IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

特許7621895冷却液循環システム及びその制御方法並びにプログラム
<>
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図1
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図2
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図3
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図4
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図5
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図6
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図7
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図8
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図9
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図10
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図11
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図12
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図13
  • 特許-冷却液循環システム及びその制御方法並びにプログラム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-17
(45)【発行日】2025-01-27
(54)【発明の名称】冷却液循環システム及びその制御方法並びにプログラム
(51)【国際特許分類】
   G06F 1/20 20060101AFI20250120BHJP
   H05K 7/20 20060101ALI20250120BHJP
【FI】
G06F1/20 D
G06F1/20 A
H05K7/20 N
【請求項の数】 27
(21)【出願番号】P 2021100663
(22)【出願日】2021-06-17
(65)【公開番号】P2023000065
(43)【公開日】2023-01-04
【審査請求日】2024-01-15
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100112737
【弁理士】
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100140914
【弁理士】
【氏名又は名称】三苫 貴織
(74)【代理人】
【識別番号】100136168
【弁理士】
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【弁理士】
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】松尾 実
(72)【発明者】
【氏名】松田 直彦
(72)【発明者】
【氏名】長船 信之介
(72)【発明者】
【氏名】梶谷 史人
【審査官】佐藤 実
(56)【参考文献】
【文献】特開2019-021766(JP,A)
【文献】特開2011-141055(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 1/20
H05K 7/20
(57)【特許請求の範囲】
【請求項1】
複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環システムであって、
前記液浸槽に対して冷却液を循環させる冷却液循環路に設けられた第1流量調整部と、
前記冷却液循環路に設けられるとともに、冷却液と冷却媒体とを熱交換する熱交換器と、
前記熱交換器に冷却媒体を供給する冷却ユニットと、
冷却条件に基づいて、前記第1流量調整部及び前記冷却ユニットを制御するシステム制御装置と
複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得部と
を備え、
前記冷却ユニットは、
前記冷却媒体を冷却するための冷却部と、
前記冷却媒体の流量を調整する第2流量調整部と
を有し、
前記システム制御装置は、
複数の冷却モードのうちのいずれか一つを選択するモード選択部と、
複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得部によって取得された前記パラメータとを用いて必要冷却量を算出する算出部と、
選択された前記冷却モードに応じて、前記冷却液の流量に関するパラメータの目標値及び前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を前記冷却条件として設定する冷却条件設定部と
を具備し、
前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、
前記冷却条件設定部は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却液の流量に関するパラメータと、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出部によって算出された前記必要冷却量に対応する前記冷却条件を設定する冷却液循環システム。
【請求項2】
複数の前記冷却モードは、前記電子機器の性能を優先させる性能優先モードを含み、
前記冷却条件設定部は、前記性能優先モードが選択されている場合に、外気条件から導出される最低温度に前記冷却媒体の目標温度を設定する請求項1に記載の冷却液循環システム。
【請求項3】
複数の前記冷却モードは、前記電子機器の性能を優先させる性能優先モードを含み、
前記冷却条件設定部は、前記性能優先モードが選択されている場合に、前記冷却液の目標流量を最大流量に設定し、前記冷却部の目標値を最大値に設定し、前記冷却媒体の目標流量を最大流量に設定する請求項1に記載の冷却液循環システム。
【請求項4】
複数の前記冷却モードは、電力使用効率を優先させる省エネ優先モードを含み、
前記冷却条件設定部は、前記省エネ優先モードが選択されている場合に、前記電子機器を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて前記冷却媒体の目標温度を設定する請求項1から3のいずれかに記載の冷却液循環システム。
【請求項5】
複数の前記冷却モードは、電力使用効率を優先させる省エネ優先モードを含み、
前記冷却条件設定部は、前記省エネ優先モードが選択されている場合に、前記電子機器を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて前記冷却媒体の目標温度を設定するとともに、前記必要冷却量を満たすように、前記冷却液の目標流量、前記冷却媒体の目標流量、及び前記冷却部の目標値を消費電力が最も小さくなるように最適化する請求項1から3のいずれかに記載の冷却液循環システム。
【請求項6】
前記システム制御装置は、前記液浸槽内における複数の前記電子機器の配置に対する稼働状態を示すパラメータの分布と前記液浸槽内における冷却効率分布とのずれに基づいて、前記必要冷却量を補正する補正部を備え、
前記冷却条件設定部は、選択された前記冷却モードと補正後の前記必要冷却量とに基づいて、前記冷却液の流量に関するパラメータの目標値及び前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を設定する請求項1から5のいずれかに記載の冷却液循環システム。
【請求項7】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する消費電力量分布と前記液浸槽内における冷却効率分布とのずれに基づいて、前記必要冷却量を補正する請求項6に記載の冷却液循環システム。
【請求項8】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する消費電力量分布と前記液浸槽内における冷却効率分布とのずれ量及び複数の前記電子機器の消費電力量の平均値に基づいて、前記必要冷却量を補正する請求項6に記載の冷却液循環システム。
【請求項9】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する演算負荷分布と前記液浸槽内における冷却効率分布とのずれに基づいて、前記必要冷却量を補正する請求項6に記載の冷却液循環システム。
【請求項10】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する演算負荷分布と前記液浸槽内における冷却効率分布とのずれ量及び複数の前記電子機器の演算負荷の平均値に基づいて、前記必要冷却量を補正する請求項6に記載の冷却液循環システム。
【請求項11】
前記演算負荷分布は、複数の前記電子機器に与えられる計算ジョブの実行状況に関するパラメータに基づいて推定される請求項9又は10に記載の冷却液循環システム。
【請求項12】
複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環システムの制御方法であって、
前記冷却液循環システムは、前記液浸槽に対して冷却液を循環させる冷却液循環路に設けられた第1流量調整部と、前記冷却液循環路に設けられるとともに、冷却液と冷却媒体とを熱交換する熱交換器と、前記熱交換器に冷却媒体を供給する冷却ユニットとを有し、
前記冷却ユニットは、前記冷却媒体を冷却するための冷却部と、前記冷却媒体の循環流量を調整する第2流量調整部とを有し、
前記制御方法は、
複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得工程と、
複数の冷却モードのうちのいずれか一つを選択するモード選択工程と、
複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得工程において取得した前記パラメータとを用いて必要冷却量を算出する算出工程と、
選択された前記冷却モードに応じて、前記冷却液の流量に関するパラメータの目標値及び前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を冷却条件として設定する冷却条件設定工程と
前記冷却条件に基づいて、前記第1流量調整部及び前記冷却ユニットを制御する制御工程と
を有し、
前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、
前記冷却条件設定工程は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却液の流量に関するパラメータと、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出工程において算出された前記必要冷却量に対応する前記冷却条件を設定する冷却液循環システムの制御方法。
【請求項13】
コンピュータを請求項1から11のいずれかに記載のシステム制御装置として機能させるためのプログラム。
【請求項14】
複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環ユニットに対して、前記冷却液と熱交換を行わせるための冷却媒体を供給する冷却ユニットであって、
前記冷却媒体を冷却するための冷却部と、
前記冷却媒体の流量を調整する流量調整部と、
冷却条件に基づいて、前記冷却部及び前記流量調整部を制御する冷却ユニット制御部と
複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得部と
を備え、
前記冷却ユニット制御部は、
複数の冷却モードのうちのいずれか一つを選択するモード選択部と、
複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得部によって取得された前記パラメータとを用いて必要冷却量を算出する算出部と、
選択された前記冷却モードに応じて、前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を前記冷却条件として設定する冷却条件設定部と
を具備し、
前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、
前記冷却条件設定部は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出部によって算出された前記必要冷却量に対応する前記冷却条件を設定する冷却ユニット。
【請求項15】
複数の前記冷却モードは、前記電子機器の性能を優先させる性能優先モードを含み、
前記冷却条件設定部は、前記性能優先モードが選択されている場合に、外気条件から導出される最低温度に前記冷却媒体の目標温度を設定する請求項14に記載の冷却ユニット。
【請求項16】
複数の前記冷却モードは、前記電子機器の性能を優先させる性能優先モードを含み、
前記冷却条件設定部は、前記性能優先モードが選択されている場合に、前記冷却部の目標値を最大値に設定するとともに、前記冷却媒体の目標流量を最大流量に設定する請求項14に記載の冷却ユニット。
【請求項17】
複数の前記冷却モードは、電力使用効率を優先させる省エネ優先モードを含み、
前記冷却条件設定部は、前記省エネ優先モードが選択されている場合に、前記電子機器を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて、前記冷却媒体の目標温度を設定する請求項14から16のいずれかに記載の冷却ユニット。
【請求項18】
前記冷却ユニット制御部は、前記液浸槽内における複数の前記電子機器の配置に対する稼働状態を示すパラメータの分布と前記液浸槽内における冷却効率分布とのずれに基づいて、前記必要冷却量を補正する補正部を備え、
前記冷却条件設定部は、選択された前記冷却モードと補正後の前記必要冷却量とに基づいて、前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を設定する請求項14から17のいずれかに記載の冷却ユニット。
【請求項19】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する消費電力量分布と前記液浸槽内における冷却効率分布とのずれに基づいて、前記必要冷却量を補正する請求項18に記載の冷却ユニット。
【請求項20】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する消費電力量分布と前記液浸槽内における冷却効率分布とのずれ量及び複数の前記電子機器の消費電力量の平均値に基づいて、前記必要冷却量を補正する請求項18に記載の冷却ユニット。
【請求項21】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する演算負荷分布と前記液浸槽内における冷却効率分布とのずれに基づいて、前記必要冷却量を補正する請求項18に記載の冷却ユニット。
【請求項22】
前記補正部は、前記液浸槽内における複数の前記電子機器の配置に対する演算負荷分布と前記液浸槽内における冷却効率分布とのずれ量及び複数の前記電子機器の演算負荷の平均値に基づいて、前記必要冷却量を補正する請求項18に記載の冷却ユニット。
【請求項23】
前記演算負荷分布は、複数の前記電子機器に与えられる計算ジョブの実行状況に関するパラメータに基づいて推定される請求項21又は22に記載の冷却ユニット。
【請求項24】
複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環ユニットに対して、前記冷却液と熱交換を行わせるための冷却媒体を供給する冷却ユニットの制御方法であって、
前記冷却ユニットは、
前記冷却媒体を冷却するための冷却部と、
前記冷却媒体の流量を調整する流量調整部と
を備え、
前記制御方法は、
複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得工程と、
複数の冷却モードのうちのいずれか一つを選択するモード選択工程と、
複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得工程において取得した前記パラメータとを用いて必要冷却量を算出する算出工程と、
選択された前記冷却モードに応じて、前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を冷却条件として設定する冷却条件設定工程と
前記冷却条件に基づいて、前記冷却部及び前記流量調整部を制御する制御工程と
を有し、
前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、
前記冷却条件設定工程は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出工程において算出された前記必要冷却量に対応する前記冷却条件を設定する冷却ユニットの制御方法。
【請求項25】
コンピュータを請求項14から23のいずれかに記載の冷却ユニット制御部として機能させるためのプログラム。
【請求項26】
請求項1から11のいずれかに記載の冷却液循環システムと、
前記液浸槽と
を備える液浸冷却システム。
【請求項27】
請求項14から23のいずれかに記載の冷却ユニットと、
前記冷却液循環ユニットと、
前記液浸槽と
を備える液浸冷却システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、液浸槽に対して冷却液を循環させる冷却液循環システム及びその制御方法並びにプログラムに関するものである。
【背景技術】
【0002】
特許文献1には、データセンターにおいてサーバやストレージ等の電子機器を冷却液中に浸漬して冷却する液浸冷却システムが開示されている。具体的には、特許文献1には、冷却槽によって電子機器を冷却して加温された冷却液を熱交換器において冷却し、冷却後の冷却液を冷却槽に戻すことにより、冷却液を循環させる液浸冷却システムが開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第6658312号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
例えば、電子機器の発熱量は、一定ではなく変化する。このため、発熱量に応じて冷却条件を変えることが望まれる。
【0005】
本開示は、このような事情に鑑みてなされたものであって、電子機器の発熱量を考慮して冷却条件を設定することのできる冷却液循環システム及びその制御方法並びにプログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示の第1態様は、複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環システムであって、前記液浸槽に対して冷却液を循環させる冷却液循環路に設けられた第1流量調整部と、前記冷却液循環路に設けられるとともに、冷却液と冷却媒体とを熱交換する熱交換器と、前記熱交換器に冷却媒体を供給する冷却ユニットと、冷却条件に基づいて、前記第1流量調整部及び前記冷却ユニットを制御するシステム制御装置と、複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得部とを備え、前記冷却ユニットは、前記冷却媒体を冷却するための冷却部と、前記冷却媒体の流量を調整する第2流量調整部とを有し、前記システム制御装置は、複数の冷却モードのうちのいずれか一つを選択するモード選択部と、複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得部によって取得された前記パラメータとを用いて必要冷却量を算出する算出部と、選択された前記冷却モードに応じて、前記冷却液の流量に関するパラメータの目標値及び前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を前記冷却条件として設定する冷却条件設定部とを具備し、前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、前記冷却条件設定部は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却液の流量に関するパラメータと、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出部によって算出された前記必要冷却量に対応する前記冷却条件を設定する冷却液循環システムである。
【0007】
本開示の第2態様は、複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環システムの制御方法であって、前記冷却液循環システムは、前記液浸槽に対して冷却液を循環させる冷却液循環路に設けられた第1流量調整部と、前記冷却液循環路に設けられるとともに、冷却液と冷却媒体とを熱交換する熱交換器と、前記熱交換器に冷却媒体を供給する冷却ユニットとを有し、前記冷却ユニットは、前記冷却媒体を冷却するための冷却部と、前記冷却媒体の循環流量を調整する第2流量調整部とを有し、前記制御方法は、複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得工程と、複数の冷却モードのうちのいずれか一つを選択するモード選択工程と、複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得工程において取得した前記パラメータとを用いて必要冷却量を算出する算出工程と、選択された前記冷却モードに応じて、前記冷却液の流量に関するパラメータの目標値及び前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を冷却条件として設定する冷却条件設定工程と、前記冷却条件に基づいて、前記第1流量調整部及び前記冷却ユニットを制御する制御工程とを有し、前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、前記冷却条件設定工程は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却液の流量に関するパラメータと、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出工程において算出された前記必要冷却量に対応する前記冷却条件を設定する冷却液循環システムの制御方法である。
【0008】
本開示の第3態様は、コンピュータを上記システム制御装置として機能させるためのプログラムである。
【0009】
本開示の第4態様は、複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環ユニットに対して、前記冷却液と熱交換を行わせるための冷却媒体を供給する冷却ユニットであって、前記冷却媒体を冷却するための冷却部と、前記冷却媒体の流量を調整する流量調整部と、冷却条件に基づいて、前記冷却部及び前記流量調整部を制御する冷却ユニット制御部と、複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得部とを備え、前記冷却ユニット制御部は、複数の冷却モードのうちのいずれか一つを選択するモード選択部と、複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得部によって取得された前記パラメータとを用いて必要冷却量を算出する算出部と、選択された前記冷却モードに応じて、前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を前記冷却条件として設定する冷却条件設定部とを具備し、前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、前記冷却条件設定部は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出部によって算出された前記必要冷却量に対応する前記冷却条件を設定する冷却ユニットである。
【0010】
本開示の第5態様は、複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環ユニットに対して、前記冷却液と熱交換を行わせるための冷却媒体を供給する冷却ユニットの制御方法であって、前記冷却ユニットは、前記冷却媒体を冷却するための冷却部と、前記冷却媒体の流量を調整する流量調整部とを備え、前記制御方法は、複数の前記電子機器の稼働状態に関するパラメータを取得するパラメータ取得工程と、複数の冷却モードのうちのいずれか一つを選択するモード選択工程と、複数の前記電子機器の稼働状態に関するパラメータと必要冷却量とが関連付けられた情報と、前記パラメータ取得工程において取得した前記パラメータとを用いて必要冷却量を算出する算出工程と、選択された前記冷却モードに応じて、前記冷却媒体の温度に関するパラメータの目標値又は前記冷却媒体の流量に関するパラメータの目標値を冷却条件として設定する冷却条件設定工程と、前記冷却条件に基づいて、前記冷却部及び前記流量調整部を制御する制御工程とを有し、前記複数の冷却モードは、前記必要冷却量を用いて前記冷却条件を設定する通常冷却モードを含み、前記冷却条件設定工程は、前記通常冷却モードが選択されている場合に、必要冷却量と、冷却媒体の温度に関するパラメータと、冷却媒体の流量に関するパラメータとが関連付けられた情報を用いて、前記算出工程において算出された前記必要冷却量に対応する前記冷却条件を設定する冷却ユニットの制御方法である。
【0011】
本開示の第6態様は、コンピュータを上記冷却ユニット制御部として機能させるためのプログラムである。
【0012】
本開示の第7態様は、上記冷却液循環システムと、前記液浸槽とを備える液浸冷却システムである。
【0013】
本開示の第8態様は、上記冷却ユニットと、前記冷却液循環ユニットと、前記液浸槽とを備える液浸冷却システムである。
【発明の効果】
【0014】
電子機器の発熱量を考慮して冷却条件を設定することができる。
【図面の簡単な説明】
【0015】
図1】本開示の第1実施形態に係る液浸冷却システムのシステム構成を概略的に示したシステム構成図である。
図2図1の液浸槽の内部の具体例を示した斜視図である。
図3図2の各基板に対する冷却液の流れを示した斜視図である。
図4】本開示の第1実施形態に係るシステム制御装置のハードウェア構成の一例を示した図である。
図5】本開示の第1実施形態に係るシステム制御装置が備える機能の一例を示した機能ブロック図である。
図6】本開示の第1実施形態に係るシステム制御装置によって実現される冷却液循環システムの制御方法の手順の一例を示したフローチャートである。
図7】本開示の第1実施形態に係るシステム制御装置によって実現される冷却液循環システムの制御方法の手順の一例を示したフローチャートである。
図8】本開示の第2実施形態に係るシステム制御装置が備える機能の一例を示した機能ブロック図である。
図9】本開示の第2実施形態に係るシステム制御装置において、消費電力量分布と冷却効率分布とのずれについて説明するための図である。
図10】各基板(第1基板~第5基板)に与えられる計算ジョブの時間的変化の一例を示した図である。
図11】本開示の第3実施形態に係る液浸冷却システムにおいて、各基板に対する冷却液の流れを示した斜視図である。
図12】本開示の第3実施形態に係るシステム制御装置が備える機能の一例を示した機能ブロック図である。
図13】本開示の第4実施形態に係る冷却ユニット制御部が備える機能の一例を示した機能ブロック図である。
図14】本開示の第5実施形態に係る冷却液循環ユニット制御部が備える機能の一例を示した機能ブロック図である。
【発明を実施するための形態】
【0016】
以下に、本開示に係る複数の実施形態について、図面を参照して説明する。
〔第1実施形態〕
以下、本開示の第1実施形態について説明する。
図1は、本実施形態に係る液浸冷却システム1の概略構成を示した概略図である。液浸冷却システム1は、液浸槽(容器)3と、冷却液循環システム6とを備えている。
【0017】
液浸槽3は、内部に冷却液Lqが貯留される有底の容器とされている。液浸槽3は、有底とされて四方に側壁部3bを有する本体3aと、本体3aの上面に設けられた開閉蓋3cとを有している。
冷却液Lqは、電気絶縁性を有する液体が用いられ、例えばシリコーン系オイル等が用いられる。冷却液Lqは、液浸槽3の本体3a内に設置された基板11の全体が浸かる程度の高さまで満たされる。
【0018】
開閉蓋3cは、側壁部3bの上端を中心に回動して開閉する。開閉蓋3cは、液浸槽3の本体3a内に基板11を設置したり取り外したりする場合や、液浸槽3内のメンテナンス時に開状態とされる。開閉蓋3cは、通常使用時(基板11の冷却時)には閉状態とされる。
【0019】
液浸槽3の本体3a内には、例えば、各基板11に実装される形で複数の電子機器が浸漬させている。電子機器の一例として、電子計算機(サーバ)やストレージ等があげられる。図1では、一例として、複数の基板11が液浸槽3内に設置されている場合を示している。各基板11は、例えばサーバを構成する基板とされ、長手方向を鉛直方向に向けた状態で所定の間隔を空けて配列されている。なお、基板の配列や電子機器の搭載態様についてはこれに限られない。
【0020】
冷却液循環システム6は、液浸槽3に対して冷却液を循環させる。具体的には、冷却液循環システム6は、液浸槽3において基板11に実装された電子機器を冷やすことにより加熱された冷却液を熱交換器17によって冷却し、冷却後の冷却液を液浸槽3に戻すことにより、冷却液を循環させる。
【0021】
冷却液循環システム6は、冷却液循環ユニット5と、冷却ユニット7と、後述するシステム制御装置40(図4参照)とを備えている。冷却液循環ユニット5は、冷却液循環路と、ポンプ19と、熱交換器17とを備えている。冷却液循環路は、例えば、返液管15、冷却液吐出管21、及び送液管13を備えている。また、冷却液循環路には、ポンプ19と熱交換器17とが設けられている。
【0022】
冷却液循環ユニット5は、例えば、送液管13及び返液管15を介して液浸槽3と接続されている。送液管13の下流端13aは、液浸槽3の側壁部3bに接続されている。送液管13の上流端13bは、冷却液循環ユニット5の内部に設置された熱交換器17に接続されている。返液管15の上流端15aは、液浸槽3の側壁部3bに接続されている。返液管15の下流端15bは、冷却液循環ユニット5の内部に設置された冷却液を循環させるためのポンプ(第1流量調整部)19に接続されている。
【0023】
熱交換器17は、冷却ユニット7から供給された冷却水と、ポンプ19から冷却液吐出管21を介して供給された冷却液とを熱交換する。冷却液は、熱交換器17で冷却水と熱交換することによって冷却される。
ポンプ19は、例えば電動モータによって駆動され、後述するシステム制御装置(図4参照)によって吐出量が制御される。
【0024】
冷却液循環ユニット5には、熱交換器17に流入する冷却液温度と、熱交換器17から送出される冷却液出口温度とをそれぞれ検出するための温度センサ(図示略)が設けられている。また、冷却液循環ユニット5には、冷却液流量を検出するための流量センサが設けられていてもよい。
【0025】
冷却ユニット7は、冷却水(冷却媒体)が循環する冷却水循環路を備えている。冷却水循環路は、例えば、冷却水供給管25と冷却水返送管26とを備えている。冷却水循環路には、冷却水を循環させるためのポンプ(第2流量調整部)28が設けられている。ポンプ28は、例えば電動モータによって駆動され、後述するシステム制御装置(図4参照)によって吐出量が制御される。
【0026】
冷却ユニット7は、ファン(冷却部)23を備えており、ファン23によって冷却用の外気が取り込まれる。ファン23の発停及び回転数は、後述するシステム制御装置(図4参照)によって制御される。冷却水循環路を循環する冷却水は、ファン23によって取り込まれた外気と熱交換することによって、冷却される。
【0027】
冷却ユニット7において、外気との間で熱交換されることにより冷却された冷却水は、冷却水供給管25を介して熱交換器17に供給される。熱交換器17にて熱交換した後の冷却水は、冷却水返送管26を介して冷却ユニット7に戻される。
【0028】
冷却ユニット7には、熱交換器17に流入する冷却水の温度である冷却水入口温度と、熱交換器17から返送される冷却水の温度である冷却水出口温度とをそれぞれ検出するための温度センサ(図示略)が設けられている。また、冷却ユニット7には、冷却水流量を検出するための流量センサが設けられていてもよい。
【0029】
図2には、液浸槽3の本体3a内に設置された複数の基板11が示されている。図2に示した一例では、基板11は、基板11の幅方向(図2においてx方向)に4枚設けられ、奥行き方向(図2においてy方向)に12枚設けられている。ただし、基板11の設置数はこれに限定されるものではない。
各基板11には、サーバを構成するためのCPU、電源ユニット、メモリ、ハードディスク又はSSD(Solid State Drive)等のストレージ、及び通信ユニットなどの複数の電子機器30が実装されている。これら電子機器30は、サーバの動作中に発熱し、冷却液Lqによって冷却される。
【0030】
各基板11の上端には、把持部11aが固定されている。把持部11aは基板11の上端から上方に突出するように設けられ、棒状体を曲げて形成した門型形状とされている。把持部11aを作業者が掴むことによって、基板11の設置及び取り外しが行われる。
【0031】
各基板11の上端に対して直交するように有孔壁11bが設けられている。有孔壁11bは、電子機器30が設けられた表面側に立設している。有孔壁11bは、多数の孔が形成された例えばパンチングメタルとされている。有孔壁11bの孔の数や径を適宜設定することによって、基板11の表面上を流れる冷却液の流量が調整される。
【0032】
各基板11の両側のそれぞれには、例えば、上下方向に延在する側板11cが設けられている。側板11cは、電子機器30が設けられた表面側に立設するように設けられ、かつ基板11の長手方向(上下方向,z方向)の全体にわたって連続して設けられている。側板11cによって基板11の両側を囲むことによって、基板11の表面上を流れる冷却液Lqの流れをガイドするようになっている。
【0033】
各基板11の下方には、複数のノズル32が設けられている。ノズル32は、電子機器30が設けられた基板11の表面上を基板11の一端(下端)から他端(上端)に向かって冷却液が流動するように冷却液を吐出する。
【0034】
ノズル32は、例えば、各基板11に対して複数設けられている。具体的には、ノズル32は、基板11の一端(下端)から他端(上端)に向かう冷却液の流れ方向(z方向)に交差する幅方向(x方向)に並列に複数設けられている。これにより、基板11の一端(下端)から他端(上端)に向かう冷却液Lqの流れが並列に複数形成される。なお、ノズル32の数は、1つの基板11に対して2以上であればよく、冷却液Lqの流れ及び冷却状態に応じて適宜設定される。
【0035】
ノズル32は、奥行き方向(図2のy方向)にも同様に、各基板11に対応して設けられている。したがって、y方向に並べられた各基板11の間にもノズル32が設けられている。
【0036】
図3に示すように、各ノズル32の上流側は、分岐管36を介して供給主管38に接続されている。供給主管38の上流側は、送液管13の下流端13a(図1参照)に接続されている。したがって、送液管13から導かれた冷却液Lqは、供給主管38を介して各分岐管36へ分配されるようになっている。
【0037】
このような構成を備える液浸冷却システム1は、一例として、以下の通り動作する。
ポンプ19が後述するシステム制御装置40によって制御されることによって、冷却液Lqが流動し、熱交換器17へと導かれる。熱交換器17では、冷却ユニット7で冷却された冷却水と熱交換して冷却液Lqが冷却される。熱交換器17を出た冷却液Lqは、送液管13を通り液浸槽3へと導かれる。液浸槽3へと導かれた冷却液Lqは、図3に示したように送液管13から供給主管38を通り各分岐管36へ分配される。各分岐管36へ導かれた冷却液Lqは、ノズル32へと導かれて吐出される。
【0038】
各ノズル32から吐出した冷却液Lqは、基板11の下端へと導かれて、側板11cによってガイドされながら電子機器30が設けられた基板11の表面上を通り、基板11の上端へと向かう。このときに、電子機器30から発熱した熱量が冷却液Lqへと奪われて電子機器30が冷却される。
【0039】
電子機器30を冷却して加温された冷却液Lqは、基板11の上端に設けられた有孔壁11bの孔を通過して基板11の上方から排出される。基板11の上方から排出された冷却液Lqは、液浸槽3の本体3a内に貯留された冷却液Lqと合流して混合される。
本体3a内に貯留された冷却液Lqの一部は、返液管15から抜き出されてポンプ19を介して熱交換器17へと導かれて冷却され、再び液浸槽3へと導かれる。
【0040】
次に、本実施形態に係るシステム制御装置40について説明する。図4は、本実施形態に係るシステム制御装置40のハードウェア構成の一例を示した図である。図4に示すように、システム制御装置40は、いわゆるコンピュータであり、例えば、CPU(Central Processing Unit)41、メインメモリ42、記憶部43、及び通信部45等を備えている。また、システム制御装置40は、例えば、入力部46及び表示部47を備えていてもよい。この場合、入力部46及び表示部47は、通信回線を介して通信部45と接続され、例えば、遠隔から入力等を実現できる、いわゆる遠隔操作が可能な構成とされていてもよい。
上記各部構成は、直接的にまたはバスを介して間接的に相互に接続されており、互いに連携して各種処理を実行する。
【0041】
CPU41は、例えば、バスを介して接続された記憶部43に格納されたOS(Operating System)により冷却液循環システム6全体の制御を行うとともに、記憶部43に格納された各種プログラムを実行することにより各種処理を実行する。
【0042】
メインメモリ42は、例えば、キャッシュメモリ、RAM(Random Access Memory)等の書き込み可能なメモリで構成され、CPU41の実行プログラムの読み出し、実行プログラムによる処理データの書き込み等を行う作業領域として利用される。
【0043】
記憶部43は、非一時的な記録媒体(non-transitory computer readable storage medium)である。一例として、ROM(Read Only Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等が挙げられる。記憶部43は、例えば、Windows(登録商標)、iOS(登録商標)、Android(登録商標)等の冷却液循環システム6全体の制御を行うためのOSを格納する。また、記憶部43は、例えば、BIOS(Basic Input/Output System)を格納していてもよい。また、記憶部43は、周辺機器類をハードウェア操作するための各種デバイスドライバ、各種アプリケーションソフトウェア、及び各種データやファイル等を格納していてもよい。また、記憶部43には、各種処理を実現するためのプログラムや、各種処理を実現するために必要とされる各種データが格納されていてもよい。
【0044】
通信部45は、ネットワークに接続して他の装置と通信を行い、情報の送受信を行うためのインターフェースとして機能する。例えば、通信部45は、有線又は無線により他の装置と通信を行う。無線通信として、Bluetooth(登録商標)、Wi-Fi、専用の通信プロトコルを用いた通信等が挙げられる。有線通信の一例として、有線LAN(Local Area Network)等が挙げられる。
【0045】
入力部46は、例えば、キーボード、マウス、タッチパッド等、ユーザが冷却液循環システム6に対して指示を与えるためのユーザインタフェースである。
【0046】
表示部47は、例えば、液晶ディスプレイ、有機EL(Electroluminescence)ディスプレイ等である。また、表示部47は、タッチパネルが重畳されたタッチパネルディスプレイでもよい。
【0047】
図5は、システム制御装置40が備える機能の一例を示した機能ブロック図である。図5に示されるように、システム制御装置40は、例えば、モード選択部51、算出部52、及び冷却条件設定部53を備えている。
【0048】
これら機能の全て又は一部は、例えば、処理回路(processing circuitry)によって実現される。例えば、以下に示す機能を実現するための一連の処理は、一例として、プログラム(例えば、システム制御プログラム)の形式で記憶部43に記憶されており、このプログラムをCPU41がメインメモリ42に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
【0049】
なお、プログラムは、記憶部43に予めインストールされている形態や、他のコンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
【0050】
モード選択部51は、複数のモードを備えている。複数のモードは、電子機器30の性能を優先させる性能優先モードを有していてもよい。また、複数のモードは、電力使用効率を優先させる省エネ優先モードを有していてもよい。また、複数のモードは、通常モードを有していてもよい。
【0051】
モード選択部51は、複数のモードのうちのいずれか一つを選択する。例えば、モード選択部51は、所定のスケジュールに従っていずれかのモードを選択する。例えば、モード選択部51は、サーバの運用スケジュール等に基づいて選択すべき冷却モードが予めスケジューリングされており、このスケジュールに応じて冷却モードを選択することとしてもよい。また、モード選択部51は、入力部46からの入力指示に基づいて、指定された冷却モードを選択してもよい。
【0052】
算出部52は、複数の電子機器30の稼働状態に関するパラメータに基づいて必要冷却量を算出する。ここで、複数の電子機器30の稼働状態に関するパラメータの一例として、例えば、消費電力、消費電力量、CPU負荷率、又は発熱温度、若しくはこれらの2つ以上の組み合わせが挙げられる。
【0053】
電子機器30の発熱量は、稼働状態に応じて変化する。このため、電子機器30の稼働状態に関するパラメータを用いることにより、電子機器30の発熱量を推定でき、これにより、必要な冷却量を推定することが可能となる。
また、CPU負荷率を取得する場合には、電子機器30とシステム制御装置40との間で通信が生じるため、電子機器30の負担が大きくなる。これに対し、電子機器30との直接の通信を必要としないパラメータ、例えば、消費電力又は消費電力量を稼働状態に関するパラメータとして用いることにより、電子機器30に処理負担を負わせることなく、必要冷却量を算出することが可能となる。また、CPU負荷率の代わりに、電子機器30に与えられるジョブに基づいてCPU負荷率を推定する手法を採用してもよい。
【0054】
算出部52は、例えば、電子機器30の稼働状態に関するパラメータを変数として含む必要冷却量の演算式を有している。そして、この演算式に、その時々のパラメータの検出値を入力することにより、必要冷却量を算出する。
例えば、電子機器30の稼働状態に関するパラメータとして、消費電力量を用いる場合、必要冷却量は、消費電力量に所定の比例係数を乗じることにより算出されてもよい。なお、演算式は、一例であり、この限りではない。例えば、事前試験やシミュレーションなどによって、電子機器30の稼働状態に関するパラメータと必要冷却量との関係を求めておけばよい。必要冷却量は、例えば、電子機器30が所定の演算能力を発揮できる温度に基づいて決定され、求められる演算能力に応じて適宜設定される。
【0055】
液浸冷却システム1は、電子機器30の稼働状態に関するパラメータを検出するための構成を備えている。
例えば、液浸冷却システム1は、電子機器30の消費電力を検出する消費電力計(図示略)と、消費電力計から出力される信号をシステム制御装置40に伝送する通信部(図示略)とを有する。消費電力計として、例えば、コンセントに差し込んで使用するワットモニタ等の公知のセンサを使用することが可能である。
【0056】
また、液浸冷却システム1は、電子機器30の温度を計測する温度センサ(図示略)と、温度センサから出力される信号をシステム制御装置40に伝送する通信部(図示略)とを有していてもよい。温度センサは、例えば、電子機器30の中でも発熱量の大きい部品に取り付けられ、通信部を通じて検出値をシステム制御装置40に伝送する。
【0057】
上記電子機器30の稼働状態に関するパラメータは、基板11毎(例えば、サーバ毎)、または、複数の基板11で構成される基板群毎(サーバ群毎)に取得してもよい。すなわち、液浸槽3に浸漬されている電子機器30全体としてのパラメータ値が得られれば、その取得の方法については限られない。
【0058】
冷却条件設定部53は、例えば、算出部52によって算出された必要冷却量に基づいて、冷却液の流量に関するパラメータ及び冷却水の温度に関するパラメータ又は/及び冷却水の流量に関するパラメータを設定する。
【0059】
例えば、冷却条件設定部53は、通常モードが選択されていた場合、必要冷却量に基づいて、冷却液の目標流量、冷却水の目標温度、及び冷却水の目標流量を設定する。ここで、冷却水の目標温度とは、熱交換器17(図1参照)に対して供給される冷却水の目標温度である。
【0060】
一例として、冷却条件設定部53は、必要冷却量と、冷却液の流量、冷却水の温度、及び冷却水の流量とが関連付けられた1又は複数のマップ情報を有しており、このマップ情報を用いることにより、必要冷却量から冷却液の目標流量、冷却水の目標温度、及び冷却水の目標流量を得る。
【0061】
他の例として、冷却条件設定部53は、必要冷却量から冷却液の目標流量、冷却水の目標温度、及び冷却水の目標流量を得るための演算式を有しており、この演算式を用いて必要冷却量から冷却液の目標流量、冷却水の目標温度、及び冷却水の目標流量を算出してもよい。
ここで、冷却水入口温度の限界最小温度は、外部条件に基づいて決定される。例えば、冷却水入口温度の限界温度は、外気湿球温度に所定温度(例えば、5℃)加算した値となる。この限界最小温度は、ファン23を最大回転数で駆動した場合に、冷却水を冷やすことのできる限界温度である。したがって、例えば、冷却水の目標温度が外気条件に基づいて決定される限界最小温度以下であった場合には、冷却水の目標温度を限界最小温度に設定し、その上で、必要冷却量が得られるように、他のパラメータ、すなわち、冷却液の目標流量や冷却水の目標流量を設定することとしてもよい。
【0062】
ファン23の目標回転数は、例えば、冷却水の目標温度(熱交換器17の冷却水入口温度)と、冷却水出口温度と、冷却水の目標流量とを所定の演算式に用いることにより算出される。ここで、冷却ユニット7における冷却量は、例えば、以下の(1)式で表される。したがって、以下の演算式において必要冷却量が得られるようにファン23の目標回転数が設定される。また、外気条件(例えば、外気湿球温度)を更にパラメータとして含む演算式に基づいて、ファン23の回転数を決定することとしてもよい。
【0063】
冷却量
=(熱交換器の冷却水出口温度-熱交換器の冷却水入口温度)×冷却水流量 (1)
【0064】
冷却条件設定部53は、例えば、冷却モードとして性能優先モードが選択されている場合には、外気条件から導出される最低温度に冷却水の目標温度を設定する。また、冷却条件設定部53は、冷却液の目標流量を最大流量に設定するとともに、ファン23の目標回転数を最大回転数に設定することとしてもよい。さらに、冷却条件設定部53は、冷却水の目標流量についても最大流量に設定することとしてもよい。
これにより、性能優先モードが選択されている場合には、外気条件から導出される最大の冷却効果または最大に近い効果が得られるように、冷却液循環システム6が制御されることとなる。
【0065】
また、冷却条件設定部53は、冷却モードとして省エネ優先モードが選択されている場合には、電子機器30を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて、冷却水の目標温度を設定するとともに、設定した冷却水の目標温度及び必要冷却量を満たすように、冷却液の目標流量、冷却水の目標流量、及びファン23の目標回転数を消費電力が最も小さくなるように最適化してもよい。
ここで、「所定の温度」とは、例えば、液浸槽3に浸漬されている電子部品の許容最大温度のうち、最も低い許容最大温度又はその許容最大温度に所定の裕度を持たせた温度である。
【0066】
上記冷却液の目標流量、冷却水の目標流量、及びファン23の目標回転数の最適化については、公知の最適化手法を用いることで実現可能である。
また、冷却条件設定部53は、予め設定されている所定の順序に基づいて、必要冷却量を満たすように、各種目標値を順次設定することとしてもよい。例えば、所定の順序は、動力削減効果が最も高い要素順とされている。例えば、ファン23の動力、ポンプ28の動力、ポンプ19の動力の順に動力削減効果が高い場合、この順番で目標値を設定すればよい。
【0067】
このようにして冷却条件設定部53によって冷却条件が設定されると、設定された冷却条件に基づいて冷却液循環ユニット5のポンプ19、冷却ユニット7のポンプ28及びファン23が制御される。具体的には、冷却液の目標流量に応じた周波数で、ポンプ19の電動モータが制御されることにより、ポンプ19の吐出量が目標流量に制御される。また、冷却水の目標流量に応じた周波数で、ポンプ28の電動モータが制御されることにより、ポンプ28の吐出量が目標流量に制御される。また、ファン23の目標回転数に基づいて、ファン23が制御される。
【0068】
次に、本実施形態に係るシステム制御装置40によって実現される制御方法について図6及び図7を参照して説明する。図6及び図7は、本実施形態に係る冷却液循環システム6の制御方法の手順の一例を示したフローチャートである。以下に示す一連の処理は、例えば、処理回路によって実現される。具体的には、CPU41が記憶部43に記憶されているプログラムをメインメモリ42に読み出して、情報の加工・演算処理を実行することにより実現される。
【0069】
以下、電子機器30の稼働状態に関するパラメータとして、電子機器30の消費電力量を用いる場合を例示して説明する。また、各種バリエーションについては、上述した通りであり、本開示に係る制御方法は、以下に説明する各種処理に限定されない。
また、以下の一連の処理は、例えば、所定の時間間隔で繰り返し実行される。
【0070】
まず、システム制御装置40は、消費電力計(図示略)によって検出された検出値に基づいて、液浸槽3に浸漬されている電子機器30全体の消費電力量を算出する(SA1)。
【0071】
続いて、システム制御装置40は、消費電力量を所定の演算式に代入することにより、必要冷却量を算出する(SA2)。
【0072】
続いて、現在選択されている冷却モードが通常モードであるか否かを判定する(SA3)。この結果、通常モードである場合には(SA3:YES)、必要冷却量に基づいて冷却条件を設定する(SA4)。これにより、必要冷却量に基づいて、冷却液の目標流量、冷却水の目標温度、及び冷却水の目標流量が設定される。また、冷却水の目標温度、冷却水の熱交換器出口温度、及び冷却水の目標流量に基づいて、ファンの目標回転数が設定される。
【0073】
また、冷却モードとして通常モードが選択されていない場合(SA3:NO)、冷却モードとして性能優先モードが選択されているか否かを判定する(SA5)。性能優先モードが選択されている場合には(SA5:YES)、冷却液の目標流量を最大流量に設定し、ファンの目標回転数を最大回転数に設定し、冷却水の目標流量を最大流量に設定する(SA6)。
【0074】
一方、冷却モードとして性能優先モードが選択されていない場合(SA5:NO)には、冷却モードとして省エネモードが選択されていると判定し、電子機器30を構成する多数の電子部品の最大許容温度の最小値に基づいて冷却水の目標温度を設定する(図7のSA7)。続いて、設定した冷却水の目標温度及び必要冷却量を満たすように、冷却液の目標流量、冷却水の目標流量、及びファン23の目標回転数を設定する(SA8)。
【0075】
続いて、設定された冷却条件に基づいて、ポンプ19、ポンプ28、ファン23を駆動する(SA9)。例えば、各種目標値は、ポンプ19、ポンプ28、及びファン23をそれぞれ駆動する駆動制御部(図示略)に送信され、各駆動制御部によって目標値に応じた駆動制御が行われる。
【0076】
これにより、冷却液の目標流量に基づいてポンプ19を駆動する電動モータの回転数が駆動制御され、冷却水の目標流量に基づいてポンプ28を駆動する電動モータの回転数が駆動制御され、ファン23の目標回転数に基づいてファン23が駆動制御される。
【0077】
このようにして、ポンプ19、28、及びファン23が目標値に基づいて駆動制御されることにより、ポンプ19から必要冷却量に応じた吐出量で冷却液が熱交換器17に送られ、熱交換器17において、必要冷却量に基づく温度まで冷却液が冷却されることにより、必要冷却量を満足する温度及び流量の冷却液が液浸槽3に送出されることとなる。
【0078】
以上説明した本実施形態の作用効果は以下の通りである。
本実施形態によれば、電子機器30の稼働状態に関するパラメータに基づいて必要冷却量を算出し、必要冷却量を考慮して冷却条件を設定する。電子機器30の稼働状態は、電子機器30の発熱量と相関関係を有するため、電子機器30の稼働状態に関するパラメータを用いることで、発熱量に応じた必要冷却量を算出することが可能となる。これにより、電子機器の発熱量に応じた適切な冷却条件を設定することが可能となる。
さらに、本実施形態によれば、複数の冷却モードを設け、選択されている冷却モード及び必要冷却量に基づいて冷却条件を設定するので、所望のモードに応じた適切な冷却を行うことが可能となる。
【0079】
例えば、冷却モードとして性能優先モードが選択されている場合には、外気条件から導出される最大の冷却効果を実現するように冷却条件が設定される。これにより、最大限またはそれに近い冷却効果を実現することができ、電子機器30の性能を所望の性能以上に保つことが可能となる。
【0080】
また、冷却モードとして省エネ優先モードが選択されている場合には、電子機器30を構成する電子部品の最大許容温度に基づいて決定された所定の温度を超えない範囲で、冷却水の目標温度が設定され、更に、この冷却水の目標温度及び必要冷却量を満たすように、かつ、消費電力が最も小さくなるように冷却条件が設定される。これにより、消費電力を抑制しながら、全ての電子機器30を最大許容温度以下に保つことができる。
【0081】
〔第2実施形態〕
次に、本開示の第2実施形態について説明する。本実施形態は、第1実施形態に加えて、補正部を設けた点が相違する。したがって、以下の説明では、第1実施形態と相違する構成について主に説明し、共通する事項は同一符号を付してその説明を省略する。
【0082】
図8は、本実施形態に係るシステム制御装置40aが備える機能の一例を示した機能ブロック図である。図8に示すように、システム制御装置40aは、算出部52によって算出された必要冷却量を補正する補正部54を備えている。
【0083】
補正部54は、液浸槽3内における複数の電子機器30の配置に対する稼働状態を示すパラメータの分布と液浸槽3内における冷却効率分布とのずれに基づいて、必要冷却量を補正する。「稼働状態を示すパラメータの分布」は、例えば、消費電力量分布である。
【0084】
例えば、図9(a)に示すように、液浸槽3内には、複数の電子機器30が実装された基板11がX軸に沿って配置されている。なお、説明の便宜上、図9(a)では、二次元の図を示しているが、基板11は、奥行方向(Y軸)にも配列されていることは上述した通りである。
【0085】
液浸槽3の下方に設けられたノズル32(図3参照)から均一に冷却液を供給したとしても、図9(b)に示すように、冷却効果は液浸槽3内において均一ではなく、ばらつきが生ずる場合がある。すなわち、冷えやすい位置と、冷えにくい位置が存在する場合がある。図9(b)に示した例では、冷却効果は液浸槽3の中央部分が最も高く、側部に近づくほど低下している。なお、図9(b)に示した冷却効果のばらつきは、一例であり、ばらつき具合は、液浸槽3の構造や形状等、様々な要因に応じて影響を受ける。
【0086】
また、液浸槽3内に配置された複数の基板11(電子機器30)の消費電力量もその稼働状態に応じてばらつきがある。例えば、図9(c)、(d)は、位置に対する基板11の消費電力量のばらつき(分布)の例をそれぞれ示した図である。例えば、図9(c)に示した消費電力量分布は、図9(b)に示した冷却効果分布とほぼ同じ傾向を示しており、ずれが少ない。これに対し、図9(d)に示した消費電力量分布は、中央に配置された基板11の消費電力量は低く、側部に行くほど基板11の消費電力量は高くなっている。この消費電力量分布は、図9(b)に示した冷却効率分布と逆の傾向にあり、分布のずれが大きいことがわかる。
【0087】
本実施形態では、このような液浸槽3の各位置における冷却効果と消費電力量とのずれ(ずれ量)に基づいて必要冷却量を補正する。
例えば、補正部54は、予め設定された冷却効果分布を有している。そして、消費電力計から取得した消費電力量から電子機器30全体の消費電力量分布を算出し、算出した消費電力量分布と冷却効果分布とを比較することにより、分布の相対的なずれ量を算出する。なお、分布の比較は、例えば、それぞれの分布を平均値や標準偏差等に基づいて無次元化した上で比較する方法、正規化した上で比較する方法等、公知の統計的手法を用いればよい。
【0088】
また、ずれ量の算出は、例えば、基板11毎に、その位置における消費電力量を無次元化した値と冷却効率を無次元化した値との差分を算出し、算出した差分を累計することによって全体の分布のずれ量を演算する方法が一例として挙げられる。
【0089】
そして、補正部54は、上述の手法によって算出した分布のずれ量と、電子機器30全体の消費電力量の平均値とに基づいて、補正量を算出する。例えば、補正部54は、分布のずれ量と電子機器30全体の消費電力量の平均値とを変数として含む補正量演算式に対して、それぞれの演算値を代入することにより補正量を算出する。ここで、補正量は、ずれ量が大きいほど補正量が大きい演算式とされている。また、消費電力量の平均値が高いほど、補正量が小さくなるような演算式とされている。
【0090】
補正部54は、補正量を算出すると、算出した補正量を用いて、算出部52によって算出された必要冷却量を補正する。例えば、補正量を必要冷却量に加算することによって必要冷却量を補正する。また、補正量が補正係数として得られる場合には、必要冷却量に補正係数を乗じることにより、必要冷却量を補正することとしてもよい。
【0091】
このようにして必要冷却量が補正されると、補正後の必要冷却量は冷却条件設定部53に出力され、この補正後の必要冷却量を用いて冷却条件が設定される。
【0092】
上述したように、本実施形態によれば、システム制御装置40aは、液浸槽3内における複数の電子機器30の位置に対する稼働状態を示すパラメータの分布(例えば、消費電力量の分布)と液浸槽3内における位置に対する冷却効率分布とのずれに基づいて、必要冷却量を補正する補正部54を備える。これにより、液浸槽3内における電子機器30の発熱量のばらつきと冷却効率のばらつきとを考慮した適切な冷却条件を設定することが可能となる。
【0093】
なお、稼働状態を示すパラメータの分布として、各基板11(各サーバ)に与えられる計算ジョブの実行状況から推測されるCPU負荷率の分布を用いてもよい。上記消費電力量と同様に、CPU負荷率も電子機器30の発熱量と相関関係を有する。したがって、消費電力量に代えて、CPU負荷率に基づく分布を算出し、算出したCPU負荷率の分布と冷却効果分布とを比較して、それらのずれ量を算出することとしてもよい。また、補正量は、上述と同様に、分布のずれ量と、CPU負荷率の平均値とを用いて算出する。
【0094】
図10は、各基板11(第1基板~第5基板)に与えられる計算ジョブの時間的変化の一例を示した図である。計算ジョブの演算負荷が高ければCPU負荷率は増加し、計算ジョブの演算負荷が低ければCPU負荷率は低下する。例えば、時刻T1に着目すると、第1基板、第4基板、及び第5基板のCPU負荷に比べて第2基板、第3基板のCPU負荷は大きい。このため、時刻T1については、第2基板と第3基板の発熱量が他の基板よりも大きくなることが推測される。
【0095】
また、CPU負荷率の変化に比べて電子機器30の発熱量は緩やかに変化する。したがって、基板11毎に所定期間におけるCPU負荷率の平均値を算出し、平均値の分布を用いて冷却効果分布と比較することとしてもよい。
【0096】
このように、計算ジョブからCPU負荷率を推定し、推定したCPU負荷率の分布を用いて補正量を算出することにより、将来における電子機器30の稼働状態を加味して冷却条件の設定をすることが可能となる。
【0097】
〔第3実施形態〕
次に、本開示の第3実施形態について説明する。実施形態では、図11に示すように、第1実施形態に加えて、各ノズル32に対して流量調整部34を設けるとともに、図12に示すように、システム制御装置40bがノズル流量制御部55を備える点で相違する。
以下の説明では、第1実施形態と相違する構成について主に説明し、共通する事項は同一符号を付してその説明を省略する。
【0098】
図11に示すように、本実施形態に係る液浸冷却システム1は、各ノズル32に流量調整部34が設けられている。流量調整部34は、ノズル32から吐出される冷却液Lqの流量を調整する。流量調整部34の一例として、流量調整弁が挙げられる。流量調整部34は、システム制御装置40bによって制御される。
【0099】
図12は、本実施形態に係るシステム制御装置40bが備える機能の一例を示した機能ブロック図である。図12に示すように、システム制御装置40bは、ノズル流量制御部55を備えている。
【0100】
ノズル流量制御部55は、例えば、図9(b)に示したように、冷却効率分布にばらつきがある場合に、冷却効率が均一となるように流量調整部34を制御する。例えば、ノズル流量制御部55は、冷却効率が所定値(例えば、平均値)よりも低い位置に対応する流量調整部34の弁開度を増加させ、冷却液の吐出量を増加させる一方で、冷却効果が所定値よりも高い位置に対応する流量調整部34の弁開度を絞ることで、冷却液の吐出量を減少させる。これにより、液浸槽3における冷却効率のばらつきを低減させることができる。
【0101】
また、上記制御に代えて、例えば、ノズル流量制御部55は、液浸槽3内における電力消費量分布と冷却効果分布との差分に応じて、流量調整部34の弁開度を制御することとしてもよい。
分布の差分の算出方法については、第2実施形態で述べた通りである。このように、電力消費量分布と冷却効果分布とを比較することにより、各基板11の位置における分布の差分を算出し、この差分に応じて流量調整部34の弁開度を調整する。例えば、冷却効果が比較的低いのに電力消費量が比較的大きい位置については、流量調整部34の弁開度を開くことにより、冷却液の吐出量を増加させることで、電力消費量と冷却効果との差分を小さくすることができる。また、同様に、例えば、冷却効果が比較的高いのに電力消費量が比較的小さい位置については、流量調整部34の弁開度を絞ることにより、冷却液の吐出量を減少させることで、電力消費量と冷却効果との差分を小さくすることができる。
このように、各ノズルに対応して設けられた流量調整部34を制御することにより、位置に応じた細やかな冷却制御を行うことが可能となる。
なお、上記電力消費量に代えてCPU負荷率を用いてもよいことは、第2実施形態で述べた通りである。
【0102】
〔第4実施形態〕
次に、本開示の第4実施形態について説明する。第1実施形態では、システム制御装置40が、冷却液の目標流量、冷却水の目標流量、及び冷却水の目標温度を設定していた。換言すると、システム制御装置40は、冷却液循環ユニット5および冷却ユニット7の両方を制御していた。これに対し、本実施形態では、冷却ユニット7を制御する冷却ユニット制御部60と、冷却液循環ユニット5を制御する冷却液循環ユニット制御部70とをそれぞれ有する点で相違する。
以下の説明では、第1実施形態と相違する構成について主に説明し、共通する事項は同一符号を付してその説明を省略する。
【0103】
図13は、冷却ユニット制御部60が備える機能の一例を示した機能ブロック図である。本実施形態において、冷却ユニット7は、例えば、冷却ユニット制御部60を備えている。また、冷却液循環ユニット5は、冷却液循環ユニット制御部70を備えている。
冷却ユニット制御部60と冷却液循環ユニット制御部70とは、相互通信が可能な構成とされていてもよい。これにより、例えば、冷却ユニット制御部60は、冷却液循環ユニット制御部70から冷却液の流量に関する情報を取得することが可能となる。
【0104】
冷却液の流量に関する情報の一例として、冷却液の目標流量、冷却液の流量センサの検出値、または冷却液の流量を制御するポンプ19の回転数または周波数等が挙げられる。以下、冷却液の流量に関する情報として、冷却液の目標流量を用いる場合を例示して説明する。なお、冷却液の流量に関する情報としてポンプ19の回転数または周波数を用いる場合には、ポンプ19の回転数または周波数から冷却液の流量を推定すればよい。
なお、本実施形態において、冷却液の流量は一定に制御されていてもよい。
【0105】
冷却ユニット制御部60は、例えば、モード選択部51、算出部52、冷却条件設定部53aを備えている。冷却条件設定部53aは、モード選択部51によって選択された冷却モードと、算出部52によって算出された必要冷却量とに基づいて、冷却水の目標温度及び冷却水の目標流量を設定する。
【0106】
例えば、冷却条件設定部53aは、冷却モードとして通常モードが選択されていた場合、必要冷却量と冷却液の目標流量とに基づいて、冷却水の目標温度及び冷却水の目標流量を設定する。これらの設定は、例えば、第1実施形態で説明した各種演算手法において、冷却液の流量に冷却液循環ユニット制御部70から取得した値を用いることによって設定可能である。なお、冷却液循環ユニット制御部70がポンプ19を一定吐出量で制御するような場合には、予めその制御値(目標流量等)を登録しておき、登録した制御値を用いて冷却水の目標温度及び目標流量を設定することとしてもよい。このような場合、冷却液循環ユニット制御部70との通信も不要となる。
【0107】
冷却条件設定部53aは、例えば、冷却モードとして性能優先モードが選択されている場合には、外気条件から導出される最低温度に冷却水の目標温度を設定する。例えば、冷却条件設定部53aは、ファン23の目標回転数を最大回転数に設定することとしてもよい。さらに、冷却条件設定部53は、冷却水の目標流量についても最大流量に設定することとしてもよい。
これにより、性能優先モードが選択されている場合には、外気条件から導出される最大の冷却効果または最大に近い効果が得られるように、冷却ユニット7が制御されることとなる。
【0108】
また、冷却条件設定部53aは、省エネ優先モードが選択されている場合には、電子機器30を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて、冷却水の目標温度を設定する。さらに、冷却条件設定部53aは、冷却液循環ユニット制御部70から取得した冷却液の目標流量又はあらかじめ登録されている冷却液の目標流量を用いて、設定した冷却水の目標温度及び必要冷却量を満たす冷却水の目標流量及びファン23の目標回転数を設定する。このとき、冷却水の目標流量及びファン23の目標回転数は、ポンプ28及びファン23の動力が最も小さくなるように設定するとよい。上記冷却媒体の目標流量及びファン23の目標回転数の最適化については、公知の最適化手法を用いることで実現可能である。
【0109】
また、冷却条件設定部53aは、予め設定されている所定の順序に基づいて、必要冷却量を満たすように、各種目標値を順次設定することとしてもよい。例えば、所定の順序は、動力削減効果が最も高い要素順とされている。例えば、ファン23の動力、ポンプ28の動力の順に動力削減効果が高い場合、この順番で目標値を設定すればよい。
【0110】
このようにして冷却条件設定部53aによって設定された冷却条件(例えば、ポンプ28の目標回転数及びファン23の目標回転数)は、冷却ユニット7のポンプ28及びファン23を駆動する駆動制御部(図示略)に送信され、目標値に応じてこれらが駆動されることとなる。
【0111】
このように、本実施形態によれば、電子機器30の稼働状態に関するパラメータに基づいて必要冷却量を算出し、必要冷却量を考慮して冷却条件を設定する。電子機器30の稼働状態は、電子機器30の発熱量と相関関係を有するため、電子機器30の稼働状態に関するパラメータを用いることで、発熱量に応じた必要冷却量を算出することが可能となる。これにより、電子機器30の発熱量に応じた適切な冷却ユニット7の冷却条件を設定することが可能となる。
さらに、本実施形態によれば、複数の冷却モードを設け、選択されている冷却モード及び必要冷却量に基づいて冷却条件を設定するので、モードに応じて冷却ユニット7を適切に制御することが可能となる。
【0112】
例えば、冷却モードとして性能優先モードが選択されている場合には、外気条件から導出される最大の冷却効果を実現するように冷却ユニット7の冷却条件が設定される。これにより、最大限またはそれに近い冷却能力を冷却ユニット7に発揮させることができる。
【0113】
また、冷却モードとして省エネ優先モードが選択されている場合には、電子機器30を構成する電子部品の最大許容温度に基づいて決定された所定の温度を超えない範囲で、冷却水の目標温度が設定され、更に、この冷却水の目標温度及び必要冷却量を満たすように、かつ、冷却ユニット7の消費電力が最も小さくなるように、冷却ユニット7の冷却条件が設定される。これにより、冷却ユニット7の消費電力を抑制しながら、全ての電子機器30を最大許容温度以下に保つことができる。
【0114】
なお、上述した第4実施形態において、冷却ユニット制御部60は、さらに、補正部54を備えていてもよい。補正部54の詳細は、第2実施形態において詳述したため、ここでの説明は省略する。
【0115】
また、第4実施形態において、冷却ユニット制御部60と冷却液循環ユニット制御部70とは同じ処理回路によって実現されてもよいし、異なる処理回路(換言すると、異なるコンピュータ)によって実現されてもよい。
【0116】
〔第5実施形態〕
次に、本開示の第5実施形態について説明する。第1実施形態では、システム制御装置40が、冷却液の目標流量、冷却水の目標流量、及び冷却水の目標温度を設定していた。換言すると、システム制御装置40は、冷却液循環ユニット5および冷却ユニット7の両方を制御していた。これに対し、本実施形態では、冷却ユニット7を制御する冷却ユニット制御部60aと、冷却液循環ユニット5を制御する冷却液循環ユニット制御部70aとをそれぞれ有する点で相違する。
以下の説明では、第1実施形態と相違する構成について主に説明し、共通する事項は同一符号を付してその説明を省略する。
【0117】
図14は、冷却液循環ユニット制御部70aが備える機能の一例を示した機能ブロック図である。本実施形態において、冷却ユニット7は、例えば、冷却ユニット制御部60aを備えている。また、冷却液循環ユニット5は、冷却液循環ユニット制御部70aを備えている。
冷却ユニット制御部60aと冷却液循環ユニット制御部70aとは、相互通信が可能な構成とされていてもよい。これにより、例えば、冷却液循環ユニット制御部70aは冷却ユニット制御部60aから冷却水の温度及び流量に関する情報を取得することが可能となる。
【0118】
冷却液循環ユニット制御部70aは、例えば、モード選択部51、算出部52、冷却条件設定部53bを備えている。冷却条件設定部53bは、モード選択部51によって選択された冷却モードと、算出部52によって算出された必要冷却量とに基づいて、冷却液の目標流量を設定する。
【0119】
例えば、冷却条件設定部53bは、冷却モードとして通常モードが選択されていた場合、算出部52によって算出された必要冷却量と、熱交換器17に流入する冷却液入口温度と、熱交換器17から送出される冷却液出口温度とに基づいて、冷却液の目標流量を設定する。
例えば、冷却量は、以下の式で表される。
【0120】
冷却量=(冷却液入口温度-冷却液出口温度)×冷却液流量 (2)
【0121】
冷却条件設定部53bは、上記(2)式に対して、冷却量に必要冷却量を、冷却液入口温度、及び冷却液出口温度に温度センサ検出値を代入することで、冷却液流量を算出し、算出した冷却液流量を目標流量として設定する。
【0122】
また、冷却条件設定部53bは、例えば、冷却モードとして性能優先モードが選択されている場合には、冷却液の目標流量を最大流量に設定する。このように、性能優先モードが選択されている場合には、冷却液の目標流量を最大流量に設定することにより、最大冷却能力が発揮できるように冷却液循環ユニット5が制御される。
【0123】
また、冷却条件設定部53bは、冷却モードとして省エネ優先モードが選択されている場合には、電子機器30を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて冷却液の目標温度を設定し、必要冷却量を満たす冷却液の最小流量に冷却液の目標流量を設定する。
ここで、「所定の温度」とは、例えば、液浸槽3に浸漬されている電子部品の許容最大温度のうち、最も低い許容最大温度又はその許容最大温度に所定の裕度を持たせた温度である。
【0124】
例えば、冷却条件設定部53bは、上記(2)式において、冷却量に必要冷却量を、冷却液入口温度に温度センサの検出値を、冷却液出口温度に上記「冷却液の目標温度」を代入することで、必要冷却量を得るための冷却液流量を算出し、算出した冷却液流量を目標流量として設定する。
【0125】
このようにして冷却条件設定部53bによって設定された冷却条件は、冷却液循環ユニット5のポンプ19を駆動する駆動制御部(図示略)に送信され、冷却条件に応じたポンプ19の駆動制御が行われる。
【0126】
このように、本実施形態によれば、電子機器30の稼働状態に関するパラメータに基づいて必要冷却量を算出し、必要冷却量を考慮して冷却条件を設定する。電子機器30の稼働状態は、電子機器30の発熱量と相関関係を有するため、電子機器30の稼働状態に関するパラメータを用いることで、発熱量に応じた必要冷却量を算出することが可能となる。これにより、電子機器30の発熱量に応じた適切な冷却液循環ユニット5の冷却条件を設定することが可能となる。
さらに、本実施形態によれば、複数の冷却モードを設け、選択されている冷却モード及び必要冷却量に基づいて冷却条件を設定するので、モードに応じて冷却液循環ユニット5を適切に制御することが可能となる。
【0127】
例えば、冷却モードとして性能優先モードが選択されている場合には、冷却液の目標流量が最大流量に設定される。これにより、冷却液循環ユニット5の冷却能力を最大限発揮させることが可能となる。
【0128】
また、冷却モードとして省エネ優先モードが選択されている場合には、電子機器30を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて冷却液の送出温度を設定し、必要冷却量を満たす冷却液の最小流量に冷却液の目標流量を設定する。これにより、冷却液循環ユニット5の消費電力を抑制しながら、全ての電子機器30を最大許容温度以下に保つことができる。
【0129】
なお、上述した第5実施形態において、冷却液循環ユニット制御部70aは、さらに、補正部54を備えていてもよい。補正部54の詳細は、第2実施形態において詳述したため、ここでの説明は省略する。
【0130】
また、第5実施形態において、冷却ユニット制御部60aと冷却液循環ユニット制御部70aとは同じ処理回路によって実現されてもよいし、異なる処理回路(換言すると、異なるコンピュータ)によって実現されてもよい。
【0131】
なお、上述した第5実施形態では、冷却液循環システム6が、冷却ユニット7を有していたが、冷却ユニット7を省略してもよい。この場合、冷却液循環ユニット5における熱交換器17は外気と熱交換を行う空冷式の熱交換器とされる。なお、この場合においても、冷却液循環ユニット制御部70aによる制御は、上述した通りである。
【0132】
また、上記第5実施形態では、熱交換器17から送出される冷却液出口温度を温度センサによって検出し、この検出値を用いて冷却液の目標流量を設定していたが、これに限定されない。例えば、冷却ユニット制御部60aと冷却液循環ユニット制御部70aとが通信可能な構成とされている場合には、冷却ユニット制御部60aから冷却水の目標温度及び目標流量を取得し、取得したこれらの情報を用いて冷却液出口温度を推定することとしてもよい。このように、冷却液出口温度を推定することにより、冷却液出口温度を計測する温度センサを省略することが可能となる。
【0133】
以上、本開示の各実施形態を用いて説明したが、本開示の技術的範囲は上記実施形態に記載の範囲には限定されない。開示の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本開示の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。
また、図6図7に示した処理手順も一例であり、適宜不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
【0134】
上述した各実施形態では、ポンプ19により冷却液の流量を制御し、また、ポンプ28によって冷却水の流量を制御する場合を例示して説明したが、冷却液及び冷却水の流量制御についてはこの限りではない。例えば、ポンプ19の吐出量を一定とし、換言すると、ポンプ19を固定速のポンプとするとともに、冷却液循環路に流量を調整するための流量調整部を設けることとしてもよい。また、同様に、ポンプ28の吐出量を一定とし、換言すると、ポンプ28を固定速のポンプとし、冷却水循環路に流量を調整するための流量調整部を設けることとしてもよい。流量調整部の一例として、流量調整弁が挙げられる。
【0135】
また、上述した各実施形態では、冷却液と熱交換させる冷却媒体として、冷却水を例示して説明したが、この例に限定されない。冷却媒体として、水以外の液体を用いることも可能である。
【0136】
また、上述した各実施形態では、冷却ユニット7は、例えば、ファン23によって取り込んだ外気によって直接的に冷却水を冷却する態様を例示して説明したが、この例に限定されない。例えば、冷却ユニット7は、冷却部としてチラーなどのように、水などの冷媒を用いて冷却水を冷却するような構成を備えていてもよい。この場合には、各実施形態に係る冷却条件設定部は、冷却部を制御するためのパラメータを設定すればよい。より具体的には、冷却条件設定部は、ファン23の回転数に代えて、冷却水を冷やすための冷媒の循環量等を設定する。
【0137】
また、上述した第2実施形態等において、システム制御装置が補正部54を備える場合には、モード選択部51を省略することが可能である。この場合、冷却モードが通常モードに設定されているときの制御に準じて冷却条件が設定される。
【0138】
また、上述した各実施形態では、電子機器30の稼働状態に応じて冷却液の温度や流量を制御したが、これに代えて、例えば、電子機器30に与える演算ジョブを冷却状態に応じて制御することとしてもよい。例えば、図9(b)に示したように、位置によって冷却効率にばらつきがある場合には、冷却効率の高い位置に配置されている基板11(サーバ)に演算負荷の高い演算ジョブを割り当てるようにし、冷却効率の低い位置に配置されている基板11(サーバ)に演算負荷の低い演算ジョブを割り当てるようにしてもよい。
【0139】
以上説明した各実施形態に記載の冷却液循環システム及びその制御方法並びにプログラムは、例えば以下のように把握される。
【0140】
本開示の一態様に係る冷却液循環システム(6)は、複数の電子機器(30)を冷却液に浸漬させて冷却する液浸槽(3)に対して冷却液を循環させる冷却液循環システムであって、液浸槽に対して冷却液を循環させる冷却液循環路に設けられた第1流量調整部(19)と、冷却液循環路に設けられるとともに、冷却液と冷却媒体とを熱交換する熱交換器(17)と、熱交換器に冷却媒体を供給する冷却ユニット(7)と、第1流量調整部及び冷却ユニットを制御するシステム制御装置(40)とを備え、冷却ユニットは、冷却媒体を冷却するための冷却部(23)と、冷却媒体の流量を調整する第2流量調整部(28)とを有し、システム制御装置は、複数の冷却モードのうちのいずれか一つを選択するモード選択部(51)と、複数の電子機器の稼働状態に関するパラメータに基づいて必要冷却量を算出する算出部(52)と、選択された冷却モードと必要冷却量とに基づいて、冷却液の流量に関するパラメータの目標値及び冷却媒体の温度に関するパラメータの目標値又は冷却媒体の流量に関するパラメータの目標値を設定する冷却条件設定部(53)とを具備する。
【0141】
このように、電子機器の稼働状態に関するパラメータに基づいて必要冷却量を算出し、必要冷却量を考慮して冷却条件を設定する。電子機器の稼働状態は、電子機器の発熱量と相関関係を有するため、電子機器の稼働状態に関するパラメータを用いることで、発熱量に応じた必要冷却量を算出することが可能となる。これにより、電子機器の発熱量に応じた適切な冷却条件を設定することが可能となる。
さらに、複数の冷却モードを設け、選択されている冷却モード及び必要冷却量に基づいて冷却条件を設定するので、所望のモードに応じた適切な冷却を行うことが可能となる。
【0142】
本開示の一態様に係る冷却液循環システム(6)において、複数の冷却モードは、電子機器の性能を優先させる性能優先モードを含み、冷却条件設定部は、性能優先モードが選択されている場合に、外気条件から導出される最低温度に冷却媒体の目標温度を設定することとしてもよい。
【0143】
これにより、最大限またはそれに近い冷却効果を実現することができ、電子機器の性能を所望の性能以上に保つことが可能となる。
【0144】
本開示の一態様に係る冷却液循環システム(6)において、複数の冷却モードは、電子機器の性能を優先させる性能優先モードを含み、冷却条件設定部は、性能優先モードが選択されている場合に、冷却液の目標流量を最大流量に設定し、冷却部の目標値を最大値に設定し、冷却媒体の目標流量を最大流量に設定することとしてもよい。
【0145】
これにより、最大限またはそれに近い冷却効果を実現することができ、電子機器の性能を所望の性能以上に保つことが可能となる。
【0146】
本開示の一態様に係る冷却液循環システム(6)において、複数の前記冷却モードは、電力使用効率を優先させる省エネ優先モードを含み、冷却条件設定部は、省エネ優先モードが選択されている場合に、電子機器を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて冷却媒体の目標温度を設定することとしてもよい。
【0147】
これにより、消費電力を抑制しながら、全ての電子機器を最大許容温度以下に保つことができる。
【0148】
本開示の一態様に係る冷却液循環システム(6)において、複数の冷却モードは、電力使用効率を優先させる省エネ優先モードを含み、冷却条件設定部は、省エネ優先モードが選択されている場合に、電子機器を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて冷却媒体の目標温度を設定するとともに、必要冷却量を満たすように、冷却液の目標流量、冷却媒体の目標流量、及び冷却部の目標値を消費電力が最も小さくなるように最適化することとしてもよい。
【0149】
これにより、消費電力をさらに抑制することができるとともに、全ての電子機器を最大許容温度以下に保つことができる。
【0150】
本開示の一態様に係る冷却液循環システム(6)において、液浸槽内における複数の電子機器の配置に対する稼働状態を示すパラメータの分布と液浸槽内における冷却効率分布とのずれに基づいて、必要冷却量を補正する補正部(54)を備え、冷却条件設定部は、選択された冷却モードと補正後の必要冷却量とに基づいて、冷却液の流量に関するパラメータの目標値及び冷却媒体の温度に関するパラメータの目標値又は冷却媒体の流量に関するパラメータの目標値を設定することとしてもよい。
【0151】
これにより、液浸槽内における電子機器の発熱量のばらつきと冷却効率のばらつきとを考慮した適切な冷却条件を設定することが可能となる。
【0152】
本開示の一態様に係る冷却液循環システム(6)において、補正部は、液浸槽内における複数の電子機器の配置に対する消費電力量分布と液浸槽内における冷却効率分布とのずれに基づいて、必要冷却量を補正することとしてもよい。
【0153】
消費電力量は電子機器の発熱量と相関関係を有する。したがって、消費電力量分布と冷却効果分布とを比較して、それらのずれに基づいて必要冷却量を補正することにより、液浸槽内における電子機器の発熱量のばらつきと冷却効率のばらつきとを考慮した適切な冷却条件を設定することが可能となる。
【0154】
本開示の一態様に係る冷却液循環システム(6)において、補正部は、液浸槽内における複数の電子機器の配置に対する消費電力量分布と液浸槽内における冷却効率分布とのずれ量及び複数の電子機器の消費電力量の平均値に基づいて、必要冷却量を補正することとしてもよい。
【0155】
これにより、液浸槽内における複数の電子機器の配置に対する消費電力量分布と液浸槽内における冷却効率分布とのずれ量だけでなく、液浸槽内における複数の電子機器の平均消費電力量も加味して必要冷却量を補正することが可能となる。
【0156】
本開示の一態様に係る冷却液循環システム(6)において、補正部は、液浸槽内における複数の電子機器の配置に対する演算負荷分布と液浸槽内における冷却効率分布とのずれに基づいて、必要冷却量を補正することとしてもよい。
【0157】
電子機器の演算負荷は電子機器の発熱量と相関関係を有する。したがって、演算負荷分布と冷却効果分布とを比較して、それらのずれに基づいて必要冷却量を補正することにより、液浸槽内における電子機器の発熱量のばらつきと冷却効率のばらつきとを考慮した適切な冷却条件を設定することが可能となる。
【0158】
本開示の一態様に係る冷却液循環システム(6)において、補正部は、液浸槽内における複数の電子機器の配置に対する演算負荷分布と液浸槽内における冷却効率分布とのずれ量及び複数の電子機器の演算負荷の平均値に基づいて、必要冷却量を補正することとしてもよい。
【0159】
これにより、液浸槽内における複数の電子機器の配置に対する演算負荷分布と液浸槽内における冷却効率分布とのずれ量だけでなく、液浸槽内における複数の電子機器の平均演算負荷率も加味して必要冷却量を補正することが可能となる。
ここで、「演算負荷」の一例として、演算負荷率、CPU負荷率等が挙げられる。
【0160】
本開示の一態様に係る冷却液循環システム(6)において、演算負荷分布は、複数の電子機器に与えられる計算ジョブの実行状況に関するパラメータに基づいて推定してもよい。
【0161】
計算ジョブから得た演算負荷分布を用いて補正量を算出することにより、将来における電子機器の稼働状態を加味して冷却条件の設定をすることが可能となる。
【0162】
本開示の一態様に係る冷却液循環システムの制御方法は、複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環システムの制御方法であって、冷却液循環システムは、液浸槽に対して冷却液を循環させる冷却液循環路に設けられた第1流量調整部と、冷却液循環路に設けられるとともに、冷却液と冷却媒体とを熱交換する熱交換器と、熱交換器に冷却媒体を供給する冷却ユニットとを有し、冷却ユニットは、冷却媒体を冷却するための冷却部と、冷却媒体の循環流量を調整する第2流量調整部とを有し、制御方法は、複数の冷却モードのうちのいずれか一つを選択する工程と、複数の電子機器の稼働状態に関するパラメータに基づいて必要冷却量を算出する工程と、選択された冷却モードと必要冷却量とに基づいて、冷却液の流量に関するパラメータの目標値及び冷却媒体の温度に関するパラメータの目標値又は冷却媒体の流量に関するパラメータの目標値を設定する工程とを有する。
【0163】
本開示の一態様に係るプログラムは、コンピュータを上記記載のシステム制御装置として機能させるためのプログラムである。
【0164】
本開示の一態様に係る冷却ユニット(7)は、複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環ユニットに対して、冷却液と熱交換を行わせるための冷却媒体を供給する冷却ユニットであって、冷却媒体を冷却するための冷却部と、冷却媒体の流量を調整する流量調整部(28)と、冷却ユニット制御部(60)とを備え、冷却ユニット制御部は、複数の冷却モードのうちのいずれか一つを選択するモード選択部と、複数の電子機器の稼働状態に関するパラメータに基づいて必要冷却量を算出する算出部と、選択された冷却モードと必要冷却量とに基づいて、冷却媒体の温度に関するパラメータの目標値又は冷却媒体の流量に関するパラメータの目標値を設定する冷却条件設定部(53a)とを備える。
【0165】
このように、電子機器の稼働状態は、電子機器の発熱量と相関関係を有する。このため、電子機器の稼働状態に関するパラメータを用いることで、発熱量に応じた必要冷却量を算出することが可能となる。これにより、電子機器の発熱量に応じた適切な冷却ユニットの冷却条件を設定することが可能となる。
さらに、本実施形態によれば、複数の冷却モードを設け、選択されている冷却モード及び必要冷却量に基づいて冷却条件を設定するので、モードに応じて冷却ユニットを適切に制御することが可能となる。
【0166】
本開示の一態様に係る冷却ユニット(7)において、複数の前記冷却モードは、前記電子機器の性能を優先させる性能優先モードを含み、前記冷却条件設定部は、前記性能優先モードが選択されている場合に、外気条件から導出される最低温度に前記冷却媒体の目標温度を設定することとしてもよい。
【0167】
これにより、最大限またはそれに近い冷却能力を冷却ユニットに発揮させることができる。
【0168】
本開示の一態様に係る冷却ユニット(7)において、複数の前記冷却モードは、電子機器の性能を優先させる性能優先モードを含み、冷却条件設定部は、性能優先モードが選択されている場合に、冷却部の目標値を最大値に設定するとともに、冷却媒体の目標流量を最大流量に設定することとしてもよい。
【0169】
これにより、最大限またはそれに近い冷却能力を冷却ユニット7に発揮させることができる。
【0170】
本開示の一態様に係る冷却ユニット(7)において、複数の冷却モードは、電力使用効率を優先させる省エネ優先モードを含み、冷却条件設定部は、省エネ優先モードが選択されている場合に、電子機器を構成する電子部品の耐熱特性に基づいて決定される所定の温度に基づいて、冷却媒体の目標温度を設定することとしてもよい。
【0171】
これにより、冷却ユニットの消費電力を抑制しながら、全ての電子機器を最大許容温度以下に保つことができる。
【0172】
本開示の一態様に係る冷却ユニット(7)において、冷却ユニット制御部は、液浸槽内における複数の電子機器の配置に対する稼働状態を示すパラメータの分布と液浸槽内における冷却効率分布とのずれに基づいて、必要冷却量を補正する補正部(54)を備え、冷却条件設定部は、選択された冷却モードと補正後の必要冷却量とに基づいて、冷却媒体の温度に関するパラメータの目標値又は冷却媒体の流量に関するパラメータの目標値を設定することとしてもよい。
【0173】
電子機器の稼働状態を示すパラメータは電子機器の発熱量と相関関係を有する。したがって、そのようなパラメータの分布と冷却効果分布とを比較して、それらのずれに基づいて必要冷却量を補正することにより、液浸槽内における電子機器の発熱量のばらつきと冷却効率のばらつきとを考慮した適切な冷却条件を設定することが可能となる。
【0174】
本開示の一態様に係る冷却ユニット(7)において、補正部は、液浸槽内における複数の電子機器の配置に対する消費電力量分布と液浸槽内における冷却効率分布とのずれに基づいて、必要冷却量を補正することとしてもよい。
【0175】
消費電力量は電子機器の発熱量と相関関係を有する。したがって、消費電力量分布と冷却効果分布とを比較して、それらのずれに基づいて必要冷却量を補正することにより、液浸槽内における電子機器の発熱量のばらつきと冷却効率のばらつきとを考慮した適切な冷却条件を設定することが可能となる。
【0176】
本開示の一態様に係る冷却ユニット(7)において、補正部は、液浸槽内における複数の電子機器の配置に対する消費電力量分布と液浸槽内における冷却効率分布とのずれ量及び複数の電子機器の消費電力量の平均値に基づいて、必要冷却量を補正することとしてもよい。
【0177】
これにより、液浸槽内における複数の電子機器の配置に対する消費電力量分布と液浸槽内における冷却効率分布とのずれ量だけでなく、液浸槽内における複数の電子機器の平均消費電力量も加味して必要冷却量を補正することが可能となる。
【0178】
本開示の一態様に係る冷却ユニット(7)において、補正部は、液浸槽内における複数の電子機器の配置に対する演算負荷分布と液浸槽内における冷却効率分布とのずれに基づいて、必要冷却量を補正することとしてもよい。
【0179】
電子機器の演算負荷は電子機器の発熱量と相関関係を有する。したがって、演算負荷分布と冷却効果分布とを比較して、それらのずれに基づいて必要冷却量を補正することにより、液浸槽内における電子機器の発熱量のばらつきと冷却効率のばらつきとを考慮した適切な冷却条件を設定することが可能となる。
【0180】
本開示の一態様に係る冷却ユニット(7)において、補正部は、液浸槽内における複数の電子機器の配置に対する演算負荷分布と液浸槽内における冷却効率分布とのずれ量及び複数の電子機器の演算負荷の平均値に基づいて、必要冷却量を補正することとしてもよい。
【0181】
これにより、液浸槽内における複数の電子機器の配置に対する演算負荷分布と液浸槽内における冷却効率分布とのずれ量だけでなく、液浸槽内における複数の電子機器の平均演算負荷率も加味して必要冷却量を補正することが可能となる。
ここで、「演算負荷」の一例として、演算負荷率、CPU負荷率等が挙げられる。
【0182】
本開示の一態様に係る冷却ユニット(7)において、演算負荷分布は、複数の電子機器に与えられる計算ジョブの実行状況に関するパラメータに基づいて推定してもよい。
【0183】
計算ジョブから得た演算負荷分布を用いて補正量を算出することにより、将来における電子機器の稼働状態を加味して冷却条件の設定をすることが可能となる。
【0184】
本開示の一態様に係る冷却ユニット(7)の制御方法は、複数の電子機器を冷却液に浸漬させて冷却する液浸槽に対して冷却液を循環させる冷却液循環ユニットに対して、冷却液と熱交換を行わせるための冷却媒体を供給する冷却ユニットの制御方法であって、冷却ユニットは、冷却媒体を冷却するための冷却部と、冷却媒体の流量を調整する流量調整部とを備え、制御方法は、複数の冷却モードのうちのいずれか一つを選択する工程と、複数の電子機器の稼働状態に関するパラメータに基づいて必要冷却量を算出する工程と、選択された冷却モードと必要冷却量とに基づいて、冷却媒体の温度に関するパラメータの目標値又は冷却媒体の流量に関するパラメータの目標値を設定する工程とを有する。
【0185】
本開示の一態様に係るプログラムは、コンピュータを上記記載の冷却ユニット制御部として機能させるためのプログラムである。
【0186】
本開示の一態様に係る液浸冷却システム(1)は、上記記載の冷却液循環システム(6)と、液浸槽(3)とを備える。
【0187】
本開示の一態様に係る液浸冷却システムは、上記記載の冷却ユニット(7)と、冷却液循環ユニット(5)と、液浸槽(3)とを備える。
【符号の説明】
【0188】
1 :液浸冷却システム
3 :液浸槽
5 :冷却液循環ユニット
6 :冷却液循環システム
7 :冷却ユニット
11 :基板
13 :送液管
15 :返液管
17 :熱交換器
19 :ポンプ
21 :冷却液吐出管
23 :ファン
25 :冷却水供給管
26 :冷却水返送管
28 :ポンプ
30 :電子機器
32 :ノズル
34 :流量調整部
40 :システム制御装置
40a :システム制御装置
40b :システム制御装置
41 :CPU
42 :メインメモリ
43 :記憶部
45 :通信部
46 :入力部
47 :表示部
51 :モード選択部
52 :算出部
53 :冷却条件設定部
53a :冷却条件設定部
53b :冷却条件設定部
54 :補正部
55 :ノズル流量制御部
60 :冷却ユニット制御部
60a :冷却ユニット制御部
70 :冷却液循環ユニット制御部
70a :冷却液循環ユニット制御部
Lq :冷却液
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14