(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-15
(45)【発行日】2025-01-23
(54)【発明の名称】DNN基盤の人の顔分類
(51)【国際特許分類】
G01S 13/34 20060101AFI20250116BHJP
【FI】
G01S13/34
(21)【出願番号】P 2023562878
(86)(22)【出願日】2022-04-05
(86)【国際出願番号】 KR2022004860
(87)【国際公開番号】W WO2022220464
(87)【国際公開日】2022-10-20
【審査請求日】2023-10-13
(32)【優先日】2021-04-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】522360769
【氏名又は名称】ビットセンシング インコーポレイテッド
(74)【代理人】
【識別番号】100087398
【氏名又は名称】水野 勝文
(74)【代理人】
【識別番号】100128783
【氏名又は名称】井出 真
(74)【代理人】
【識別番号】100128473
【氏名又は名称】須澤 洋
(74)【代理人】
【識別番号】100160886
【氏名又は名称】久松 洋輔
(72)【発明者】
【氏名】イ,ジェ ウン
(72)【発明者】
【氏名】イム,ヘ スン
(72)【発明者】
【氏名】イ,ソン ウク
【審査官】梶田 真也
(56)【参考文献】
【文献】米国特許出願公開第2020/0025877(US,A1)
【文献】米国特許出願公開第2019/0011534(US,A1)
【文献】特開2013-068433(JP,A)
【文献】特開2020-204603(JP,A)
【文献】米国特許出願公開第2020/0166609(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - 7/42
G01S 13/00 - 13/95
(57)【特許請求の範囲】
【請求項1】
レーダの信
号から標的情報を抽出する方法において、当該方法は、
アンテナ素子から受信された複数の人の顔に対する信号を利用してディープニューラルネットワークを訓練させるステップと、
前記レーダを利用して周波数変調連続波(frequency-modulated continuous wave)の送信信号を送信するステップと、
多重アンテナ素子において人の顔から反射した反射信号を受信するステップと、
前記受信した反射信号を連結するステップと、
混合信号を生成するために、ミキサー(mixer)を利用して前記送信信号と前記反射信号を乗じるステップと、
正弦波信号を含む基底帯域(baseband)信号を生成するために、低域通過フィルタ(low pass filter)を介して前記混合信号を通過させるステップと、
前記基底帯域信号からそれぞれの正弦波信号の周波数を抽出するステップと、
前記抽出された周波数を利用して前記人の顔と前記レーダとの距離を測定するステップと
、
前記測定された距離に基づいて前記連結された反射信号を切断するステップと、
前記複数の顔のうちの特定の顔を区別するために、前記切断された反射信号を前記ディープニューラルネットワークに入力するステップと、
を含む、標的情報を抽出する方法。
【請求項2】
前記ディープニューラルネットワークは、多層パーセプトロン(perceptron)を含む、請求項
1に記載の標的情報を抽出する方法。
【請求項3】
前記多重アンテナ素子は、前記反射信号が前記人の顔の空間的な顔特徴を含むように高度及び方位角方向に配列される、請求項1に記載の標的情報を抽出する方法。
【請求項4】
それぞれの前記正弦波信号の周波数を抽出するステップは、フーリエ変換(Fourier transform)を適用するステップを含む、請求項1に記載の標的情報を抽出する方法。
【請求項5】
前記送信信号は、周波数を急速に増加させるアップチャープ(up-chirp)信号である、請求項1に記載の標的情報を抽出する方法。
【請求項6】
前記ミキサーは、周波数ミキサーである、請求項1に記載の標的情報を抽出する方法。
【請求項7】
前記レーダは、ミリ波(millimeter-wave)周波数変調連続波レーダである、請求項1に記載の標的情報を抽出する方法。
【請求項8】
受信アンテナ素子から受信された複数の人の顔に対する信号を利用してディープニューラルネットワークを訓練させるステップと、
レーダの複数の受信アンテナ素子それぞれから入力信号を受信するステップであって、前記入力信号は、顔から反射した信号である、当該ステップと、
前記受信した入力信号を連結するステップと、
フィルタリングされた出力を生成するために、前記
連結された入力信号を低域通過フィルタリングするステップと、
離散フィルタ出力を生成するために、フィルタリングされた出力をアナログ-デジタル変換器を介して通過させ、サンプリング周波数でサンプリングするステップと、
前記顔と前記レーダとの距離を計算するために、前記離散フィルタ出力に変換を適用するステップと、
前記計算された距離に基づいて前記連結された入力信号を切断するステップと、
前記複数の顔のうちの特定の顔を区別するために、前記切断された入力信号を前記ディープニューラルネットワークに入力するステップと、
前記距離に対応する周波数インデックスを生成するために、前記変換された出力に誤警報率(false alarm rate)検出技術を適用するステップとを含む、方法。
【請求項9】
訓練のために
前記ディープニューラルネットワークに前記周波数インデックスを入力するステップをさらに含む、請求項
8に記載の方法。
【請求項10】
前記ディープニューラルネットワークは、複数の層を含む多層パーセプトロンを含み、各層は、隣接層に連結されている、請求項
8に記載の方法。
【請求項11】
前記変換は、高速フーリエ変換である、請求項
8に記載の方法。
【請求項12】
前記周波数インデックスは、高速フーリエ変換インデックスである、請求項
8に記載の方法。
【請求項13】
レーダ
の信
号から標的情報を抽出するためのコンピュータプログラムを格納する非一時的なコンピュータ読み取り可能な格納媒体であって、前記コンピュータプログラムは、コンピュータに、
アンテナ素子から受信された複数の人の顔に対する信号を利用してディープニューラルネットワークを訓練させ、
前記レーダを利用して周波数変調連続波の送信信号を送信し、
多重アンテナ素子において人の顔から反射した反射信号を受信し、
前記受信した反射信号を連結し、
混合信号を生成するために、ミキサーを利用して前記送信信号と前記反射信号を乗じ、
正弦波信号を含む基底帯域信号を生成するために、低域通過フィルタを介して前記混合信号を通過させ、
前記基底帯域信号からそれぞれの正弦波信号の周波数を抽出し、
前記抽出された周波数を利用して前記人の顔と前記レーダとの距離を測定させ
、
前記測定された距離に基づいて前記連結された反射信号を切断し、
前記複数の顔のうちの特定の顔を区別するために、前記切断された反射信号を前記ディープニューラルネットワークに入力させる、
実行可能な命令を含む、非一時的なコンピュータ読み取り可能な格納媒体。
【請求項14】
前記ディープニューラルネットワークは、多層パーセプトロンを含む、請求項
13に記載の非一時的なコンピュータ読み取り可能な格納媒体。
【請求項15】
前記コンピュータにそれぞれの前記正弦波信号の周波数を抽出させる実行可能な命令は、前記コンピュータにフーリエ変換を適用させる実行可能な命令を含む、請求項
13に記載の非一時的なコンピュータ読み取り可能な格納媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、人の顔分類に関し、より詳しくは、ディープニューラルネットワーク(DNN)基盤の人の顔分類に関する。
【背景技術】
【0002】
無線探知及び距離測定(即ち、レーダ)センサは、多様な分野において多様な目的で広く使用されている。近年は、レーダセンサによって使用される周波数帯域と帯域幅がミリ波(millimeter wave)帯域に広がり、より小さいサイズと高い範囲の分解能(resolution)を有するレーダへの関心が高くなっている。つまり、レーダセンサの小型化が進められており、レーダセンサは他の用途で活用されることが期待される。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本発明では、人の顔分類を説明する。
【課題を解決するための手段】
【0004】
一実施例において、レーダ信号及び測定環境から標的情報を抽出する方法が開示される。前記方法は、レーダを利用して周波数変調連続波(frequency-modulated continuous wave;FMCW)送信信号を送信するステップと、多重アンテナ素子において人の顔から反射した反射信号を受信するステップと、混合信号を生成するために、ミキサー(mixer)を利用して送信信号と反射信号を乗じるステップと、正弦波信号を含む基底帯域信号を生成するために、低域通過フィルタ(low pass filter)を介して混合信号を通過させるステップと、抽出された周波数を生成するために、基底帯域信号からそれぞれの正弦波信号の周波数を抽出するステップと、抽出された周波数を利用して人の顔とレーダとの距離を測定するステップとを含む。
【0005】
他の実施例において、方法が開示される。前記方法は、レーダの複数の受信アンテナ素子それぞれから入力信号を受信するステップと、前記入力信号は、顔から反射した信号であり、フィルタリングされた出力を生成するために、入力信号を低域通過フィルタリングするステップと、離散フィルタ出力を生成するために、フィルタリングされた出力をアナログ-デジタル変換器を介して通過させ、サンプリング周波数でサンプリングするステップと、顔とレーダとの距離を計算するために、離散フィルタ出力に変換を適用するステップと、距離に対応する周波数インデックスを生成するために、変換された出力に誤警報率検出技術を適用するステップとを含む。
【0006】
他の実施例において、レーダ信号及び測定環境から標的情報を抽出するためのコンピュータプログラムを格納する非一時的なコンピュータ読み取り可能な格納媒体が開示される。前記コンピュータプログラムは、コンピュータに、レーダを利用して周波数変調連続波送信信号を送信し、多重アンテナ素子において人の顔から反射した反射信号を受信し、混合信号を生成するために、ミキサーを利用して送信信号と反射信号を乗じ、正弦波信号を含む基底帯域信号を生成するために、低域通過フィルタを介して混合信号を通過させ、抽出された周波数を生成するために、基底帯域信号からそれぞれの正弦波信号の周波数を抽出し、抽出された周波数を利用して人の顔とレーダとの距離を測定させる実行可能な命令を含む。
【0007】
本発明の他の特徴及び長所は、例として、本発明の態様を例示する本願の説明から明らかになるはずである。
【図面の簡単な説明】
【0008】
特許又は出願ファイルには、カラーで実行された図面が1つ以上含まれている。カラー図面が含まれたこの特許又は特許出願刊行物の写本は、要請及び必要な手数料を支払えば官庁から提供される。
【0009】
構造及び作動の全て関する本発明の詳細事項は、添付された図面の研究によって部分的に収集されても良く、ここで、類似した参照番号は類似した部分を示す。
【0010】
【
図1】本発明の一実施例に係る、送信されたFMCWレーダ信号の時間-周波数の傾きを示す。
【
図2a】本発明の一実施例に係るミリ波FMCWレーダである。
【
図2b】本発明の一実施例に係る、単一送信アンテナ及び3個の受信アンテナ素子を含むFMCWレーダの回路レイアウトを示す。
【
図3a】顔に対するレーダの方位角(azimuth angle)を示す。
【
図3b】顔に対するレーダの仰角(elevation angle)を示す。
【
図4】本発明の一実施例に係るMLPネットワークの構造を示す。
【
図5a】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図5b】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図5c】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図5d】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図5e】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図5f】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図5g】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図5h】本発明の一実施例に係る、レーダの中心から顔が約30~50cm離れている際の20秒間における8人の人の顔の累積F(L
3[n])を示す。
【
図6】人の顔がレーダから約40cm離れている際の1つの被写体に対するF(L
3[n])を示す。
【
図7】本発明の一実施例に係る、DNNを訓練する(training)ためのデータベクトルを示す。
【
図8】本発明の一実施例に係る、赤色の長方形のボックスで表示された信号部分のみを利用するプロセスを示す。
【
図9】顔の周辺の距離に対応するFFTインデックスの構成を示す。
【
図10】本発明の一実施例に係る、8個の異なる被写体に対する平均顔分類性能を示す。
【
図12】本発明の一実施例に係る、レーダ信号及び信号測定環境から標的情報を抽出するためのプロセスのフローチャートである。
【
図13】本発明の一実施例に係る、得られたレーダ信号でディープニューラルネットワーク(DNN)を訓練するためのプロセスのフローチャートである。
【発明を実施するための形態】
【0011】
上述したように、レーダセンサは、多様な分野において多様な用途で広く使用されている。レーダセンサによって使用される周波数帯域と帯域幅がミリ波帯域に広がり、より小さいサイズと高い範囲の分解能を有するレーダへの関心が高くなっている。つまり、レーダセンサの小型化が進められており、レーダセンサは、既存の用途ではなく他の用途で活用されることが期待される。一例において、顔及びジェスチャ認識のために、レーダがスマートフォンに統合されている。他の例において、他のスマートフォンを見つけるために、超広帯域(ultra-wideband;UWB)レーダがスマートフォンに統合されている。
【0012】
本発明の特定の実施例は、小型ミリ波レーダセンサを利用して人の顔を分類することを提供する。一実施例において、レーダセンサは、(例えば、61GHz帯域で作動する)周波数変調連続波形(frequency-modulated continuous waveform)を送信し、空間的に分離された受信アンテナ素子を利用して反射信号を受信する。人の顔の形と構成は人それぞれ異なっているため、レーダ信号の反射特性も互いに区別される。多重アンテナ素子から受信された信号を利用し、ディープニューラルネットワーク(DNN)を人の顔分類のために訓練することができる。実際のレーダ信号でDNNを訓練する際、多くの人の顔を高い正確度で分類することができる。
【0013】
このような説明を読めば、様々な実施例及びアプリケーションにおいて本発明を実施する方法が明らかになるはずである。しかし、本発明の様々な実施例が本明細書において説明されるが、このような実施例は単なる例示であり、限定されるものではないと理解されなければならない。よって、様々な実施例に対する詳細な説明は本開示の範囲又は幅を限定すると解釈されてはならない。
【0014】
I.紹介
本発明においては、小型レーダセンサで人の顔を認識するだけでなく、他の人の顔も区別できるように提案する。マシンラーニング技術の急速な発展により、ここ数年間、レーダセンサを利用した標的(target)分類研究が活発に進行されている。例えば、レーダセンサデータにマシンラーニング技術を適用することで多様な人間行動が分類された。また、一部は自動車レーダセンサを利用して歩行者、自転車乗り、自動車のようなレーダ標的を識別することを提案した。最近でも反射したレーダ信号による無人航空機を区別する研究が進行されている。このような全ての対象分類研究は、被写体の反射属性が異なっているという事実に基づく。同様に、人の顔の形と構成も人それぞれ異なっているため、適切なマシンラーニング技術をレーダデータに適用すれば、人の顔は充分に区別されることができる。電波(radio wave)を利用した顔分類を通じて、カメラ基盤の顔認識方式の弱点は補完されることができる。
【0015】
本発明の一実施例において、レーダセンサは、61GHzの中心周波数で作動し、周波数変調連続波(FMCW)を送信する。その後、人の顔に反射した信号は多重受信アンテナ素子によって受信される。前記アンテナ素子は、高度及び方位角方向に配列されるため、受信された信号には人の空間的な顔特徴が含まれる。また、人それぞれ顔の構成成分が異なっているため、反射特性も人それぞれ異なる。よって、多重アンテナ素子から受信された信号を連結してディープニューラルネットワーク(DNN)の入力として利用すれば、それぞれの人の顔を区別できる効果的な分類器を設計することができる。
【0016】
本発明の一実施例において、提案されたDNN基盤の顔分類方法の分類性能を評価し、他の既存の特徴基盤マシンラーニング技術と比較する。提案されたDNN基盤方法の長所は、特徴抽出段階が不要という点である。レーダセンサデータに対するDNNの適用可能性は既に確認されている。しかし、殆どのディープラーニング基盤の標的分類研究は、低周波帯域又は相対的に距離の遠い標的で作動する大規模レーダシステムに重点を置いたものである。
【0017】
セクションIIに開示された実施例は、レーダ信号及び信号測定環境から標的情報を抽出するための信号処理方法を説明する。セクションIIIに開示された実施例は、得られたレーダ信号及び当該分類結果でDNNを訓練する方法を説明する。セクションIVは結論を含む。
【0018】
II.61GHzのFMCWレーダを利用した標的測定
A.FMCWレーダにおける信号処理
FMCWレーダシステムにおいて、送信信号の周波数は、時間と共に線形的に変わる。
図1は、送信されたFMCWレーダ信号の時間-周波数の傾きを示す。ここで、1、2、・・・、Nは、各フレームのインデックスである。よって、フレームの送信信号T(t)は、次のように表される。
【数1】
【0019】
ここで、A
Tは、送信信号の振幅、f
cは、変調信号の中心周波数、ΔBは、動作帯域幅、ΔTは、スイープ時間である。前記送信信号は、周波数が急激に増加するため、アップチャープ(up-chirp)信号とも言う。前記アップチャープ信号がL標的から反射すれば、受信信号R(t)は、次のように表されても良い。
【数2】
【0020】
ここで、ARl(l=1、2、…、L)は、1番目の標的から反射した信号の振幅であり、fdlは、1番目の標的とレーダの間の相対速度によって発生するドップラー周波数であり、tdlは、1番目の標的とレーダの間の相対距離による時間遅延である。1番目の標的の情報を含む所望の信号はdl(t)と表される。また、n(t)は、受信アンテナにおいて追加されるノイズを表す。
【0021】
前記送信信号T(t)は、周波数ミキサーを介して通過することにより前記受信信号R(t)と乗じられる。ミキサーM(t)の出力は、次のように与えられる。
【数3】
【0022】
基底帯域信号を抽出するために、M(t)は、低域通過フィルタを通過する。フィルタ出力は、次のように近似されても良い。
【数4】
【0023】
ここで、L(.)は、低域通過フィルタ出力を表す。
【0024】
L(M(t))は、正弦波信号の和であるので、フーリエ変換を適用して各信号の周波数を抽出する。抽出された周波数(f^
l)(ここで、l=1、2、...、L)は、次のように表される。
【数5】
【0025】
ここで、Rlとvlは、それぞれ1番目の標的とレーダの間の相対距離と相対速度であり、cは、送信されたレーダ信号の伝播速度である。
【0026】
人の顔から反射したレーダ信号を測定する際、f^
lは、(ΔB/ΔT)t
dl(=ΔB/ΔT×2R
l/c)に近似されても良い。つまり、顔の多くの測定ポイントがレーダに対して固定されているため、標的速度によるf
dlは無視しても良い。よって、ビート周波数を利用して顔とレーダとの距離を推定することができ、これは、次のように計算される。
【数6】
【0027】
ここで、ΔT、ΔB、cは、既にレーダシステムに知られている。
【0028】
B.測定環境
図2aは、本発明の一実施例に係るミリ波FMCWレーダである。
図2bは、本発明の一実施例に係る、単一送信アンテナ及び3個の受信アンテナ素子を含むFMCWレーダの回路レイアウトを示す。
【0029】
図2a及び
図2bに示すように、FMCWレーダは、単一送信アンテナと3個の受信アンテナ素子(方位方向に2個、高度方向に2個、各方向において1つは1つのアンテナ素子によって共有される)を利用する。隣接したアンテナ素子間の距離は0.5c/f
cである。前記アンテナシステムにおいて、Txが信号、R
x1、R
x2、及びR
x3を送信すれば、同時に反射信号を受信する。たとえ
図2bに示された実施例は3個の受信アンテナ素子(R
x1、R
x2、及びR
x3)のみを示しているが、他の実施例において任意の数(2個以上)のアンテナ素子が使用されても良い。また、数学式1のfc、ΔB、ΔTは、それぞれ61GHz、6GHz、12.5msに設定されている。また、FMCWレーダ信号の1つのフレームは、12.5msの信号送信時間(transmission time)と37.5msの信号処理時間とにより構成された50msの長さである。
【0030】
前記レーダを利用して
図3a及び
図3bに示すような実験環境を設定し、反射したレーダ信号を収集する。
図3aは、顔に対するレーダの方位角を示し、
図3bは、顔に対するレーダの仰角を示す。
【0031】
8人の被写体を有する1つの例示的な実施例において、レーダ信号は、レーダと顔との距離を30cmから50cmに変更することで測定される。また、顔とレーダの前面方向との方位角及び仰角(例えば、
図3a及び
図3bのθ及びΦ)によって反射信号が変わり得るので、受信されたレーダ信号は、θ及びΦを-5°から+5°まで変更しながら得られる。
【0032】
III.DNNを利用した提案された顔分類
A.DNNの基本原理
DNN構造の最も代表的なタイプは、各層が隣接層と完全に連結されている多層パーセプトロン(Multilayer Perceptron;MLP)である。
図4は、前記MLPネットワークの1つの例示的な構造を示す。上記例示的な構造には、入力層、多重隠れ層及び出力層が含まれる。また、各層は多数のノードにより構成され、各ノードは、隣接した層のノードと連結される。
図4に示されたネットワークは、順伝播(forward propagation)と逆伝播(backward propagation)の繰り返し過程を通じて訓練される。順伝播において、各層は、重みと活性化関数を利用することによって値を次の層に伝達する。X
i
(k)及びY
o
(k)は、k層目の入力及び出力ベクトルと言い、W
(k)をk層目と(k+1)層目との重み行列と言う。してみると、(k+1)層目の入力ベクトルは、次のように表されても良い。
【数7】
【0033】
ここで、f
aは、ネットワークにおいて非線形性を生成する活性化関数を表す。それに対し、重み値は、逆伝播において各重みに対する費用関数の傾きを計算することによりアップデートされる。逆伝播前の重み値をW
bとすると、逆伝播後にアップデートされた重みW
aは、次の通りである。
【数8】
【0034】
ここで、αは、学習の速度を決定する学習率を表し、Jは、訓練された値と実際の値との誤差を示す費用関数を表す。エポック(epoch)と呼ばれる順伝播及び逆伝播の何れも、重み行列W(k)を適切に訓練するために数回繰り返される。
【0035】
B.データ学習(learning)のためのレーダ信号の前処理
DNNを利用して分類器を訓練するためには、入力形式を適切に決定しなければならない。よって、適切な入力はレーダ信号の特性によって公式化される。各受信アンテナ素子から受信された信号をR
q(t)(q=1、2、3)と表すとすると、各受信信号に対する低域通過フィルタ出力は、L(T(t)R
q(t))=L(M
q(t))とする。前記低域通過フィルタ出力がアナログ-デジタル変換器を通過し、f
s(=1/T
s)のサンプリング周波数でサンプリングされれば、離散フィルタ出力は、次のように表されても良い。
【数9】
【0036】
ここで、Nsは、サンプリングされたポイントの数を表す。セクションII-Aで言及した通り、顔とレーダとの距離は、サンプリングされた信号に高速フーリエ変換(FFT)を適用することで抽出されることができ、F(Lq[n])と表されても良い。
【0037】
例えば、
図6は、人の顔がレーダから約40cm離れている際に1つの被写体に対するF(L
3[n])を示す。よって、FFTポイント(NF)の数はN
sと同一に設定される。順序付き統計定数誤警報率(ordered statistic constant false alarm rate;OS-CFAR)検出アルゴリズムをF(L
3[n])に適用すれば、顔の位置に対応するFFTインデックスを抽出することができる。数学式6から、本発明のレーダシステムにおいて、1つのFFTインデックスは2.5cmと計算されることができる。上記したステップにおいて、FFTインデックスを抽出することは、顔とレーダとの距離を中心に出力を適切にバウンディングする(bounding)ことを含む(
図8を参照)。上述した出力が直列に使用される場合(即ち、連結される場合)、利用されるネットワークはDNNに分類されるという点に留意しなければならない。その他には、上述した出力を並列に使用すると、畳み込みニューラルネットワーク(Convolutional Neural Network;CNN)というまた別のディープラーニング技術に分類される。
【0038】
図5a乃至
図5hは、8人の人の顔がレーダの中心から約30~50cm離れている際に20秒間累積したF(L
3[n])を示す。FFTインデックスを数学式6で変換することで、レーダと人の顔との距離を推定することができる。
図5a乃至
図5hに示すように、反射信号の強度は、40cm付近で強い。
図5a乃至
図5hは、同じ距離に位置した互いに異なる顔に対する受信信号の差を示す。また、方位軸に位置したアンテナ素子の間には位相差e
jπsinθが存在し、高度軸に位置したアンテナ素子の間には位相差e
jπsinφが存在する。よって、F(L
1[n])、F(L
2[n])、及びF(L
3[n])も同じ顔に対して互いに異なるパターンを有する。
【0039】
一般的に、レーダデータに対するDNNの入力として、抽出された信号の特徴ベクトルが使用されるか、時間領域又は周波数領域の信号が全体的に使用されることができる。本発明において全てのアンテナ素子から受信された信号は、1つの信号ベクトルに合成され、DNNの入力として使用される。つまり、上記した観察を基に、DNNを訓練するためのデータ入力の形態は、次のように表現される。
【数10】
【0040】
図7に示すように、3個の受信アンテナ素子があるので、X
i[k]は1×3N
sベクトルとなる。前記データベクトルは、各アップチャープ信号から抽出される(
図1を参照)。入力データは、セクションII-Bで言及したフレーム単位で生成される。各被写体に対し、測定条件(例えば、距離及び角度)を変更することで、2,000個の入力データポイント(即ち、N=2000)が得られる。しかし、全体信号を利用する際に計算量が増加し、X
i[k]には標的情報を含まない不要な信号が含まれているので、前記ベクトルは直接使用されない。従って、標的近傍の信号が使用される。
【0041】
図8に示す一例において、赤色の長方形のボックスで表示された信号部分のみが使用される。その後、前記OS-CFAR検出アルゴリズムは各フレームに適用され、顔の位置に対応するFFTインデックスが抽出される。抽出されたFFTインデックス近傍の信号は切断されてネットワークに対する入力として使用され、次のように表されても良い。
【数11】
【0042】
ここで、k
tgtは、顔までの距離に対応するFFTインデックスであり、k
cutは、顔の周辺の距離が考慮された距離のインデックスである。この場合、顔から前後に約10cm程度がカバーされることのできるよう、k
cutは4に設定される。よって、精製された入力X
i[k]は、
図9に示すように構成されても良い。
【0043】
C.DNNからの顔分類結果
セクションIII-Bで言及した通り、8人に対して16,000個のデータポイントが得られた。また、全体データの70%、15%及び15%は、それぞれ訓練、検証及びテストセットとして使用された。本発明において利用されるDNNの構造は
図4に示されている。上述したように、X
i[k]は、ネットワークに対する入力ベクトルとして使用される。また、前記ネットワークの出力層は、顔1~顔8として表される。
【0044】
一般的に、DNN構造の分類性能に最大の影響を及ぼす要因は、隠れ層の数(Nl)、各層のノード数(Nn)、及び活性化関数の種類である。よって、我々のレーダシステムに適したネットワーク構造を見つけるために、上述した媒介変数を変更して分類正確度を比較する。前記分類性能は、先ず、隠れ層の数を1(Nl=1)に設定し、隠れ層のノード数を増加させることによって確認した。
【0045】
図10は、8個の互いに異なる被写体に対する平均顔分類性能を示す。N
nが20以上であれば、分類性能にそれ以上の増加がないことが確認された。よって、N
nを20に固定し、N
lを変更することで分類性能を確認した。
図11に示すように、N
lが5以上の際に前記分類性能は略収束した。よって、このようなネットワークにおいて、N
lとN
nの値はそれぞれ5と20に設定される。N
lとN
nを推定する順番を変えて同じ演算を行った際、2つの因子の値は略類似のものと計算された。表1は、N
lとN
nがそれぞれ5と20である際の混同行列(confusion matrix)を示す。8人の被写体に対する平均分類正確度は、平均92%以上であった。
【0046】
【0047】
DNNの他にも、分類性能は、レーダ標的分類に広く利用されるサポートベクターマシン(Support Vector Machine;SVM)及びツリー基盤の方法を利用して評価される。前記SVM、バギングツリー(bagging tree)、ブースティングツリー(boosting tree)を通じて分類器を訓練するためには、データベクトル(Xi[k])から特徴を抽出する過程が必要である。一部の実施例において、振幅及びドップラー周波数のような特徴が、分類器を訓練するために反射信号から抽出された。また、平均、分散、歪度(skewness)、尖度(kurtosis)のように分布の統計的特性を示す特徴は、他の物品で使用された。このようなマシンラーニング技術の性能は、抽出された特徴によって大きく変わる。よって、本発明において、数学式11の信号は、同じ入力データに対する分類性能を判断するために、2つのマシンラーニング技術の全てに対して入力データとして使用される。つまり、Xi[k]の各サンプルポイントは、2つの分類器の何れにおいても特徴として作用する。
【0048】
【0049】
表2は、次のような分類結果を示す。これらの方法の平均分類正確度は、提案された方法の平均分類正確度よりも低かった。このような特徴基盤マシンラーニング方法の場合、適切な特徴が抽出され、分類器の訓練に使用されれば、平均分類正確度が向上され得る。しかし、本発明において提案する方法の長所は、このような特徴を抽出することなく高い分類性能を示すということである。
【0050】
また、3個の受信アンテナ素子ではなく1つのアンテナ素子のみで受信された信号が使用された際も分類性能が確認された。つまり、入力形式は、次のように表されても良い。
【数12】
【0051】
ここで、
【数13】
上記の場合、受信アンテナ素子インデックスqは、1、2、3であることができる。X
i’[k]が使用されれば、入力データの大きさは1/3に減る。DNNの構造(例えば、ノード数、隠れ層数、及び活性化関数)を維持しつつ、分類性能はX
i’[k]を利用して評価される。この場合、平均分類正確度は73.7%であった。N
lとN
nが変わったものの、80%以上の分類正確度を得ることは難しかった。1つのアンテナ素子のみを使用すれば、受信されたレーダ信号から標的の方位角又は仰角情報を抽出することができず、アンテナの多様性も減少する。よって、より多くの受信アンテナ素子から受信されたレーダ信号を使用すれば、平均分類性能は向上されることができる。
【0052】
図12は、本発明の一実施例に係る、レーダ信号及び信号測定環境から標的情報を抽出するためのプロセス1200のフローチャートである。
図12に示すように、ブロック1210において、周波数変調連続波(FMCW)信号が、レーダを利用して送信される。ブロック1220において、人の顔から反射した信号は、多重受信アンテナ素子により受信される。アンテナ素子は高度及び方位角方向に配列されるため、受信された信号には人の空間的な顔特徴が含まれる。また、人それぞれ顔の構成成分が異なっているため、反射特性も人それぞれ異なる。
【0053】
ブロック1230において、送信信号は、混合信号を生成するために、ミキサーを利用して受信信号と乗じられる。その後、ブロック1240において、正弦波信号を含む基底帯域信号を生成するために、混合信号が低域通過フィルタを介して通過される。ブロック1250において、それぞれの正弦波信号の周波数は、基底帯域信号から抽出される。一実施例において、それぞれの正弦波信号の周波数は、フーリエ変換を適用することで抽出される。次いで、ブロック1260において、顔とレーダとの距離が、抽出された周波数を利用して測定される。多重アンテナ素子から受信された信号が連結され、その後、連結された信号は、ディープニューラルネットワーク(DNN)への入力として利用され、それぞれの人の顔を区別及び/又は認識する。
【0054】
一実施例において、レーダ信号及び測定環境から標的情報を抽出するための方法が開示される。前記方法は、レーダを利用して周波数変調連続波送信信号を送信するステップと、多重アンテナ素子において人の顔から反射した反射信号を受信するステップと、混合信号を生成するために、ミキサーを利用して前記送信信号と前記反射信号を乗じるステップと、正弦波信号を含む基底帯域信号を生成するために、低域通過フィルタを介して前記混合信号を通過させるステップと、抽出された周波数を生成するために、前記基底帯域信号からそれぞれの正弦波信号の周波数を抽出するステップと、前記抽出された周波数を利用して前記人の顔と前記レーダとの距離を測定するステップとを含む。
【0055】
一実施例において、前記方法は、多重アンテナ素子から信号を受信するステップと、信号を連結するステップとを含む。一実施例において、前記方法は、人の顔を区別して認識するために、ディープニューラルネットワークに連結された信号を入力するステップをさらに含む。一実施例において、ディープニューラルネットワークは、多層パーセプトロンを含む。一実施例において、多重アンテナ素子は、前記反射信号が人の顔の空間的な顔特徴を含むように高度及び方位角方向に配列される。一実施例において、それぞれの正弦波信号の周波数を抽出するステップは、フーリエ変換(Fourier transform)を適用するステップを含む。一実施例において、送信信号は、周波数を急速に増加させるアップチャープ(up-chirp)信号である。一実施例において、ミキサーは、周波数ミキサーである。一実施例において、レーダは、ミリ波周波数変調連続波レーダである。一実施例において、それぞれの正弦波信号の周波数を抽出するステップは、距離周辺のそれぞれの正弦波信号を適切にバウンディングするステップを含む。
【0056】
他の実施例において、レーダ信号及び測定環境から標的情報を抽出するためのコンピュータプログラムを格納する非一時的なコンピュータ読み取り可能な格納媒体が開示される。前記コンピュータプログラムは、コンピュータに、前記レーダを利用して周波数変調連続波送信信号を送信し、多重アンテナ素子において人の顔から反射した反射信号を受信し、混合信号を生成するために、ミキサーを利用して前記送信信号と前記反射信号を乗じ、正弦波信号を含む基底帯域信号を生成するために、低域通過フィルタを介して前記混合信号を通過させ、抽出された周波数を生成するために、前記基底帯域信号からそれぞれの正弦波信号の周波数を抽出し、前記抽出された周波数を利用して前記人の顔と前記レーダとの距離を測定させる実行可能な命令を含む。
【0057】
一実施例において、前記格納媒体は、前記コンピュータに、多重アンテナ素子から信号を受信し、前記信号を連結させる実行可能な命令をさらに含む。一実施例において、前記格納媒体は、前記コンピュータに、人の顔を区別して認識するために連結された信号をディープニューラルネットワークに入力させる実行可能な命令をさらに含む。一実施例において、前記ディープニューラルネットワークは、多層パーセプトロンを含む。一実施例において、前記コンピュータにそれぞれの正弦波信号の周波数を抽出させる実行可能な命令は、前記コンピュータにフーリエ変換を適用させる実行可能な命令を含む。
【0058】
図13は、本発明の一実施例に係る、得られたレーダ信号でディープニューラルネットワーク(DNN)を訓練するためのプロセス1300のフローチャートである。
図13に示すように、ブロック1310において、それぞれの受信アンテナ素子から入力信号が受信される。ブロック1320において、フィルタリングされた出力を生成するために、それぞれの受信された信号は、低域通過フィルタリングされる。その後、ブロック1330において、離散フィルタ出力を生成するために、フィルタリングされた出力は、アナログ-デジタル変換器(ADC)を介して通過され、サンプリング周波数でサンプリングされる。ブロック1340において、変換された出力を生成し、顔とレーダとの距離を計算するために、変換が離散フィルタ出力に適用される。その後、ブロック1350において、顔の位置に対応する周波数インデックスを生成するために、誤警報率検出技術が前記変換された出力に適用される。一実施例において、前記変換は、高速フーリエ変換(FFT)であり、前記周波数インデックスは、FFTインデックスである。
【0059】
一実施例において、方法が開示される。前記方法は、レーダの複数の受信アンテナ素子それぞれから入力信号を受信するステップと-前記入力信号は、顔からの反射信号である-、フィルタリングされた出力を生成するために、前記入力信号を低域通過フィルタリングするステップと、離散フィルタ出力を生成するために、フィルタリングされた出力をアナログ-デジタル変換器を介して通過させ、サンプリング周波数でサンプリングするステップと、前記顔と前記レーダとの距離を計算するために、前記離散フィルタ出力に変換を適用するステップと、前記距離に対応する周波数インデックスを生成するために、変換された出力に誤警報率検出技術を適用するステップとを含む。
【0060】
一実施例において、前記方法は、訓練のためにディープニューラルネットワークに前記周波数インデックスを入力するステップをさらに含む。一実施例において、前記ディープニューラルネットワークは、複数の層を含む多層パーセプトロンを含み、各層は、隣接層に完全に連結されている。一実施例において、前記変換は、高速フーリエ変換である。一実施例において、前記周波数インデックスは、高速フーリエ変換インデックスである。
【0061】
IV.結論
本発明においては、小型61GHzのFMCWレーダセンサから得られたデータを利用して多重被写体の顔を区分する。先ず、レーダと被写体の顔との距離と角度を変更することによってレーダ信号が得られる。1つのフレームにおいて空間的に独立した受信アンテナ素子から受信された連結信号は、DNNの入力として共に配置される。本発明において提案する方法により、被写体の顔は92%以上の正確度で分類された。その後、提案された方法の性能は、SVM又はツリー基盤の方法のような特徴基盤マシンラーニング方法と比較される。上記提案された方法は、さらに良い分類正確度を示した。また、多重アンテナ素子を使用した際に顔分類性能がさらに良いことが確認された。小型レーダセンサを利用した提案された顔分類を通じて、カメラ基盤の顔認識方式の弱点は相当補完された。
【0062】
開示された実施例に関する説明は、当業者であれば、上記に提示された明細書に説明されたように本発明を製造あるいは使用できるように提供される。このような実施例に対する様々な変形は、当業者にとって容易であることが明白であり、ここに説明された一般的な原理は、本開示の思想又は範囲を超えるものではなく、他の実施例に適用されても良い。よって、技術は上述した特定例に限定されるものではない。従って、ここに提示された説明及び図面は、本発明の現在可能な実施例を示しており、よって、本発明によって広範囲に考慮される請求対象を示していると理解されるべきである。また、本開示の範囲は、当業者にとって明白となり得る他の実施例を完全に含んでおり、従って、本開示の範囲は、添付された請求の範囲以外の何によっても限定されないということを理解すべきである。