば、上述した実施形態では、先行車両が自車両1より画面右側に位置しており、グルーピング部172が、先行車両の左側の側面224を特定する例を挙げて説明した。しかし、かかる場合に限らず、先行車両が自車両1より画面左側に位置している場合、グルーピング部172は、先行車両の右側の側面224を特定することとなる。
【0066】
また、上述した実施形態では、立体物候補220が、背面222または側面224のいずれであるか特定されているが、ペアリング部174が特定するまでは、立体物候補220が背面222か側面224か明確に特定できない場合がある。この場合、グルーピング部172は、ペアとなり得る2つの立体物候補220をそれぞれ、左面、右面として処理してもよいし、第1面、第2面として処理してもよい。
【0067】
なお、本明細書の車外環境認識方法の各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。
【産業上の利用可能性】
【0068】
本発明は、自車両の進行方向に存在する立体物を特定する車外環境認識装置に利用することができる。
【符号の説明】
【0069】
110 撮像装置
120 車外環境認識装置
170 位置導出部
172 グルーピング部
174 ペアリング部
176 ペア予測部
222 背面
224 側面
232 予測背面線
234 予測側面線