(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-17
(45)【発行日】2025-01-27
(54)【発明の名称】樹状細胞分化誘導培地、及び樹状細胞集団の製造方法
(51)【国際特許分類】
C12N 1/00 20060101AFI20250120BHJP
C12N 5/0784 20100101ALI20250120BHJP
A61K 35/15 20250101ALI20250120BHJP
A61P 35/00 20060101ALI20250120BHJP
A61P 31/00 20060101ALI20250120BHJP
A61P 37/06 20060101ALI20250120BHJP
A61P 29/00 20060101ALI20250120BHJP
A61P 37/08 20060101ALI20250120BHJP
【FI】
C12N1/00 G
C12N5/0784
A61K35/15
A61P35/00
A61P31/00
A61P37/06
A61P29/00
A61P37/08
(21)【出願番号】P 2021556091
(86)(22)【出願日】2020-11-10
(86)【国際出願番号】 JP2020041788
(87)【国際公開番号】W WO2021095700
(87)【国際公開日】2021-05-20
【審査請求日】2023-08-03
(31)【優先権主張番号】P 2019204454
(32)【優先日】2019-11-12
(33)【優先権主張国・地域又は機関】JP
【新規性喪失の例外の表示】特許法第30条第2項適用 令和1(2019)年10月25日 ウェブサイト(https://shingi.jst.go.jp/kobetsu/igakubu/2019_igakubu.html https://shingi.jst.go.jp/kobetsu/igakubu/2019_igakubu/tech_property.html#pbBlock101897)を通じて発表
(73)【特許権者】
【識別番号】507189460
【氏名又は名称】学校法人金沢医科大学
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】小内 伸幸
(72)【発明者】
【氏名】松葉 慎太郎
【審査官】三須 大樹
(56)【参考文献】
【文献】特開2015-130881(JP,A)
【文献】特表2018-531022(JP,A)
【文献】国際公開第2014/126250(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C12N
A61K
A61P
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
a)顆粒球マクロファージコロニー刺激因子
、
b)ROCK阻害剤
、及び
c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種
を含み、
c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-イオドフェニル)アミノ]-ベンズアミド(PD0325901)である、
樹状細胞分化誘導培地。
【請求項2】
前記b)ROCK阻害剤が(R)-(+)-trans-N-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド二塩酸塩一水和物(Y27632)である、請求項1に記載の樹状細胞分化誘導培地。
【請求項3】
N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素(PD173074)
又は2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン(PD98059)
をさらに含む、請求項1又は2に記載の樹状細胞分化誘導培地。
【請求項4】
前記c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-イオドフェニル)アミノ]-ベンズアミド(PD0325901)、N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素(PD173074)及び2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン(PD98059)である、請求項1又は2に記載の樹状細胞分化誘導培地。
【請求項5】
請求項1から
4の何れか一項に記載の培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程を含む、樹状細胞集団の製造方法。
【請求項6】
前記樹状細胞集団における、CD11c陽性であり、MHC class II陽性である細胞の割合が30%以上である、請求項
5に記載の製造方法。
【請求項7】
請求項1から
4の何れか一項に記載の培地を含む、キット。
【請求項8】
請求項1から
4の何れか一項に記載の培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程、及び
前記工程で得られた樹状細胞集団を樹状細胞ワクチンに調製する工程を含む、
樹状細胞ワクチンの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹状細胞分化誘導培地に関する。本発明は、樹状細胞分化誘導培地を用いた樹状細胞集団の製造方法に関する。さらに、本発明は、樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程、および上記工程で得られた樹状細胞集団を樹状細胞ワクチンに調製する工程を含む、樹状細胞ワクチンの製造方法に関する。本発明は、CD11c陽性であり且つMHC class II陽性である細胞(CD11c+MHCIIhi細胞)を細胞集団中30%以上の割合で含む樹状細胞集団であって、上記CD11c+MHCIIhi細胞においてC/EBPα、PPARγおよびTGF‐β関連遺伝子群のうち少なくとも1つの遺伝子の発現が増加している、樹状細胞集団に関する。
関連出願の相互参照
本出願は、2019年11月12日出願の日本特願特願2019-204454の優先権を主張し、その全記載は、ここに特に開示として援用される。
【背景技術】
【0002】
樹状細胞(dendritic cell;DC)は、抗原未感作ナイーブT細胞を生体内で活性化できる専門的抗原提示細胞である。DCは、微生物感染や環境からの刺激に対応してT細胞の活性化/不活性化、胸腺ネガティブセレクションや制御性T細胞などによる免疫寛容、Th1/Th2の分化免疫応答、細胞性免疫/液性免疫応答など、獲得免疫応答の方向性や応答量を規定し、がん、感染症、自己免疫疾患、炎症性疾患、アレルギー、移植などの病態形成に関与するので、DC制御による疾患治療が期待されている(非特許文献1)。
【0003】
DC制御による疾患治療としては、生体内DCの免疫増強機能や培養樹状細胞を用いたがん免疫療法がある。培養樹状細胞を用いたがん免疫療法の臨床試験では、例えば、がん抗原ペプチド感作DCを直接リンパ節に投与して約25%の奏効率を認めた例が報告されている(非特許文献2)。しかし、抗腫瘍効果に関しては、ほとんど効果が認められなかった例も報告されている。これは、体外培養DCを用いる場合、DCの最適な培養調製法や使用法がまだ十分に分かっていないことが問題と指摘されている(非特許文献1)。
【0004】
DCの培養法について、マウス骨髄中のMHC class II-CD4-CD8α-B220-細胞分画を顆粒球マクロファージコロニー刺激因子(GM-CSF)で培養したところ、DC、マクロファージ及び顆粒球が分化してくること、さらにこのDCはCD11c+MHC class II+CD11b+CD8α-であることが報告されている(非特許文献3)。マウス骨髄細胞をFMS様チロシンキナーゼ3リガンド(Flt3L)の存在下で培養すると、マクロファージと共に樹状細胞が分化することも知られている(非特許文献4)。なお、樹状細胞の前駆細胞に関しては、DC分化に重要なサイトカイン受容体(Flt3)の発現を指標にしてマウス骨髄からDCサブセット、すなわち、形質細胞様樹状細胞(plasmacytoid dendritic cell;pDC)と通常型樹状細胞(conventional DC;cDC)のみに分化する共通DC前駆細胞(common DC progenitor;CDP)が同定されている(非特許文献5、6)。
【0005】
非特許文献1 河上裕、樹状細胞制御によるがん免疫療法、実験医学、Vol.26 No.20(増刊) 2008年 205-211頁
非特許文献2 Nestle F, et a1 :Nat Med, 4 : 328-332.l998
非特許文献3 Inaba K et al :JEM, 176: 1693-1732, 1992
非特許文献4 Brasel K et al :Blood, 96: 3029-3039, 2000
非特許文献5 Onai N, et al : Nat Immunol, 8: 1207-1216, 2007
非特許文献6 Onai N, et al : Immunity, 38: 943-957, 2013
非特許文献1から6の全記載は、参照により本明細書に援用される。
【発明の概要】
【発明が解決しようとする課題】
【0006】
体外培養DCを用いた免疫治療方法の開発が期待されているが、十分な細胞数の樹状細胞を安定的に調製することが困難であるという問題があり、とりわけ樹状細胞の分化誘導効率が低いという課題があった。
【0007】
本発明は、樹状細胞を効率よく分化誘導するための培地、及び上記培地を用いた樹状細胞の製造方法を提供することを解決すべき課題とする。
【課題を解決するための手段】
【0008】
本発明によれば以下の発明が提供される。
[1] 下記a)、b)及びc)を含む樹状細胞分化誘導培地。
a)顆粒球マクロファージコロニー刺激因子
b)ROCK阻害剤
c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種。
[2] 上記b)ROCK阻害剤が(R)-(+)-trans-N-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド二塩酸塩一水和物(Y27632)である、[1]に記載の樹状細胞分化誘導培地。
[3] 上記c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-イオドフェニル)アミノ]-ベンズアミド(PD0325901)、N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素(PD173074)及び2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン(PD98059)からなる群から選択される少なくとも1種である、[1]又は[2]に記載の樹状細胞分化誘導培地。
[4] 上記c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-イオドフェニル)アミノ]-ベンズアミド(PD0325901)である、[1]又は[2]に記載の樹状細胞分化誘導培地。
[5] 上記c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素(PD173074)及び2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン(PD98059)である、[1]又は[2]に記載の樹状細胞分化誘導培地。
[6] 上記c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-イオドフェニル)アミノ]-ベンズアミド(PD0325901)、N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素(PD173074)及び2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン(PD98059)である、[1]又は[2]に記載の樹状細胞分化誘導培地。
[7] [1]から[6]の何れか一に記載の培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程を含む、樹状細胞集団の製造方法。
[8] 上記樹状細胞集団における、CD11c陽性であり、MHC class II陽性である細胞の割合が30%以上である、[7]に記載の製造方法。
[9] [1]から[6]の何れか一に記載の培地を含む、キット。
[10] [1]から[6]の何れか一に記載の培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程、および
上記工程で得られた樹状細胞集団を樹状細胞ワクチンに調製する工程を含む、
樹状細胞ワクチンの製造方法。
[11] CD11c陽性であり且つMHC class II陽性である細胞(CD11c+MHCIIhi細胞)を細胞集団中30%以上の割合で含む樹状細胞集団であって、上記CD11c+MHCIIhi細胞においてC/EBPα、PPARγおよびTGF‐β関連遺伝子群のうち少なくとも1つの遺伝子の発現が増加している、樹状細胞集団。
[12] [11]に記載の樹状細胞集団、および医薬として許容される添加物を含む、医薬組成物。
[13] 対象の疾患を治療する方法であって、
[1]から[6]の何れか一に記載の培地中で、上記対象から採取された骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程、
上記工程で得られた樹状細胞集団を樹状細胞ワクチンに調製する工程、および
樹状細胞ワクチンを上記対象に投与する工程を含む、方法。
【図面の簡単な説明】
【0009】
【
図1A】
図1Aは、低分子化合物YPPPにより誘導される樹状細胞の細胞表面マーカー発現解析の結果を示す。DMSOは、溶媒コントロールである。
【
図1B】
図1Bは、DMSO(溶媒コントロール)、あるいは低分子化合物YPPP存在下で培養し、分化誘導された樹状細胞(CD11c
+/MHC class II
+)の割合(%)を示す。**P<0.01。
【
図1C】
図1Cは、DMSO(溶媒コントロール)、あるいは低分子化合物YPPP存在下で分化誘導された樹状細胞上のCD40、CD80、CD86、及びCCR7の発現レベルをフローサイトメーターによって解析した結果を示す。YPPPで誘導された樹状細胞はCD11c
+/MHC class II
+/CD80
+/CCR7
+であることがわかる。
【
図1D】
図1Dは、CD40、CD80、CD86、及びCCR7の発現比率YPPP/DMSOを示す。
【
図2A】
図2Aは、樹状細胞のIL-12産生能の解析手順を示す概要図である。
【
図2B】
図2Bは、DMSO(溶媒コントロール)、あるいは低分子化合物YPPP存在下で培養し、分化誘導されたCD11c陽性樹状細胞のインターロイキン12(IL-12)産生濃度を示す。
【
図3A】
図3Aは、フローサイトメトリー解析図である。YPPPのマウス樹状細胞培養系における影響について、3段階の濃度で検討した。DMSOは、溶媒コントロールである。
【
図3B】
図3Bは、各濃度のYPPP存在下で誘導された樹状細胞(CD11c
+/MHC class II
+細胞)の割合(%)を示す。**P<0.01。
【
図4】
図4は、低分子化合物4種の添加の組合せが異なる16の培地で誘導された樹状細胞(CD11c
+/MHC class II
+細胞)の割合(%)を示す。**P<0.01。
【
図5】
図5は、樹状細胞(CD11c
+/MHC class II
+細胞)の形態写真である。
【
図6】
図6は、樹状細胞ワクチンによるE.G7腫瘍に対する効率的な腫瘍制御と生存曲線を示す。Aは、腫瘍ワクチン戦略の模式図である。マウスに2×10
5cellsのE.G7腫瘍細胞を注入した。腫瘍接種の7日後、10日後および13日後に、マウスに、GM-CSFおよび低分子(DMSOまたはYPPP)で培養した1.25×10
5のBMC由来CD11c
+細胞をワクチン接種した。E.G7腫瘍の増殖または排除をモニターした。Bは、腫瘍接種の7日後、10日後および13日後に、未処理(対照)、DMSO-CD11c
+細胞(DMSO-DCV)またはYPPP-CD11c
+細胞(YPPP-DCV)をワクチン接種したマウスにおけるE.G7腫瘍体積を示す。Cは、マウスの生存率を示すKaplan-Meier曲線である。*P<0.05、**P<0.01(one-way ANOVA)
【
図7】
図7は、実施例6の樹状細胞ワクチン中のCD11c
+MHCII
hi細胞とCD11c
+MHCII
int細胞のRNAseq分析である。Aは、実験スキームを示す。細胞を回収し、極性化の当日、3日後および6日後にRNAを抽出した。CD11c
+MHCII
hi細胞およびCD11c
+MHCII
int細胞は、BM細胞に由来し、GM-CSFおよび低分子(DMSOまたはYPPP)と3日間または6日間培養した。これらの細胞を蛍光活性化細胞ソーター(FACS)により単離した。Bは、3日目または6日目における差次的発現(DE)遺伝子のクラスタリング処理を施されたヒートマップである。カラースケールは正規化されたリード数に基づいている。Cは、lineage陰性細胞(Lin(-))およびCD11c
+MHCII
hi細胞の主成分分析(PCA)である。
【
図8】
図8は、実施例6の3日目または6日目のCD11c
+MHCII
hi細胞およびCD11c
+MHCII
int細胞における差次的発現(DE)遺伝子のクラスター処理ヒートマップである。CD11c
+MHCII
hi細胞およびCD11c
+MHCII
int細胞は、GM-CSFおよび低分子(DMSOまたはYPPP)とともに3または6日間培養したBM細胞に由来する。カラースケールは正規化されたリード数に基づいている。
【
図9】
図9は、樹状細胞ワクチン中のCD11c
+MHCII
hi細胞とCD11c
+MHCII
int細胞のRNAseq分析結果を示す、3日目または6日目の差次的発現(DE)遺伝子の円グラフである。
【
図10】
図10は、樹状細胞ワクチン中のCD11c
+MHCII
hi細胞とCD11c
+MHCII
int細胞のRNAseq分析である。MAプロットは、6日目のYPPP-CD11c
+MHCII
hi細胞とDMSO-CD11c
+MHCII
hi細胞で差次的に発現する遺伝子を示す。C/EBPα、PPARγおよびTGF‐β関連遺伝子が、DMSO‐CD11c
+MHCII
hi細胞と比較してYPPP‐CD11c
+MHCII
hi細胞で増加している。
【発明を実施するための形態】
【0010】
以下に記載する本発明の説明は、代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
【0011】
以下は本明細書で用いる略号である。
APC(antigen presenting cell):抗原提示細胞
CD(cluster of differentiation ):分化抗原群
DC(dendritic cell):樹状細胞
GM-CSF(Granulocyte Macrophage colony-stimulating Factor):顆粒球マクロファージコロニー刺激因子
MHC(major histocompatibility complex):主要組織適合遺伝子複合体
IL-4(Interleukin-4):インターロイキン4
IL-12(Interleukin-12):インターロイキン12
HLA-DR(HμMan Leukocyte Antigen-DR isotype):ヒト白血球型抗原のDRアイソタイプ
DMEM(Dulbecco’s Modified Eagle MediμM):ダルベッコ改変イーグル培地
IMDM(Iscove’s Modified Dulbecco’s MediμM):イスコフ改変ダルベッコ培地
RPMI-1640(Roswell Park Memorial Institute mediμM-1640):ロズウェルパーク記念研究所培地-1640
PBS (Phosphate buffered salts):リン酸緩衝生理食塩水
【0012】
DMSO(Dimethyl sulfoxide):ジメチルスルホキシド
ROCK(Rho-associated coiled-coil forming kinase):Rho結合コイルドコイル形成キナーゼ
FGFR(Fibroblast growth factor receptor):線維芽細胞増殖因子受容体
MAPK(mitogen-activated protein kinase):分裂促進因子活性化プロテインキナーゼ
ERK(Extracellular Signal-regulated Kinase):細胞外シグナル調節キナーゼ
【0013】
本明細書において、細胞表面マーカーの記載について「/」は「及び、且つ」を意味する。具体的には、「CD11c陽性/MHC class II陽性/CD80陽性/CCR7陽性」は「CD11c陽性であり、MHC class II陽性であり、CD80陽性であり、且つCCR7陽性である」の意味である。
【0014】
本明細書において、細胞表面マーカーが陽性であることは+を用いて、陰性であることは-を用いて記載する場合がある。例えば、CD11c陽性は、CD11c+と記載し、CD11c陰性は、CD11c-と記載する場合がある。陽性は、高発現性(high)と低発現性(low)とを含む。フローサイトメトリー法により得られるチャートに基づき、陽性、陰性、高発現性、低発現性を判断することができる。
【0015】
目的のマーカーの発現が陽性であるか陰性であるかの判断には、アイソタイプコントロール(Isotype control)抗体を用いて判断することができる。アイソタイプコントロール抗体で染色した細胞表面マーカーの蛍光強度を103に設定し、103よりも高度に発現している場合を陽性(+)と判定し、103と同等か低い場合を陰性(-)と判断した。また蛍光強度が104以上を高発現(high)と定義した。
【0016】
本発明において樹状細胞は、樹状突起を有し(
図5)、抗原を提示してT細胞を活性化する能力を有する細胞である。本発明の一実施態様では、樹状細胞はマウス樹状細胞であり、CD11c陽性及び主要組織適合遺伝子複合体(major histocompatibility complex;MHC)class II陽性である。本発明の一実施態様では、樹状細胞はヒト樹状細胞であり、HLA-DR陽性/CD11c陽性である。
【0017】
CD11cは、細胞接着分子であり、単球、マクロファージ、顆粒球、ミエロイド系樹状細胞に発現することが知られている。MHC class II分子は、マクロファージや樹状細胞、B細胞などの抗原提示細胞に発現することが知られている。
HLA-DRは、ヒトMHC class II抗原であり、B細胞、単球、マクロファージ、樹状細胞、活性化T細胞に発現することが知られている。
【0018】
(培地)
本発明の樹状細胞分化誘導培地は、下記a)、b)及びc)を含む。
a)顆粒球マクロファージコロニー刺激因子
b)ROCK阻害剤
c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種。
【0019】
従来の顆粒球マクロファージコロニー刺激因子を含む培地を用いて、骨髄細胞試料を培養すると、樹状細胞以外のマクロファージ様細胞などを多く含む細胞集団が得られていた。非特許文献3及び4に記載の方法では、樹状細胞の割合を増加させるために、培養中に非付着性細胞の除去が行われているが、培養時間と多くの材料が必要であるという問題があった。
【0020】
しかしながら、本発明の樹状細胞分化誘導培地を用いて、骨髄細胞試料又は末梢血試料を培養することにより、向上した効率で樹状細胞を分化誘導させることができる。更には、本発明の樹状細胞分化誘導培地を用いて製造した樹状細胞集団は、コントロール培地を用いて製造した樹状細胞集団と比較して、LPS刺激によるインターロイキン-12産生量が高い。
【0021】
本発明の樹状細胞分化誘導培地は、a)顆粒球マクロファージコロニー刺激因子(GM-CSF)を含む。GM-CSFはサイトカインの1種である。GM-CSFは、ヒトGM-CSF、マウスGM-CSF、リコンビナントヒトGM-CSF、リコンビナントマウスGM-CSF等を用いることができる。本発明の培地中のGM-CSFの濃度は、GM-CSFの種類などに応じて適宜設定することができるが、例えば1~100ng/mLの範囲で用いることができ、好ましくは、5~25ng/mLの範囲で用いることができる。
【0022】
本発明の樹状細胞分化誘導培地は、b)ROCK阻害剤を含む。ROCK阻害剤としては、特に限定されないが、例えば、Y27632((R)-(+)-trans-N-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド二塩酸塩一水和物;CAS登録番号:331752-47-7)、ファスジル又はHA1071(5-(1,4-ジアゼパン-1-イルスルホニル)イソキノリン塩酸塩;CAS登録番号:105628-07-7)、及びGSK429286A(N-(6-フルオロ-1H-インダゾール-5-イル)-2-メチル-6-オキソ-4-(4-(トリフルオロメチル)フェニル)-1,4,5,6-テトラヒドロピリジン-3-カルボキサミド;CAS登録番号:864082-47-3)を挙げることができ、Y27632が好ましい。培地におけるROCK阻害剤の濃度は、ROCK阻害剤の種類などに応じて適宜設定することができる。例えば、Y27632の場合には、好ましくは20μM~200μMの範囲であり、より好ましくは20μM~100μMの範囲である。
【0023】
本発明の樹状細胞分化誘導培地は、c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤(MEK阻害剤ともいう)からなる群から選択される少なくとも1種を含む。FGFR阻害剤としては、PD173074(N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素;CAS登録番号:219580-11-7)、SU5402(3-(4-メチル-2-((2-オキソインドリン-3-イリデン)メチル)-1H-ピロール-3-イル)プロパン酸;CAS登録番号:215543-92-3)、及びDanusertib(PHA-739358) ((R)-N-(5-(2-メトキシ-2-フェニルアセチル)-1,4,5,6-テトラヒドロピロロ[3,4-c]ピラゾール-3-イル)-4-(4-メチルピペラジン-1-イル)ベンズアミド;CAS登録番号:827318-97-8)を挙げることができ、PD173074が好ましい。培地におけるFGFR阻害剤の濃度は、FGFR阻害剤の種類などに応じて適宜設定することができる。例えば、PD173074の場合には、好ましくは0.05μM~10μMの範囲であり、より好ましくは0.05μM~5.0μMの範囲である。
【0024】
MAPK/ERKキナーゼ阻害剤としては、特に限定されないが、例えば、PD0325901(N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-ヨードフェニル)アミノ]-ベンズアミド;CAS登録番号:391210-10-9)、PD98059(2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン;CAS登録番号:167869-21-8)、Cobimetinib (GDC-0973, RG7420)([3,4-ジフルオロ-2-[(2-フルオロ-4-ヨードフェニル)アミノ]フェニル] [3-ヒドロキシ-3-(2S)-2-ピペリジニル-1-アゼチジニル]-メタノン;CAS登録番号:934660-93-2)、PD184352(2-(2-クロロ-4-ヨードフェニルアミノ)-N-シクロプロピルメトキシ-3,4-ジフルオロベンズアミド;CAS登録番号:212631-79-3)、Binimetinib (MEK162, ARRY-162, ARRY-438162)(5-[(4-ブロモ-2-フルオロフェニル)アミノ]-4-フルオロ-N-(2-ヒドロキシエトキシ)-1-メチル-1H-ベンズイミダゾール-6-カルボキサミド;CAS登録番号:606143-89-9)が挙げられ、PD0325901及びPD98059が好ましい。培地におけるMAPK/ERKキナーゼ阻害剤の濃度は、MAPK/ERKキナーゼ阻害剤の種類などに応じて適宜設定することができる。例えば、PD0325901の場合には、好ましくは0.2μM~10μMの範囲であり、より好ましくは0.2μM~5.0μMの範囲である。例えば、PD98059の場合には、好ましくは3μM~100μMの範囲であり、より好ましくは3μM~50μMの範囲であり、更により好ましくは3μM~10μMの範囲である。MAPK/ERKキナーゼ阻害剤は、2種以上を組み合わせて用いることができ、PD0325901とPD98059を組み合わせて用いることができる。
【0025】
本発明の一実施態様では、c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-イオドフェニル)アミノ]-ベンズアミド(PD0325901)、N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素(PD173074)及び2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン(PD98059)からなる群から選択される少なくとも1種であってもよい。
【0026】
本発明の一実施態様では、c)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種が、N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-イオドフェニル)アミノ]-ベンズアミド(PD0325901)、N-(2-{[4-(ジエチルアミノ)ブチル]アミノ}-6-(3,5-ジメトキシフェニル)ピリド(2,3-d)ピリミジン-7-yl)-N’-(1,1-ジメチルエチル)尿素(PD173074)及び2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン(PD98059)からなる群から選択される1種、2種又は3種であってもよい。
【0027】
本発明の一実施態様では、本発明の樹状細胞分化誘導培地は、a)顆粒球マクロファージコロニー刺激因子、b)ROCK阻害剤、及びc)MAPK/ERKキナーゼ阻害剤を含み、ROCK阻害剤がY27632であり、MAPK/ERKキナーゼ阻害剤がPD0325901であることが好ましい。後記の実施例では、顆粒球マクロファージコロニー刺激因子に加えて、少なくともY27632とPD0325901とを含む培地においてマウス骨髄細胞試料から分化誘導された細胞集団中の樹状細胞の割合が、溶媒コントロールの培地と比較して有意に増加していることが示されている。
【0028】
本発明の別の実施態様では、本発明の樹状細胞分化誘導培地は、a)顆粒球マクロファージコロニー刺激因子、b)ROCK阻害剤、並びにc)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤を含み、MAPK/ERKキナーゼ阻害剤が2種類含まれる。ROCK阻害剤がY27632であり、FGFR阻害剤がPD173074であり、MAPK/ERKキナーゼ阻害剤がPD0325901及びPD98059であることが好ましい。
【0029】
本発明の更に別の実施態様では、本発明の樹状細胞分化誘導培地は、a)顆粒球マクロファージコロニー刺激因子、b)ROCK阻害剤、並びにc)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤を含む。ROCK阻害剤がY27632であり、FGFR阻害剤がPD173074であり、MAPK/ERKキナーゼ阻害剤がPD98059であることが好ましい。顆粒球マクロファージコロニー刺激因子に加えて、少なくともY27632とPD173074とPD98059とを含む培地においてヒト末梢血試料から分化誘導された細胞集団中の樹状細胞では、溶媒コントロールの培地と比較して、HLA-DR、CD11b、及びCD86の発現が増強する。CD11bは、CD11b/CD18複合体として、NK細胞、顆粒球、単球/マクロファージに強く発現し、樹状細胞のサブセットには、CD11b高発現性のものがある。CD86は共刺激分子であり、主にB細胞、樹状細胞、マクロファージを含む抗原提示細胞(antigen presenting cell;APC)上で発現する。
【0030】
本発明の樹状細胞分化誘導培地、上記a)からc)を含むほか、基礎培地に、非働化ウシ胎仔血清、2-メルカプトエタノール、抗生物質(ペニシリン、ストレプトマイシン等)などの添加成分を任意に組み合わせて添加した培地であってもよく、好ましくは上記の添加成分の全てを組み合わせて含む。IL-4(例えば、ヒトIL-4、マウスIL-4、リコンビナントヒトIL-4、リコンビナントマウスIL-4)を更に添加することができる。上記基礎培地としては、RPMI-1640培地のほか、IMDM、DMEM培地などを挙げることができる。非働化ウシ胎仔血清の濃度は5~20 v/v %の範囲が好ましく、10 v/v %がより好ましい。IL-4の濃度は5~20ng/mLの範囲が好ましく、10ng/mLがより好ましい。
【0031】
(製造方法)
本発明の樹状細胞集団の製造方法は、上記樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して培養樹状細胞集団を得る工程を含む。上記樹状細胞分化誘導培地中での骨髄細胞試料又は末梢血試料の培養期間は、特に限定されず、例えば、2~10日間、又は3~9日間の範囲で設定することができる。培養条件は、例えば、37℃、5%CO2条件下を挙げることができる。骨髄細胞試料又は末梢血試料は、哺乳類由来であり、好ましくはマウス又はヒト由来である。
【0032】
本発明において樹状細胞集団とは、複数個の細胞、例えば1×105cells以上の細胞で構成された、樹状細胞を含む細胞集団を意味する。本発明の樹状細胞集団の製造方法により製造された樹状細胞集団は、樹状細胞を30%以上の割合で含むことができる。
【0033】
骨髄細胞試料は、採取した骨髄細胞試料をPBS(-)にて洗浄し、赤血球を除いた骨髄細胞試料を用いる。赤血球は、任意の方法で除くことができる。具体的には、後記の実施例に準じて、骨髄細胞をPBS(-)にて洗浄し、RBC Cell Lysis buffer (Biolegend)に懸濁して、室温で5分放置して赤血球を除くことができる。
【0034】
本発明の樹状細胞集団の製造方法は、骨髄細胞試料を洗浄する工程、及び/又は骨髄細胞試料から赤血球を除去する工程を更に含むことができる。この工程は、樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程の前に実施することができる。
【0035】
末梢血試料は、赤血球及び多形白血球を除いた単核球分画試料を用いてもよいし、精製したCD14陽性単球試料を用いてもよい。単核球分画試料及びCD14陽性単球試料は、任意の方法で得ることができる。例えば、ヒト末梢血サンプルをPBS(-)に洗浄し、PBS(-)に再懸濁し、赤血球と多形白血球を除くため、リンパ球分離溶液(nakarai tesque)を用いた比重遠心分離方法によって単核球分画を得ることができる。ヒト単核球分画からCD14 MicroBeadsとAutoMACSpro(Miltenyi Biotec)を用いてCD14陽性単球を精製することができる。
【0036】
本発明の樹状細胞集団の製造方法は、末梢血試料から単核球細胞集団を調製する工程、又は末梢血試料から単球細胞集団を調製する工程を更に含むことができる。この工程は、樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程の前に実施することができる。
【0037】
本発明の樹状細胞集団の製造方法において、樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程が、非付着性細胞を除去することを含まないことができる。後記の実施例で示されているように、非付着性細胞を除去しなくても、高い割合で樹状細胞を含む細胞集団を得ることができるためである。本発明の樹状細胞集団の製造方法は、培養中に非付着性細胞を除去する工程を含むことができる。培養中に非付着性細胞を除去することにより、更に高い割合で樹状細胞を含む細胞集団を得ることができる。例えば、培養開始から3日後に非付着性細胞を除去することができる。
【0038】
本発明の樹状細胞集団の製造方法を実施して得られる細胞集団に含まれる細胞の数は、好ましくは1×106cells以上であり、より好ましくは5×106cells以上であり、さらに好ましくは1×107cells以上である。また、本発明の樹状細胞集団の製造方法を実施して得た培養後の細胞集団の細胞濃度は、1×105cells/mL以上であり、好ましくは2×105cells/mL以上であり、より好ましくは5×105cells/mL以上である。
【0039】
本発明の樹状細胞集団の製造方法を実施することにより、骨髄細胞試料又は末梢血試料から効率よく樹状細胞を分化誘導することができる。分化誘導効率は、骨髄細胞試料又は末梢血試料を一定期間培養して得られた細胞集団中の樹状細胞の割合を、コントロールと試験群を比較して評価することができる。培養後の細胞集団中の樹状細胞の割合は、後記の実施例1に記載のとおり、6日間培養後、細胞を回収して樹状細胞の特徴的な細胞表面マーカーであるCD11cとMHC class II(I-A / I-E)に対する特異的抗体にて染色し、各分子の発現レベルをフローサイトメーターによって解析し、樹状細胞(CD11c陽性/MHC class II陽性)の割合を算出すればよい。あるいは、樹状細胞の特徴的な細胞表面マーカーであるCD11cとHLA-DRに対する特異的抗体にて染色し、各分子の発現レベルをフローサイトメーターによって解析し、樹状細胞(CD11c陽性/HLA-DR陽性)の割合を算出してもよい。
【0040】
本発明の樹状細胞集団の製造方法を実施して得られる細胞集団中における、上記方法で解析した樹状細胞の割合は(割合(%)=樹状細胞の個数/細胞集団中全細胞の個数×100)は、30%以上、35%以上、40%以上、45%以上、又は50%以上であることが好ましい。また、樹状細胞の割合は、さらに高くてもよく、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、又は95%以上であってもよい。
【0041】
従来のGM-CSFを用いた培養方法では樹状細胞以外の細胞、例えばCD11cint/MHC class IIintのマクロファージ様細胞やCD11c-/MHC class II-細胞が分化誘導される。本発明の樹状細胞集団の製造方法を実施すれば、これらマクロファージ様細胞やCD11c-/MHC class II-細胞の分化・増殖が抑制され、その結果、樹状細胞(CD11c+/MHC class II+)の分化誘導効率が増加すると考えられる。本発明の樹状細胞集団の製造方法を実施すれば、1×106cellsの骨髄細胞から1×106cellsの樹状細胞が得られる。培養中に、樹状細胞及び/又はその前駆細胞の細胞増殖が起こっていると考えられる。
【0042】
本発明の樹状細胞集団の製造方法を実施して得られる細胞集団について、上記方法で解析した樹状細胞の割合は、溶媒コントロールと比較して、1.1~50倍上昇することが好ましく、1.2~30倍上昇することがさらに好ましく、1.5~10倍上昇することが最も好ましい。コントロールとしては、ROCK阻害剤、FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤の溶媒であるDMSOを添加した培地を使用した以外は同条件で培養した細胞集団(溶媒コントロール)を用いることができる。
【0043】
本発明の樹状細胞集団の製造方法を実施して得られる細胞集団は、溶媒コントロールと比較して、LPS刺激によるIL-12産生量が高い。抗原を貪食し活性化された樹状細胞はIL-12を産生することにより、ナイーブT細胞をTh1細胞に分化させる。Th1細胞はインターフェロン(IFN)-γを産生し、主な機能としてはマクロファージなどの活性化を誘導し、細胞内病原細菌排除(例えば結核菌やリステリア菌など)、抗ウイルス応答や抗腫瘍応答などに関与する。そのため、がん免疫療法に用いる培養樹状細胞は高いIL-12産生能を有していることが好ましい。
【0044】
本発明の樹状細胞集団の製造方法を実施して得られる細胞集団中の樹状細胞は、溶媒コントロールの樹状細胞と比較して、LPS刺激によるIL-12産生能が高いといえる。後記の実施例において、本発明の樹状細胞集団の製造方法を実施して得た細胞集団における樹状細胞の含有濃度は約6×105cells/mLと算出され、同じ細胞集団におけるLPS刺激により産生されたIL-12濃度は38pg/mLであった。一方で、溶媒コントロールにおける樹状細胞の含有濃度は約3.5×105cells/mLと算出され、同じ細胞集団におけるLPS刺激により産生されたIL-12濃度は1~2pg/mLであった。上記2つの細胞集団における樹状細胞の含有濃度とIL-12濃度を基に、本発明の樹状細胞集団の製造方法を実施して得た細胞集団中の樹状細胞は、溶媒コントロールの樹状細胞よりも、LPS刺激によるIL-12産生能が向上しているといえる。
【0045】
IL-12産生能は、後記の実施例1に記載のとおり、6日間培養後、細胞を回収して、CD11c陽性樹状細胞を精製し、リポポリサッカロイド(LPS)で2日間刺激し、刺激後、培養上精を回収し、IL-12p40の濃度をELISA MAXTM Deluxe Set Mouse IL-12/IL-23(p40)にて測定すればよい。IL-12p70の濃度をビオチン標識抗マウスIL-12(p70)抗体を用いてELISAで測定してもよい。本発明の樹状細胞集団の製造方法を実施して得た培養後の細胞集団について、上記方法で解析した樹状細胞がLPS刺激により産生するIL-12p40の濃度は、3ng/mL以上、4ng/mL以上、5ng/mL以上、10ng/mL以上、15ng/mL以上、又は20ng/mL以上であることが好ましく、25ng/mL以上、30ng/mL以上、又は35ng/mL以上であることがより好ましい。
【0046】
本発明の樹状細胞集団の製造方法を実施することにより、T細胞を刺激しTh1細胞への分化を誘導する共刺激分子CD80と樹状細胞がT細胞へ抗原提示を行うリンパ節への遊走を制御するケモカイン受容体CCR7の発現が増強された樹状細胞を含む細胞集団を得ることができる。
【0047】
本発明の一実施態様は、CD11c陽性であり且つMHC class II陽性である細胞(CD11c+MHCIIhi細胞)を細胞集団中30%以上の割合で含む樹状細胞集団であって、上記CD11c+MHCIIhi細胞においてC/EBPα、PPARγおよびTGF‐β関連遺伝子群の中から少なくとも1つの遺伝子の発現が溶媒コントロールの樹状細胞と比較して増加している、樹状細胞集団に関する。後記する実施例に記載のとおり、本発明の樹状細胞集団の製造方法を実施して得られる細胞集団中の樹状細胞は、溶媒コントロールの樹状細胞と比較して、C/EBPα、PPARγおよびTGF‐β関連遺伝子群のうち少なくとも1つの遺伝子の発現が増加している。C/EBPα(CCAAT-enhancer-binding proteins)は、特定の血球の分化に関与する転写因子である。C/EBPα遺伝子発現は様々な炎症性サイトカインによって活性化される転写因子、NFκB(nuclear factor κB)によってその発現が制御されている。PPARγ(Peroxisome Proliferator-Activated Receptor γ)は核内受容体スーパーファミリーに属するタンパク質であり、転写因子としても機能する。PPARγは主に脂肪組織に分布して脂肪細胞分化などに関与するほか、マクロファージや血管内皮細胞などにも発現が見られる。PPARγ遺伝子発現は樹状細胞分化誘導サイトカインであるGM-CSF刺激によって発現が増強する。TGF-β(Transforming growth factor-β)ファミリーは、多彩な機能を持つサイトカインで、その生理作用は細胞増殖、細胞死、細胞分化、免疫調節、細胞運動等多岐に及ぶ。TGF-βはほとんど全ての細胞から産生される。
【0048】
一実施態様において、本発明は上記樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程、および上記工程で得られた樹状細胞集団を樹状細胞ワクチンに調製する工程を含む、樹状細胞ワクチンの製造方法に関する。一実施態様において、樹状細胞ワクチンは、樹状細胞ワクチンを投与される対象(例えば、がん患者)由来の骨髄細胞試料又は末梢血試料から培養された樹状細胞(すなわち、自家細胞)にがん抗原を付加して調製される。別の実施態様において、樹状細胞ワクチンは、樹状細胞ワクチンを投与される対象以外の提供者(同種ドナー)の骨髄細胞試料又は末梢血試料から培養された樹状細胞(すなわち、同種他家細胞)にがん抗原を付加して調製されてもよい。HLA不適合によって引き起こされる宿主拒絶反応を回避するために、例えばCRISPR-Cas遺伝子編集システムなどを用いて樹状細胞のHLA遺伝子を改変することにより、他家細胞からユニバーサルな樹状細胞ワクチンを製造することが可能になると考えられる。
【0049】
本発明の樹状細胞ワクチンの製造方法では、上述した本発明の樹状細胞集団の製造方法と同じ工程(上記樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して培養樹状細胞集団を得る工程)で、培養樹状細胞集団を得ることができる。上記骨髄細胞試料又は末梢血試料は、上記樹状細胞ワクチンを投与される対象から採取されたものであってもよいし、樹状細胞ワクチンを投与される対象以外の提供者(同種ドナー)から採取されたものであってもよい。上記工程で得られた樹状細胞集団を樹状細胞ワクチンに調製する工程は、樹状細胞集団にがん抗原を付加することを含むことができる。がん抗原を付加する工程は、樹状細胞集団を製造する過程で行ってもよく、樹状細胞集団の製造後に行ってもよい。がん抗原の付加方法としては、樹状細胞に所望の抗原を取り込ませることができる方法であれば特に限定されないが、樹状細胞を所望の抗原とともに培養すること等が挙げられる。好ましい実施態様において、本発明の樹状細胞ワクチンの製造法において、樹状細胞集団は、がん抗原ペプチドを付加したものである。がん抗原としては、例えば、MART1(悪性黒色腫)、Her2(乳がん)、PSA(前立腺がん)、WT1、MUS-1等を用いることができるが、これらに限定されない。
【0050】
(樹状細胞の利用)
本発明は、本発明の樹状細胞集団の製造方法を実施することにより得られた樹状細胞集団を含む、医薬を提供することができる。また、本発明は、本発明の樹状細胞集団の製造方法を実施することにより得られた樹状細胞集団を患者に投与することを含む、治療方法を提供することができる。上記医薬又は治療方法は、がん、感染症、自己免疫疾患、炎症性疾患、及び/又はアレルギーを治療するために用いることができる。
【0051】
本発明の特定の実施態様は、上記樹状細胞分化誘導培地中で、上記対象から採取された骨髄細胞試料又は末梢血試料を培養して樹状細胞集団を得る工程、上記工程で得られた樹状細胞集団を樹状細胞ワクチンに調製する工程、および樹状細胞ワクチンを上記対象に投与する工程を含む、対象の疾患を治療する方法を提供する。本発明の対象の疾患を治療する方法では、上述した本発明の樹状細胞集団の製造方法と同じ工程(上記樹状細胞分化誘導培地中で骨髄細胞試料又は末梢血試料を培養して培養樹状細胞集団を得る工程)で、培養樹状細胞集団を得ることができる。上記骨髄細胞試料又は末梢血試料は、上記樹状細胞ワクチンを投与される対象から採取されたものであってもよいし、樹状細胞ワクチンを投与される対象以外の提供者(同種ドナー)から採取されたものであってもよい。本発明の対象の疾患を治療する方法では、上述した本発明の樹状細胞ワクチンの製造方法の得られた樹状細胞集団を樹状細胞ワクチンに調製する工程と同じ工程で、樹状細胞集団にがん抗原を付加することを含むことができる。投与された樹状細胞はT細胞にがん抗原を提示し、抗原を提示されたT細胞(CTL)は、がん細胞を特異的に攻撃することが期待される。
【0052】
上記医薬に含まれる樹状細胞集団又は治療方法に用いられる樹状細胞集団は、CD11c陽性/MHC class II陽性細胞を30%以上含むことが好ましい。また上記医薬に含まれる樹状細胞集団又は治療方法に用いられる樹状細胞集団は、高いIL-12産生能を有する樹状細胞の細胞集団であることが好ましく、さらには樹状細胞上の共刺激分子CD80と樹状細胞のリンパ節への遊走を制御するケモカイン受容体CCR7の発現が増強された樹状細胞を含む細胞集団であることが好ましい。さらに、上記医薬に含まれる樹状細胞集団又は治療方法に用いられる樹状細胞集団は、CD11c陽性であり且つMHC class II陽性である細胞(CD11c+MHCIIhi細胞)を細胞集団中30%以上の割合で含む樹状細胞集団であって、上記CD11c+MHCIIhi細胞においてC/EBPα、PPARγおよびTGF‐β関連遺伝子群のうち少なくとも1つの遺伝子の発現が増加している、樹状細胞集団であることが好ましい。
【0053】
上記医薬に含まれる樹状細胞集団又は治療方法に用いられる樹状細胞集団は、がん抗原ペプチドをパルス(付加)したものを患者に投与することができる。がん抗原としては、例えば、MART1(悪性黒色腫)、Her2(乳がん)、PSA(前立腺がん)、WT1、MUS-1等を用いることができるが、これらに限定されない。
【0054】
上記医薬に含まれる樹状細胞集団又は治療方法に用いられる樹状細胞集団は、生理食塩水やリン酸緩衝生理食塩水(PBS)などに懸濁して用いることができ、医薬品及び医薬部外品として薬学的に許容される担体を含むことができる。樹状細胞集団は、冷凍保存することができる。上記医薬に含まれる樹状細胞集団又は治療方法に用いられる樹状細胞集団は、例えば、静脈、動脈、皮下、腹腔内等へ投与することができる。
【0055】
上記医薬に含まれる樹状細胞集団又は治療方法に用いられる樹状細胞集団の細胞濃度は、適宜調整することができ、例えば、1×105~1×109cells/mLとすることができる。上記樹状細胞集団は、患者の自家細胞または同種他家細胞から製造し、治療に用いることができる。
【0056】
本発明の樹状細胞集団の製造方法を実施することにより得られた樹状細胞集団は、樹状細胞を用いた研究のために用いることができる。
【0057】
更に、本発明によれば、上記樹状細胞分化誘導培地を含むキットが提供される。キットは、樹状細胞集団を製造するために用いることができる。キットは任意の容器を含んでいてもよく、容器としてはフラスコ、チューブ、シャーレ等を挙げることができる。キットは、細胞培養手順を記載した説明書を更に含むことができる。一実施態様において、キットは、RPMI-1640、IMDM、及びDMEM等の基礎培地、a)顆粒球マクロファージコロニー刺激因子、b)ROCK阻害剤、並びにc)FGFR阻害剤及びMAPK/ERKキナーゼ阻害剤からなる群から選択される少なくとも1種を含むものであってもよく、当該キットの使用者は、樹状細胞分化誘導培地を用事調製して、樹状細胞集団を製造するために用いることができる。
【実施例】
【0058】
以下の例に基づいて本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、本明細書において、特に記載しない限り、「%」等は質量基準であり、数値範囲はその端点を含むものとして記載される。
【0059】
実験材料と使用機器
1)実験動物
実施例1~3の実験には8~12週齢のマウスを用いた。C57BL/6J系(B6)マウスは日本エスエルシー株式会社より購入した。実験動物は、金沢医科大学動物実験指針に従い、12時間おきの明暗サイクル、温度、湿度が管理されたSpecific-pathogen free(SPF)環境下で飼育した。
【0060】
2)細胞培養用培地及び試薬
細胞培養用培地及び試薬には、RPMI1640培地(Sigma-Aldrich)、ウシ胎児血清 (Sigma-Aldrich)、ペニシリン・ストレプトマイシン溶液(Wako)、2-メルカプトエタノール(Wako)、リコンビナントマウスGM-CSF(Biolegend)、RBC lysis buffer (Biolegend)、mouse CD11c MicroBeads (Miltenyi Biotec)、リポポリサッカロイド(LPS: lopopolysaccharoid) (Sigma-Aldrich)、ELISA MAXTM Deluxe Set Mouse IL-12/IL-23(p40)、リコンビナントヒトGM-CSF(Biolegend)、リコンビナントヒトIL-4(Biolegend)、CD14 MicroBeads(Miltenyi Biotec)、リンパ球分離溶液(nakarai tesque)を使用した。
【0061】
3)実験用プラスチック器具類
実験用プラスチック器具類は、細胞培養用シャーレ(Becton Dickinson)、細胞培養用96穴プレート(Thermo Scientific)、細胞培養用24穴プレート(Iwaki)、細胞取り扱い用ピペット(Thermo Scientific)、細胞回収用コニカルチューブ(ニチリョー)、FACS用5mLラウンドチューブ(Becton Dickinson)、1.5mLチューブ(Watoson)、ピペットマン用チップ(Watoson)、セルストレーナー(Becton Dickinson)、パスツールピペット(Iwaki)を使用した。
【0062】
4)低分子化合物
低分子化合物は、Y27632(富士フィルムWako)、PD0325901(富士フィルムWako)、PD173074(富士フィルムWako)、PD98059(富士フィルムWako)を用いた。
【0063】
5)フローサイトメトリー用抗体
下記の抗体は全てトミーデジタルバイオロジー株式会社から購入し、本実験に使用した。
【表1】
【0064】
6)フローサイトメトリー関連試薬及び使用機器
BD FACS Flow (Becton Dickinson)、BD FACS Clean (Becton Dickinson)、BD FACS Shutdown Solution (Becton Dickinson)、BD Cytometer Setup & Tracking Beads Kit (Becton Dickinson)、FACS Canto II (Becton Dickinson)、解析用ソフトFACS Diva (Becton Dickinson)、Flowjo (Tomy digital biology)、AutoMACSpro(Miltenyi Biotec)
【0065】
<実施例1>
本実施例では、マウス骨髄細胞試料から樹状細胞を分化誘導した。
実験方法
1)低分子化合物溶液の準備
表2の4種類の低分子化合物は、H
2OあるいはDMSOで表2に記載の濃度に溶解した。各低分子化合物溶液を、培養培地の総量1に対して1/10量添加した。以下、4種の低分子化合物をまとめて「YPPP」という。
【表2】
【0066】
2)マウス樹状細胞の誘導
安楽死させたマウスから大腿骨と脛骨を単離し、PBS(-)と22Gの針を使ってフラッシングを行い骨髄細胞を単離した。骨髄細胞をPBS(-)にて洗浄し、RBC Cell Lysis buffer(Biolegend)に懸濁して、室温で5分放置し赤血球を除いた。その後PBS(-)にて洗浄し、マウス骨髄細胞を得た。マウス骨髄細胞を1×106cells/mLに調整し、10 v/v %非働化ウシ胎仔血清、抗生物質(100U/mLペニシリン、100μg/mLストレプトマイシン)、50μM 2-メルカプトエタノール及び25ng/mLリコンビナントマウスGM-CSFを含有したRPMI-1640培地に、DMSOあるいは上記のYPPP溶液を添加して37℃、5%CO2存在下で培養した。3日後に半分量の培地交換を行い、培養開始から6日後の細胞集団を実験に供した。培養開始から6日後のYPPP溶液を添加した細胞集団の細胞濃度は、1×106cells/mLであり、一方DMSOを添加した細胞集団の細胞濃度は2×106cells/mLであった。
【0067】
3)フローサイトメトリー解析
細胞浮遊液(1×105cells/100mL、1%FCS-PBS(-)に懸濁した細胞懸濁液)に抗マウスCD16/32抗体を添加し、室温15分間静置し非特異的な抗体結合を防ぐ。その後、各蛍光標識抗マウス抗体を加えて4℃、45分間静置による染色操作を行った。染色後、FACS CantoII(Becton Dickinson)による解析を行った。細胞表現抗原の発現レベルについては、アイソタイプコントロール抗体で染色した樹状細胞表面マーカーの蛍光強度を103に設定し、103よりも高度に発現している場合を陽性(+)と判定し、103と同程度あるいはそれ以下を陰性(-)と判断した。また蛍光強度が104以上を高発現(highまたはhi)と定義した。蛍光強度が103から104未満を(int)とした。
【0068】
4)インターロイキン12(IL-12)産生解析
上記の通り、マウス骨髄細胞に、DMSOあるいはYPPP溶液を添加して6日間培養した細胞集団からMicroBeads (Miltenyi Biotec)とAutoMACSpro(Miltenyi Biotec)を用いてCD11c陽性樹状細胞を精製した。精製したCD11c陽性樹状細胞を10 v/v %非働化ウシ胎仔血清、抗生物質(100U/mLペニシリン、100μg/mLストレプトマイシン)、50μM 2-メルカプトエタノールを含有したRPMI-1640培地に懸濁し、リポポリサッカロイド(LPS、1μg/ml)で2日間刺激した。刺激後、培養上精を回収し、IL-12p40の濃度をELISA MAXTM Deluxe Set Mouse IL-12/IL-23(p40)にて測定した。
【0069】
5)統計学的処理
統計学的処理にはStudentのt検定を用い、*P<0.05及び**P<0.01を統計学的有意な差と判定した。
【0070】
結果
フローサイトメトリー解析の結果を
図1Aに示す。マウス骨髄細胞をGM-CSFとDMSO(溶媒コントロール)、あるいは低分子化合物YPPPの存在下で6日間培養した後、細胞を回収して樹状細胞の特徴的な細胞表面マーカーであるCD11cとMHC class II(I-A/I-E)に対する特異的抗体にて染色し、各分子の発現レベルをフローサイトメーターによって解析した。溶媒コントロールにて培養した場合、17.5±7.3%の樹状細胞(CD11c陽性/MHC class II陽性、CD11c
+/MHC class II
+)が誘導されたのに対し、低分子化合物を加えた場合、61.2±8.4%の樹状細胞が誘導された。この結果、
図1Bに示すとおり、低分子化合物YPPPを加えると樹状細胞への分化効率が3倍以上増強された。
【0071】
DMSO(溶媒コントロール)、あるいは低分子化合物YPPP存在下で分化誘導された樹状細胞上の共刺激分子(CD40、CD80、CD86)と同細胞のリンパ節への遊走を制御するケモカイン受容体(CCR7)の発現を各分子に対する特異的抗体にて染色し、各分子の発現レベルをフローサイトメーターによって解析した。
図1Cに示すとおり、溶媒コントロールと比較して低分子化合物存在下で分化誘導された樹状細胞ではCD80とCCR7の発現レベルが増加していた。YPPPで誘導された樹状細胞はCD11c
+/MHC class II
+/CD80
+/CCR7
+(CD11c陽性/MHC class II陽性/CD80陽性/CCR7陽性)であることがわかった。
【0072】
CD11c陽性樹状細胞の、インターロイキン12(IL-12)産生解析の結果を
図2Bに示す。YPPP溶液を添加して6日間培養して分化誘導したCD11c陽性樹状細胞は、培養コントロースと比較して、LPS刺激によるインターロイキン-12産生量が高いことが示された(DMSO:1~2pg/mL、YPPP:38pg/mL)。
【0073】
考察
GM-CSFを用いた培養方法では樹状細胞以外の細胞、例えばCD11c
int/MHC class II
intのマクロファージ様細胞やCD11c
-/MHC class II
-細胞が分化誘導される(
図1A、DMSO)。低分子化合物YPPPを加えることで、これらマクロファージ様細胞やCD11c
-/MHC class II
-細胞の分化・増殖が抑制され(
図1A)、その結果、樹状細胞(CD11c
+/MHC class II
+)の分化誘導効率が増加した。低分子化合物YPPPを添加して分化誘導した樹状細胞(CD11c
+/MHC class II
+)は、IL-12産生能を保持しており、低分子化合物YPPPの添加による品質の低下は観察されなかった。
【0074】
培養開始から6日後のYPPP溶液を添加した細胞集団について、細胞濃度は1×106cells/mLであり、フローサイトメトリー解析による樹状細胞(CD11c+/MHC class II+)の割合は61.2±8.4%であるので、樹状細胞の含有濃度は約6×105cells/mLと算出される。一方、培養開始から6日後のDMSOを添加した細胞集団について、細胞濃度は2×106cells/mLであり、フローサイトメトリー解析による樹状細胞(CD11c+/MHC class II+)の割合は17.5±7.3%であるので、樹状細胞の含有濃度は約3.5×105cells/mLと算出される。これらの細胞集団におけるLPS刺激によるIL-12産生試験で、IL-12濃度は、YPPP:38pg/mL、及びDMSO:1~2pg/mLであった。よって、培養開始から6日後のYPPP溶液を添加した細胞集団については、培養開始から6日後のDMSOを添加した細胞集団に比較して、樹状細胞の細胞あたりのIL-12産生能が向上しているといえる。
【0075】
<実施例2>
本実施例では、低分子化合物YPPPの最適濃度の検討を行った。表2に記載の低分子化合物の濃度に対して、1/3倍及び1/9倍濃度(表3)の各YPPP溶液を用意し、実施例1と同様の手順にて、1/3倍及び1/9倍濃度のYPPPを添加した培養培地を調製した。この培地を用いて、実施例1と同様の手順にて、マウス骨髄細胞を培養して、マウス樹状細胞の誘導を実施し、得られた細胞集団をフローサイトメトリー解析に供した。
【0076】
【0077】
結果
結果を
図3A及びBに示す。一方、x1/3濃度及びx1/9濃度YPPP添加条件下で培養した細胞集団では、樹状細胞(CD11c
+/MHC class II
+)の割合は、それぞれ12.6+/-7.1%及び14.5+/-4.6%であった。よって、YPPP添加濃度は、x1/3濃度及びx1/9濃度よりも、x1濃度(実施例1の表1の終濃度)がよい分化誘導効率をもたらすことが分かった。
【0078】
<実施例3>
本実施例では、4種の低分子化合物の異なる組み合わせについて検討を行った。各低分子化合物溶液の濃度は表1のとおり調整した。4種の低分子化合物から選択される少なくとも1種を添加した培養培地と4種全てを添加しない培養培地(溶媒コントロール)を16通りの組合せで用意した。これらの培地を用いて、実施例1と同様の手順にて、マウス骨髄細胞を培養して、マウス樹状細胞の誘導を実施し、得られた細胞集団をフローサイトメトリー解析に供した。
【0079】
図4は、4種類低分子化合物添加の組合せが異なる16の培地で誘導された樹状細胞(CD11c
+/MHC class II
+細胞)の割合(%)を示す。溶媒コントロールと比較して有意差があったのは化合物(Y27632とPD0325901)を加えた場合であった。
【0080】
<実施例4>
本実施例では、ヒト末梢血単球から樹状細胞を分化誘導する。
実験方法
1)ヒト末梢血単球細胞集団の調製方法
ヒト末梢血サンプルをPBS(-)に洗浄し、PBS(-)に再懸濁する。赤血球と多形白血球を除くため、リンパ球分離溶液(nakarai tesque)を用いた比重遠心分離方法によって単核球分画を得る。ヒト単核球分画からCD14 MicroBeadsとAutoMACSpro(Miltenyi Biotec)を用いてCD14陽性単球を精製した。同細胞を1×106cells/mLに調整し、10 v/v %非働化ウシ胎仔血清、抗生物質(100U/mLペニシリン、100μg/mLストレプトマイシン)、50μM 2-メルカプトエタノール及び20ng/mLリコンビナントヒトGM-CSFと10ng/mLヒトIL-4を含有したRPMI-1640培地に、DMSOあるいは実施例1の表1に記載の低分子化合物YPPP溶液を培養培地の総量1に対して1/10量添加して37℃、5%CO2存在下で培養する。3日後に半分量の培地交換を行い、培養開始から6日後の細胞を続く実験に供する。
【0081】
<実施例5>
本実施例では、樹状細胞ワクチン(DCV)の抗腫瘍活性を分析する。
1)マウス、腫瘍細胞および試薬
C57BL/6マウス(6~8週齢)を日本SLC(静岡、日本)から購入した。これらのマウスは、環境管理された特定病原体フリー施設である金沢医科大学の動物ユニットで、施設が定めた実験動物のガイドラインに従って、飼育された。いずれの試験も金沢医科大学の動物試験委員会の承認を得た。E.G7腫瘍細胞株はAmerican Type Culture Collection (Manassas社、VA)から購入し、供給者の推奨に従って維持した。E.G7腫瘍細胞は、EL-4細胞にOVA発現遺伝子を導入した細胞であり、モデル抗原として卵白アルブミン(OVA)を発現する。卵白アルブミン(OVA)257-264ペプチド「SIINFEKL」はAnaspec社(Fremont,CA)から購入した。
【0082】
2)低分子カクテルの調製
最初に、4つの低分子阻害剤(YPPP)をストック溶液に再構成した。具体的には、10mM Y27632を滅菌PBS中で調製し、40mM PD0325901、10mM PD173074および10mM PD98059をそれぞれジメチルスルホキシド中で調製した。ストック溶液は使用までマイナス20℃で保存した。低分子カクテルは、ストック溶液の対応する量を培地に添加して調製した(表4)。
【表4】
【0083】
3)マウス骨髄由来樹状細胞の作製
C57BL/6マウス(6~8週齢)から骨髄(BM)細胞を調製した。BM細胞は、10%のウシ胎仔血清(FCS)、5×10-5M 2‐メルカプトエタノール、100U/mL ペニシリン、100μg/mL ストレプトマイシンおよび25ng/mL 顆粒球コロニー刺激因子(GM‐CSF; Biolegend, San Diego, CA)で補充したRPMI‐1640培地にDMSOあるいは上記のYPPP溶液を添加して、37℃、5%CO2存在下6日間培養した。6日目に、抗CD11cマイクロビーズ(Miltenyi Biotec, Bergisch Gladbach, Germany)を用いたMACSシステムを用いてCD11c+細胞を単離した。
【0084】
4)E.G7腫瘍モデルにおける樹状細胞ワクチン(DCV)の抗腫瘍活性
E.G7腫瘍を6~8週齢の雄C57BL/6マウス(0日齢)の背側腹部に2×105cellsの腫瘍細胞(DMEM中、50μL)を皮内注射することにより移植した。DCV治療のために、腫瘍移植7、10および13日後に、1.25×105cellsの同系BMDC(CD11c+細胞、50μL DMEM/0.1%ウシ血清アルブミン中)を腫瘍内に注射した。腫瘍サイズを毎週測定した。マウスは瀕死状態になったとき、または腫瘍が直径20mmを超えたときに安楽死させた。
【0085】
結果
YPPP-DCの優れた抗腫瘍活性
DMSO-DCおよびYPPP-DCのin vivoにおける抗腫瘍活性を検討するため、確立されたEG.7腫瘍に対するこれらDCの治療効果を評価した(
図6A)。マウスに2×10
5cellsのE.G7腫瘍細胞を注射し(Day0)、腫瘍移植7、10および13日後、マウスにGM-CSFおよびDMSO/YPPPで培養した1.25×10
5cellsのCD11c
+細胞由来BM細胞をワクチン接種した。
図1Bに示すように、DMSO-CD11c
+細胞(DMSO-DC)は腫瘍増殖を完全に抑制できなかったが、YPPP-CD11c
+細胞(YPPP-DC)は、腫瘍を根絶することはないものの、有意に減少させた。
【0086】
<実施例6>
本実施例では、CD11c+MHCIIhi細胞およびCD11c+MHCIIint細胞の遺伝子発現プロファイルを行った。
1)細胞の調製
C57BL/6マウス(6~8週齢)から骨髄(BM)細胞を調製した。BM細胞は、10%のウシ胎仔血清(FCS)、5×10-5M 2‐メルカプトエタノール、100U/mL ペニシリン、100μg/mL ストレプトマイシンおよび25ng/mL 顆粒球コロニー刺激因子(GM‐CSF;Biolegend, San Diego, CA)で補充したRPMI‐1640培地にDMSOあるいは実施例5表4のYPPP溶液を添加して、37℃、5%CO2存在下6日間培養した。3日目および6日目に、CD11c+I-A/I-Ehi細胞およびCD11c+I-A/I-Eint細胞を、セルソーターSH800(ソニーバイオテクノロジー、東京、日本)を用いて単離した。
【0087】
2)遺伝子発現解析
All Prep DNA/RNAキット(Qiagen、Venlo、Nederland)で全RNAを精製した。BMDCのためのRNA-seqライブラリーを、TruSeq stranded mRNA sample prep kit (Illumina, San Diego, CA)で調製した。配列決定はNex500/550(Illumina)を用いて行った。
【0088】
3)統計解析
統計解析はGraphPad Prismソフトウエアを用いてANOVAにより行った。一元配置分散分析と二元配置分散分析を、それぞれ1変数と2変数による実験に用いた。p<0.05を統計学的に有意とみなした。
【0089】
結果
CD11c
+MHCII
hi細胞およびCD11c
+MHCII
int細胞の遺伝子発現プロファイル。
YPPPによるin vitro樹状細胞の遺伝子発現を比較するために、0、3、6日間、DMSOまたはYPPP条件下で分化したCD11c
+MHCII
hi細胞およびCD11c
+MHCII
int細胞のRNA配列決定(RNA-Seq)分析を行った(
図7A)。その結果、3日目または6日目のDMSO-CD11c
+細胞とYPPP-CD11c
+細胞との間には約5600の差次的発現(DE)遺伝子が認められた(
図7B、8、9)。差次的に発現した遺伝子に基づく主成分分析(PCA)は、位置と遺伝子型の両方に基づいて、YPPP有りまたは無しで培養したBMDCを明確に分離した(
図7C)。MAプロットは、いくつかのC/EBPα、PPARγおよびTGF‐β関連遺伝子が、DMSO‐CD11c
+細胞と比較してYPPP‐CD11c
+細胞で増加することを示した(
図10)。