IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アトナープ株式会社の特許一覧

<>
  • 特許-CARS用発光源および測定システム 図1
  • 特許-CARS用発光源および測定システム 図2
  • 特許-CARS用発光源および測定システム 図3
  • 特許-CARS用発光源および測定システム 図4
  • 特許-CARS用発光源および測定システム 図5
  • 特許-CARS用発光源および測定システム 図6
  • 特許-CARS用発光源および測定システム 図7
  • 特許-CARS用発光源および測定システム 図8
  • 特許-CARS用発光源および測定システム 図9
  • 特許-CARS用発光源および測定システム 図10
  • 特許-CARS用発光源および測定システム 図11
  • 特許-CARS用発光源および測定システム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-28
(45)【発行日】2025-02-05
(54)【発明の名称】CARS用発光源および測定システム
(51)【国際特許分類】
   G01N 21/65 20060101AFI20250129BHJP
【FI】
G01N21/65
【請求項の数】 11
(21)【出願番号】P 2022123062
(22)【出願日】2022-08-02
(62)【分割の表示】P 2021560679の分割
【原出願日】2020-04-27
(65)【公開番号】P2022153601
(43)【公開日】2022-10-12
【審査請求日】2023-04-17
(31)【優先権主張番号】62/840,704
(32)【優先日】2019-04-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】509339821
【氏名又は名称】アトナープ株式会社
(74)【代理人】
【識別番号】100102934
【弁理士】
【氏名又は名称】今井 彰
(72)【発明者】
【氏名】アンダーソン デイヴィッド
(72)【発明者】
【氏名】ムルティ プラカッシ スリダラ
【審査官】田中 洋介
(56)【参考文献】
【文献】特表2015-536467(JP,A)
【文献】欧州特許出願公開第02982947(EP,A1)
【文献】米国特許出願公開第2011/0282166(US,A1)
【文献】特開2013-051999(JP,A)
【文献】国際公開第2018/174244(WO,A1)
【文献】特表2012-526982(JP,A)
【文献】米国特許出願公開第2016/0305880(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/62-21/74
G01J 3/00-3/52
JSTPlus(JDreamIII)
JSTChina(JDreamIII)
JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
CARS信号を取得するために出力される第1の波長領域のストークス光と、前記第1の波長領域よりも短い第2の波長領域のポンプ光と、前記第2の波長領域より短い波長領域のプローブ光とを生成する発光源であって、
ソースレーザダイオードから注入された光により所定の発振波長のソースレーザパルスを生成する発振器と、
前記ソースレーザパルスの一部から高非線形ファイバを介して前記第2の波長領域の前記ポンプ光を生成するとともに、前記ポンプ光の一部からフォトニック結晶ファイバを介して前記第1の波長領域の前記ストークス光を生成する第1の生成ステージと、
前記ソースレーザパルスの一部から第2次高調波発生器を介して前記第2の波長領域より短く、前記ストークス光および前記ポンプ光のみで生成される第1のCARS信号よりも短い波長領域の前記プローブ光を生成する第2の生成ステージとを有する、発光源。
【請求項2】
請求項1に記載の発光源において、
前記第1の生成ステージは、前記第2の波長領域の光の強度を第1のレーザーダイオードから得られる前記第2の波長領域の光により増幅するユニットを含み、
前記第2の生成ステージは、前記発振波長の光の強度を第2のレーザーダイオードから得られる前記発振波長の光により増幅するユニットを含む、発光源。
【請求項3】
請求項1または2に記載の発光源において、
前記発振器は前記発振波長の中心波長が1560nmの前記ソースレーザパルスを供給し、
前記第1の生成ステージは、前記第2の波長領域の中心波長が1040nmの前記ポンプ光、および前記第1の波長領域が1085から1230nmを含む前記ストークス光を供給し、
前記第2の生成ステージは、中心波長が780nmの前記プローブ光を供給する、発光源。
【請求項4】
請求項1ないし3のいずれかに記載の発光源を含むコア光学モジュールと、
前記ストークス光、前記ポンプ光、および前記プローブ光を対象物に出力し、前記ストークス光、前記ポンプ光、および前記プローブ光により前記対象物において発生された、前記ストークス光および前記ポンプ光のみで生成される前記第1のCARS信号よりも短い波長領域の第2のCARS光を取得する検査インターフェースモジュールとを有するシステム。
【請求項5】
請求項4に記載のシステムにおいて、
前記検査インターフェースモジュールは、アプリケーション毎に交換可能であり、光伝送ユニットにより前記コア光学モジュールと接続され、前記コア光学モジュールから送られた光により前記対象物をスキャンし、前記対象物からの前記光を受信して前記コア光学モジュールに送るように構成されている、システム。
【請求項6】
請求項5に記載のシステムにおいて、
前記検査インターフェースモジュールは、前記コア光学モジュールから分離され、前記光伝送ユニットにより前記コア光学モジュールと接続されている、システム。
【請求項7】
請求項4ないし6のいずれかに記載のシステムにおいて、
前記コア光学モジュールは、
前記第1の波長領域のストークス光と、前記第1の波長領域よりも短い第2の波長領域のポンプ光とを供給するための光学素子と、
前記プローブ光を、前記ポンプ光の出射から時間差をもって出射するように供給するための光学素子とを含む、システム。
【請求項8】
請求項7に記載のシステムにおいて、
前記コア光学モジュールは、さらに、前記時間差を制御する、アクチュエータ付きのプローブ遅延ステージを含む、システム。
【請求項9】
請求項5または6に記載のシステムにおいて、
前記光伝送ユニットは、光ファイバまたは空間結合を含む、システム。
【請求項10】
請求項4ないし9のいずれかに記載のシステムにおいて、
前記検査インターフェースモジュールは、低侵襲サンプル採取装置、非侵襲サンプル採取装置、およびフローサンプル採取装置のいずれかを含む、システム。
【請求項11】
請求項4ないし9のいずれかに記載のシステムにおいて、
前記検査インターフェースモジュールは、ウェアラブル検査インターフェース、指先検査インターフェース、尿サンプル採取装置、および透析排液サンプル採取装置のいずれかを含む、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、CARS信号を取得するためのストークス光、ポンプ光およびプローブ光を生成する発光源および対象物を測定するためのシステムに関するものである。
【背景技術】
【0002】
特許文献1には、顕微鏡が開示されている。当該顕微鏡は、光源からの光束を第1のポンプ光束と第2のポンプ光束とに分割する第1の光分割部と、第2のポンプ光束を入力として受け取りストークス光束を出力するストークス光源と、第1のポンプ光束とストークス光束とを合波して合波光束を生成する合波部と、合波光束をサンプルに集光する第1の集光部と、生成されたCARS光で合波光束とは異なる波長を有するCARS光をサンプルから検出する第1の検出装置と、第2のポンプ光束およびストークス光束の少なくとも一方を参照光束として部分的に分割する第2の光分割部と、サンプルからの光束と参照光束とを合波して干渉光を発生させる第2の合波部と、干渉光を検出する第2の検出装置とを含む。
【先行技術文献】
【特許文献】
【0003】
【文献】国際公開WO2014/061147号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
CARS信号を取得するために出力される第1の波長領域のストークス光と、前記第1の波長領域よりも短い第2の波長領域のポンプ光と、前記第2の波長領域より短い波長領域のプローブ光とを生成する発光源を有するシステムを提供する。
【0005】
本発明の一態様の発光源は、ソースレーザダイオードから注入された光により所定の発振波長のソースレーザパルスを生成する発振器と、ソースレーザパルスの一部から高非線形ファイバを介して第2の波長領域のポンプ光を生成するとともに、ポンプ光の一部からフォトニック結晶ファイバを介して第1の波長領域の前記ストークス光を生成する第1の生成ステージと、ソースレーザパルスの一部から第2次高調波発生器を介して第2の波長領域より短い波長領域のプローブ光を生成する第2の生成ステージとを有する。
【0006】
本発明の他の態様の一つは、上記の発光源を含むコア光学モジュールと、ストークス光、ポンプ光、およびプローブ光を対象物に出力し、ストークス光、ポンプ光、およびプローブ光により対象物において発生されたTD-CARS光を取得する検査インターフェースモジュールとを有するシステムである。検査インターフェースモジュールは、アプリケーション毎に変更可能であってもよく、光伝送ユニットによりコア光学モジュールと接続され、コア光学モジュールから送られた光で対象物を走査し、対象物からの光を受信し、コア光学モジュールに送るように構成されてもよい。
【課題を解決するための手段】
【0007】
本発明のシステムでは、コア光学モジュールは、多種類の検査インターフェースモジュールにより共有可能であり、多数のアプリケーションに対応したシステムを短期間、低コストで提供可能である。検査インターフェースモジュールは、低侵襲サンプラー(低侵襲サンプル採取装置)、非侵襲サンプラー(非侵襲サンプル採取装置)、またはフローサンプラー(流体サンプル採取装置)であってもよい。検査インターフェースモジュールは、グルコース、ヘモグロビンA1c、クレアチニン、アルブミンなどを測定するためのウェアラブル(身体装着可能な)検査インターフェース、フィンガーチップ検査インターフェース(指先装着型検査インターフェース)、尿サンプラー(尿サンプル採取装置)、または透析排液サンプラー(透析排液採サンプル採取装置)であってもよい。
【図面の簡単な説明】
【0008】
以下において、実施形態は、図面を参照し、以下の詳細な説明からより良く理解されるであろう。
図1図1は、本発明の1つの実施形態を示す。
図2図2は、検査インターフェースモジュールのいくつかの実施形態を示す。
図3図3は、本システムの別の実施形態を示す。
図4図4は、コア光学モジュールの光学プレートとファイバ機構との配置を示す。
図5図5は、本システムのブロック図を示す。
図6図6は、ファイバレーザアセンブリのブロック図を示す。
図7図7は、ファイバレーザアセンブリの波長プランを示す。
図8図8は、TD-CARSの波長プランを示す。
図9図9は、遅延ステージを示す。
図10図10は、温度制御モジュールのブロック図を示す。
図11図11は、本システムの光学システムの概念構成を示す。
図12図12は、光学プレートの配置例を示す。
【発明を実施するための形態】
【0009】
以下において、実施形態およびその様々な特徴および有利な点についての詳細は、添付の図面に図示され以下の説明で詳細に説明される、非限定的な実施形態を参照して、より完全に説明される。本明細書の実施形態を不必要に分かりにくくしないように、周知の構成要素と処理技術の説明は省略する。以下において用いられる実施例は、以下における実施形態が実施され得るであろうことの理解を容易にし、さらに、当業者であれば、以下における実施形態を実施可能であることを意図しているに過ぎない。したがって、これらの実施例は、本発明の範囲を制限するものとして解釈されてはならない。
【0010】
図1は、本発明の1つの実施形態によるシステム1を示す。図1は、測定システム1を構成するためのコア光学モジュール(コアモジュール、本体)10と、複数種類の検査インターフェースモジュール(走査インターフェースモジュール、スキャンインターフェースモジュール)11、12、および13とを示す。あるアプリケーションにおいて、対象物(測定対象物、オブジェクト)の状態、組成等を測定するためのシステム1は、コア光学モジュール10と、走査モジュール11から13のうちのいずれかの種類とが光伝送ユニット15により接続されることで構成される。光伝送ユニット15は、光ファイバ15aであってもよく、空間結合コネクタ(フリースペース結合コネクタ)15bであってもよい。空間結合コネクタ15bを用いることで、モジュール11から13の中で選択された種類の検査インターフェースモジュールを、コア光学モジュール10上に積層する(積み重ねる)ことができる。光ファイバ15aを用いることで、測定システム1は、モジュール11から13の中で選択された種類の検査インターフェースモジュールとコア光学モジュール10と積層したり、横並びにしたり、あるいはそれらの間の距離を保持したりなど、自由に配置することができる。
【0011】
実施形態のシステムの内の1つは、コア光学モジュール10と、光ファイバ15aによってコア光学モジュール10に接続された指先型検査インターフェースモジュール(フィンガーチップタイプスキャンインターフェース)11とを含む測定システム1である。図2(a)に示すように、指先型検査インターフェースモジュール11は、対象物としての指先19を挿入するためのインターフェース18と、指先に圧力をかけて走査端での動きを制限するためのボタン18aとを含む。コア光学モジュール10は、検査インターフェースモジュール11を介して対象物19を分析するための信号を発生させる光58を生成し、検査インターフェースモジュール11を介して対象物19からの信号を含む光59を検出するように構成される。検査インターフェースモジュール11は、各用途に応じて変更可能であり、光伝送ユニット15によってコア光学モジュール10と接続され、コア光学モジュール10から伝送された光58で対象物(サンプル、ターゲット)19を走査し、対象物19からの光59を受信してコア光学モジュール10に伝送するように構成される。
【0012】
図1には、3つの異なる種類の検査インターフェースモジュール11、12、および13が示されている。各検査インターフェースモジュール11、12、および13は、コア光学モジュール10から分離されているが、光ファイバ15aなどの光伝送ユニット15を介してコア光学モジュール10と接続される。検査インターフェースモジュールの種類は、侵襲用途、非侵襲用途、流体測定用途などの、用途ごとに変更または選択可能である。モジュール12および13を含む全種類の検査インターフェースモジュールの基本的な構成は、検査インターフェースモジュール11と共通する。
【0013】
指先型検査インターフェースモジュール11は、非侵襲サンプラー(非侵襲型サンプル採取装置)の一例である。図2(b)は、別の種類の非侵襲サンプラーであるモジュール11aを示す。モジュール11aは、コア光学モジュール10からの光を用いて、手のひらを介して生体の内部情報を得るために、手のひらを人間工学的に位置決めするためのコンピュータマウスに似たドーム(覆い)18bを備える。血糖値(血中グルコース(ブドウ糖))モニタリングシステム1は、コア光学系10と非侵襲サンプラー11とによって提供されてもよい。
【0014】
検査インターフェースモジュール12は、低侵襲サンプラー(低侵襲サンプル採取装置)の一例であり、皮下組織液などの体液をサンプリングするための刺入時に被験者が痛みを感じないような低侵襲マイクロニードルやマイクロアレイなどのマイクロサンプリングツールを含んでもよい。低侵襲マイクロサンプリングツールは、体液中の成分濃度の測定による生体情報のセンシングと薬剤の経皮投与とに有用である。医療モニタリングシステム1は、コア光学モジュール10と低侵襲サンプラー12とによって提供されてもよい。
【0015】
検査インターフェースモジュール13は、フローサンプラー(流体サンプル採取装置)の一例であり、対象流体(対象物)が流れる流路(フローパス)13aを含んでいてもよい。対象流体は、尿、透析ドレナージ(排液)、血液、水、溶液などであってもよい。健康管理および/またはモニタリングシステム1は、コア光学モジュール10および、尿サンプラーなどのフローサンプラー13により提供されてもよい。透析モニタリングシステム1は、コア光学モジュール10および透析ドレナージサンプラーなどのフローサンプラー13により提供されてもよい。
【0016】
図3は、本発明の異なる実施形態のシステムを示す。システム1は、ウェアラブル(身体に装着できる)検査インターフェース14、携帯型のコア光学モジュール10、およびウェアラブル検査インターフェース14と携帯型コア光学モジュール10とを接続する光ファイバ15aを含む。ウェアラブル検査インターフェース14は、腕時計型の装置であってもよいし、スマートウォッチなどの通信装置と一体化された装置であってもよい。ウェアラブル検査インターフェース14において、対象物を走査するための光を導き、および/または生成するための光学素子および/または光路は、ミリメートルオーダーまたはそれ以下の大きさのチップ型の光学装置(光学デバイス)として提供されてもよく、一体化されてもよい。携帯型コア光学モジュール10は、携帯電話の大きさであってよく、携帯電話やスマートフォンに一体化されていてもよい。携帯型コア光学モジュール10は、レーザ光源装置と、検出器(分光器)と、電池等とを少なくとも含んでいてもよく、その他の光学素子は、ウェアラブルインターフェース14に実装されたチップ型の光学装置に含まれてもよい。ウェアラブル検査インターフェース14は、スマートグラスといった眼鏡型装置、ペンダント型装置、アタッチメント型装置などとペアになっているものであってもよい。携帯型コア光学モジュール10は、変更可能な各種類の検査インターフェースに共通するものであってもよい。ウェアラブル検査インターフェース14は、システム1による測定値および/または他の情報を出力するためのディスプレイ14aを含んでもよい。携帯型コアモジュール10は、システム1による測定値および/またはモニタリング結果、および/またはその他の情報を表示するためのディスプレイ10aを含んでもよい。
【0017】
図1に示すように、コア光学モジュール10は、光学ベンチ(光学スタンド)20を含み、その上側が光学プレート21で、下側がファイバレーザエンクロジャー(ファイバレーザ機構、ファイバレーザ筐体)22である。光学プレート21上には光58を生成するための1または複数の光路を構成する複数の光学素子が搭載されている。ファイバレーザエンクロジャー22は、1または複数のレーザを発生させて光学プレート21に供給するための少なくとも1つのファイバレーザを収容するように構成される。コア光学モジュール10は、光学プレート21とファイバレーザエンクロジャー22とが積層された(積み重ねられた)積層構造20を含む。コア光学モジュール10は、光学ベンチ20に加え、電源基板や電気制御基板を含む多層構造を有してもよい。制御基板は、通信機能、システム制御機能、ユーザインタフェース機能、および電気モジュールおよびレーザモジュールのための電源機能を含んでもよい。
【0018】
対象物19を分析するための信号を生成(発生)する光58の一例は、ラマン分光法(RS)と光コヒーレンストモグラフィー(光干渉断層法、OCT)との組み合わせである。光学イメージングと分光法(スペクトロスコピ)との両方が、対象物(ターゲットとなる物体)の侵襲的および非侵襲的な特性評価に適用されてきた。OCTなどのイメージング技術は、対象(ターゲット)の微細構造の画像を伝えることに優れており、一方、CARS(Coherent-Anti Stokes Raman Scattering、コヒーレント反ストークスラマン散乱)などの分光法的手法は、対象の分子組成を優れた精度で探査可能である。
【0019】
OCTは、対象物(ターゲット)からの反射光と対象物に照射していない参照光との間の干渉を利用して、屈折率の変化を反映する形状情報を得る方法である。CARSは、非線形光学現象に基づいており、波長の異なる2本の光ビームを対象物に投射すると、対象物を形成する分子の振動に対応した波長を持つCARS光が得られる。ポンプ光とストークス光の投射方向に対するCARS光の検出方向に関して、透過型CARSや反射型CARSなどの複数の異なる方法を採用できる。
【0020】
また、時間分解コヒーレント反ストークスラマン散乱、または時間遅延コヒーレント反ストークスラマン散乱(TD-CARS)マイクスコピー(顕微鏡)は、仮想電子遷移とラマン遷移との異なる時間応答を利用して、非共鳴バックグラウンドを抑制する手法としても知られている。このような測定方法を様々な用途に簡単に適用できるシステムが求められている。
【0021】
指先検査インターフェース(フィンガチップスキャンインターフェース)11は、例えば、コア光学モジュール10で生成され、光伝送ユニット15を介して供給された光58を用いて、インターフェース18に挿入された指19の皮膚を走査し、TD-CARS信号およびOCT信号を生成して、TD-CARSおよびOCT信号(光)を含む光59を、光伝送ユニット15を通してコア光学モジュール10に送信してもよい。指先検査インターフェース11は、コアモジュール10と有線または無線で接続され、コアモジュール10と、あるいはコアモジュール10を介してクラウドと通信してもよい。
【0022】
図4(a)は光学プレート21の配置(構成)を示す図であり、図4(b)はファイバレーザエンクロジャ22の配置(構成)を示す図である。光学プレート21上には、以下に説明する光路を構成するためのミラー、プリズム、ダイクロイックミラー、その他の複数の光学素子30が搭載されている。光学プレート21は、検査インターフェースモジュール11から戻ってきた光59に含まれる信号を検出するための検出器24と、複数のモジュールが収容された制御ボックス25とを含んでいてもよい。ファイバレーザエンクロジャ22上には、ファイバレーザアセンブリ40と、プローブ遅延ステージ29とが搭載されている。
【0023】
図5は、システム1のブロック図を示す。検査インターフェースモジュール11は、指先走査窓(フィンガチップスキャンウィンドウ)11xとオートフォーカス対物レンズ11yとを含み、コア光学モジュール10からの光58を対象物に照射(放射)し、対象物からの光59を受信してコア光学モジュール10に送信してもよい。コア光学モジュール10は、光学ヘッドモジュール26と光学ベースモジュール27とを含んでもよい。光学ヘッドモジュール26は、検査インターフェースモジュール11に含まれてもよく、光学ヘッドモジュール26と光学ベースモジュール27との間の接続部16は、光伝送ユニットであってもよい。光学ベースモジュール27は、発光(励起)源モジュール28と、検出器24と、温度制御モジュール70と、制御モジュール25aから25eとを含む。制御モジュール25aから25eは、制御ボックス25内に収容されている。発光源モジュール28は、ファイバレーザアセンブリ40と、TD-CARS信号およびOCT信号を生成するための光を供給する複数の光路とを含む。このファイバレーザアセンブリ40は、ストークス光51、ポンプ光52、およびOCT光53のためのフェムト秒ファイバレーザ光源モジュール41と、プローブ光54のためのピコ秒レーザ光源モジュール42と、レーザモジュール41および42への電源供給を制御するための温度および電力調整モジュール43とを含む。
【0024】
光学ベンチ20の光学プレート21上には、ミラー、スイッチング素子、リフレクタ、プリズム、レンズ、短波長パスフィルタ(SP)、長波長パスフィルタ(LP)等のフィルタおよびその他の素子を含む複数の光学素子30を用いて、第1の波長領域R1を有するストークス光51を供給するための光路31と、第1の波長領域R1よりも短い第2の波長領域R2を有するポンプ光52を供給するための光路32と、波長領域R4を有するプローブ光54を供給するための光路34と、ストークス光51、ポンプ光52およびプローブ光54を光伝送ユニット15に同軸的に出力するための光路39と、ストークス光51、ポンプ光52、およびプローブ光54により対象物において発生(生成)されたTD-CARS光55を光伝送ユニット15から取得するための光路35とが設けられている。TD-CARS光55は、ストークス光51およびポンプ光52のみで発生するCARS光の波長領域よりも短い波長領域R5を有する。光路34は、ポンプ光52の放射との時間差でプローブ光54の放射を制御するための、アクチュエータ付きのプローブ遅延ステージ29を含む。
【0025】
光学プレート21上には、複数の光学素子30を用いて、第2の波長領域R2よりも短い第3の波長領域R3であってTD-CARS光55の波長領域R5と少なくとも一部が重なる第3の波長領域R3を有するOCT光53を供給するための光路33と、反射されたOCT光62を光伝送ユニット15から取得するための光路36と、OCTエンジン60とが設けられている。経路36は、OCTエンジン60からOCT光53を出力し、OCTエンジン60に反射光62を受信または戻すためのダイクロイックミラー68を含む。OCTエンジン60は、OCT光53から参照光61を分離し、参照光61と対象物から光伝送ユニット15を介して得られた反射OCT光62とにより干渉光63を生成するように構成されている。光路39は、ストークス光51、ポンプ光52、およびプローブ光54と共に、OCT光53を同軸的に光伝送ユニット15に出力する。光路39は、ビームコンディショニング(調整)ユニット39c、ビームアライメント(位置制御)ユニット39a、ビームステアリング(方向制御)ユニット39b、およびダイクロイックミラー装置39dを含んでもよい。ダイクロイックミラー39dは、TD-CARS55を生成するための光51、52、54とOCT光53とを組み合わせて光58を作り、TD-CARS光55と反射光62とを含む戻り光59を分離する。複数の光学素子の代わりに、または光学素子とともに、それらの光路は、チップ型の光学装置(デバイス)を使用してもよく、それらの光路が内蔵されたチップ型の光学装置を用いて提供されてもよい。それらの光路の全部または一部は、コア光学モジュール内で提供される代わりに、ウェアラブルモデル14などの検査モジュール(スキャンニングモジュール)内に設けられていてもよい。
【0026】
コア光学モジュール10は、TD-CARS光55およびOCTの干渉光63を検出するための検出器24をさらに含む。検出器24は、TD-CARS光55と干渉光63とにより少なくとも部分的に共有される検出波長の領域を含む。コア光学モジュール10は、検出器24からのデータを取得して分析するためのアナライザ(分析装置)25aをさらに含む。アナライザ25aは、高速データ取得モジュール25bと、システム制御および通信インターフェースモジュール25cとを含んでいてもよい。通信インターフェースモジュール25cは、組み込まれたスイッチングプラットフォーム25dを介して、レーザアセンブリ40、検出器24、温度制御モジュール70、光路内のスイッチング素子、およびコア光学モジュール10内の他の制御素子と通信してもよい。コア光学モジュール10は、クラウドベースのUI(ユーザインタフェース)プラットフォーム25eを含み、パーソナルコンピュータ80やサーバなどの外部装置とインターネットを介して通信してもよい。コア光学モジュール10および検査インターフェースモジュール11を含むシステム1は、コンピュータ80にインストールされたアプリケーション81と通信して、システム1を使用するユーザに所定のサービスを提供してもよい。
【0027】
図6は、ファイバレーザアセンブリ40の1つの実施形態を示す。図7は、ファイバレーザアセンブリ40の波長プランである。アセンブリは、MOPA(主発振器出力増幅器/Master Oscillator Power Amplifier)ファイバレーザであってもよく、ソースレーザダイオードLD041aを含み、発振器に注入し、1560nmのソースレーザパルス50を生成してもよい。光検出器PD0は、フィードバック信号を提供し、1560nmのパルスが環境変化に対して安定して生成されるようにしている。ソースレーザ(発信源のレーザ)50は、ピコ秒レーザ光源モジュール42のプローブ生成前駆装置(プレカーサ)42aのポートと、フェムト秒ファイバレーザ光源モジュール41の生成ステージ41bのポートとに分割される。生成ステージ41bでは、レーザLD1が高非線形ファイバ(HNLF)に接合されたEr(エルビウム添加)プリアンプに注入されて(ポンプし)1040nmが生成され、ストークス生成前駆装置(プレカーサ)41cに供給される。前駆装置41cでは、レーザLD2がYb(イッテルビウム添加)プリアンプに注入されて(ポンプし)1040nmのパルスを増幅し、レーザLD3がYb高出力アンプに注入され(ポンプして)1040nmで平均出力600mWのパルスを生成する。ストークス発生前駆装置41cから出力されたレーザは、パラボラコリメータを介してコンプレッサ41dに供給され、フォトニック結晶ファイバ(PCF)41eにより生成された広帯域スーパーコンティニウム(SC)を有するストークス光51を生成する。コンプレッサ41dから出力されたレーザは分割され、ポンプ光52を生成する。
【0028】
プローブ生成前駆装置42aでは、レーザLD4がEr高出力アンプに注入され(ポンプし)、1560nmで平均150mWのパワーのパルスを生成する。プローブ生成前駆装置42aから出力されたレーザは、パラボラコリメータを介してコンプレッサ42bに供給され、高出力1560nmのパルスは、SHG(第2次高調波発生、Second Harmonic Generation)として作用するPPLN(周期的分極反転ニオブ酸リチウム非線形結晶、Periodically Poled Lithium Niobate nonlinear crystal)を介して780nmに周波数が倍化され、プローブ光54が生成される。ストークス光51、ポンプ光52、およびOCT光53は、数十から数百mWを有する、1から数百fS(フェムト秒)オーダの複数のパルスを含んでいてもよい。プローブ光54は、数十から数百mWの、1から数十pS(ピコ秒)オーダの複数のパルスを含んでいてもよい。
【0029】
図7は、このコア光学モジュール10の波長プラン(波長計画)の1つを示す。コア光学モジュール10は、最小限のハードウェアとコストで、いくつかの動作モードの要件を満たすことが望ましい。このコア光学モジュール10の要件の1つは、CARS放射がTD-CARS放射と重複しないことであってもよい。このコア光学モジュール10の他の要件の1つは、TD-CARS放射が、OCT励起と重なり、スペクトルメータの範囲が重なるようにすることであってもよい。このコア光学モジュール10のさらに異なる要件の1つは、細胞組織を通過して効率のよい励起(散乱光の発生)が得られることであってもよい。すなわち、第1の領域R1のストークス光51、第2の領域R2のポンプ光52、第4の領域R4のプローブ光54、および第3の領域R3およびR5のOCT光53およびTD-CARS光55は、水、メラニン、還元ヘモグロビン(Hb)、酸化ヘモグロビン(HbO2)等の生体の主要部分の吸光度が実質的に低い600nmから1300nmの間の光学的な窓の領域に準備(配置)されることが望ましい。
【0030】
図8に示すプラン(計画)において、ストークス光51は波長1085から1230nm(400cm-1から1500cm-1)の第1の領域R1を有し、ポンプ光52は波長1040nmの第2の領域R2を有し、プローブ光54は波長780nmの第4の領域R4を有し、OCT光53(干渉光63)は波長620から780nmの第3の領域R3を有し、TD-CARS光55は波長680から760nmの第5の領域R5を有する。領域R1、R2、R3、R4、およびR5の全ては、波長領域600nmから1300nmに含まれる。第2の領域R2は第1の領域R1よりも短く、第3の領域R3は第2の領域R2よりも短く、第4の領域R4は第2の領域R2よりも短く、かつ第3の領域R3よりも大きいか、あるいは含まれており、TD-CARS55の領域R5は第4の領域R4よりも短く、少なくとも一部が第3の領域R3に重なっている。検出器24の検出波長領域DRは、620から780nmであって、TD-CARS55とOCTの干渉光63とに共有されてもよい。このプランでは、TD-CARS55およびOCT光53(63)とで共有される検出波長領域DRを有する検出器24が1台あればよい。CARS検出とOCT検出の間の検出波長領域DRを共有する単一かつ共通の検出器24を適用することで、システム構成が簡素化され、CARS検出器の分光分解能とOCTの撮像深度が向上する。このコア光学モジュール10では、CARS光55とOCT光53(63)が単一の検出器24の同じスペクトル領域を使用することから、時分割走査が必要とされてもよい。コア光学モジュール10の光スイッチング素子38aと38bは、タイムシェア(時分割)制御のために使用されてもよい。
【0031】
このプラン(設計)では、ポンプ光52の領域R2よりも短い波長領域R4、例えば780nmを有するプローブ光54を用いることで、プローブ光54の領域R4よりも短い波長領域R5を有するTD-CARS55が発生される。すなわち、ストークス光51およびポンプ光52のみで生成されるCARS光55xの波長領域R6より短い波長領域R4を有し、ポンプ光52の放射との時間差を有するプローブ光54を使用することにより、CARS光55xの波長領域R6よりも短い波長領域R5を有するTD-CARS55が生成される。したがって、TD-CARS光55とCARS光55xの間で干渉は生じず、明瞭なTD-CARS光55がCARS光55xの干渉無しに検出可能である。ストークス光51およびポンプ光52のみによって生成されるCARS光55xとの波長領域R6より短い波長領域を有するプローブ光54は、ストークス光51とポンプ光52とプローブ光54とで生成される時間差CARS(TD-CARS)55を検出するために要求されてもよい。
【0032】
なお、上記の説明は、CARS光は、検査モジュール11を介して対象物において生成される走査された光59として使用できないということを意味するものではなく、また、スキャン用の光58およびスキャンの結果生じた光59は、CARS光、SRS(誘導ラマン散乱、Stimulated Raman Scatttering)、赤外光、あるいは対象物の状態を信号および/またはスペクトルとして捉えることができるものであればどのような光であってもよいことには留意されたい。コア光学モジュール10は、TD-CARS用とOCT用の2つの検出器を含むハイブリッド光学システムであってもよいし、あるいは、検出器を半分に分割して、半分はCARS用に、他方の半分はOCT用に使用することにより、異なるスペクトル領域を有するCARS信号とOCTとを検出するものであってもよい。
【0033】
図9(a)は手動(マニュアル)型の遅延ステージ29の一例を示し、図9(b)は電動型の遅延ステージ29の一例を示す。プローブ光54と、ポンプ/ストークス光51および52との間の時間的なオーバーラップは、手動遅延ステージ(+/-2.5mm)および/または電動遅延ステージ(+/-2.5mm)により制御されてもよい。手動遅延ステージ29では、1560nmのコリメータ29aが手動遅延テーブル29bに搭載されている。電動遅延ステージ29は、光ファイバにそれぞれ接続された一対のコリメート装置(コリメータ)29cおよび29dと、遅延テーブル29eと、モータ29fとを含む。電動型の光学遅延ステージ29では、プローブ光54は、ファイバーイン→コリメータ→空間カプリング→コリメータ→ファイバーアウトという経路で移動する。総移動範囲は10mm(33ps)であってもよい。
【0034】
図10は、温度制御モジュール70を示す。光学プレート21では、複数の光学素子30が光学プレート21に搭載されており、それらの素子の位置の微少な変位および/またはそれらの間の微小な距離変化が、光学プレート21の光学性能に大きな影響を与えるため、光学プレート21および光学ベンチ20は剛性のあるものとし、熱膨張の影響を回避するために、光学プレート21の温度は一定にするものとする。したがって、コア光学モジュール10は、光学プレート21および/または光学ベンチ20の温度を制御するように構成された温度制御ユニット70を含む。
【0035】
温度制御ユニット70の一例は、ヒータ制御モジュール71を含む。ヒータ制御モジュール71は、ADC73を介して、光学プレート21に取り付けられたサーミスタ79により、光学プレート21および/または周囲の温度を検出し、複数のFET72を介して、ヒータ78を用いて光学プレート21の温度を制御する。ヒータ制御装置71は、光学プレート21の温度を周囲温度(気温、室温、大気温度)以上に制御し、光学プレート21の温度を一定の値に維持する。ヒータ78は、周囲温度が15℃といった最も低い場合でも、プレート21の温度を25℃といった平均的な周囲温度よりも20℃高い値に維持する加熱能力を有していてもよい。温度制御ユニット70は、ペルチェ冷却ユニットなどの冷却ユニットを含んでもよい。光学プレートが、変位および/または距離の変化を補償する自動チューニングユニットを含む場合、温度制御ユニットは、温度の急激な変化を回避して、温度勾配を所定の範囲に保つ機能を有してもよい。
【0036】
図11は、コア光学モジュール10と非侵襲走査モジュール11との間の概略構成を示す。コア光学モジュール(光学コアモジュール、光学本体モジュール)10では、ストークス光51、ポンプ光52、およびプローブ光54が束ねられ、光伝送ユニット15(光ファイバ15aまたは空間カップリング15b)を介して、スキャン光58としてスキャンモジュール11に送られる。スキャンモジュール11では、ガルバノスキャナー(ガルバノメータ)11gおよび対物レンズモジュール11iを介して、スキャン光(走査光、検出光)58が対象物(ターゲット、サンプル)19に照射される。ストークス光51、ポンプ光52、およびプローブ光54により対象物19においてTD-CARS光55が生成され、後方(Epi)TD-CARS光55は、スキャン光58と同じ経路を通って、スキャンされた光59として光学コアモジュール10に戻される。スキャンモジュール11は、対象物19の反対側に配置された第2の対物レンズモジュール11fを含んでもよく、前方TD-CARS光55fを集光してもよい。前方TD-CARS光55fは、光伝送経路15を介して、スキャン光58と同じ経路を用いてスキャンされた光59として戻されてもよい。
【0037】
光学コアモジュール10では、ストークス光51、ポンプ光52、およびプローブ光54に対して、OCT光53が時分割的に生成され、光51、52、および54と同じ経路を用いてスキャンモジュール11に送られる。すなわち、OCT光53は、光伝送ユニット15(光ファイバ15aまたは空間カップリング15b)を介してスキャン光58としてスキャンモジュール11に送られる。スキャンモジュール11では、OCT光53(スキャン光58)は、同じガルバノスキャナー11gと対物レンズモジュール11iとを共に使い、対象物(ターゲット、サンプル)19に向けて放射される。対象物19からの反射光62は、スキャン光58と同じ経路を通ってスキャンされた光59として光学コアモジュール10に戻される。
【0038】
図12は、光学プレート21上の複数の光学素子30の配置の実施形態の一つを示す。OCTエンジン60からレンズL1、ミラーM2、レンズL6およびL7、およびミラーM7およびM8を通ってミラーM1に至る経路は、OCT光53を対象物に出力するための光路36である。本例では、ミラーM7およびM8は、OCT光53と、戻されたTD-CARS光55とを選択するためのミラーである。OCT光53が選択されると、ミラーM7およびM8は、電動の移動ステージにより予め設定された位置に移動する。レンズL6およびL7は、OCT採取用のアームのビーム幅を調整するビームエキスパンダであり、対象物上に送られるのに適した開口数(NA)が得られるようにする。OCT光53は、ガルバノスキャナーおよびカスタマイズされた複数の要素からなる対物レンズを通過して、対象物に送られる。
【0039】
OCTエンジン60からレンズL2、ダイクロイックビームスプリッタ(ダイクロイックミラー)BS1、レンズL3、およびミラーM9を経て検出器(分光器、スペクトロメータ)24に至る経路は、OCT検出のための経路37である。ターゲット(対象物)からの戻りの(反射された)OCT光62は、参照光61と組み合わせまたは重ね合わされ(合波され)、干渉信号63を形成し、2つのレンズL2およびL3を介して分光器24にもたらされる。この例では、OCT干渉信号63とCARS光55は同じ分光器24を共有しており、OCTとCARSとを同時に取得してもよい。しかしながら、OCTとCARSの波長が重複している場合には、OCTとCARSとを時分割で得ることが必要となる。ダイクロイックビームスプリッタBS1は、OCTの波長を透過させる。
【0040】
光路31、32、および34は、ポンプ光52、ストークス光51、およびプローブ光54をターゲット(対象物サンプル)に送るための光路である。本例では、ダイクロイックビームスプリッタBS4がポンプ光52とストークス光51とを組み合わせ、ダイクロイックビームスプリッタBS3がポンプ光52およびストークス光51と、プローブ光54とを組み合わせている。プローブパス34に沿ったショートパスフィルタ(SPフィルタ、短波長通過フィルタ)は、1560nmの信号の残りをフィルタリングし、ストークスパス31に沿ったロングパスフィルタ(LPフィルタ、長波長通過フィルタ)は、関心対象領域外のより低い波長をフィルタリングする。ミラーM1の後で、これらのビームは組み合わされ、伝送ユニット15を介して送られる。
【0041】
光路35は、後方CARS(後方散乱CARS、TD-CARS)55を検出するための光路である。本例では、前方散乱CARS光55の集光を選択するためのミラーM6と、OCT光53および63を選択するためのミラーM7およびM8とが、電動ステージを介して外される。ダイクロイックビームスプリッタBS1、BS2、およびBS3は、検出されたCARS信号55を反射して収集する。ダイクロイックビームスプリッタBS1を用いて、単一の分光器でCARSとOCT両方の検出を可能としている。レンズL4およびL5により、分光器24のための適切な収集開口数(NA)を得るためのビームエキスパンダが構成されている。この経路35上のショートパスフィルタ(SPフィルタ)は、関心対象の波長のみが分光器(スペクトロメータ)24により収集されるようにしている。
【0042】
光路35の一部である光路35aは、前方CARS(前方散乱CARS)55fを検出するための経路である。本例では、電動ステージを介して前方CARS光55fの収集を選択するためのミラーM6を所定の位置に移動させている。ダイクロイックビームスプリッタBS1が、検出されたCARS信号55または55fを反射して収集する。レンズL4およびL5が、分光器24の適切な収集開口数(NA)を得るためのビームエキスパンダを構成している。ショートパスフィルタ(SPフィルタ)は、関心対象の波長のみが分光器24により収集されるようにしている。
【0043】
本システム1では、光ファイバがコア光学モジュール10と走査インターフェースモジュール11~14とを接続できる距離内であれば、コア光学モジュール10と、検査インターフェースモジュール11~14の1つは、別々に準備されてもよく、積み重ねられてもよく、さらに、並列に配置されてもよい。多用途かつ共通性と汎用性のあるコア光学モジュール10を提供することにより、各用途に応じた最適な検査インターフェースモジュールを容易に開発することができ、カスタマイズが容易で、低コストで、様々な分野での計測、研究、モニタリングおよび/または自己治療(セルフケア)に適したシステム1を提供することが可能となる。
【0044】
本明細書では、コア光学モジュールと検査インターフェースモジュールとを備えるシステムが開示されている。コア光学モジュールは、ターゲット探索用の信号を発生させるための光を生成し、さらに、ターゲットからの信号を検出するように構成されている。検査インターフェースモジュール(走査インターフェース、スキャンニングインターフェース)は、コア光学モジュールから分離されているが、光ファイバまたは空間結合(空間カップリング)を介してコア光学モジュールと接続されている。検査インターフェースモジュールは、用途に応じて変更可能である。検査インターフェースモジュールは、信号を作成するために、光ファイバまたは空間カップリングを介してコア光学モジュールから送られた光でターゲットを検査(走査)し、ターゲットからの信号を受信し、光ファイバまたは空間カップリングを介してコア光学モジュールに信号を送るように構成されている。検査インターフェースモジュールは、低侵襲サンプラー、非侵襲サンプラー、またはフローサンプラーであってもよい。検査インターフェースモジュールは、グルコース、ヘモグロビンA1c、クレアチニン、アルブミンなどを測定するための、指先検出や尿検出などの用途に応じて変更することができる。
【0045】
上記には、コア光学モジュールと検査インターフェースモジュールとを備えるシステムであって、前記コア光学モジュールは、前記検査インターフェースモジュールを介して、対象物を分析するための信号を発生させるための光を生成し、前記検査インターフェースモジュールを介して前記対象物からの前記信号を含む光を検出するように構成され、前記検査インターフェースモジュールは、アプリケーション毎に交換可能であり、光伝送ユニットにより前記コア光学モジュールと接続され、前記コア光学モジュールから送られた前記光により前記対象物をスキャンし、前記対象物からの前記光を受信して前記コア光学モジュールに送るように構成されている、システムが開示されている。
【0046】
前記検査インターフェースモジュールは、前記コア光学モジュールから分離され、前記光伝送ユニットにより前記コア光学モジュールと接続されていてもよい。前記コア光学モジュールは、前記光を生成するための光路を構成する複数の光学素子が搭載された光学プレートと、前記光学プレートに供給するレーザを生成する少なくとも1つのファイバレーザを収容するように構成されたファイバレーザ機構とを含んでもよい。前記コア光学モジュールは、前記光学プレートと前記ファイバレーザ機構とが積層された積層構造を含んでもよい。前記コア光学モジュールは、さらに、前記光学プレートの温度を制御するように構成された温度制御ユニットを含んでもよい。前記温度制御ユニットは、前記光学プレートの前記温度を周囲温度以上に制御してもよい。
【0047】
前記複数の光学素子は、第1の波長領域のストークス光と、前記第1の波長領域よりも短い第2の波長領域のポンプ光とを供給するための光学素子と、前記ストークス光および前記ポンプ光により発生されたCARS光の波長領域よりも短い波長領域のプローブ光を、前記ポンプ光の出射から時間差をもって出射するように供給するための光学素子と、前記ストークス光、前記ポンプ光、および前記プローブ光を前記光伝送ユニットに同軸的に出力するための光学素子と、前記ストークス光、前記ポンプ光、および前記プローブ光により前記対象物において発生されたTD-CARS光を前記光伝送ユニットから取得するための光学素子とを含んでもよい。前記コア光学モジュールは、さらに、前記時間差を制御する、アクチュエータ付きのプローブ遅延ステージを含んでもよい。前記複数の光学素子は、さらに、前記第2の波長領域よりも短く、前記TD-CARS光の波長領域と少なくとも一部が重なる第3の波長領域のOCT光を供給するための光学素子と、前記OCT光を前記ストークス光、前記ポンプ光、および前記プローブ光と同軸的に前記光伝送ユニットに出力するための光学素子と、前記光伝送ユニットから、反射OCT光を取得するための光学素子とを含んでもよく、前記コア光学モジュールは、前記OCT光から参照光を分割して、前記参照光と前記光伝送ユニットからの反射OCT光とから干渉光を生成するように構成されたOCTエンジンをさらに含んでもよい。前記コア光学モジュールは、さらに、前記TD-CARS光を検出する検出器を含んでもよい。前記コア光学モジュールは、さらに、検出波長領域の少なくとも一部が、前記TD-CARS光および前記干渉光とで共有される検出波長領域を含む検出器を含んでもよい。
【0048】
前記光伝送ユニットは、光ファイバまたはフリースペース結合を含んでもよい。前記検査インターフェースモジュールは、低侵襲サンプル採取装置、非侵襲サンプル採取装置、およびフローサンプル採取装置のいずれかを含んでもよい。前記検査インターフェースモジュールは、ウェアラブル検査インターフェース、指先検査インターフェース、尿サンプル採取装置、および透析排液サンプル採取装置のいずれかを含んでもよい。
【0049】
特定の実施形態について上述した説明は、それらの実施形態の一般的な内容を十分に明らかにしており、他者は、現在の知識を適用することにより、上記の概念から逸脱することなく、そのような特定の実施形態を様々な用途のために容易に修正および/または適応させることができ、したがって、そのような適応および修正は、開示された実施形態と等価な手段および範囲内であると理解されるべきであり、かつ、そのように意図されている。本明細書で採用されている表現または用語は、説明のためのものであり、限定のためのものではないと解されるべきである。したがって、本明細書の実施形態は、好ましい実施形態の観点から説明されてきたが、当業者であれば、これらの実施形態が添付の特許請求の範囲の精神および範囲内で修正を加えて実施することができることを認識するであろう。
【符号の説明】
【0050】
1 測定用のシステム
10 コア光学モジュール
11 検査インターフェースモジュール
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12