(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-08
(45)【発行日】2025-01-17
(54)【発明の名称】単一の画像取込みデバイスを使用して検体容器の3D中心位置を識別するように適用された方法および装置
(51)【国際特許分類】
G01N 35/02 20060101AFI20250109BHJP
G01N 35/04 20060101ALI20250109BHJP
G06V 10/22 20220101ALI20250109BHJP
G06T 7/60 20170101ALI20250109BHJP
【FI】
G01N35/02 C
G01N35/04 G
G06V10/22
G06T7/60 150S
(21)【出願番号】P 2023548598
(86)(22)【出願日】2022-02-10
(86)【国際出願番号】 US2022070605
(87)【国際公開番号】W WO2022174239
(87)【国際公開日】2022-08-18
【審査請求日】2023-11-27
(32)【優先日】2021-02-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】508147326
【氏名又は名称】シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド
(74)【代理人】
【識別番号】100127926
【氏名又は名称】結田 純次
(74)【代理人】
【識別番号】100140132
【氏名又は名称】竹林 則幸
(74)【代理人】
【識別番号】100216105
【氏名又は名称】守安 智
(72)【発明者】
【氏名】ラヤル・ラジュ・プラサド・ナラム・ヴェンカット
(72)【発明者】
【氏名】イャオ-ジェン・チャン
(72)【発明者】
【氏名】ベンジャミン・エス・ポラック
(72)【発明者】
【氏名】アンカー・カプール
【審査官】前田 敏行
(56)【参考文献】
【文献】米国特許出願公開第2017/0124704(US,A1)
【文献】特表2019-531463(JP,A)
【文献】特表2019-504994(JP,A)
【文献】国際公開第2020/138345(WO,A1)
【文献】特開2020-080105(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 35/02
G01N 35/04
G06V 10/22
G06T 7/60
(57)【特許請求の範囲】
【請求項1】
トラック上の検体容器の位置を判定する方法であって:
トラック上に較正物体を用意することと;
トラックに隣接するように初期較正画像取込みデバイスを用意することと;
第1の長手方向地点と、該第1の長手方向地点とは異なる第2の長手方向地点とを含む、トラックに沿った少なくとも異なる2つの長手方向地点に較正物体を動かすことと;
較正物体が第1の長手方向地点に位置する状態で、初期較正画像取込みデバイスを使用して第1の画像を取り込むことと;
較正物体が第2の長手方向地点に位置する状態で、初期較正画像取込みデバイスを使用して第2の画像を取り込むことと;
少なくとも第1の画像および第2の画像に基づいて、トラックに沿った中心位置の3次元経路軌道を判定することと
;
トラック上でキャリアによって担持された検体容器を撮像領域に動かすことと;
容器画像を取得するために撮像領域内で検体容器を撮像することと;
容器画像内の検体容器の側方のエッジを検出することと;
側方のエッジの間の中心平面を判定することと;
中心平面の地点における検体容器の3次元中心である、中心平面と3次元経路軌道との交点を検出するために中心平面を背面投影することと
を含む、前記方法。
【請求項2】
撮像時にトラック上において撮像領域内で検体容器を止めることをさらに含む、請求項
1に記載の方法。
【請求項3】
検体容器の幅Wを判定することを含む、請求項
1に記載の方法。
【請求項4】
検体容器の高さHTを判定することを含む、請求項
1に記載の方法。
【請求項5】
較正物体は、既知の幾何形状の3次元ツールと、その上に設けられた1つまたはそれ以上の較正パターンとを含む、請求項1に記載の方法。
【請求項6】
較正物体は、少なくとも2つの平坦な表面を含むV字形のマーカツールを含む、請求項1に記載の方法。
【請求項7】
V字形のマーカツールは、その上にホフマンマーカを含む、請求項
6に記載の方法。
【請求項8】
少なくとも第1の画像および第2の画像に関して、初期較正画像取込みデバイスに対して較正物体の3次元中心の相対的外部姿勢を計算することを含む、請求項1に記載の方法。
【請求項9】
相対的外部姿勢を計算することは、Perspective-n-Pointを使用して実行される、請求項
8に記載の方法。
【請求項10】
検体容器がトラックに沿った1つまたはそれ以上の追加的な長手方向地点に位置する状態で、初期較正画像取込みデバイスを使用して1つまたはそれ以上の追加的な画像を取り込むことを含む、請求項1に記載の方法。
【請求項11】
キャラクタリゼーション装置であって:
トラック上を可動である較正物体と;
トラックに隣接して位置する初期較正画像取込みデバイスと;
該初期較正画像取込みデバイスに接続されたコンピュータと
を含み、該コンピュータは:
第1の長手方向地点と、第1の長手方向地点とは異なる第2の長手方向地点とを含む、トラックに沿った少なくとも異なる2つの長手方向地点に較正物体を動かすことと、
較正物体が第1の長手方向地点に位置する状態で、初期較正画像取込みデバイスを使用して第1の画像を取り込むことと、
較正物体が第2の長手方向地点に位置する状態で、初期較正画像取込みデバイスを使用して第2の画像を取り込むことと、
少なくとも第1の画像および第2の画像に基づいて、トラックに沿った中心位置の3次元経路軌道を判定することと
;
トラック上でキャリアによって担持された検体容器を撮像領域に動かすことと;
容器画像を取得するために撮像領域内で検体容器を撮像することと;
容器画像内の検体容器の側方のエッジを検出することと;
側方のエッジの間の中心平面を判定することと;
中心平面の地点における検体容器の3次元中心である、中心平面と3次元経路軌道との交点を検出するために中心平面を背面投影することと
を引き起こすように構成されており、そのように動作可能である、前記キャラクタリゼーション装置。
【請求項12】
分析器、ローディングステーション、遠心ステーション、品質管理モジュール、および等分機ステーションのうちの1つまたはそれ以上に隣接するように位置する、請求項
11に記載のキャラクタリゼーション装置。
【請求項13】
撮像中に検体容器の前面を照らすように構成された、1つまたはそれ以上の光源を含む、請求項
11に記載のキャラクタリゼーション装置。
【請求項14】
較正物体は、既知の幾何形状の3次元ツールと、その上に設けられた1つまたはそれ以上の較正パターンとを含む、請求項
11に記載のキャラクタリゼーション装置。
【請求項15】
較正物体は、少なくとも2つの平坦な表面を含むV字形のマーカツールを含む、請求項
14に記載のキャラクタリゼーション装置。
【請求項16】
V字形のマーカツールは、その上にホフマンマーカを含む、請求項
15に記載のキャラクタリゼーション装置。
【請求項17】
初期較正画像取込みデバイスは、品質検査モジュールのRGBカメラである、請求項
11に記載のキャラクタリゼーション装置。
【請求項18】
検体試験装置であって:
トラックと;
検体容器を担持するように構成された、トラック上を可動の検体キャリアと;
トラックの周りに配置される1つまたはそれ以上のキャラクタリゼーション装置と
を含み、1つまたはそれ以上のキャラクタリゼーション装置はそれぞれ:
トラックに隣接する、較正画像取込みデバイスと、
該較正画像取込みデバイスに接続されたコンピュータと
を含み、該コンピュータは、
少なくとも撮像領域で撮られた較正物体の第1の画像および第2の画像に基づいて、トラックのセグメントに沿った中心位置の3次元経路軌道を判定し、
トラック上でキャリアによって担持された検体容器を撮像領域に動かし、
容器画像を取得するために撮像領域内で検体容器の撮像を行い、
検体容器の側方のエッジの間の中心平面を判定し、
中心平面の地点における検体容器の3次元中心である、中心平面と3次元経路軌道との交点を検出するために中心平面を背面投影する
ように構成されている、前記検体試験装置。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2021年2月11日出願の「METHODS AND APPARATUS ADAPTED TO IDENTIFY 3D CENTER LOCATION OF A SPECIMEN CONTAINER USING A SINGLE IMAGE CAPTURE DEVICE」という名称の米国特許仮出願第63/148,529号の利益を主張するものであり、その開示の全体をあらゆる目的で参照によって組み入れる。
【0002】
本開示は、生物学的検体の試験に使用する方法および装置に関し、より詳細には、生物学的検体の試験において検体容器をキャラクタリゼーションする方法および装置に関する。
【背景技術】
【0003】
自動試験システムは、血清、血漿、尿、間質液、脳脊髄液など、検体中の被分析物または他の成分を識別するために、免疫学的検定または臨床化学分析を行うことができる。利便性および安全性の理由から、それらの検体は、ほとんど例外なく検体容器(たとえば、血液採取チューブ)に収容され、容器には色付きのキャップをかぶせることができる。検体のいくつかは、検体容器から取り出され、アッセイによる分析および/または臨床化学分析を受ける。アッセイまたは臨床化学分析の間の反応は様々な変化を生み出し、それらの変化は、いくつかの実施形態において患者の疾患の状態を示唆する可能性がある、検体中の被分析物または他の成分の濃度を判定するために読み取りできかつ/または操作できる。
【0004】
自動試験技術の改良は、高さおよび幅などの検体容器の寸法、ならびに/または、溶血、黄疸、もしくは脂肪血(HIL:hemolysis,icterus,or Lipemia)などの妨害因子の存在、または血塊、気泡、もしくは泡沫などのアーチファクトの存在を識別するために使用できる、試料成分を分離するための検体容器の遠心分離、検体へのアクセスを容易にするためのキャップの着脱(キャップの取外し)、アリコートの用意、および品質検査など、プレアナリティカル試料の用意および取扱い動作における対応する進歩によって実現されてきた。このようなプレアナリティカルデバイスは、検査室オートメーションシステム(LAS:laboratory automation system)の一部とすることができる。LASは、検体容器内の検体を、トラック上の1つまたはそれ以上のプレアナリティカル試料処理ステーションに自動的に輸送でき、そのため、分析を行う前にその検体に様々な前処理動作を行うことができる。
【0005】
LASは、バーコードラベル付き検体容器(たとえば、チューブ)に収容された、いくつかの異なる検体を取り扱うことができる。バーコードラベルは、試験指示および他の所望の情報と共に検査室情報システム(LIS:laboratory information system)からの人口統計学的情報に関係する受入れ番号を含むことができる。オペレータまたはロボットが、ラベル付き検体容器をLASシステム上に載置でき、そのLASシステムは、LASに接続できるかまたはその一部とすることができる1つまたはそれ以上の分析器によるアッセイまたは臨床化学分析すべてを検体に受けさせる前に、プレアナリティカル動作のために検体容器をトラックに沿って自動的に送ることができる。
【0006】
このような試験システムにおいて、分析のために与えられる検体容器は、様々な高さおよび様々な幅(たとえば、直径)のものなど、様々なサイズのものとすることができ、それらの識別が望まれる。
【発明の概要】
【課題を解決するための手段】
【0007】
第1の態様によれば、本開示は、トラック上の検体容器の位置を判定する方法を対象とする。本方法は、トラック上に較正物体を用意することと;トラックに隣接するように初期較正画像取込みデバイスを用意することと;第1の長手方向地点と、第1の長手方向地点とは異なる第2の長手方向地点とを含む、トラックに沿った少なくとも異なる2つの長手方向地点に較正物体を動かすことと;較正物体が第1の長手方向地点に位置する状態で、画像取込みデバイスを使用して第1の画像を取り込むことと;較正物体が第2の長手方向地点に位置する状態で、画像取込みデバイスを使用して第2の画像を取り込むことと;少なくとも第1の画像および第2の画像に基づいて、トラックに沿った中心位置の3次元経路軌道を判定することとを含む。
【0008】
別の態様によれば、キャラクタリゼーション装置が提供される。本キャラクタリゼーション装置は、トラック上を可動である較正物体と;トラックに隣接して位置する較正画像取込みデバイスと;較正画像取込みデバイスに接続されるコンピュータとを含み、コンピュータは:第1の長手方向地点と、第1の長手方向地点とは異なる第2の長手方向地点とを含む、トラックに沿った少なくとも異なる2つの長手方向地点に較正物体を動かすことと、較正物体が第1の長手方向地点に位置する状態で、較正画像取込みデバイスを使用して第1の画像を取り込むことと、較正物体が第2の長手方向地点に位置する状態で、較正画像取込みデバイスを使用して第2の画像を取り込むことと、少なくとも第1の画像および第2の画像に基づいて、トラックに沿った中心位置の3次元経路軌道を判定することと、を引き起こすように構成されており、そのように動作可能である。撮像領域内のどの場所で止まっていても検体容器の3D中心位置を、中心位置の3次元経路軌道に基づいて判定できる。
【0009】
別の態様において、検体試験装置が提供される。本試験装置は、トラックと;検体容器を担持するように構成された、トラック上を可動の検体キャリアと;トラックの周りに配置される1つまたはそれ以上のキャラクタリゼーション装置とを含み、1つまたはそれ以上のキャラクタリゼーション装置はそれぞれ:トラックに隣接する、較正画像取込みデバイスと;コンピュータとを含み、コンピュータは、較正画像取込みデバイスに接続され:少なくとも撮像領域で撮られた較正物体の第1の画像および第2の画像に基づいて、トラックのセグメントに沿った中心位置の3次元経路軌道を判定し;トラック上でキャリアによって担持された検体容器を撮像領域に動かし;容器画像を取得するために撮像領域内で検体容器の撮像を行い;検体容器の側方のエッジの間の中心平面を判定し;中心平面の地点における検体容器の3次元中心である、中心平面と3次元経路軌道との交点を検出するために中心平面を背面投影するように構成されている。
【0010】
本開示を実行するために企図される最良の形態を含むいくつかの例示的な実施形態および実装形態を示すことによって、本開示のさらなる他の態様、構成、および利点が以下の説明から容易に明らかになる。本開示は、他の様々な実施形態も可能であり、そのいくつかの詳細は、本開示の範囲からまったく逸脱することなく様々な点で修正できる。したがって、図面および明細書は、本質的に例示であり、限定的でないとみなすべきである。本開示は、特許請求の範囲内にあるすべての修正例、等価物、および代替例を含むものである。
【0011】
以下で説明する図面は、例示を目的とするものであり、必ずしも縮尺通りに描かれているとは限らない。図面は、本開示の範囲を決して限定するものではない。同様の数字は、どの図面でも同様の要素を指すために使用されている。
【図面の簡単な説明】
【0012】
【
図1】本開示の1つまたはそれ以上の実施形態による、検体容器の3D中心位置を判定するように構成された1つまたはそれ以上のキャラクタリゼーション装置と、1つまたはそれ以上の分析器(たとえば、臨床化学またはアッセイ機器)とを含む、検体試験装置の上面図を示す。
【
図2】ラベル付き検体容器の側面図を示し、その容器の3次元(3D)中心位置は、本開示の1つまたはそれ以上の実施形態によるキャラクタリゼーション方法およびキャラクタリゼーション装置によって定量化可能である。
【
図3A】本開示の1つまたはそれ以上の実施形態による、複数の画像を取り込むように構成されたキャラクタリゼーション装置の斜視図を示し(図示を助けるためにハウジング部分の外形は破線で示されている)、較正物体がトラックに沿った第2の地点に示されている。
【
図3B】本開示の1つまたはそれ以上の実施形態による、撮像領域内のトラックに沿った地点における検体容器の画像を取り込み、その3D中心位置を判定するように構成された、キャラクタリゼーション装置の斜視図を示す。
【
図3C】本開示の1つまたはそれ以上の実施形態による、トラックに沿って離間した第1および第2の地点における較正物体の画像を取り込み、トラックに沿った3D経路軌道を判定するように構成された、キャラクタリゼーション装置の概略上面図を示す。
【
図3D】撮像領域内のトラックに沿った地点における検体容器の側方の画像を示し、その画像からその地点における検体容器の3D中心位置を本開示の1つまたはそれ以上の実施形態に従って判定できる。
【
図4A】本開示の1つまたはそれ以上の実施形態による、撮像領域内のトラックに沿った地点における検体容器の3D中心位置を判定するように構成された、キャラクタリゼーション装置の概略上面図を示す。
【
図4B】本開示の1つまたはそれ以上の実施形態による、
図4Aのキャラクタリゼーション装置(図示を助けるためにハウジング部分の外形は破線で示されている)の概略側面図を示す(図示の目的で光源300Bは示していない)。
【
図5】1つまたはそれ以上の実施形態による、検体容器および検体をキャラクタリゼーションするように適用された、キャラクタリゼーション装置の機能構成要素のフローチャートを示す。
【
図6】1つまたはそれ以上の実施形態による、検体容器の3D軌道経路をキャラクタリゼーションするように適用された方法のフローチャートを示す。
【
図7】1つまたはそれ以上の実施形態による、検体容器の3D中心位置をキャラクタリゼーションする方法のフローチャートを示す。
【発明を実施するための形態】
【0013】
公差の累積およびばらつきによって、トラックに沿った位置で、詳細には、様々なプレアナリティカル動作および分析器の正面の位置で、検体容器の3次元(3D)中心位置の厳密な位置が不明の場合がある。3Dにおける検体容器の厳密な位置(その中心位置)および/または検体容器のサイズもしくはタイプを判定する際に直面する課題のせいで、そのような中心位置ならびにそのようなサイズを容易にかつ正確に判定するように適用された方法および装置に対する要求が満たされていない。
【0014】
具体的には、1つまたはそれ以上のプレアナリティカルステージで、様々な検体容器の3D中心位置およびサイズを取得することが望ましい場合がある。というのは、その情報は、追従するべき位置合わせについて、プレアナリティカル装置(たとえば、遠心機、デキャッパ、アスピレータなど)への通知を助けることができるからである。さらに、これは、検体試験システムに入れられるチューブの幾何形状がサポートされていない場合のフェイルセーフとして働く。別の面では、ロボットによって検体容器を取り扱うときに、検体容器のサイズおよび3D中心位置を認識していることは、3D空間においてロボットのグリッパが検体容器に適正に位置合わせされることを助け、したがって、それらの間の衝突を避けるかまたは最小限に抑えることができる。さらに、検体容器のサイズおよび3D中心位置を認識していることは、正しい位置での吸引のためにピペットの降下を支援して、検体容器/ピペットの衝突および/または吸引不良を避けることができる。
【0015】
検体中のHILレベルを判定することなど、容器のサイズ、検体のレベル、および検体の品質を評価するように構成された、いくつかの従来技術の品質検査モジュールでは、検体容器に収容された検体の全体的な360度のビューを提供することを支援する3つのカメラが設けられている。したがって、そのような従来の品質検査モジュールでは、カメラが適切に較正されたときは、3D空間内の検体容器の幾何形状を再構築することが可能である。複数のカメラからの入力を使用するこのような再構築が完了すると、高さおよび幅(たとえば、直径)をある程度正確に判定できる。
【0016】
しかし、マルチビュー撮像を行うために3つのカメラを有するいくつかのシステムは、コストの観点から現実的ではない。したがって、本開示は、いくつかの実施形態において、画像取込みデバイスを1つだけ使用して(たとえば、単一のカメラを使用して)、検体容器の幾何形状を測定でき、検体容器の3D中心位置の3D中心座標も計算できる方法、装置、およびシステムを提供する。さらに、いくつかのLASシステムでは、公差の累積および設置のばらつきのせいで正確なトラックの配設が難しいため、品質検査モジュール内の検体容器の3D中心位置を認識していることがトラック上の他の位置における中心位置の正確な位置につながらない可能性がある。トラック上の検体容器の運動を有効にするトラックと併せて、キャラクタリゼーション装置において単一の画像取込みデバイスを使用することによって、LASのトラックに沿った任意の所望の位置において検体容器の3D中心位置およびサイズを判定する単純かつ効果的な方法および装置が実現される。
【0017】
いくつかの既存の試験システムでは、検体容器の幾何形状は、以下の2つの手法のいずれかにおいて、複数のカメラのうちの1つだけを使用して品質検査モジュールにおいて測定される。第1の方法では、(筒状の較正ツールなど)既知の幾何形状の検体容器(たとえば、チューブ)が、品質検査モジュール内のトラック上の予め決められた地点まで動かされ、次いで、その画像が取り込まれる。高さ(HT)および幅(W)はピクセルで測定される。異なるサイズの検体容器に遭遇したときは、その異なるサイズの検体容器が、そのトラック上で以前と厳密に同じ地点に動かされ、その高さHTおよび幅Wは、以前に取得したピクセルでの画像測定に基づいて比例的に導き出すことができる。その方法はある程度正確に高さHTおよび幅Wを導き出すことができるが、検体容器に関する精密な3D中心位置の推定を行うことができない。
【0018】
したがって、第1の広範な態様において、本開示の実施形態は、検体容器の3D中心位置ならびに幅Wおよび高さHTなどの検体容器の物理的寸法を判定するように構成され、そのように動作できる(動作可能な)、キャラクタリゼーション方法、キャラクタリゼーション装置、および検体試験システムを提供する。
【0019】
1つまたはそれ以上の実施形態において、キャラクタリゼーション方法は、予め決められた厳密な地点に検体容器を毎回動かす必要がなく、トラックの幾何形状についての以前のコンピュータ援用製図(CAD:computer aided drafting)情報を必要としない。さらに、本キャラクタリゼーション方法は、機械のセットアップに極めて厳しい公差を必要とせずに、検体容器の中心位置の3D座標の精密な推定を導き出す(ロボットグリッパおよびピペットの位置合わせタスクに使用できる)。最後に、本キャラクタリゼーション方法は、トラックが画像取込みデバイス(たとえば、カメラ)に平行であることを厳密には必要とせず、画像取込みデバイスからの各視線に沿ってトラックに重複点がない場合に限り、トラックがわずかに傾斜しているかまたは湾曲さえしている事例に対処することすらできる。
【0020】
検体容器の幅Wを認識していることは、血清部分もしくは血漿部分、沈殿血液部分、または両方の体積の定量化など、検体の様々な部分のさらなる定量化(たとえば、体積)のために使用可能である。検体容器の高さHTは、吸引を実行するためにピペットを動かすときの検体容器とピペットとの衝突を最小限に抑えるために、液体吸引システムのピペットに関する基準高さを確立するように試験システムの任意のロボットシステムによって使用可能である。検体容器の厳密な3D中心位置を認識していることは、検体容器とロボットグリッパとの衝突を避けながらロボットグリッパを使用して検体容器を持ち上げることも可能にする。さらに、グリッパが検体容器を適切に把持できるように、HTおよびW、ならびに厳密な3D中心位置を使用して、任意のロボットグリッパのジョーを位置特定し、適切に離間させることができる。
【0021】
本開示によれば、キャラクタリゼーション方法は、検体容器の3D中心位置および/またはサイズを認識することが役立つ任意の位置で、トラックに沿って位置する単一の画像取込みデバイス(たとえば、カメラ)を使用することができる。たとえば、その遠心機の持上げの位置、等分機の吸引/供給の位置、トラック上の任意の他のロボットによる持上げおよび/もしくは載置の位置、分析器の位置、またはロボットの持上げもしくは載置動作が繰り返し起きる任意の他の適切な位置など、遠心ステーションで、品質検査モジュール内のある位置にキャラクタリゼーション装置を実装できる。
【0022】
キャラクタリゼーション方法はまず、3次元(3D)空間における所望の対象領域にトラック経路を計画することを含む。たとえば、キャラクタリゼーション方法は、撮像領域のトラックに沿った様々な長手方向地点において、同じ較正物体(たとえば、較正ツール)の複数の画像を撮ることと、それらの画像からトラックに沿った中心の3D軌道を判定することとを含むことができる。これは、既知の幾何形状の較正物体に関して行われ、その軌道を使用して、キャラクタリゼーション方法は、3次元空間における較正物体の中心をマッピングすることができる。本方法は、自動診断設備などの、任意の画像取込みデバイス(たとえば、カメラ)およびトラックセットアップに利用可能である。
【0023】
具体的には、トラックは、キャリア上で検体容器の検体を分析(たとえば、分析試験またはアッセイ)のための様々な位置に担持し、トラック上の他の位置は、それらの位置で完全に正確ではない可能性があっても、品質検査モジュールから判定される幾何学的寸法(WおよびHT)および3D中心位置を使用することができる。より正確な3D中心位置のために、1つまたはそれ以上のキャラクタリゼーション装置をトラックの周りの他の位置に含むことができる。品質検査モジュールにおける後続のプレスクリーニング、化学的分析、またはアッセイは、適切な分析器において行うことができる。「分析器(analyzer)」という用語は、本明細書では、臨床化学分析器および/またはアッセイ機器および/または同様のものを意味するために用いられている。一実施形態において、品質検査モジュールはトラック上に設けることができ、そのため、トラックのインプットレーン上またはトラックに沿った別の場所など、トラック上にある間に検体容器を寸法に関してキャラクタリゼーションできる。
【0024】
進歩性のあるキャラクタリゼーション方法、キャラクタリゼーション装置、および1つまたはそれ以上のキャラクタリゼーション装置を含む試験システムのさらなる詳細を、ここで
図1~
図7を参照しながら説明する。
【0025】
図1は検体試験装置100の例示的な実施形態を示し、検体試験装置100は、検体試験装置100のトラック121の周りに配置された1つまたはそれ以上の分析器(たとえば、それぞれ第1、第2、および第3の分析器106、108、110)による分析の前に、ローディングエリア105に設けられた1つまたはそれ以上のラック104に収容できる複数の検体容器102を自動的に処理でき、そのように動作可能である。それよりも多いまたは少ない分析器を使用できることが明らかなはずである。分析器106、108、110は、1つもしくはそれ以上の臨床化学分析器および/もしくは1つもしくはそれ以上のアッセイ機器など、またはそれらの組み合わせとすることができる。検体容器102は、血液採取チューブなど、概して、任意の透明または半透明の容器とすることができる(
図2参照)。本明細書で後に説明するように、検体容器102は、トラック121上をキャリア122に載せられて動かされることが可能である。より詳細には、検体試験装置100は、ベース120(たとえば、フレームまたは他の構造)を含むことができ、ベース120の上にトラック121を取り付けるかまたは支持することができる。
【0026】
図2に示すように、自動的に処理される予定の検体212は、検体容器102に入れられた状態で検体試験装置100に提供可能であり、検体容器102にはキャップ214をかぶせることができる。キャップ214は、様々な形状および/または色(たとえば、赤色、紺青色、薄青色、緑色、灰色、黄褐色、黄色、または他の色)を有することができる。色および/または形状は、行われる予定の試験および/または検体容器102に供給される添加物についての有用な情報を提供する。検体容器102はそれぞれ、チューブ213を含むことができ、チューブ213は、検体試験装置100上の様々な位置で機械可読とすることができるバーコード、英字、数字、もしくは英数字の印、またはそれらの組み合わせなどの識別情報215を含むラベル218を備えることができる。識別情報215は、たとえば、患者の識別と、場合によっては検体212に実行される試験とを示すことができる。識別情報215は、指示されている試験などの追加的な情報を提供するように、検査室情報システム(LIS)147と連携していてもよい。ラベル218は、検体容器102に接着されるか、または別法でその側面に設けられる。ラベル218は、概して、検体容器102の全周にまたは検体容器102の全長に沿って延びることはない。したがって、ラベル218が検体212の一部を遮る場合があるが、検体212の一部はやはり視認可能にできる。いくつかの実施形態において、わずかに重なった複数のラベル218が存在できる。いくつかの実施形態において、ラック104は、検体追跡に使用できる追加的な識別情報をその上に有することができる。理解すべきであるように、遮られていない領域は、特定の画像取込みデバイスに向くなど、所望の位置を向くように、キャリア122上にある間に手動または自動の手段によって方向付けることができる。
【0027】
再び
図1を参照すると、適切に較正されたロボット124が、所望の検体容器102を1つまたはそれ以上のラック104から持ち上げ、コンピュータ123からのコントロールコマンドを介して、トラック121上の予めプログラムされた位置またはトラックのインプットレーン(図示せず)に位置するキャリア122にその検体容器102を載置することができる。コンピュータ123は、マイクロプロセッサーベースの中央処理装置CPU、適切なメモリ、ソフトウェア、および調整用電子機器、ならびに様々な試験システムの構成要素を動作させるためのドライバを含むことができる。コンピュータ123は、検体試験装置100のベース120の一部として収容されてもよく、ベース120から離間していてもよい。コンピュータ123は、ローディングエリア105へのおよびそこからのキャリア122の動きと、トラック121上での運動と、遠心ステーション125へのおよびそこからの運動と、遠心ステーション125の動作と、品質検査モジュール130へのおよびそこからの運動ならびに品質検査モジュール130の動作と、等分ステーション131へのおよびそこからの運動ならびに等分ステーション131の動作と、各分析器106、108、110へのおよびそこからの運動とを制御するように動作することができる。コンピュータ123は、トラック121の周りに位置する1つまたはそれ以上のキャラクタリゼーション装置101のインターフェースとなることもでき、その算定および動作を実行することができる。ほとんどの事例で、様々なタイプの試験(たとえば、アッセイおよび/または臨床化学)を実行する各分析器106、108、110の動作は、コンピュータ123がインターフェースになっている内蔵ソフトウェアによって実行される。
【0028】
ローディングエリア105は、処理後にキャリア122から検体容器102をアンロードすることも可能にするという2重の機能を果たすことができる。ロボット124のロボットグリッパは、1つまたはそれ以上のラック104から検体容器102を把持し、検体容器102をキャリア122上に、一般的に1つの容器を1つのキャリア122に、動かしそれをロードするように構成することができる。いくつかの実施形態において、ロボット124は、試験が完了したときに検体容器102をキャリア122から取り出すように構成することができる。ロボット124は、XおよびZ(X-Y平面に垂直)運動、YおよびZ運動、X、Y、およびZ運動、またはrおよびシータ運動が可能なロボットアームまたは構成要素を1つまたはそれ以上(たとえば、最少で2つ)含むことができ、ロボット124は、検体容器102の側面を把持することによって検体容器102を持ち上げ、それを載置するように適用された、ロボットグリッパを備えることができる。しかし、任意の適切なタイプのロボット124を使用可能である。
【0029】
キャリア122によって担持される検体容器102は、ロボット124によってトラック121上にロードされたときに、遠心ステーション125(たとえば、検体212の分別を実行するように構成された自動遠心機)まで進むことができる。ロード/アンロードロボット126がキャリア122から検体容器102を持ち上げ、それを遠心ステーション125の遠心機に載置できる位置など、遠心ステーション125およびトラック121に隣接した位置に、キャラクタリゼーション装置101が設けられることが可能である。キャリア122が止まる位置(またはトラック上の任意の他の位置)における検体容器102の厳密な3D中心位置を認識していることは、ロボットがその位置での検体容器102の中心位置の厳密な地点を認識しているため、検体212をこぼすかまたは検体容器102を破損させる可能性があるロボットグリッパと容器との衝突を避けることを助ける。理解されている通り、キャラクタリゼーション装置101は、本明細書に記載されているように、3D中心位置を認識することが望まれるどの位置でも使用することができる。たとえば、キャラクタリゼーション装置101は、検体212をこぼすかまたは検体容器102もしくはピペットを破損させる可能性があるピペットと容器との衝突を避けるように、ローディングエリア105、品質検査モジュール130(その画像取込みデバイスの1つを使用する)、等分ステーション131に位置し、ピペットと容器との衝突またはロボットと容器との衝突を避けるように分析器106、108、110のうちの1つまたはそれ以上に位置してよい。キャラクタリゼーション装置101は、他の位置に位置してよい。
【0030】
図3Aから
図3Dは、キャラクタリゼーション装置101の例示的な実施形態を示す。キャラクタリゼーション装置101は、トラック121上を可動の較正物体325を含む(
図3A~
図3Cにはトラック121の一部分だけが示されている)。トラック121は、レール付きトラック(たとえば、モノレールトラックまたはマルチレールトラック)、コンベヤベルトの集まり、チェーン、可動プラットフォーム、または他の適切な搬送機構とすることができる。いくつかの実施形態において、トラック121は、円形、蛇行状、または他の形状を有してよく、閉トラック(すなわち、無端トラック)とすることができる。いくつかの実施形態において、トラック121は、個々の検体容器102をキャリア122によって、または複数の検体容器102を各キャリア122に載せて輸送することができる。いくつかの実施形態において、検体容器102は、直立状態でトラック121上を可動の、キャリア122のレセプタクルに受け入れられるように構成されている。
【0031】
図示の実施形態において、キャリア122は、たとえば、カート324によってトラック121上で担持可能である。カート324は、トラック121に沿った所望の位置で止まるようにプログラム可能、指令可能、または別法で強制可能である。キャリア122は、カート324から着脱可能にでき、たとえば穴にレジストレーションされる複数のピンなど、カート324にレジストレーションするための任意の適切な手段を含むことができる。これは、カート324上で固定された向きにキャリア122を配設する。いくつかの実施形態において、カート324は、トラック121上で検体容器102を動かし、プログラムされた指示に従ってトラック121に沿った所望の位置で止めるように構成された、リニアモータなどのオンボード駆動モータを含むことができる。キャリア122はそれぞれ、定められた直立姿勢に検体容器102を保持および固定するように適用されたホルダ122H(
図3B)を含むことができる。ホルダ122Hは、検体容器102がそこに挿入されるときに共通の中心を提供する3つ以上の板ばねまたはフィンガを含むことができる。板ばねの使用によって、やはりキャリア122上で共通の中心位置に検体容器102を配設しながら、検体容器102の様々な幅Wがキャリア122によって受けられることが可能になる。いくつかの実施形態において、カート324およびキャリア122は一体とすることができる。
【0032】
較正物体325は、
図3Aおよび
図3Cに最もよく示されているように、第1の平坦面325Aと、そこからある角度で配置された第2の平坦面325Bとを少なくとも有するV字形のマーカツールを含むことができる。たとえば、2つの面325A、325Bは、約90度から約150度の互いに傾斜した角度で配置することができる。いくつかの実施形態において、すべての面の間に約120度を有することができる第3の平坦面が設けられている。具体的には、較正物体325は、既知の幾何形状を有する3次元ツールと、3次元ツール上のそれらの地点が既知である面325A、325Bのそれぞれに設けられた1つまたはそれ以上の較正パターン325Pとを含む。チェッカーボードパターン、またはエッジを識別可能な1つもしくはそれ以上の幾何学的物体など、任意の適切なパターンを使用可能である。較正物体325は、軸329とされる中心位置を含むことができ、その中心位置は、ベース331上において、キャリア122のホルダ122Hの中心、すなわち、ホルダ122H中に保持されているときの検体容器102の中心位置329と同じ中心位置に位置することができる。このように、較正物体325の中心329は、キャリア122のホルダ122Hの中心329、すなわち、ホルダ122H中に保持されているときの検体容器102の中心位置329と同じである。ベース331は、固定された向きでカート324上に位置し、したがって、較正物体325およびベース331は、カート324と共に動く。較正パターン325Pの寸法および位置は、軸329とベース331との空間的関係と同様に既知である。いくつかの実施形態において、V字形のマーカツールは、中心329およびベース331に対する、したがってカート324に対する、既知の位置および幾何形状を有するホフマンマーカ(Hoffman marker)がその上に設けられている。
【0033】
キャラクタリゼーション装置101はさらに、トラック121の側部に沿った地点など、トラック121に隣接する地点に位置する、較正画像取込みデバイス328を含む。較正画像取込みデバイス328は、標準的な自動較正技術(たとえば、カメラ較正技術)など、画像取込みデバイス328の内部特性(たとえば、焦点距離、画像中心、スキュー、およびレンズディストーション係数)を取得するための任意の適切な手段によって較正される。それらの較正技術は、典型的には、既知の寸法の印刷された平坦な目標物(たとえば、ホフマンマーカグリッドまたはチェッカーボードパターン)を使用することと、画像取込みデバイス328の内部パラメータを判定するために反復改良技術を利用することとを含む。画像取込みデバイス328の内部特性を認識していることは、レンズディストーション(たとえば、不完全なレンズ製造から生じる可能性がある)によって起きる少なくともいくつかの不正確さを解消しながらユークリッド空間におけるシーンの構造の推定を有効にするため、どの3D撮像タスクにも不可欠である。
【0034】
較正画像取込みデバイス328は、フォーカスレンズ系と1つまたはそれ以上のセンサとの任意の組み合わせとすることができる。たとえば、較正画像取込みデバイス328は、従来のデジタルカメラ(たとえば、カラーカメラまたはモノクロカメラ)、または任意の適切なフォーカスレンズ系と連結された電荷結合素子(CCD)、光検出器アレイ、1つもしくはそれ以上のCMOSセンサなどとすることができる。たとえば、較正画像取込みデバイス328は、トラック121に沿った複数の異なる撮像位置(第1の位置Aおよび第2の位置Bを含む)で画像を取り込むように構成することができる。較正画像取込みデバイス328は、複数の異なる撮像位置でデジタル画像(すなわち、画素化された画像)を取込みできるデバイスとすることができる。各画像の画像解像度は、たとえば0.5MPから10MPなど、約0.5MP以上とすることができる。他のピクセル解像度を使用することができる。較正画像取込みデバイス328は高速画像取込みデバイスとすることができ、較正物体325を第1の位置Aおよび第2の位置Bで止め、キャリア122を撮像位置で止めることが望ましいが、速度が十分に速い場合は、キャリア122またはベース331および較正物体325が動いたままで画像を撮ることができる。
【0035】
キャラクタリゼーション装置101はさらに、較正画像取込みデバイス328にUSBケーブルなどによって接続されたコンピュータ123を含む。コンピュータ123は、トラック121に沿った複数の撮像位置(AおよびB)で較正物体325の側方の画像を取り込むことを、較正画像取込みデバイス328にさせるように構成されており、そのように動作可能である。撮像が行われるときに、較正物体325を照明することができる。たとえば、較正物体325の照明は、たとえば、照明を供給する米国特許出願公開第2019/0041318号に記載されている光パネルなど、1つまたはそれ以上の光源330A、330Bによるものとすることができる。光源は、それらの面325A、325Bを照明するように較正物体325に対して位置していてよい。たとえば、光パネルは、前面照明を供給でき、較正物体325の正面に位置することができ、たとえば、較正画像取込みデバイス328のいずれかの側方の面に位置する複数の光源330A、330Bを含むことができる。光源の他の配設および形態を使用してよい。
【0036】
具体的には、コンピュータ123は、カート324への駆動信号によって、トラック121に沿って、撮像領域335(たとえば、広角の可視領域)内の少なくとも異なる2つの長手方向地点に較正物体325を動かすことができ、それらの地点は、
図3Cに示すように少なくとも第1の長手方向地点Aおよび第2の長手方向地点B(点線で示された地点)を含み、第2の長手方向地点Bは第1の長手方向地点Aとは異なる。コンピュータ123は、適切なタイミングのトリガ信号を介して、較正物体325が第1の長手方向地点Aに位置する状態で、較正画像取込みデバイス328を使用して較正物体325の第1の画像を取り込むことを、較正画像取込みデバイス328にさせることができる。コンピュータ123はさらに、第2の長手方向地点Bに較正物体325を動かすようにカート324に指令し、較正物体325が第2の長手方向地点Bに位置する状態で、較正画像取込みデバイス328を使用して較正物体325の第2の画像を取り込むことができる。第2の長手方向位置Bは、第1の長手方向位置Aから十分に離間しているべきであり、離間していることで、3D中心位置350が後から判定されることが望まれる位置の正面において、キャリア122がそこで検体容器102を担持しているときに、それらの位置の間の典型的かつ正確な移動経路を取得することができる。さらに、正確性を高めるためにまたはトラックセグメントが線形ではない場合に、画像は、第1の地点Aと第2の地点Bとの間の複数の長手方向地点で取り込むことができる。たとえば、焦点距離が短く、視野が広い(たとえば、50度以上)、広角レンズ(35mm以下)を使用することができる。較正画像取込みデバイス328の視野(ビューウィンドウ)内に較正物体325が位置する限り、他の広角レンズを使用することができる。
【0037】
本方法によれば、トラック121に沿った中心位置340の3次元経路軌道が、少なくとも第1の画像および第2の画像に基づいて判定される。中心位置340は、較正物体325上で任意の所定の高さにあることが可能であり、2つ以上の較正パターン325Pの撮像された位置と関連付けて判定可能である。具体的には、トラック121の湾曲部に沿っている部分など、経路が線形以外の場合は、1つまたはそれ以上の追加的な画像を撮ることができる。焦点距離、画像中心、スキュー、および場合によってはレンズディストーション係数など(より精密な場合)などの内部カメラパラメータが計算されると、本方法は、少なくとも第1の画像および第2の画像に関して、較正画像取込みデバイス328に対する較正物体325の3D中心位置350の相対的外部姿勢を計算することができる。Perspective-n-Pointのようなアルゴリズムを使用して、第1の画像および第2の画像ならびに任意の他の取り込まれた画像などの各画像について、較正画像取込みデバイス328に対する較正物体325の3D中心位置350の相対的外部姿勢を計算することができる。Perspective-n-Pointとは、1セットのワールド内のn個の3次元点および画像内のそれらの対応する2D投影を考慮して、較正画像取込みデバイス(たとえば、カメラ)の姿勢を推定する問題である。画像取込みデバイス328の姿勢は、ワールドに対する画像取込みデバイス328の回転(ロール、ピッチ、およびヨー)および3D並進運動(X、Y、Z)からなる6自由度から構成される。1セットのワールド基準系のn個の3D点およびそれらの対応する2D画像投影、ならびに較正される内部パラメータを考慮すると、画像取込みデバイス328の6DOF姿勢は、ワールドに対するその回転および並進運動の形態で、以下の通りに判定することができる:
s pc K[R│T]pw
【0038】
ここで、p
w=[x y z 1]
Tは同次ワールドの点であり、p
c=[u v 1]
Tは対応する同次画像点であり、Kは画像取込みデバイス328の内部パラメータ行列であり、ここで、fxおよびfyは倍率変更した焦点距離であり、γは、0になることもあると想定されるスキューパラメータであり、(u
0,v
0)は主点であり、sは画像点に関する基準倍率であり、RおよびTは、算定された画像取込みデバイスの所望の3D回転および3D並進運動(外部パラメータ)である。これがそのモデルに関する以下の数式をもたらす:
【数1】
【0039】
場合により、n=3点のときにP3Pを使用できるか、またはn≧4点のときにEPnPを使用できる。異常値がある場合にはRANSACを使用できる。
【0040】
ここでトラック121に沿った中心位置340の3次元経路軌道が判定されているため、次の段階で、キャラクタリゼーション装置101の撮像領域335内で止められている任意の検体容器102の3D中心位置350の厳密な位置を取得できる。特定の利点の一つは、本方法では、撮像領域335内で検体容器102の側部および上部を視認/撮像できる限りその領域335内のどの場所でも3D中心位置350を判定できるため、キャリア122の止まっている位置が撮像領域335で厳密である必要がないことである。撮像領域335は、較正画像取込みデバイス328によって撮像できる領域である。撮像領域335は、予想される検体容器102と少なくとも同程度の高さとすることができ、本明細書に開示されているように広角とすることができる。
【0041】
トラック121に沿った中心位置340の3次元経路軌道が判定されると、検体容器102が撮像された撮像領域335内の撮像位置における検体容器102の3D中心位置350が判定される。
図3Dに示すように、検体容器102の容器画像336は、キャリア122が撮像領域335で止められた状態で、較正画像取込みデバイス328を使用して撮像位置333において取り込まれる。拡大して示すように、軌道上のどの点でも2D画像空間にマッピングして戻すことができるので、3D中心位置350を検出するためにキャリア122が撮像領域335の厳密な中心で止められる必要はない。具体的には、本方法がトラック軌道と較正画像取込みデバイス328との外部関係を先に計算したため、ここで、画像空間に、対応する2D軌道を有することもできる。この方法を用いると、直線ではなく多項式関数にフィットさせることなどによって、わずかに湾曲したトラックに沿った検体容器102の3D中心位置350を推定することさえ実行でき、そこでは3つ以上の撮像位置が使用される。
【0042】
検体容器の中心位置を計算する
キャラクタリゼーション装置101の撮像位置333においてキャリア122に検体容器102が存在するときに、本方法は、容器画像336を取り込み、取り込まれた容器画像336から、最初の2次元(2D)における検体容器102の3D中心位置350を推定することができる。画像空間において、本方法は、まず、中心位置340と同じ高さなどにおいて、ピクセル空間内の第1のエッジ341および第2のエッジ342の位置を判定することによって、X次元の検体容器102の中心を計算する。中心点の軌道を線344とする。エッジ341、342は、予め設定された閾値を超える光の強度の急な変化を検出する、軌道経路344を横切るラスタ走査などの任意のエッジ検出ルーチンによって検出できる。軌道経路344の上方および/または下方でラスタ走査を1回またはそれ以上行うことで、上方および/または下方の空間などピクセル中の同じX位置で強度の急な変化が検出されるときにエッジ341、342が実際にエッジであると確認することができる。縦方向のエッジ341および342の位置が判定されると、2つの寸法を足して2で割ることによって、軌道経路344に沿った2D空間の(X-Y平面の)中心点を検出できる。判定された2D中心線は中心平面346として示されている。軌道経路344と中心平面346との交点は、2D中心点を含む。次いで、3D中心位置350を判定するために、2D中心点を3D空間にマッピングでき、すなわち、3D軌道上の(紙面に出入りするZ次元の)最も近い点にマッピングできる。350の3D中心位置は、検体容器102の撮像による2D画像座標を使用し、較正画像取込みデバイス328の内部パラメータを使用してZ次元に投影することによって計算される。これについての考え方は、画像取込みデバイス328の中心から(3Dユークリッド空間の)350を通して無限に延びる線を引き、それと交差する340の3D軌道(すなわち、3Dユークリッド空間の344)上の最も近い点を検出することである。交点がない場合は、3D中心位置350のZ投影までの距離を最小にする(3Dユークリッド空間内の)344上の点を選択できる。軌道経路344上のその点が、検体容器102の3D中心位置350である。その結果、ロボット126は、検体容器102を遠心ステーション125の遠心機に載置し、分別後に検体容器102をキャリア122に戻すように検体容器102を持ち上げるために使用する検体容器102の3D中心位置350を正確に認識できる。
【0043】
遠心機による分別後に、検体212は、
図2に最もよく示されているように、チューブ213内に含まれた、血清部分または血漿部分212SP、沈殿血液部分212SBを含むことができる。空気217は、血清部分および血漿部分212SPの上方にある場合があり、本明細書では、空気217と血清部分または血漿部分212SPとの間の線または境界が、液体-空気インターフェース(LA)と定義される。血清部分または血漿部分212SPと沈殿血液部分212SBとの間の境界線は、本明細書では、血清-血液インターフェース(SB)と定義される。空気217とキャップ214との間のインターフェースは、本明細書では、チューブ-キャップインターフェース(TC)と称される。チューブの高さ(HT)は、チューブ213の物理的な最下部からキャップ214の底部までの高さと定義される。血清部分または血漿部分212SPの高さ(HSP)は、沈殿血液部分212SBの上部から血清部分または血漿部分212SPの上部まで、すなわち、SBからLAまでの高さと定義される。沈殿血液部分212SBの高さ(HSB)は、沈殿血液部分212SBの底部から沈殿血液部分212SBの上部までの高さと定義される。ゲルセパレータが使用される実施形態では、血清部分または血漿部分212SPとゲルセパレータとの間のインターフェースが存在する。同様に、沈殿血液部分212SBとゲルセパレータとの間のインターフェースが存在する。HTOTはHSBとHSPを足し合わせたものである。Wはチューブ213の幅である。いくつかの実施形態において、検体容器102のサイズは、幅Wおよび高さHTの組み合わせによって表すことができる。
【0044】
先に示したように、キャリア122は品質検査モジュール130まで動くことができる。場合により、遠心分離を先に行うことができ、検体容器102に収容された検体212を、たとえばインプットレーンの一部などのローディングエリア105に位置する品質検査モジュール130に直接的にロードできる。品質検査モジュール130は、検体試験装置100によって処理予定の検体212を収容する検体容器102の物理的属性を自動的に判定する/キャラクタリゼーションするように構成および適用されている。キャラクタリゼーションは、チューブのサイズ、キャップのタイプ、および/またはキャップの色をキャラクタリゼーションすることを含むことができる。キャラクタリゼーションが行われると、検体212はさらに、溶血、黄疸、もしくは脂肪血(HIL)、および/または血塊、気泡、もしくは泡沫など、1つまたはそれ以上のアーチファクトの存在に関してスクリーニングされた検体212の深さおよび/または体積を判定するためにキャラクタリゼーション可能である。HILおよび/またはアーチファクトを含まないことが判明した場合は、検体212は、トラック121で継続可能であり、次いで、各検体容器102をアンロードするためにローディングエリア105に戻す前に、1つまたはそれ以上の分析器(たとえば、第1、第2、および第3の分析器106、108、および/または110)において分析可能である。
【0045】
いくつかの実施形態において、検体容器102の物理的属性の定量化は、品質検査モジュール130において行う(すなわち、高さHT、幅W、キャップの色、キャップのタイプ、および/またはチューブのタイプを判定する)ことができる。いくつかの実施形態において、検体212の定量化は、やはり品質検査モジュール130において行うことができ、HSB、HSP、HTOTの判定を含むことができ、SBおよびLAの縦方向の位置を判定することができる。
【0046】
検体試験装置100は、トラック121の周りの1つまたはそれ以上の位置にいくつかのセンサ116を含むことができる。センサ116を使用して、バーコードなど、各キャリア122に設けられたラベル218に載置された識別情報215(
図2)または同様の情報(図示せず)を読み取ることによって、トラック121に沿った検体容器102の位置を検知することができる。キャリア122の位置を追跡するための他の手段を使用することができる。センサ116はいずれも、コンピュータ123がインターフェースになっており、そのため、各検体容器102および検体212の位置は常に認識されている。コンピュータ123は、試験結果およびステータス情報を要求元に提供するために、公知の手法で検査室情報システム(LIS)147とのインターフェースとなり、それと通信することができる。
【0047】
本開示の実施形態は、様々な制御およびステータスの表示スクリーンにユーザが簡単かつ迅速にアクセスできるようにするコンピュータインターフェースモジュール(CIM:computer interface module)145を使用して実装することができる。それらの制御およびステータスのスクリーンは、検体212の用意および分析に使用される複数の相互関連自動デバイスのいくつかのまたはすべての面について説明することができる。CIM145を採用することで、複数の相互関連自動デバイスの動作のステータス、ならびに任意の検体212の位置を説明する情報、ならびに検体212に行う予定または行っている最中のスクリーニングまたは試験のステータスについての情報を提供することができる。CIM145は、オペレータと検体試験装置100との対話を容易にするように適用することができる。CIM145は、アイコン、スクロールバー、ボックス、およびボタンを含むメニューを表示するように適用された表示スクリーンを含むことができ、それらを通して、オペレータが検体試験装置100のインターフェースとなることができる。メニューは、検体試験装置100の機能面を表示するようにプログラムされたいくつかのファンクションボタンを含むことができる。
【0048】
図4A~
図4Bを参照すると、品質検査モジュール430の実施形態が図示および説明されている。品質検査モジュール430は、図示のように、検体容器102の物理的構造(たとえば、サイズ)を自動的にキャラクタリゼーションするように構成および適用することができる。キャラクタリゼーション方法は、1つまたはそれ以上の分析器106、108、110によって自動的に処理される前に、品質検査モジュール430によって実行することができる。このように、検体容器102のサイズ(たとえば、幅Wおよび高さHT)が任意の後続の処理のために認識される。品質検査モジュール430を使用して、検体容器102を定量化する、すなわち、TC、HTの位置、および/または検体容器102のW、ならびに/またはキャップ214の色および/もしくはタイプなど、検体容器102の一定の物理的寸法の特徴を定量化することもできる。
【0049】
検体容器の定量化に加えて、品質検査モジュール430において、検体容器102に収容された検体212に他の検知方法を行うことができる。たとえば、品質検査モジュール430を使用して、検体212を定量化する、すなわち、検体212の一定の物理的寸法の特徴(たとえば、LA、SBの物理的位置、ならびに/またはHSP、HSB、および/もしくはHTOTの判定、ならびに/または血清部分もしくは血漿部分の体積および/もしくは沈殿血液部分の体積)を判定することができる。
【0050】
再び
図4Aおよび
図4Bを参照すると、廉価な形態の品質検査モジュール430は、単一の(唯一の)較正画像取込みデバイス328(たとえば、カラーカメラまたはモノクロカメラなど、単一の従来のデジタルカメラ)、または電荷結合素子(CCD)、光検出器アレイ、CMOSセンサなどに接続されたレンズ系を含むことができる。たとえば、単一の較正画像取込みデバイス328は、単一の視点から撮像位置333において検体容器102および検体212の画像を取り込むように構成することができる。本実施形態において、検体容器102は、妨げられない向き(ラベル218によって妨げられない向き)をユーザまたはロボットが判定し、次いで、その向きで検体容器をキャリア122に挿入することなどによって、検体212の明確な画像が可能になるように、回転方向の向きに位置することができる。
【0051】
単一の画像取込みデバイス328を含む品質検査モジュール430の本実施形態を使用して、検体容器102の幾何学的属性(たとえば、幅Wおよび高さHT)の判定に加えて、「Methods and Apparatus for Detecting an Interferent in a Specimen」という名称の、Klucknerらの米国特許第10,816,538号に記載されているものなど、HILに関するプレスクリーニングを行い、および/または「Methods and Apparatus for Classifying an Artifact in a Specimen」という名称の、Klucknerらの米国特許第10,746,665号に記載されているものなど、アーチファクトの存在に関するプレスクリーニングを行うことができる。たとえば、パネル状光源などのバックライト光源400Cを使用する背面照明を使用して、HILプレスクリーニングを行うことができる。
【0052】
1つまたはそれ以上の実施形態において、3D中心位置350を判定するキャラクタリゼーション方法は、品質検査モジュール430の下位構成要素としてキャラクタリゼーション装置101を使用して行うことができる。キャラクタリゼーション装置101は、1つまたはそれ以上の光源300A、300Bと、較正画像取込みデバイス328と、
図3Bで先に説明したような較正物体325とを含み、キャラクタリゼーション装置101およびキャラクタリゼーション方法は、品質検査モジュール430内で実行することができる。撮像位置333における3D中心位置350を認識していることは、トラック121に沿った他の場所における、少なくともその任意の線形セグメント上で、3D中心位置の概略的な推定として使用することができる。別の位置でより細かい3D中心位置の判定が望まれる場合は、キャラクタリゼーション装置101およびキャラクタリゼーション方法をその位置で実行することができる。
【0053】
動作の際には、品質検査モジュール430によって取り込まれた、前面照明および背面照明された画像はそれぞれ、トリガ信号に応答してトリガされ取り込まれることが可能である。トリガ信号は、コンピュータ123によって生成され、コンピュータ123に接続された通信線に供給可能である。取り込まれた画像はそれぞれ、本明細書で提供されるキャラクタリゼーション方法の1つまたはそれ以上の実施形態に従って処理することができる。具体的には、画像処理を使用して幅W、高さHTを判定することができる。追加的に、キャップの色およびキャップのタイプを公知の方法を使用して判定することができる。さらに、HILおよび/またはアーチファクトの存在に関するプレスクリーニングは、光源400Cを使用する背面照明によって背面照明された画像などを使用して判定することができる。
【0054】
区別を改善するために、2つ以上の波長スペクトルを使用できる。その場合、画像取込みデバイス328によってマルチスペクトルの画像を取り込むことができる。カラースペクトル画像(比較的狭い波長帯域を有する公称波長で表される)はそれぞれ、1回またはそれ以上の露光(たとえば、4~8回またはそれを超える回数の露光)で順次取り込まれる。各露光は異なる時間の長さのものとすることができる。スペクトル画像は、多重露光の赤色、多重露光の緑色、および多重露光の青色など、任意の順番で撮ることができる。検知方法のために、透過率画像を計算することができ、(R、G、およびB照明それぞれについての)各透過率画像は最適露光画像から計算できる。最適露光画像は、それらのそれぞれのピクセルごとの強度によって正規化することができる。
【0055】
1つまたはそれ以上の実施形態において、キャラクタリゼーション装置101および品質検査モジュール430は、ハウジング345を含むことができ、ハウジング345は、トラック121を少なくとも部分的に囲繞またはカバーし、外部照明の影響を最小限に抑えることができるなど、画像取込みに密閉または半密閉環境をもたらすことができる。検体容器102は、各画像を取り込む間はハウジング345の内側に位置する。ハウジング345は、キャリア122がハウジング345に進入および/またはそれを退出できるようにする扉を1つまたはそれ以上含むことができる。いくつかの実施形態において、天井は開口部を含むことができ、その開口部によって、キャラクタリゼーション装置101および/または品質検査モジュール430がローディングエリア105に位置するときなどに、可動ロボットグリッパを含むロボット(たとえば、ロボット124)によってハウジング345内で静止しているキャリア122に検体容器102を上からロードすることが可能になる。前面照明が使用され、背面照明が使用されない場合(たとえば、
図3A~
図3C)は、キャラクタリゼーション装置101は、画像のコントラストを改善するためにハウジング345に逆転防止壁を含むことができる。
【0056】
図5は、キャラクタリゼーション装置およびキャラクタリゼーション方法の機能
図500を示し、検体212を収容する検体容器102のキャラクタリゼーションは、品質検査モジュール430を使用するより広範な方法によってキャラクタリゼーションまたは分類できる多くの項目のうちのほんの1つである。本方法の1つまたはそれ以上の実施形態によれば、画像は、較正画像取込みデバイス328(たとえば、較正モノクロカメラ)などによって取り込まれる。画像取込みデバイス328によって取り込まれた画像は、先に論じたようにマルチスペクトル画像および/または多重露光画像とすることができる。具体的には、多重露光(たとえば、4~8回またはそれを超える回数の露光)を、照明に使用する光の各波長(たとえば、R、G、およびB)について行うことができる。前面照明された画像は、フロントライト光源300A、300Bを使用して取り込む(取得する)ことができ、背面照明された画像は、
図4A~
図4Bで説明したようにバックライト光源400Cを使用して取得することができる。場合により、前面照明された多重露光画像は、白色光源およびカラーカメラを使用して取得することができる。
【0057】
次いで、画像をさらに処理して、「Methods And Apparatus For Detecting An Interferent In A Specimen」という名称の、Klucknerらの米国特許第10,816,538号および「Methods And Apparatus For Imaging A Specimen Container Using Multiple Exposures」という名称の、Wissmannらの米国特許出願公開第2019/0041318号に記載されている手法で、セグメンテーション550を判定することができる。畳み込みニューラルネットワーク(CNN:convolutional neural network)などの人工知能に基づいた他の適切なセグメンテーション方法を使用することができる。いくつかの実施形態において、前面照明からの画像がセグメンテーション550にとって最良に使用できる。同様に、背面照明を使用した取り込まれた画像が、先に説明した方法を使用して、HILN分類552および/またはアーチファクト検知556にとって最良に使用できる。
【0058】
液体定量化554は、以下のセグメンテーション550で実行することもできる。液体を定量化することは、LA、SBの物理的位置、ならびに/またはHSP、HSB、および/もしくはHTOTの判定、ならびに/または血清部分もしくは血漿部分の体積および/もしくは沈殿血液部分の体積など、検体212の一定の物理的寸法の特徴の判定を含むことができる。識別は、それらの境界領域のピクセルを選択し、ピクセル空間におけるそれらの位置値を平均してLAおよびSBに関する値を取得することによって実行できる。その情報から、血清部分または血漿部分212SPの体積は、検体容器102の幅Wおよび断面形状を使用して判定することができる。ピクセル空間から機械的測定値への関係付けは、任意の適切な較正方法を使用してピクセル空間のピクセルを機械的空間のmmに較正することによって実行できる。
【0059】
検体容器102のさらなるキャラクタリゼーションは、3D中心位置350の判定などのキャラクタリゼーション方法に従って実行することもできる。先に論じたように、3D経路軌道は、まず、3D経路軌道判定551を使用して判定され、続いて、3D中心位置判定ブロック553で3D中心位置350が判定される。チューブのタイプの検知558、キャップのタイプの検知560、およびキャップの色の検知562は、従来の方法を使用して画像取込みデバイス328からの画像の処理に基づいて行うことができる。
【0060】
図6は、1つまたはそれ以上の実施形態による、トラック(たとえば、トラック121)上の撮像位置における検体容器(たとえば、検体容器102)の位置(3D中心位置350)を判定するキャラクタリゼーション方法600のフローチャートを示す。本方法600は、ブロック602で、トラック上に較正物体(たとえば、較正物体235)を用意することと、ブロック604で、トラックに隣接するように初期較正画像取込みデバイス(たとえば、較正画像取込みデバイス328)を用意することとを含む。初期較正画像取込みデバイス328の較正は、既知の寸法のマーカグリッド(たとえば、チェッカーボードまたはホフマンマーカ)を使用し、焦点距離、画像中心、スキュー、およびディストーション係数などの内部パラメータを最適化する非線形改良技術を使用するなど、任意の適切な方法によって行うことができる。
【0061】
本方法600はさらに、ブロック606で、第1の長手方向地点(たとえば、
図3Bの長手方向地点A)と、第1の長手方向地点とは異なる第2の長手方向地点(たとえば、
図3Bの長手方向地点B)とを含む、トラック121に沿った少なくとも異なる2つの長手方向地点に較正物体を動かすことと、ブロック608で、較正物体325が第1の長手方向地点Aに位置する状態で、較正画像取込みデバイスを使用して第1の画像を取り込むことと、ブロック610で、較正物体325が第2の長手方向地点Bに位置する状態で、画像取込みデバイスを使用して第2の画像を取り込むこととを含む。画像が取得されると、本方法600は、ブロック612で、少なくとも第1の画像および第2の画像に基づいて、トラック(撮像領域335内のトラック121のセグメント)に沿った中心位置の3次元経路軌道344を判定することを含む。
【0062】
3次元経路軌道(3次元経路軌道344)が撮像領域335内で認識されていると、そのことを、キャリア122上の撮像領域に運ばれた任意の検体容器102の3D中心位置(たとえば、3D中心位置350)を判定するために使用できる。
【0063】
図7に示すように、1つまたはそれ以上の実施形態による、トラック(たとえば、トラック121)上の検体容器(たとえば、検体容器102)の3D中心位置(たとえば、3D中心位置350)を判定する本方法700のフローチャートが提示されている。本方法700は、ブロック702で、トラック(たとえば、トラック121)上でキャリア(たとえば、キャリア122)によって担持された検体容器(たとえば、検体容器102)を撮像領域(たとえば、撮像領域335)に動かすことを含む。撮像領域335内の撮像のために厳密な位置は必要とされない。好ましくは、検体容器102は、撮像のために撮像領域335において止めることができるが、画像取込み速度が十分な場合は、検体容器102はそこで止められる必要がない場合がある。次に、ブロック704で、本方法は、容器画像(たとえば、容器画像336)を取得するために撮像領域(たとえば、撮像領域335)内で検体容器(たとえば、検体容器102)を撮像することを含む。本方法700はさらに、ブロック706で、容器画像(たとえば、容器画像336)内の検体容器(たとえば、検体容器102)の側方のエッジ(たとえば、エッジ341、342)を検出することと、ブロック708で、エッジ間の中心平面(たとえば、中心平面346)を判定することとなどによって、中心平面(たとえば、中心平面346)を検出することを含む。最後に、本方法700は、中心平面346の地点における検体容器102の3D中心位置350である、中心平面346と3次元経路軌道344との交点を(たとえば、先に説明した方法600から)検出するために中心平面を背面投影するように動作する。
【0064】
エッジ検出ブロック706の一部として、本方法700は、検体容器102の幅Wを識別することを含むことができる。ピクセル幅は、単純に、画像取込みデバイス328の較正に基づいてmmの距離に変換できる。検体容器102の高さHTは、同様のエッジ検出ルーチンを使用して判定でき、TCにおけるチューブ213の上部が判定される。エッジ検出は、チューブ-キャップインターフェースTCが位置すると予想できる場所で、セグメンテーションによってまたは別法で撮像領域335中の領域内で閾値を超える光の強度の変化を探すことによって行うことができる。
【0065】
いくつかの実施形態において、検体容器102が幅Wおよび高さHTなどからサイズのキャラクタリゼーションが与えられているときは、検体212の体積を取得できる。内側の幅は、検体容器102のサイズに基づいてルックアップテーブルなどを使用することによって判定できる。内側の幅を使用して、たとえばセグメンテーションから取得される血清-血液インターフェースSBおよび液体-空気インターフェースLAの位置に基づいて、血清部分または血漿部分212SPの体積および/または沈殿血液部分212SBの体積を正確に算定することができる。
【0066】
したがって、先述のことに鑑み、品質検査モジュール130、430に含むことができるかまたは独立型のキャラクタリゼーション装置101とすることができる、キャラクタリゼーション装置101によって実行されるキャラクタリゼーション方法600、700が、検体容器102の3D軌道経路344および3D中心位置350のキャラクタリゼーションを迅速にできることが明らかなはずである。チューブのサイズ(WおよびHT)、キャップのタイプ、およびキャップの色など、検体容器102の物理的属性も、キャラクタリゼーション装置101を使用して取得することができる。
図4A~
図4Bなどに示すような背面照明を含むいくつかの実施形態において、HIL検知および/またはアーチファクト検知を実行することもできる。
【0067】
本開示は様々な修正形態および代替形態が可能であり、特定の装置の実施形態およびその方法が図面に一例として示されており、本明細書に記載されている。しかし、開示されている特定の装置または方法に本開示を限定する意図はなく、それとは反対に、本発明は特許請求の範囲およびその等価物の範囲にあるすべての修正例、等価物、および代替例を含むことを理解されたい。